]> asedeno.scripts.mit.edu Git - linux.git/blob - net/wireless/reg.c
Merge tag 's390-5.1-3' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux.git] / net / wireless / reg.c
1 /*
2  * Copyright 2002-2005, Instant802 Networks, Inc.
3  * Copyright 2005-2006, Devicescape Software, Inc.
4  * Copyright 2007       Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2008-2011  Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright      2017  Intel Deutschland GmbH
8  * Copyright (C) 2018 - 2019 Intel Corporation
9  *
10  * Permission to use, copy, modify, and/or distribute this software for any
11  * purpose with or without fee is hereby granted, provided that the above
12  * copyright notice and this permission notice appear in all copies.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21  */
22
23
24 /**
25  * DOC: Wireless regulatory infrastructure
26  *
27  * The usual implementation is for a driver to read a device EEPROM to
28  * determine which regulatory domain it should be operating under, then
29  * looking up the allowable channels in a driver-local table and finally
30  * registering those channels in the wiphy structure.
31  *
32  * Another set of compliance enforcement is for drivers to use their
33  * own compliance limits which can be stored on the EEPROM. The host
34  * driver or firmware may ensure these are used.
35  *
36  * In addition to all this we provide an extra layer of regulatory
37  * conformance. For drivers which do not have any regulatory
38  * information CRDA provides the complete regulatory solution.
39  * For others it provides a community effort on further restrictions
40  * to enhance compliance.
41  *
42  * Note: When number of rules --> infinity we will not be able to
43  * index on alpha2 any more, instead we'll probably have to
44  * rely on some SHA1 checksum of the regdomain for example.
45  *
46  */
47
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
61 #include "core.h"
62 #include "reg.h"
63 #include "rdev-ops.h"
64 #include "nl80211.h"
65
66 /*
67  * Grace period we give before making sure all current interfaces reside on
68  * channels allowed by the current regulatory domain.
69  */
70 #define REG_ENFORCE_GRACE_MS 60000
71
72 /**
73  * enum reg_request_treatment - regulatory request treatment
74  *
75  * @REG_REQ_OK: continue processing the regulatory request
76  * @REG_REQ_IGNORE: ignore the regulatory request
77  * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78  *      be intersected with the current one.
79  * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80  *      regulatory settings, and no further processing is required.
81  */
82 enum reg_request_treatment {
83         REG_REQ_OK,
84         REG_REQ_IGNORE,
85         REG_REQ_INTERSECT,
86         REG_REQ_ALREADY_SET,
87 };
88
89 static struct regulatory_request core_request_world = {
90         .initiator = NL80211_REGDOM_SET_BY_CORE,
91         .alpha2[0] = '0',
92         .alpha2[1] = '0',
93         .intersect = false,
94         .processed = true,
95         .country_ie_env = ENVIRON_ANY,
96 };
97
98 /*
99  * Receipt of information from last regulatory request,
100  * protected by RTNL (and can be accessed with RCU protection)
101  */
102 static struct regulatory_request __rcu *last_request =
103         (void __force __rcu *)&core_request_world;
104
105 /* To trigger userspace events and load firmware */
106 static struct platform_device *reg_pdev;
107
108 /*
109  * Central wireless core regulatory domains, we only need two,
110  * the current one and a world regulatory domain in case we have no
111  * information to give us an alpha2.
112  * (protected by RTNL, can be read under RCU)
113  */
114 const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116 /*
117  * Number of devices that registered to the core
118  * that support cellular base station regulatory hints
119  * (protected by RTNL)
120  */
121 static int reg_num_devs_support_basehint;
122
123 /*
124  * State variable indicating if the platform on which the devices
125  * are attached is operating in an indoor environment. The state variable
126  * is relevant for all registered devices.
127  */
128 static bool reg_is_indoor;
129 static spinlock_t reg_indoor_lock;
130
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid;
133
134 static void restore_regulatory_settings(bool reset_user, bool cached);
135 static void print_regdomain(const struct ieee80211_regdomain *rd);
136
137 static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
138 {
139         return rcu_dereference_rtnl(cfg80211_regdomain);
140 }
141
142 const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
143 {
144         return rcu_dereference_rtnl(wiphy->regd);
145 }
146
147 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
148 {
149         switch (dfs_region) {
150         case NL80211_DFS_UNSET:
151                 return "unset";
152         case NL80211_DFS_FCC:
153                 return "FCC";
154         case NL80211_DFS_ETSI:
155                 return "ETSI";
156         case NL80211_DFS_JP:
157                 return "JP";
158         }
159         return "Unknown";
160 }
161
162 enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
163 {
164         const struct ieee80211_regdomain *regd = NULL;
165         const struct ieee80211_regdomain *wiphy_regd = NULL;
166
167         regd = get_cfg80211_regdom();
168         if (!wiphy)
169                 goto out;
170
171         wiphy_regd = get_wiphy_regdom(wiphy);
172         if (!wiphy_regd)
173                 goto out;
174
175         if (wiphy_regd->dfs_region == regd->dfs_region)
176                 goto out;
177
178         pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
179                  dev_name(&wiphy->dev),
180                  reg_dfs_region_str(wiphy_regd->dfs_region),
181                  reg_dfs_region_str(regd->dfs_region));
182
183 out:
184         return regd->dfs_region;
185 }
186
187 static void rcu_free_regdom(const struct ieee80211_regdomain *r)
188 {
189         if (!r)
190                 return;
191         kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
192 }
193
194 static struct regulatory_request *get_last_request(void)
195 {
196         return rcu_dereference_rtnl(last_request);
197 }
198
199 /* Used to queue up regulatory hints */
200 static LIST_HEAD(reg_requests_list);
201 static spinlock_t reg_requests_lock;
202
203 /* Used to queue up beacon hints for review */
204 static LIST_HEAD(reg_pending_beacons);
205 static spinlock_t reg_pending_beacons_lock;
206
207 /* Used to keep track of processed beacon hints */
208 static LIST_HEAD(reg_beacon_list);
209
210 struct reg_beacon {
211         struct list_head list;
212         struct ieee80211_channel chan;
213 };
214
215 static void reg_check_chans_work(struct work_struct *work);
216 static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
217
218 static void reg_todo(struct work_struct *work);
219 static DECLARE_WORK(reg_work, reg_todo);
220
221 /* We keep a static world regulatory domain in case of the absence of CRDA */
222 static const struct ieee80211_regdomain world_regdom = {
223         .n_reg_rules = 8,
224         .alpha2 =  "00",
225         .reg_rules = {
226                 /* IEEE 802.11b/g, channels 1..11 */
227                 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
228                 /* IEEE 802.11b/g, channels 12..13. */
229                 REG_RULE(2467-10, 2472+10, 20, 6, 20,
230                         NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
231                 /* IEEE 802.11 channel 14 - Only JP enables
232                  * this and for 802.11b only */
233                 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234                         NL80211_RRF_NO_IR |
235                         NL80211_RRF_NO_OFDM),
236                 /* IEEE 802.11a, channel 36..48 */
237                 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238                         NL80211_RRF_NO_IR |
239                         NL80211_RRF_AUTO_BW),
240
241                 /* IEEE 802.11a, channel 52..64 - DFS required */
242                 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243                         NL80211_RRF_NO_IR |
244                         NL80211_RRF_AUTO_BW |
245                         NL80211_RRF_DFS),
246
247                 /* IEEE 802.11a, channel 100..144 - DFS required */
248                 REG_RULE(5500-10, 5720+10, 160, 6, 20,
249                         NL80211_RRF_NO_IR |
250                         NL80211_RRF_DFS),
251
252                 /* IEEE 802.11a, channel 149..165 */
253                 REG_RULE(5745-10, 5825+10, 80, 6, 20,
254                         NL80211_RRF_NO_IR),
255
256                 /* IEEE 802.11ad (60GHz), channels 1..3 */
257                 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
258         }
259 };
260
261 /* protected by RTNL */
262 static const struct ieee80211_regdomain *cfg80211_world_regdom =
263         &world_regdom;
264
265 static char *ieee80211_regdom = "00";
266 static char user_alpha2[2];
267 static const struct ieee80211_regdomain *cfg80211_user_regdom;
268
269 module_param(ieee80211_regdom, charp, 0444);
270 MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
271
272 static void reg_free_request(struct regulatory_request *request)
273 {
274         if (request == &core_request_world)
275                 return;
276
277         if (request != get_last_request())
278                 kfree(request);
279 }
280
281 static void reg_free_last_request(void)
282 {
283         struct regulatory_request *lr = get_last_request();
284
285         if (lr != &core_request_world && lr)
286                 kfree_rcu(lr, rcu_head);
287 }
288
289 static void reg_update_last_request(struct regulatory_request *request)
290 {
291         struct regulatory_request *lr;
292
293         lr = get_last_request();
294         if (lr == request)
295                 return;
296
297         reg_free_last_request();
298         rcu_assign_pointer(last_request, request);
299 }
300
301 static void reset_regdomains(bool full_reset,
302                              const struct ieee80211_regdomain *new_regdom)
303 {
304         const struct ieee80211_regdomain *r;
305
306         ASSERT_RTNL();
307
308         r = get_cfg80211_regdom();
309
310         /* avoid freeing static information or freeing something twice */
311         if (r == cfg80211_world_regdom)
312                 r = NULL;
313         if (cfg80211_world_regdom == &world_regdom)
314                 cfg80211_world_regdom = NULL;
315         if (r == &world_regdom)
316                 r = NULL;
317
318         rcu_free_regdom(r);
319         rcu_free_regdom(cfg80211_world_regdom);
320
321         cfg80211_world_regdom = &world_regdom;
322         rcu_assign_pointer(cfg80211_regdomain, new_regdom);
323
324         if (!full_reset)
325                 return;
326
327         reg_update_last_request(&core_request_world);
328 }
329
330 /*
331  * Dynamic world regulatory domain requested by the wireless
332  * core upon initialization
333  */
334 static void update_world_regdomain(const struct ieee80211_regdomain *rd)
335 {
336         struct regulatory_request *lr;
337
338         lr = get_last_request();
339
340         WARN_ON(!lr);
341
342         reset_regdomains(false, rd);
343
344         cfg80211_world_regdom = rd;
345 }
346
347 bool is_world_regdom(const char *alpha2)
348 {
349         if (!alpha2)
350                 return false;
351         return alpha2[0] == '0' && alpha2[1] == '0';
352 }
353
354 static bool is_alpha2_set(const char *alpha2)
355 {
356         if (!alpha2)
357                 return false;
358         return alpha2[0] && alpha2[1];
359 }
360
361 static bool is_unknown_alpha2(const char *alpha2)
362 {
363         if (!alpha2)
364                 return false;
365         /*
366          * Special case where regulatory domain was built by driver
367          * but a specific alpha2 cannot be determined
368          */
369         return alpha2[0] == '9' && alpha2[1] == '9';
370 }
371
372 static bool is_intersected_alpha2(const char *alpha2)
373 {
374         if (!alpha2)
375                 return false;
376         /*
377          * Special case where regulatory domain is the
378          * result of an intersection between two regulatory domain
379          * structures
380          */
381         return alpha2[0] == '9' && alpha2[1] == '8';
382 }
383
384 static bool is_an_alpha2(const char *alpha2)
385 {
386         if (!alpha2)
387                 return false;
388         return isalpha(alpha2[0]) && isalpha(alpha2[1]);
389 }
390
391 static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
392 {
393         if (!alpha2_x || !alpha2_y)
394                 return false;
395         return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
396 }
397
398 static bool regdom_changes(const char *alpha2)
399 {
400         const struct ieee80211_regdomain *r = get_cfg80211_regdom();
401
402         if (!r)
403                 return true;
404         return !alpha2_equal(r->alpha2, alpha2);
405 }
406
407 /*
408  * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
409  * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
410  * has ever been issued.
411  */
412 static bool is_user_regdom_saved(void)
413 {
414         if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
415                 return false;
416
417         /* This would indicate a mistake on the design */
418         if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
419                  "Unexpected user alpha2: %c%c\n",
420                  user_alpha2[0], user_alpha2[1]))
421                 return false;
422
423         return true;
424 }
425
426 static const struct ieee80211_regdomain *
427 reg_copy_regd(const struct ieee80211_regdomain *src_regd)
428 {
429         struct ieee80211_regdomain *regd;
430         int size_of_regd;
431         unsigned int i;
432
433         size_of_regd =
434                 sizeof(struct ieee80211_regdomain) +
435                 src_regd->n_reg_rules * sizeof(struct ieee80211_reg_rule);
436
437         regd = kzalloc(size_of_regd, GFP_KERNEL);
438         if (!regd)
439                 return ERR_PTR(-ENOMEM);
440
441         memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
442
443         for (i = 0; i < src_regd->n_reg_rules; i++)
444                 memcpy(&regd->reg_rules[i], &src_regd->reg_rules[i],
445                        sizeof(struct ieee80211_reg_rule));
446
447         return regd;
448 }
449
450 static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
451 {
452         ASSERT_RTNL();
453
454         if (!IS_ERR(cfg80211_user_regdom))
455                 kfree(cfg80211_user_regdom);
456         cfg80211_user_regdom = reg_copy_regd(rd);
457 }
458
459 struct reg_regdb_apply_request {
460         struct list_head list;
461         const struct ieee80211_regdomain *regdom;
462 };
463
464 static LIST_HEAD(reg_regdb_apply_list);
465 static DEFINE_MUTEX(reg_regdb_apply_mutex);
466
467 static void reg_regdb_apply(struct work_struct *work)
468 {
469         struct reg_regdb_apply_request *request;
470
471         rtnl_lock();
472
473         mutex_lock(&reg_regdb_apply_mutex);
474         while (!list_empty(&reg_regdb_apply_list)) {
475                 request = list_first_entry(&reg_regdb_apply_list,
476                                            struct reg_regdb_apply_request,
477                                            list);
478                 list_del(&request->list);
479
480                 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
481                 kfree(request);
482         }
483         mutex_unlock(&reg_regdb_apply_mutex);
484
485         rtnl_unlock();
486 }
487
488 static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
489
490 static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
491 {
492         struct reg_regdb_apply_request *request;
493
494         request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
495         if (!request) {
496                 kfree(regdom);
497                 return -ENOMEM;
498         }
499
500         request->regdom = regdom;
501
502         mutex_lock(&reg_regdb_apply_mutex);
503         list_add_tail(&request->list, &reg_regdb_apply_list);
504         mutex_unlock(&reg_regdb_apply_mutex);
505
506         schedule_work(&reg_regdb_work);
507         return 0;
508 }
509
510 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
511 /* Max number of consecutive attempts to communicate with CRDA  */
512 #define REG_MAX_CRDA_TIMEOUTS 10
513
514 static u32 reg_crda_timeouts;
515
516 static void crda_timeout_work(struct work_struct *work);
517 static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
518
519 static void crda_timeout_work(struct work_struct *work)
520 {
521         pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
522         rtnl_lock();
523         reg_crda_timeouts++;
524         restore_regulatory_settings(true, false);
525         rtnl_unlock();
526 }
527
528 static void cancel_crda_timeout(void)
529 {
530         cancel_delayed_work(&crda_timeout);
531 }
532
533 static void cancel_crda_timeout_sync(void)
534 {
535         cancel_delayed_work_sync(&crda_timeout);
536 }
537
538 static void reset_crda_timeouts(void)
539 {
540         reg_crda_timeouts = 0;
541 }
542
543 /*
544  * This lets us keep regulatory code which is updated on a regulatory
545  * basis in userspace.
546  */
547 static int call_crda(const char *alpha2)
548 {
549         char country[12];
550         char *env[] = { country, NULL };
551         int ret;
552
553         snprintf(country, sizeof(country), "COUNTRY=%c%c",
554                  alpha2[0], alpha2[1]);
555
556         if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
557                 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
558                 return -EINVAL;
559         }
560
561         if (!is_world_regdom((char *) alpha2))
562                 pr_debug("Calling CRDA for country: %c%c\n",
563                          alpha2[0], alpha2[1]);
564         else
565                 pr_debug("Calling CRDA to update world regulatory domain\n");
566
567         ret = kobject_uevent_env(&reg_pdev->dev.kobj, KOBJ_CHANGE, env);
568         if (ret)
569                 return ret;
570
571         queue_delayed_work(system_power_efficient_wq,
572                            &crda_timeout, msecs_to_jiffies(3142));
573         return 0;
574 }
575 #else
576 static inline void cancel_crda_timeout(void) {}
577 static inline void cancel_crda_timeout_sync(void) {}
578 static inline void reset_crda_timeouts(void) {}
579 static inline int call_crda(const char *alpha2)
580 {
581         return -ENODATA;
582 }
583 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
584
585 /* code to directly load a firmware database through request_firmware */
586 static const struct fwdb_header *regdb;
587
588 struct fwdb_country {
589         u8 alpha2[2];
590         __be16 coll_ptr;
591         /* this struct cannot be extended */
592 } __packed __aligned(4);
593
594 struct fwdb_collection {
595         u8 len;
596         u8 n_rules;
597         u8 dfs_region;
598         /* no optional data yet */
599         /* aligned to 2, then followed by __be16 array of rule pointers */
600 } __packed __aligned(4);
601
602 enum fwdb_flags {
603         FWDB_FLAG_NO_OFDM       = BIT(0),
604         FWDB_FLAG_NO_OUTDOOR    = BIT(1),
605         FWDB_FLAG_DFS           = BIT(2),
606         FWDB_FLAG_NO_IR         = BIT(3),
607         FWDB_FLAG_AUTO_BW       = BIT(4),
608 };
609
610 struct fwdb_wmm_ac {
611         u8 ecw;
612         u8 aifsn;
613         __be16 cot;
614 } __packed;
615
616 struct fwdb_wmm_rule {
617         struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
618         struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
619 } __packed;
620
621 struct fwdb_rule {
622         u8 len;
623         u8 flags;
624         __be16 max_eirp;
625         __be32 start, end, max_bw;
626         /* start of optional data */
627         __be16 cac_timeout;
628         __be16 wmm_ptr;
629 } __packed __aligned(4);
630
631 #define FWDB_MAGIC 0x52474442
632 #define FWDB_VERSION 20
633
634 struct fwdb_header {
635         __be32 magic;
636         __be32 version;
637         struct fwdb_country country[];
638 } __packed __aligned(4);
639
640 static int ecw2cw(int ecw)
641 {
642         return (1 << ecw) - 1;
643 }
644
645 static bool valid_wmm(struct fwdb_wmm_rule *rule)
646 {
647         struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
648         int i;
649
650         for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
651                 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
652                 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
653                 u8 aifsn = ac[i].aifsn;
654
655                 if (cw_min >= cw_max)
656                         return false;
657
658                 if (aifsn < 1)
659                         return false;
660         }
661
662         return true;
663 }
664
665 static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
666 {
667         struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
668
669         if ((u8 *)rule + sizeof(rule->len) > data + size)
670                 return false;
671
672         /* mandatory fields */
673         if (rule->len < offsetofend(struct fwdb_rule, max_bw))
674                 return false;
675         if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
676                 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
677                 struct fwdb_wmm_rule *wmm;
678
679                 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
680                         return false;
681
682                 wmm = (void *)(data + wmm_ptr);
683
684                 if (!valid_wmm(wmm))
685                         return false;
686         }
687         return true;
688 }
689
690 static bool valid_country(const u8 *data, unsigned int size,
691                           const struct fwdb_country *country)
692 {
693         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
694         struct fwdb_collection *coll = (void *)(data + ptr);
695         __be16 *rules_ptr;
696         unsigned int i;
697
698         /* make sure we can read len/n_rules */
699         if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
700                 return false;
701
702         /* make sure base struct and all rules fit */
703         if ((u8 *)coll + ALIGN(coll->len, 2) +
704             (coll->n_rules * 2) > data + size)
705                 return false;
706
707         /* mandatory fields must exist */
708         if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
709                 return false;
710
711         rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
712
713         for (i = 0; i < coll->n_rules; i++) {
714                 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
715
716                 if (!valid_rule(data, size, rule_ptr))
717                         return false;
718         }
719
720         return true;
721 }
722
723 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
724 static struct key *builtin_regdb_keys;
725
726 static void __init load_keys_from_buffer(const u8 *p, unsigned int buflen)
727 {
728         const u8 *end = p + buflen;
729         size_t plen;
730         key_ref_t key;
731
732         while (p < end) {
733                 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
734                  * than 256 bytes in size.
735                  */
736                 if (end - p < 4)
737                         goto dodgy_cert;
738                 if (p[0] != 0x30 &&
739                     p[1] != 0x82)
740                         goto dodgy_cert;
741                 plen = (p[2] << 8) | p[3];
742                 plen += 4;
743                 if (plen > end - p)
744                         goto dodgy_cert;
745
746                 key = key_create_or_update(make_key_ref(builtin_regdb_keys, 1),
747                                            "asymmetric", NULL, p, plen,
748                                            ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
749                                             KEY_USR_VIEW | KEY_USR_READ),
750                                            KEY_ALLOC_NOT_IN_QUOTA |
751                                            KEY_ALLOC_BUILT_IN |
752                                            KEY_ALLOC_BYPASS_RESTRICTION);
753                 if (IS_ERR(key)) {
754                         pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
755                                PTR_ERR(key));
756                 } else {
757                         pr_notice("Loaded X.509 cert '%s'\n",
758                                   key_ref_to_ptr(key)->description);
759                         key_ref_put(key);
760                 }
761                 p += plen;
762         }
763
764         return;
765
766 dodgy_cert:
767         pr_err("Problem parsing in-kernel X.509 certificate list\n");
768 }
769
770 static int __init load_builtin_regdb_keys(void)
771 {
772         builtin_regdb_keys =
773                 keyring_alloc(".builtin_regdb_keys",
774                               KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
775                               ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
776                               KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
777                               KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
778         if (IS_ERR(builtin_regdb_keys))
779                 return PTR_ERR(builtin_regdb_keys);
780
781         pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
782
783 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
784         load_keys_from_buffer(shipped_regdb_certs, shipped_regdb_certs_len);
785 #endif
786 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
787         if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
788                 load_keys_from_buffer(extra_regdb_certs, extra_regdb_certs_len);
789 #endif
790
791         return 0;
792 }
793
794 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
795 {
796         const struct firmware *sig;
797         bool result;
798
799         if (request_firmware(&sig, "regulatory.db.p7s", &reg_pdev->dev))
800                 return false;
801
802         result = verify_pkcs7_signature(data, size, sig->data, sig->size,
803                                         builtin_regdb_keys,
804                                         VERIFYING_UNSPECIFIED_SIGNATURE,
805                                         NULL, NULL) == 0;
806
807         release_firmware(sig);
808
809         return result;
810 }
811
812 static void free_regdb_keyring(void)
813 {
814         key_put(builtin_regdb_keys);
815 }
816 #else
817 static int load_builtin_regdb_keys(void)
818 {
819         return 0;
820 }
821
822 static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
823 {
824         return true;
825 }
826
827 static void free_regdb_keyring(void)
828 {
829 }
830 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
831
832 static bool valid_regdb(const u8 *data, unsigned int size)
833 {
834         const struct fwdb_header *hdr = (void *)data;
835         const struct fwdb_country *country;
836
837         if (size < sizeof(*hdr))
838                 return false;
839
840         if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
841                 return false;
842
843         if (hdr->version != cpu_to_be32(FWDB_VERSION))
844                 return false;
845
846         if (!regdb_has_valid_signature(data, size))
847                 return false;
848
849         country = &hdr->country[0];
850         while ((u8 *)(country + 1) <= data + size) {
851                 if (!country->coll_ptr)
852                         break;
853                 if (!valid_country(data, size, country))
854                         return false;
855                 country++;
856         }
857
858         return true;
859 }
860
861 static void set_wmm_rule(const struct fwdb_header *db,
862                          const struct fwdb_country *country,
863                          const struct fwdb_rule *rule,
864                          struct ieee80211_reg_rule *rrule)
865 {
866         struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
867         struct fwdb_wmm_rule *wmm;
868         unsigned int i, wmm_ptr;
869
870         wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
871         wmm = (void *)((u8 *)db + wmm_ptr);
872
873         if (!valid_wmm(wmm)) {
874                 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
875                        be32_to_cpu(rule->start), be32_to_cpu(rule->end),
876                        country->alpha2[0], country->alpha2[1]);
877                 return;
878         }
879
880         for (i = 0; i < IEEE80211_NUM_ACS; i++) {
881                 wmm_rule->client[i].cw_min =
882                         ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
883                 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
884                 wmm_rule->client[i].aifsn =  wmm->client[i].aifsn;
885                 wmm_rule->client[i].cot =
886                         1000 * be16_to_cpu(wmm->client[i].cot);
887                 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
888                 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
889                 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
890                 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
891         }
892
893         rrule->has_wmm = true;
894 }
895
896 static int __regdb_query_wmm(const struct fwdb_header *db,
897                              const struct fwdb_country *country, int freq,
898                              struct ieee80211_reg_rule *rrule)
899 {
900         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
901         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
902         int i;
903
904         for (i = 0; i < coll->n_rules; i++) {
905                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
906                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
907                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
908
909                 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
910                         continue;
911
912                 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
913                     freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
914                         set_wmm_rule(db, country, rule, rrule);
915                         return 0;
916                 }
917         }
918
919         return -ENODATA;
920 }
921
922 int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
923 {
924         const struct fwdb_header *hdr = regdb;
925         const struct fwdb_country *country;
926
927         if (!regdb)
928                 return -ENODATA;
929
930         if (IS_ERR(regdb))
931                 return PTR_ERR(regdb);
932
933         country = &hdr->country[0];
934         while (country->coll_ptr) {
935                 if (alpha2_equal(alpha2, country->alpha2))
936                         return __regdb_query_wmm(regdb, country, freq, rule);
937
938                 country++;
939         }
940
941         return -ENODATA;
942 }
943 EXPORT_SYMBOL(reg_query_regdb_wmm);
944
945 static int regdb_query_country(const struct fwdb_header *db,
946                                const struct fwdb_country *country)
947 {
948         unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
949         struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
950         struct ieee80211_regdomain *regdom;
951         unsigned int size_of_regd, i;
952
953         size_of_regd = sizeof(struct ieee80211_regdomain) +
954                 coll->n_rules * sizeof(struct ieee80211_reg_rule);
955
956         regdom = kzalloc(size_of_regd, GFP_KERNEL);
957         if (!regdom)
958                 return -ENOMEM;
959
960         regdom->n_reg_rules = coll->n_rules;
961         regdom->alpha2[0] = country->alpha2[0];
962         regdom->alpha2[1] = country->alpha2[1];
963         regdom->dfs_region = coll->dfs_region;
964
965         for (i = 0; i < regdom->n_reg_rules; i++) {
966                 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
967                 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
968                 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
969                 struct ieee80211_reg_rule *rrule = &regdom->reg_rules[i];
970
971                 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
972                 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
973                 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
974
975                 rrule->power_rule.max_antenna_gain = 0;
976                 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
977
978                 rrule->flags = 0;
979                 if (rule->flags & FWDB_FLAG_NO_OFDM)
980                         rrule->flags |= NL80211_RRF_NO_OFDM;
981                 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
982                         rrule->flags |= NL80211_RRF_NO_OUTDOOR;
983                 if (rule->flags & FWDB_FLAG_DFS)
984                         rrule->flags |= NL80211_RRF_DFS;
985                 if (rule->flags & FWDB_FLAG_NO_IR)
986                         rrule->flags |= NL80211_RRF_NO_IR;
987                 if (rule->flags & FWDB_FLAG_AUTO_BW)
988                         rrule->flags |= NL80211_RRF_AUTO_BW;
989
990                 rrule->dfs_cac_ms = 0;
991
992                 /* handle optional data */
993                 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
994                         rrule->dfs_cac_ms =
995                                 1000 * be16_to_cpu(rule->cac_timeout);
996                 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
997                         set_wmm_rule(db, country, rule, rrule);
998         }
999
1000         return reg_schedule_apply(regdom);
1001 }
1002
1003 static int query_regdb(const char *alpha2)
1004 {
1005         const struct fwdb_header *hdr = regdb;
1006         const struct fwdb_country *country;
1007
1008         ASSERT_RTNL();
1009
1010         if (IS_ERR(regdb))
1011                 return PTR_ERR(regdb);
1012
1013         country = &hdr->country[0];
1014         while (country->coll_ptr) {
1015                 if (alpha2_equal(alpha2, country->alpha2))
1016                         return regdb_query_country(regdb, country);
1017                 country++;
1018         }
1019
1020         return -ENODATA;
1021 }
1022
1023 static void regdb_fw_cb(const struct firmware *fw, void *context)
1024 {
1025         int set_error = 0;
1026         bool restore = true;
1027         void *db;
1028
1029         if (!fw) {
1030                 pr_info("failed to load regulatory.db\n");
1031                 set_error = -ENODATA;
1032         } else if (!valid_regdb(fw->data, fw->size)) {
1033                 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1034                 set_error = -EINVAL;
1035         }
1036
1037         rtnl_lock();
1038         if (regdb && !IS_ERR(regdb)) {
1039                 /* negative case - a bug
1040                  * positive case - can happen due to race in case of multiple cb's in
1041                  * queue, due to usage of asynchronous callback
1042                  *
1043                  * Either case, just restore and free new db.
1044                  */
1045         } else if (set_error) {
1046                 regdb = ERR_PTR(set_error);
1047         } else if (fw) {
1048                 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1049                 if (db) {
1050                         regdb = db;
1051                         restore = context && query_regdb(context);
1052                 } else {
1053                         restore = true;
1054                 }
1055         }
1056
1057         if (restore)
1058                 restore_regulatory_settings(true, false);
1059
1060         rtnl_unlock();
1061
1062         kfree(context);
1063
1064         release_firmware(fw);
1065 }
1066
1067 static int query_regdb_file(const char *alpha2)
1068 {
1069         ASSERT_RTNL();
1070
1071         if (regdb)
1072                 return query_regdb(alpha2);
1073
1074         alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1075         if (!alpha2)
1076                 return -ENOMEM;
1077
1078         return request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1079                                        &reg_pdev->dev, GFP_KERNEL,
1080                                        (void *)alpha2, regdb_fw_cb);
1081 }
1082
1083 int reg_reload_regdb(void)
1084 {
1085         const struct firmware *fw;
1086         void *db;
1087         int err;
1088
1089         err = request_firmware(&fw, "regulatory.db", &reg_pdev->dev);
1090         if (err)
1091                 return err;
1092
1093         if (!valid_regdb(fw->data, fw->size)) {
1094                 err = -ENODATA;
1095                 goto out;
1096         }
1097
1098         db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1099         if (!db) {
1100                 err = -ENOMEM;
1101                 goto out;
1102         }
1103
1104         rtnl_lock();
1105         if (!IS_ERR_OR_NULL(regdb))
1106                 kfree(regdb);
1107         regdb = db;
1108         rtnl_unlock();
1109
1110  out:
1111         release_firmware(fw);
1112         return err;
1113 }
1114
1115 static bool reg_query_database(struct regulatory_request *request)
1116 {
1117         if (query_regdb_file(request->alpha2) == 0)
1118                 return true;
1119
1120         if (call_crda(request->alpha2) == 0)
1121                 return true;
1122
1123         return false;
1124 }
1125
1126 bool reg_is_valid_request(const char *alpha2)
1127 {
1128         struct regulatory_request *lr = get_last_request();
1129
1130         if (!lr || lr->processed)
1131                 return false;
1132
1133         return alpha2_equal(lr->alpha2, alpha2);
1134 }
1135
1136 static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1137 {
1138         struct regulatory_request *lr = get_last_request();
1139
1140         /*
1141          * Follow the driver's regulatory domain, if present, unless a country
1142          * IE has been processed or a user wants to help complaince further
1143          */
1144         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1145             lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1146             wiphy->regd)
1147                 return get_wiphy_regdom(wiphy);
1148
1149         return get_cfg80211_regdom();
1150 }
1151
1152 static unsigned int
1153 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1154                                  const struct ieee80211_reg_rule *rule)
1155 {
1156         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1157         const struct ieee80211_freq_range *freq_range_tmp;
1158         const struct ieee80211_reg_rule *tmp;
1159         u32 start_freq, end_freq, idx, no;
1160
1161         for (idx = 0; idx < rd->n_reg_rules; idx++)
1162                 if (rule == &rd->reg_rules[idx])
1163                         break;
1164
1165         if (idx == rd->n_reg_rules)
1166                 return 0;
1167
1168         /* get start_freq */
1169         no = idx;
1170
1171         while (no) {
1172                 tmp = &rd->reg_rules[--no];
1173                 freq_range_tmp = &tmp->freq_range;
1174
1175                 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1176                         break;
1177
1178                 freq_range = freq_range_tmp;
1179         }
1180
1181         start_freq = freq_range->start_freq_khz;
1182
1183         /* get end_freq */
1184         freq_range = &rule->freq_range;
1185         no = idx;
1186
1187         while (no < rd->n_reg_rules - 1) {
1188                 tmp = &rd->reg_rules[++no];
1189                 freq_range_tmp = &tmp->freq_range;
1190
1191                 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1192                         break;
1193
1194                 freq_range = freq_range_tmp;
1195         }
1196
1197         end_freq = freq_range->end_freq_khz;
1198
1199         return end_freq - start_freq;
1200 }
1201
1202 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1203                                    const struct ieee80211_reg_rule *rule)
1204 {
1205         unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1206
1207         if (rule->flags & NL80211_RRF_NO_160MHZ)
1208                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1209         if (rule->flags & NL80211_RRF_NO_80MHZ)
1210                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1211
1212         /*
1213          * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1214          * are not allowed.
1215          */
1216         if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1217             rule->flags & NL80211_RRF_NO_HT40PLUS)
1218                 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1219
1220         return bw;
1221 }
1222
1223 /* Sanity check on a regulatory rule */
1224 static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1225 {
1226         const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1227         u32 freq_diff;
1228
1229         if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1230                 return false;
1231
1232         if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1233                 return false;
1234
1235         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1236
1237         if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1238             freq_range->max_bandwidth_khz > freq_diff)
1239                 return false;
1240
1241         return true;
1242 }
1243
1244 static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1245 {
1246         const struct ieee80211_reg_rule *reg_rule = NULL;
1247         unsigned int i;
1248
1249         if (!rd->n_reg_rules)
1250                 return false;
1251
1252         if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1253                 return false;
1254
1255         for (i = 0; i < rd->n_reg_rules; i++) {
1256                 reg_rule = &rd->reg_rules[i];
1257                 if (!is_valid_reg_rule(reg_rule))
1258                         return false;
1259         }
1260
1261         return true;
1262 }
1263
1264 /**
1265  * freq_in_rule_band - tells us if a frequency is in a frequency band
1266  * @freq_range: frequency rule we want to query
1267  * @freq_khz: frequency we are inquiring about
1268  *
1269  * This lets us know if a specific frequency rule is or is not relevant to
1270  * a specific frequency's band. Bands are device specific and artificial
1271  * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1272  * however it is safe for now to assume that a frequency rule should not be
1273  * part of a frequency's band if the start freq or end freq are off by more
1274  * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1275  * 60 GHz band.
1276  * This resolution can be lowered and should be considered as we add
1277  * regulatory rule support for other "bands".
1278  **/
1279 static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1280                               u32 freq_khz)
1281 {
1282 #define ONE_GHZ_IN_KHZ  1000000
1283         /*
1284          * From 802.11ad: directional multi-gigabit (DMG):
1285          * Pertaining to operation in a frequency band containing a channel
1286          * with the Channel starting frequency above 45 GHz.
1287          */
1288         u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1289                         20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1290         if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1291                 return true;
1292         if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1293                 return true;
1294         return false;
1295 #undef ONE_GHZ_IN_KHZ
1296 }
1297
1298 /*
1299  * Later on we can perhaps use the more restrictive DFS
1300  * region but we don't have information for that yet so
1301  * for now simply disallow conflicts.
1302  */
1303 static enum nl80211_dfs_regions
1304 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1305                          const enum nl80211_dfs_regions dfs_region2)
1306 {
1307         if (dfs_region1 != dfs_region2)
1308                 return NL80211_DFS_UNSET;
1309         return dfs_region1;
1310 }
1311
1312 static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1313                                     const struct ieee80211_wmm_ac *wmm_ac2,
1314                                     struct ieee80211_wmm_ac *intersect)
1315 {
1316         intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1317         intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1318         intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1319         intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1320 }
1321
1322 /*
1323  * Helper for regdom_intersect(), this does the real
1324  * mathematical intersection fun
1325  */
1326 static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1327                                const struct ieee80211_regdomain *rd2,
1328                                const struct ieee80211_reg_rule *rule1,
1329                                const struct ieee80211_reg_rule *rule2,
1330                                struct ieee80211_reg_rule *intersected_rule)
1331 {
1332         const struct ieee80211_freq_range *freq_range1, *freq_range2;
1333         struct ieee80211_freq_range *freq_range;
1334         const struct ieee80211_power_rule *power_rule1, *power_rule2;
1335         struct ieee80211_power_rule *power_rule;
1336         const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1337         struct ieee80211_wmm_rule *wmm_rule;
1338         u32 freq_diff, max_bandwidth1, max_bandwidth2;
1339
1340         freq_range1 = &rule1->freq_range;
1341         freq_range2 = &rule2->freq_range;
1342         freq_range = &intersected_rule->freq_range;
1343
1344         power_rule1 = &rule1->power_rule;
1345         power_rule2 = &rule2->power_rule;
1346         power_rule = &intersected_rule->power_rule;
1347
1348         wmm_rule1 = &rule1->wmm_rule;
1349         wmm_rule2 = &rule2->wmm_rule;
1350         wmm_rule = &intersected_rule->wmm_rule;
1351
1352         freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1353                                          freq_range2->start_freq_khz);
1354         freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1355                                        freq_range2->end_freq_khz);
1356
1357         max_bandwidth1 = freq_range1->max_bandwidth_khz;
1358         max_bandwidth2 = freq_range2->max_bandwidth_khz;
1359
1360         if (rule1->flags & NL80211_RRF_AUTO_BW)
1361                 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1362         if (rule2->flags & NL80211_RRF_AUTO_BW)
1363                 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1364
1365         freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1366
1367         intersected_rule->flags = rule1->flags | rule2->flags;
1368
1369         /*
1370          * In case NL80211_RRF_AUTO_BW requested for both rules
1371          * set AUTO_BW in intersected rule also. Next we will
1372          * calculate BW correctly in handle_channel function.
1373          * In other case remove AUTO_BW flag while we calculate
1374          * maximum bandwidth correctly and auto calculation is
1375          * not required.
1376          */
1377         if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1378             (rule2->flags & NL80211_RRF_AUTO_BW))
1379                 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1380         else
1381                 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1382
1383         freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1384         if (freq_range->max_bandwidth_khz > freq_diff)
1385                 freq_range->max_bandwidth_khz = freq_diff;
1386
1387         power_rule->max_eirp = min(power_rule1->max_eirp,
1388                 power_rule2->max_eirp);
1389         power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1390                 power_rule2->max_antenna_gain);
1391
1392         intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1393                                            rule2->dfs_cac_ms);
1394
1395         if (rule1->has_wmm && rule2->has_wmm) {
1396                 u8 ac;
1397
1398                 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1399                         reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1400                                                 &wmm_rule2->client[ac],
1401                                                 &wmm_rule->client[ac]);
1402                         reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1403                                                 &wmm_rule2->ap[ac],
1404                                                 &wmm_rule->ap[ac]);
1405                 }
1406
1407                 intersected_rule->has_wmm = true;
1408         } else if (rule1->has_wmm) {
1409                 *wmm_rule = *wmm_rule1;
1410                 intersected_rule->has_wmm = true;
1411         } else if (rule2->has_wmm) {
1412                 *wmm_rule = *wmm_rule2;
1413                 intersected_rule->has_wmm = true;
1414         } else {
1415                 intersected_rule->has_wmm = false;
1416         }
1417
1418         if (!is_valid_reg_rule(intersected_rule))
1419                 return -EINVAL;
1420
1421         return 0;
1422 }
1423
1424 /* check whether old rule contains new rule */
1425 static bool rule_contains(struct ieee80211_reg_rule *r1,
1426                           struct ieee80211_reg_rule *r2)
1427 {
1428         /* for simplicity, currently consider only same flags */
1429         if (r1->flags != r2->flags)
1430                 return false;
1431
1432         /* verify r1 is more restrictive */
1433         if ((r1->power_rule.max_antenna_gain >
1434              r2->power_rule.max_antenna_gain) ||
1435             r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1436                 return false;
1437
1438         /* make sure r2's range is contained within r1 */
1439         if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1440             r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1441                 return false;
1442
1443         /* and finally verify that r1.max_bw >= r2.max_bw */
1444         if (r1->freq_range.max_bandwidth_khz <
1445             r2->freq_range.max_bandwidth_khz)
1446                 return false;
1447
1448         return true;
1449 }
1450
1451 /* add or extend current rules. do nothing if rule is already contained */
1452 static void add_rule(struct ieee80211_reg_rule *rule,
1453                      struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1454 {
1455         struct ieee80211_reg_rule *tmp_rule;
1456         int i;
1457
1458         for (i = 0; i < *n_rules; i++) {
1459                 tmp_rule = &reg_rules[i];
1460                 /* rule is already contained - do nothing */
1461                 if (rule_contains(tmp_rule, rule))
1462                         return;
1463
1464                 /* extend rule if possible */
1465                 if (rule_contains(rule, tmp_rule)) {
1466                         memcpy(tmp_rule, rule, sizeof(*rule));
1467                         return;
1468                 }
1469         }
1470
1471         memcpy(&reg_rules[*n_rules], rule, sizeof(*rule));
1472         (*n_rules)++;
1473 }
1474
1475 /**
1476  * regdom_intersect - do the intersection between two regulatory domains
1477  * @rd1: first regulatory domain
1478  * @rd2: second regulatory domain
1479  *
1480  * Use this function to get the intersection between two regulatory domains.
1481  * Once completed we will mark the alpha2 for the rd as intersected, "98",
1482  * as no one single alpha2 can represent this regulatory domain.
1483  *
1484  * Returns a pointer to the regulatory domain structure which will hold the
1485  * resulting intersection of rules between rd1 and rd2. We will
1486  * kzalloc() this structure for you.
1487  */
1488 static struct ieee80211_regdomain *
1489 regdom_intersect(const struct ieee80211_regdomain *rd1,
1490                  const struct ieee80211_regdomain *rd2)
1491 {
1492         int r, size_of_regd;
1493         unsigned int x, y;
1494         unsigned int num_rules = 0;
1495         const struct ieee80211_reg_rule *rule1, *rule2;
1496         struct ieee80211_reg_rule intersected_rule;
1497         struct ieee80211_regdomain *rd;
1498
1499         if (!rd1 || !rd2)
1500                 return NULL;
1501
1502         /*
1503          * First we get a count of the rules we'll need, then we actually
1504          * build them. This is to so we can malloc() and free() a
1505          * regdomain once. The reason we use reg_rules_intersect() here
1506          * is it will return -EINVAL if the rule computed makes no sense.
1507          * All rules that do check out OK are valid.
1508          */
1509
1510         for (x = 0; x < rd1->n_reg_rules; x++) {
1511                 rule1 = &rd1->reg_rules[x];
1512                 for (y = 0; y < rd2->n_reg_rules; y++) {
1513                         rule2 = &rd2->reg_rules[y];
1514                         if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1515                                                  &intersected_rule))
1516                                 num_rules++;
1517                 }
1518         }
1519
1520         if (!num_rules)
1521                 return NULL;
1522
1523         size_of_regd = sizeof(struct ieee80211_regdomain) +
1524                        num_rules * sizeof(struct ieee80211_reg_rule);
1525
1526         rd = kzalloc(size_of_regd, GFP_KERNEL);
1527         if (!rd)
1528                 return NULL;
1529
1530         for (x = 0; x < rd1->n_reg_rules; x++) {
1531                 rule1 = &rd1->reg_rules[x];
1532                 for (y = 0; y < rd2->n_reg_rules; y++) {
1533                         rule2 = &rd2->reg_rules[y];
1534                         r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1535                                                 &intersected_rule);
1536                         /*
1537                          * No need to memset here the intersected rule here as
1538                          * we're not using the stack anymore
1539                          */
1540                         if (r)
1541                                 continue;
1542
1543                         add_rule(&intersected_rule, rd->reg_rules,
1544                                  &rd->n_reg_rules);
1545                 }
1546         }
1547
1548         rd->alpha2[0] = '9';
1549         rd->alpha2[1] = '8';
1550         rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1551                                                   rd2->dfs_region);
1552
1553         return rd;
1554 }
1555
1556 /*
1557  * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1558  * want to just have the channel structure use these
1559  */
1560 static u32 map_regdom_flags(u32 rd_flags)
1561 {
1562         u32 channel_flags = 0;
1563         if (rd_flags & NL80211_RRF_NO_IR_ALL)
1564                 channel_flags |= IEEE80211_CHAN_NO_IR;
1565         if (rd_flags & NL80211_RRF_DFS)
1566                 channel_flags |= IEEE80211_CHAN_RADAR;
1567         if (rd_flags & NL80211_RRF_NO_OFDM)
1568                 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1569         if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1570                 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1571         if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1572                 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1573         if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1574                 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1575         if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1576                 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1577         if (rd_flags & NL80211_RRF_NO_80MHZ)
1578                 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1579         if (rd_flags & NL80211_RRF_NO_160MHZ)
1580                 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1581         return channel_flags;
1582 }
1583
1584 static const struct ieee80211_reg_rule *
1585 freq_reg_info_regd(u32 center_freq,
1586                    const struct ieee80211_regdomain *regd, u32 bw)
1587 {
1588         int i;
1589         bool band_rule_found = false;
1590         bool bw_fits = false;
1591
1592         if (!regd)
1593                 return ERR_PTR(-EINVAL);
1594
1595         for (i = 0; i < regd->n_reg_rules; i++) {
1596                 const struct ieee80211_reg_rule *rr;
1597                 const struct ieee80211_freq_range *fr = NULL;
1598
1599                 rr = &regd->reg_rules[i];
1600                 fr = &rr->freq_range;
1601
1602                 /*
1603                  * We only need to know if one frequency rule was
1604                  * was in center_freq's band, that's enough, so lets
1605                  * not overwrite it once found
1606                  */
1607                 if (!band_rule_found)
1608                         band_rule_found = freq_in_rule_band(fr, center_freq);
1609
1610                 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1611
1612                 if (band_rule_found && bw_fits)
1613                         return rr;
1614         }
1615
1616         if (!band_rule_found)
1617                 return ERR_PTR(-ERANGE);
1618
1619         return ERR_PTR(-EINVAL);
1620 }
1621
1622 static const struct ieee80211_reg_rule *
1623 __freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1624 {
1625         const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1626         const struct ieee80211_reg_rule *reg_rule = NULL;
1627         u32 bw;
1628
1629         for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
1630                 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1631                 if (!IS_ERR(reg_rule))
1632                         return reg_rule;
1633         }
1634
1635         return reg_rule;
1636 }
1637
1638 const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1639                                                u32 center_freq)
1640 {
1641         return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(20));
1642 }
1643 EXPORT_SYMBOL(freq_reg_info);
1644
1645 const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1646 {
1647         switch (initiator) {
1648         case NL80211_REGDOM_SET_BY_CORE:
1649                 return "core";
1650         case NL80211_REGDOM_SET_BY_USER:
1651                 return "user";
1652         case NL80211_REGDOM_SET_BY_DRIVER:
1653                 return "driver";
1654         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1655                 return "country element";
1656         default:
1657                 WARN_ON(1);
1658                 return "bug";
1659         }
1660 }
1661 EXPORT_SYMBOL(reg_initiator_name);
1662
1663 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1664                                           const struct ieee80211_reg_rule *reg_rule,
1665                                           const struct ieee80211_channel *chan)
1666 {
1667         const struct ieee80211_freq_range *freq_range = NULL;
1668         u32 max_bandwidth_khz, bw_flags = 0;
1669
1670         freq_range = &reg_rule->freq_range;
1671
1672         max_bandwidth_khz = freq_range->max_bandwidth_khz;
1673         /* Check if auto calculation requested */
1674         if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1675                 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1676
1677         /* If we get a reg_rule we can assume that at least 5Mhz fit */
1678         if (!cfg80211_does_bw_fit_range(freq_range,
1679                                         MHZ_TO_KHZ(chan->center_freq),
1680                                         MHZ_TO_KHZ(10)))
1681                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1682         if (!cfg80211_does_bw_fit_range(freq_range,
1683                                         MHZ_TO_KHZ(chan->center_freq),
1684                                         MHZ_TO_KHZ(20)))
1685                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1686
1687         if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1688                 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1689         if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1690                 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1691         if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1692                 bw_flags |= IEEE80211_CHAN_NO_HT40;
1693         if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1694                 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1695         if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1696                 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1697         return bw_flags;
1698 }
1699
1700 /*
1701  * Note that right now we assume the desired channel bandwidth
1702  * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1703  * per channel, the primary and the extension channel).
1704  */
1705 static void handle_channel(struct wiphy *wiphy,
1706                            enum nl80211_reg_initiator initiator,
1707                            struct ieee80211_channel *chan)
1708 {
1709         u32 flags, bw_flags = 0;
1710         const struct ieee80211_reg_rule *reg_rule = NULL;
1711         const struct ieee80211_power_rule *power_rule = NULL;
1712         struct wiphy *request_wiphy = NULL;
1713         struct regulatory_request *lr = get_last_request();
1714         const struct ieee80211_regdomain *regd;
1715
1716         request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1717
1718         flags = chan->orig_flags;
1719
1720         reg_rule = freq_reg_info(wiphy, MHZ_TO_KHZ(chan->center_freq));
1721         if (IS_ERR(reg_rule)) {
1722                 /*
1723                  * We will disable all channels that do not match our
1724                  * received regulatory rule unless the hint is coming
1725                  * from a Country IE and the Country IE had no information
1726                  * about a band. The IEEE 802.11 spec allows for an AP
1727                  * to send only a subset of the regulatory rules allowed,
1728                  * so an AP in the US that only supports 2.4 GHz may only send
1729                  * a country IE with information for the 2.4 GHz band
1730                  * while 5 GHz is still supported.
1731                  */
1732                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1733                     PTR_ERR(reg_rule) == -ERANGE)
1734                         return;
1735
1736                 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1737                     request_wiphy && request_wiphy == wiphy &&
1738                     request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1739                         pr_debug("Disabling freq %d MHz for good\n",
1740                                  chan->center_freq);
1741                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
1742                         chan->flags = chan->orig_flags;
1743                 } else {
1744                         pr_debug("Disabling freq %d MHz\n",
1745                                  chan->center_freq);
1746                         chan->flags |= IEEE80211_CHAN_DISABLED;
1747                 }
1748                 return;
1749         }
1750
1751         regd = reg_get_regdomain(wiphy);
1752
1753         power_rule = &reg_rule->power_rule;
1754         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1755
1756         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1757             request_wiphy && request_wiphy == wiphy &&
1758             request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1759                 /*
1760                  * This guarantees the driver's requested regulatory domain
1761                  * will always be used as a base for further regulatory
1762                  * settings
1763                  */
1764                 chan->flags = chan->orig_flags =
1765                         map_regdom_flags(reg_rule->flags) | bw_flags;
1766                 chan->max_antenna_gain = chan->orig_mag =
1767                         (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1768                 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1769                         (int) MBM_TO_DBM(power_rule->max_eirp);
1770
1771                 if (chan->flags & IEEE80211_CHAN_RADAR) {
1772                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1773                         if (reg_rule->dfs_cac_ms)
1774                                 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1775                 }
1776
1777                 return;
1778         }
1779
1780         chan->dfs_state = NL80211_DFS_USABLE;
1781         chan->dfs_state_entered = jiffies;
1782
1783         chan->beacon_found = false;
1784         chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1785         chan->max_antenna_gain =
1786                 min_t(int, chan->orig_mag,
1787                       MBI_TO_DBI(power_rule->max_antenna_gain));
1788         chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1789
1790         if (chan->flags & IEEE80211_CHAN_RADAR) {
1791                 if (reg_rule->dfs_cac_ms)
1792                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1793                 else
1794                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1795         }
1796
1797         if (chan->orig_mpwr) {
1798                 /*
1799                  * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1800                  * will always follow the passed country IE power settings.
1801                  */
1802                 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1803                     wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1804                         chan->max_power = chan->max_reg_power;
1805                 else
1806                         chan->max_power = min(chan->orig_mpwr,
1807                                               chan->max_reg_power);
1808         } else
1809                 chan->max_power = chan->max_reg_power;
1810 }
1811
1812 static void handle_band(struct wiphy *wiphy,
1813                         enum nl80211_reg_initiator initiator,
1814                         struct ieee80211_supported_band *sband)
1815 {
1816         unsigned int i;
1817
1818         if (!sband)
1819                 return;
1820
1821         for (i = 0; i < sband->n_channels; i++)
1822                 handle_channel(wiphy, initiator, &sband->channels[i]);
1823 }
1824
1825 static bool reg_request_cell_base(struct regulatory_request *request)
1826 {
1827         if (request->initiator != NL80211_REGDOM_SET_BY_USER)
1828                 return false;
1829         return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
1830 }
1831
1832 bool reg_last_request_cell_base(void)
1833 {
1834         return reg_request_cell_base(get_last_request());
1835 }
1836
1837 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1838 /* Core specific check */
1839 static enum reg_request_treatment
1840 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1841 {
1842         struct regulatory_request *lr = get_last_request();
1843
1844         if (!reg_num_devs_support_basehint)
1845                 return REG_REQ_IGNORE;
1846
1847         if (reg_request_cell_base(lr) &&
1848             !regdom_changes(pending_request->alpha2))
1849                 return REG_REQ_ALREADY_SET;
1850
1851         return REG_REQ_OK;
1852 }
1853
1854 /* Device specific check */
1855 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1856 {
1857         return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
1858 }
1859 #else
1860 static enum reg_request_treatment
1861 reg_ignore_cell_hint(struct regulatory_request *pending_request)
1862 {
1863         return REG_REQ_IGNORE;
1864 }
1865
1866 static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
1867 {
1868         return true;
1869 }
1870 #endif
1871
1872 static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
1873 {
1874         if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
1875             !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
1876                 return true;
1877         return false;
1878 }
1879
1880 static bool ignore_reg_update(struct wiphy *wiphy,
1881                               enum nl80211_reg_initiator initiator)
1882 {
1883         struct regulatory_request *lr = get_last_request();
1884
1885         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
1886                 return true;
1887
1888         if (!lr) {
1889                 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1890                          reg_initiator_name(initiator));
1891                 return true;
1892         }
1893
1894         if (initiator == NL80211_REGDOM_SET_BY_CORE &&
1895             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
1896                 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1897                          reg_initiator_name(initiator));
1898                 return true;
1899         }
1900
1901         /*
1902          * wiphy->regd will be set once the device has its own
1903          * desired regulatory domain set
1904          */
1905         if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
1906             initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1907             !is_world_regdom(lr->alpha2)) {
1908                 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1909                          reg_initiator_name(initiator));
1910                 return true;
1911         }
1912
1913         if (reg_request_cell_base(lr))
1914                 return reg_dev_ignore_cell_hint(wiphy);
1915
1916         return false;
1917 }
1918
1919 static bool reg_is_world_roaming(struct wiphy *wiphy)
1920 {
1921         const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
1922         const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
1923         struct regulatory_request *lr = get_last_request();
1924
1925         if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
1926                 return true;
1927
1928         if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1929             wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
1930                 return true;
1931
1932         return false;
1933 }
1934
1935 static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
1936                               struct reg_beacon *reg_beacon)
1937 {
1938         struct ieee80211_supported_band *sband;
1939         struct ieee80211_channel *chan;
1940         bool channel_changed = false;
1941         struct ieee80211_channel chan_before;
1942
1943         sband = wiphy->bands[reg_beacon->chan.band];
1944         chan = &sband->channels[chan_idx];
1945
1946         if (likely(chan->center_freq != reg_beacon->chan.center_freq))
1947                 return;
1948
1949         if (chan->beacon_found)
1950                 return;
1951
1952         chan->beacon_found = true;
1953
1954         if (!reg_is_world_roaming(wiphy))
1955                 return;
1956
1957         if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
1958                 return;
1959
1960         chan_before = *chan;
1961
1962         if (chan->flags & IEEE80211_CHAN_NO_IR) {
1963                 chan->flags &= ~IEEE80211_CHAN_NO_IR;
1964                 channel_changed = true;
1965         }
1966
1967         if (channel_changed)
1968                 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
1969 }
1970
1971 /*
1972  * Called when a scan on a wiphy finds a beacon on
1973  * new channel
1974  */
1975 static void wiphy_update_new_beacon(struct wiphy *wiphy,
1976                                     struct reg_beacon *reg_beacon)
1977 {
1978         unsigned int i;
1979         struct ieee80211_supported_band *sband;
1980
1981         if (!wiphy->bands[reg_beacon->chan.band])
1982                 return;
1983
1984         sband = wiphy->bands[reg_beacon->chan.band];
1985
1986         for (i = 0; i < sband->n_channels; i++)
1987                 handle_reg_beacon(wiphy, i, reg_beacon);
1988 }
1989
1990 /*
1991  * Called upon reg changes or a new wiphy is added
1992  */
1993 static void wiphy_update_beacon_reg(struct wiphy *wiphy)
1994 {
1995         unsigned int i;
1996         struct ieee80211_supported_band *sband;
1997         struct reg_beacon *reg_beacon;
1998
1999         list_for_each_entry(reg_beacon, &reg_beacon_list, list) {
2000                 if (!wiphy->bands[reg_beacon->chan.band])
2001                         continue;
2002                 sband = wiphy->bands[reg_beacon->chan.band];
2003                 for (i = 0; i < sband->n_channels; i++)
2004                         handle_reg_beacon(wiphy, i, reg_beacon);
2005         }
2006 }
2007
2008 /* Reap the advantages of previously found beacons */
2009 static void reg_process_beacons(struct wiphy *wiphy)
2010 {
2011         /*
2012          * Means we are just firing up cfg80211, so no beacons would
2013          * have been processed yet.
2014          */
2015         if (!last_request)
2016                 return;
2017         wiphy_update_beacon_reg(wiphy);
2018 }
2019
2020 static bool is_ht40_allowed(struct ieee80211_channel *chan)
2021 {
2022         if (!chan)
2023                 return false;
2024         if (chan->flags & IEEE80211_CHAN_DISABLED)
2025                 return false;
2026         /* This would happen when regulatory rules disallow HT40 completely */
2027         if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2028                 return false;
2029         return true;
2030 }
2031
2032 static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2033                                          struct ieee80211_channel *channel)
2034 {
2035         struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2036         struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2037         const struct ieee80211_regdomain *regd;
2038         unsigned int i;
2039         u32 flags;
2040
2041         if (!is_ht40_allowed(channel)) {
2042                 channel->flags |= IEEE80211_CHAN_NO_HT40;
2043                 return;
2044         }
2045
2046         /*
2047          * We need to ensure the extension channels exist to
2048          * be able to use HT40- or HT40+, this finds them (or not)
2049          */
2050         for (i = 0; i < sband->n_channels; i++) {
2051                 struct ieee80211_channel *c = &sband->channels[i];
2052
2053                 if (c->center_freq == (channel->center_freq - 20))
2054                         channel_before = c;
2055                 if (c->center_freq == (channel->center_freq + 20))
2056                         channel_after = c;
2057         }
2058
2059         flags = 0;
2060         regd = get_wiphy_regdom(wiphy);
2061         if (regd) {
2062                 const struct ieee80211_reg_rule *reg_rule =
2063                         freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2064                                            regd, MHZ_TO_KHZ(20));
2065
2066                 if (!IS_ERR(reg_rule))
2067                         flags = reg_rule->flags;
2068         }
2069
2070         /*
2071          * Please note that this assumes target bandwidth is 20 MHz,
2072          * if that ever changes we also need to change the below logic
2073          * to include that as well.
2074          */
2075         if (!is_ht40_allowed(channel_before) ||
2076             flags & NL80211_RRF_NO_HT40MINUS)
2077                 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2078         else
2079                 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2080
2081         if (!is_ht40_allowed(channel_after) ||
2082             flags & NL80211_RRF_NO_HT40PLUS)
2083                 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2084         else
2085                 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2086 }
2087
2088 static void reg_process_ht_flags_band(struct wiphy *wiphy,
2089                                       struct ieee80211_supported_band *sband)
2090 {
2091         unsigned int i;
2092
2093         if (!sband)
2094                 return;
2095
2096         for (i = 0; i < sband->n_channels; i++)
2097                 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2098 }
2099
2100 static void reg_process_ht_flags(struct wiphy *wiphy)
2101 {
2102         enum nl80211_band band;
2103
2104         if (!wiphy)
2105                 return;
2106
2107         for (band = 0; band < NUM_NL80211_BANDS; band++)
2108                 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2109 }
2110
2111 static void reg_call_notifier(struct wiphy *wiphy,
2112                               struct regulatory_request *request)
2113 {
2114         if (wiphy->reg_notifier)
2115                 wiphy->reg_notifier(wiphy, request);
2116 }
2117
2118 static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2119 {
2120         struct cfg80211_chan_def chandef;
2121         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2122         enum nl80211_iftype iftype;
2123
2124         wdev_lock(wdev);
2125         iftype = wdev->iftype;
2126
2127         /* make sure the interface is active */
2128         if (!wdev->netdev || !netif_running(wdev->netdev))
2129                 goto wdev_inactive_unlock;
2130
2131         switch (iftype) {
2132         case NL80211_IFTYPE_AP:
2133         case NL80211_IFTYPE_P2P_GO:
2134                 if (!wdev->beacon_interval)
2135                         goto wdev_inactive_unlock;
2136                 chandef = wdev->chandef;
2137                 break;
2138         case NL80211_IFTYPE_ADHOC:
2139                 if (!wdev->ssid_len)
2140                         goto wdev_inactive_unlock;
2141                 chandef = wdev->chandef;
2142                 break;
2143         case NL80211_IFTYPE_STATION:
2144         case NL80211_IFTYPE_P2P_CLIENT:
2145                 if (!wdev->current_bss ||
2146                     !wdev->current_bss->pub.channel)
2147                         goto wdev_inactive_unlock;
2148
2149                 if (!rdev->ops->get_channel ||
2150                     rdev_get_channel(rdev, wdev, &chandef))
2151                         cfg80211_chandef_create(&chandef,
2152                                                 wdev->current_bss->pub.channel,
2153                                                 NL80211_CHAN_NO_HT);
2154                 break;
2155         case NL80211_IFTYPE_MONITOR:
2156         case NL80211_IFTYPE_AP_VLAN:
2157         case NL80211_IFTYPE_P2P_DEVICE:
2158                 /* no enforcement required */
2159                 break;
2160         default:
2161                 /* others not implemented for now */
2162                 WARN_ON(1);
2163                 break;
2164         }
2165
2166         wdev_unlock(wdev);
2167
2168         switch (iftype) {
2169         case NL80211_IFTYPE_AP:
2170         case NL80211_IFTYPE_P2P_GO:
2171         case NL80211_IFTYPE_ADHOC:
2172                 return cfg80211_reg_can_beacon_relax(wiphy, &chandef, iftype);
2173         case NL80211_IFTYPE_STATION:
2174         case NL80211_IFTYPE_P2P_CLIENT:
2175                 return cfg80211_chandef_usable(wiphy, &chandef,
2176                                                IEEE80211_CHAN_DISABLED);
2177         default:
2178                 break;
2179         }
2180
2181         return true;
2182
2183 wdev_inactive_unlock:
2184         wdev_unlock(wdev);
2185         return true;
2186 }
2187
2188 static void reg_leave_invalid_chans(struct wiphy *wiphy)
2189 {
2190         struct wireless_dev *wdev;
2191         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2192
2193         ASSERT_RTNL();
2194
2195         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2196                 if (!reg_wdev_chan_valid(wiphy, wdev))
2197                         cfg80211_leave(rdev, wdev);
2198 }
2199
2200 static void reg_check_chans_work(struct work_struct *work)
2201 {
2202         struct cfg80211_registered_device *rdev;
2203
2204         pr_debug("Verifying active interfaces after reg change\n");
2205         rtnl_lock();
2206
2207         list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2208                 if (!(rdev->wiphy.regulatory_flags &
2209                       REGULATORY_IGNORE_STALE_KICKOFF))
2210                         reg_leave_invalid_chans(&rdev->wiphy);
2211
2212         rtnl_unlock();
2213 }
2214
2215 static void reg_check_channels(void)
2216 {
2217         /*
2218          * Give usermode a chance to do something nicer (move to another
2219          * channel, orderly disconnection), before forcing a disconnection.
2220          */
2221         mod_delayed_work(system_power_efficient_wq,
2222                          &reg_check_chans,
2223                          msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2224 }
2225
2226 static void wiphy_update_regulatory(struct wiphy *wiphy,
2227                                     enum nl80211_reg_initiator initiator)
2228 {
2229         enum nl80211_band band;
2230         struct regulatory_request *lr = get_last_request();
2231
2232         if (ignore_reg_update(wiphy, initiator)) {
2233                 /*
2234                  * Regulatory updates set by CORE are ignored for custom
2235                  * regulatory cards. Let us notify the changes to the driver,
2236                  * as some drivers used this to restore its orig_* reg domain.
2237                  */
2238                 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2239                     wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2240                     !(wiphy->regulatory_flags &
2241                       REGULATORY_WIPHY_SELF_MANAGED))
2242                         reg_call_notifier(wiphy, lr);
2243                 return;
2244         }
2245
2246         lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2247
2248         for (band = 0; band < NUM_NL80211_BANDS; band++)
2249                 handle_band(wiphy, initiator, wiphy->bands[band]);
2250
2251         reg_process_beacons(wiphy);
2252         reg_process_ht_flags(wiphy);
2253         reg_call_notifier(wiphy, lr);
2254 }
2255
2256 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2257 {
2258         struct cfg80211_registered_device *rdev;
2259         struct wiphy *wiphy;
2260
2261         ASSERT_RTNL();
2262
2263         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2264                 wiphy = &rdev->wiphy;
2265                 wiphy_update_regulatory(wiphy, initiator);
2266         }
2267
2268         reg_check_channels();
2269 }
2270
2271 static void handle_channel_custom(struct wiphy *wiphy,
2272                                   struct ieee80211_channel *chan,
2273                                   const struct ieee80211_regdomain *regd)
2274 {
2275         u32 bw_flags = 0;
2276         const struct ieee80211_reg_rule *reg_rule = NULL;
2277         const struct ieee80211_power_rule *power_rule = NULL;
2278         u32 bw;
2279
2280         for (bw = MHZ_TO_KHZ(20); bw >= MHZ_TO_KHZ(5); bw = bw / 2) {
2281                 reg_rule = freq_reg_info_regd(MHZ_TO_KHZ(chan->center_freq),
2282                                               regd, bw);
2283                 if (!IS_ERR(reg_rule))
2284                         break;
2285         }
2286
2287         if (IS_ERR(reg_rule)) {
2288                 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2289                          chan->center_freq);
2290                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2291                         chan->flags |= IEEE80211_CHAN_DISABLED;
2292                 } else {
2293                         chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2294                         chan->flags = chan->orig_flags;
2295                 }
2296                 return;
2297         }
2298
2299         power_rule = &reg_rule->power_rule;
2300         bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2301
2302         chan->dfs_state_entered = jiffies;
2303         chan->dfs_state = NL80211_DFS_USABLE;
2304
2305         chan->beacon_found = false;
2306
2307         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2308                 chan->flags = chan->orig_flags | bw_flags |
2309                               map_regdom_flags(reg_rule->flags);
2310         else
2311                 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2312
2313         chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2314         chan->max_reg_power = chan->max_power =
2315                 (int) MBM_TO_DBM(power_rule->max_eirp);
2316
2317         if (chan->flags & IEEE80211_CHAN_RADAR) {
2318                 if (reg_rule->dfs_cac_ms)
2319                         chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2320                 else
2321                         chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2322         }
2323
2324         chan->max_power = chan->max_reg_power;
2325 }
2326
2327 static void handle_band_custom(struct wiphy *wiphy,
2328                                struct ieee80211_supported_band *sband,
2329                                const struct ieee80211_regdomain *regd)
2330 {
2331         unsigned int i;
2332
2333         if (!sband)
2334                 return;
2335
2336         for (i = 0; i < sband->n_channels; i++)
2337                 handle_channel_custom(wiphy, &sband->channels[i], regd);
2338 }
2339
2340 /* Used by drivers prior to wiphy registration */
2341 void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2342                                    const struct ieee80211_regdomain *regd)
2343 {
2344         enum nl80211_band band;
2345         unsigned int bands_set = 0;
2346
2347         WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2348              "wiphy should have REGULATORY_CUSTOM_REG\n");
2349         wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2350
2351         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2352                 if (!wiphy->bands[band])
2353                         continue;
2354                 handle_band_custom(wiphy, wiphy->bands[band], regd);
2355                 bands_set++;
2356         }
2357
2358         /*
2359          * no point in calling this if it won't have any effect
2360          * on your device's supported bands.
2361          */
2362         WARN_ON(!bands_set);
2363 }
2364 EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2365
2366 static void reg_set_request_processed(void)
2367 {
2368         bool need_more_processing = false;
2369         struct regulatory_request *lr = get_last_request();
2370
2371         lr->processed = true;
2372
2373         spin_lock(&reg_requests_lock);
2374         if (!list_empty(&reg_requests_list))
2375                 need_more_processing = true;
2376         spin_unlock(&reg_requests_lock);
2377
2378         cancel_crda_timeout();
2379
2380         if (need_more_processing)
2381                 schedule_work(&reg_work);
2382 }
2383
2384 /**
2385  * reg_process_hint_core - process core regulatory requests
2386  * @pending_request: a pending core regulatory request
2387  *
2388  * The wireless subsystem can use this function to process
2389  * a regulatory request issued by the regulatory core.
2390  */
2391 static enum reg_request_treatment
2392 reg_process_hint_core(struct regulatory_request *core_request)
2393 {
2394         if (reg_query_database(core_request)) {
2395                 core_request->intersect = false;
2396                 core_request->processed = false;
2397                 reg_update_last_request(core_request);
2398                 return REG_REQ_OK;
2399         }
2400
2401         return REG_REQ_IGNORE;
2402 }
2403
2404 static enum reg_request_treatment
2405 __reg_process_hint_user(struct regulatory_request *user_request)
2406 {
2407         struct regulatory_request *lr = get_last_request();
2408
2409         if (reg_request_cell_base(user_request))
2410                 return reg_ignore_cell_hint(user_request);
2411
2412         if (reg_request_cell_base(lr))
2413                 return REG_REQ_IGNORE;
2414
2415         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2416                 return REG_REQ_INTERSECT;
2417         /*
2418          * If the user knows better the user should set the regdom
2419          * to their country before the IE is picked up
2420          */
2421         if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2422             lr->intersect)
2423                 return REG_REQ_IGNORE;
2424         /*
2425          * Process user requests only after previous user/driver/core
2426          * requests have been processed
2427          */
2428         if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2429              lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2430              lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2431             regdom_changes(lr->alpha2))
2432                 return REG_REQ_IGNORE;
2433
2434         if (!regdom_changes(user_request->alpha2))
2435                 return REG_REQ_ALREADY_SET;
2436
2437         return REG_REQ_OK;
2438 }
2439
2440 /**
2441  * reg_process_hint_user - process user regulatory requests
2442  * @user_request: a pending user regulatory request
2443  *
2444  * The wireless subsystem can use this function to process
2445  * a regulatory request initiated by userspace.
2446  */
2447 static enum reg_request_treatment
2448 reg_process_hint_user(struct regulatory_request *user_request)
2449 {
2450         enum reg_request_treatment treatment;
2451
2452         treatment = __reg_process_hint_user(user_request);
2453         if (treatment == REG_REQ_IGNORE ||
2454             treatment == REG_REQ_ALREADY_SET)
2455                 return REG_REQ_IGNORE;
2456
2457         user_request->intersect = treatment == REG_REQ_INTERSECT;
2458         user_request->processed = false;
2459
2460         if (reg_query_database(user_request)) {
2461                 reg_update_last_request(user_request);
2462                 user_alpha2[0] = user_request->alpha2[0];
2463                 user_alpha2[1] = user_request->alpha2[1];
2464                 return REG_REQ_OK;
2465         }
2466
2467         return REG_REQ_IGNORE;
2468 }
2469
2470 static enum reg_request_treatment
2471 __reg_process_hint_driver(struct regulatory_request *driver_request)
2472 {
2473         struct regulatory_request *lr = get_last_request();
2474
2475         if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2476                 if (regdom_changes(driver_request->alpha2))
2477                         return REG_REQ_OK;
2478                 return REG_REQ_ALREADY_SET;
2479         }
2480
2481         /*
2482          * This would happen if you unplug and plug your card
2483          * back in or if you add a new device for which the previously
2484          * loaded card also agrees on the regulatory domain.
2485          */
2486         if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2487             !regdom_changes(driver_request->alpha2))
2488                 return REG_REQ_ALREADY_SET;
2489
2490         return REG_REQ_INTERSECT;
2491 }
2492
2493 /**
2494  * reg_process_hint_driver - process driver regulatory requests
2495  * @driver_request: a pending driver regulatory request
2496  *
2497  * The wireless subsystem can use this function to process
2498  * a regulatory request issued by an 802.11 driver.
2499  *
2500  * Returns one of the different reg request treatment values.
2501  */
2502 static enum reg_request_treatment
2503 reg_process_hint_driver(struct wiphy *wiphy,
2504                         struct regulatory_request *driver_request)
2505 {
2506         const struct ieee80211_regdomain *regd, *tmp;
2507         enum reg_request_treatment treatment;
2508
2509         treatment = __reg_process_hint_driver(driver_request);
2510
2511         switch (treatment) {
2512         case REG_REQ_OK:
2513                 break;
2514         case REG_REQ_IGNORE:
2515                 return REG_REQ_IGNORE;
2516         case REG_REQ_INTERSECT:
2517         case REG_REQ_ALREADY_SET:
2518                 regd = reg_copy_regd(get_cfg80211_regdom());
2519                 if (IS_ERR(regd))
2520                         return REG_REQ_IGNORE;
2521
2522                 tmp = get_wiphy_regdom(wiphy);
2523                 rcu_assign_pointer(wiphy->regd, regd);
2524                 rcu_free_regdom(tmp);
2525         }
2526
2527
2528         driver_request->intersect = treatment == REG_REQ_INTERSECT;
2529         driver_request->processed = false;
2530
2531         /*
2532          * Since CRDA will not be called in this case as we already
2533          * have applied the requested regulatory domain before we just
2534          * inform userspace we have processed the request
2535          */
2536         if (treatment == REG_REQ_ALREADY_SET) {
2537                 nl80211_send_reg_change_event(driver_request);
2538                 reg_update_last_request(driver_request);
2539                 reg_set_request_processed();
2540                 return REG_REQ_ALREADY_SET;
2541         }
2542
2543         if (reg_query_database(driver_request)) {
2544                 reg_update_last_request(driver_request);
2545                 return REG_REQ_OK;
2546         }
2547
2548         return REG_REQ_IGNORE;
2549 }
2550
2551 static enum reg_request_treatment
2552 __reg_process_hint_country_ie(struct wiphy *wiphy,
2553                               struct regulatory_request *country_ie_request)
2554 {
2555         struct wiphy *last_wiphy = NULL;
2556         struct regulatory_request *lr = get_last_request();
2557
2558         if (reg_request_cell_base(lr)) {
2559                 /* Trust a Cell base station over the AP's country IE */
2560                 if (regdom_changes(country_ie_request->alpha2))
2561                         return REG_REQ_IGNORE;
2562                 return REG_REQ_ALREADY_SET;
2563         } else {
2564                 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2565                         return REG_REQ_IGNORE;
2566         }
2567
2568         if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2569                 return -EINVAL;
2570
2571         if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2572                 return REG_REQ_OK;
2573
2574         last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2575
2576         if (last_wiphy != wiphy) {
2577                 /*
2578                  * Two cards with two APs claiming different
2579                  * Country IE alpha2s. We could
2580                  * intersect them, but that seems unlikely
2581                  * to be correct. Reject second one for now.
2582                  */
2583                 if (regdom_changes(country_ie_request->alpha2))
2584                         return REG_REQ_IGNORE;
2585                 return REG_REQ_ALREADY_SET;
2586         }
2587
2588         if (regdom_changes(country_ie_request->alpha2))
2589                 return REG_REQ_OK;
2590         return REG_REQ_ALREADY_SET;
2591 }
2592
2593 /**
2594  * reg_process_hint_country_ie - process regulatory requests from country IEs
2595  * @country_ie_request: a regulatory request from a country IE
2596  *
2597  * The wireless subsystem can use this function to process
2598  * a regulatory request issued by a country Information Element.
2599  *
2600  * Returns one of the different reg request treatment values.
2601  */
2602 static enum reg_request_treatment
2603 reg_process_hint_country_ie(struct wiphy *wiphy,
2604                             struct regulatory_request *country_ie_request)
2605 {
2606         enum reg_request_treatment treatment;
2607
2608         treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2609
2610         switch (treatment) {
2611         case REG_REQ_OK:
2612                 break;
2613         case REG_REQ_IGNORE:
2614                 return REG_REQ_IGNORE;
2615         case REG_REQ_ALREADY_SET:
2616                 reg_free_request(country_ie_request);
2617                 return REG_REQ_ALREADY_SET;
2618         case REG_REQ_INTERSECT:
2619                 /*
2620                  * This doesn't happen yet, not sure we
2621                  * ever want to support it for this case.
2622                  */
2623                 WARN_ONCE(1, "Unexpected intersection for country elements");
2624                 return REG_REQ_IGNORE;
2625         }
2626
2627         country_ie_request->intersect = false;
2628         country_ie_request->processed = false;
2629
2630         if (reg_query_database(country_ie_request)) {
2631                 reg_update_last_request(country_ie_request);
2632                 return REG_REQ_OK;
2633         }
2634
2635         return REG_REQ_IGNORE;
2636 }
2637
2638 bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2639 {
2640         const struct ieee80211_regdomain *wiphy1_regd = NULL;
2641         const struct ieee80211_regdomain *wiphy2_regd = NULL;
2642         const struct ieee80211_regdomain *cfg80211_regd = NULL;
2643         bool dfs_domain_same;
2644
2645         rcu_read_lock();
2646
2647         cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2648         wiphy1_regd = rcu_dereference(wiphy1->regd);
2649         if (!wiphy1_regd)
2650                 wiphy1_regd = cfg80211_regd;
2651
2652         wiphy2_regd = rcu_dereference(wiphy2->regd);
2653         if (!wiphy2_regd)
2654                 wiphy2_regd = cfg80211_regd;
2655
2656         dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2657
2658         rcu_read_unlock();
2659
2660         return dfs_domain_same;
2661 }
2662
2663 static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2664                                     struct ieee80211_channel *src_chan)
2665 {
2666         if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2667             !(src_chan->flags & IEEE80211_CHAN_RADAR))
2668                 return;
2669
2670         if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2671             src_chan->flags & IEEE80211_CHAN_DISABLED)
2672                 return;
2673
2674         if (src_chan->center_freq == dst_chan->center_freq &&
2675             dst_chan->dfs_state == NL80211_DFS_USABLE) {
2676                 dst_chan->dfs_state = src_chan->dfs_state;
2677                 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2678         }
2679 }
2680
2681 static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2682                                        struct wiphy *src_wiphy)
2683 {
2684         struct ieee80211_supported_band *src_sband, *dst_sband;
2685         struct ieee80211_channel *src_chan, *dst_chan;
2686         int i, j, band;
2687
2688         if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2689                 return;
2690
2691         for (band = 0; band < NUM_NL80211_BANDS; band++) {
2692                 dst_sband = dst_wiphy->bands[band];
2693                 src_sband = src_wiphy->bands[band];
2694                 if (!dst_sband || !src_sband)
2695                         continue;
2696
2697                 for (i = 0; i < dst_sband->n_channels; i++) {
2698                         dst_chan = &dst_sband->channels[i];
2699                         for (j = 0; j < src_sband->n_channels; j++) {
2700                                 src_chan = &src_sband->channels[j];
2701                                 reg_copy_dfs_chan_state(dst_chan, src_chan);
2702                         }
2703                 }
2704         }
2705 }
2706
2707 static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2708 {
2709         struct cfg80211_registered_device *rdev;
2710
2711         ASSERT_RTNL();
2712
2713         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2714                 if (wiphy == &rdev->wiphy)
2715                         continue;
2716                 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2717         }
2718 }
2719
2720 /* This processes *all* regulatory hints */
2721 static void reg_process_hint(struct regulatory_request *reg_request)
2722 {
2723         struct wiphy *wiphy = NULL;
2724         enum reg_request_treatment treatment;
2725         enum nl80211_reg_initiator initiator = reg_request->initiator;
2726
2727         if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
2728                 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
2729
2730         switch (initiator) {
2731         case NL80211_REGDOM_SET_BY_CORE:
2732                 treatment = reg_process_hint_core(reg_request);
2733                 break;
2734         case NL80211_REGDOM_SET_BY_USER:
2735                 treatment = reg_process_hint_user(reg_request);
2736                 break;
2737         case NL80211_REGDOM_SET_BY_DRIVER:
2738                 if (!wiphy)
2739                         goto out_free;
2740                 treatment = reg_process_hint_driver(wiphy, reg_request);
2741                 break;
2742         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
2743                 if (!wiphy)
2744                         goto out_free;
2745                 treatment = reg_process_hint_country_ie(wiphy, reg_request);
2746                 break;
2747         default:
2748                 WARN(1, "invalid initiator %d\n", initiator);
2749                 goto out_free;
2750         }
2751
2752         if (treatment == REG_REQ_IGNORE)
2753                 goto out_free;
2754
2755         WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
2756              "unexpected treatment value %d\n", treatment);
2757
2758         /* This is required so that the orig_* parameters are saved.
2759          * NOTE: treatment must be set for any case that reaches here!
2760          */
2761         if (treatment == REG_REQ_ALREADY_SET && wiphy &&
2762             wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2763                 wiphy_update_regulatory(wiphy, initiator);
2764                 wiphy_all_share_dfs_chan_state(wiphy);
2765                 reg_check_channels();
2766         }
2767
2768         return;
2769
2770 out_free:
2771         reg_free_request(reg_request);
2772 }
2773
2774 static void notify_self_managed_wiphys(struct regulatory_request *request)
2775 {
2776         struct cfg80211_registered_device *rdev;
2777         struct wiphy *wiphy;
2778
2779         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2780                 wiphy = &rdev->wiphy;
2781                 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
2782                     request->initiator == NL80211_REGDOM_SET_BY_USER)
2783                         reg_call_notifier(wiphy, request);
2784         }
2785 }
2786
2787 /*
2788  * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2789  * Regulatory hints come on a first come first serve basis and we
2790  * must process each one atomically.
2791  */
2792 static void reg_process_pending_hints(void)
2793 {
2794         struct regulatory_request *reg_request, *lr;
2795
2796         lr = get_last_request();
2797
2798         /* When last_request->processed becomes true this will be rescheduled */
2799         if (lr && !lr->processed) {
2800                 reg_process_hint(lr);
2801                 return;
2802         }
2803
2804         spin_lock(&reg_requests_lock);
2805
2806         if (list_empty(&reg_requests_list)) {
2807                 spin_unlock(&reg_requests_lock);
2808                 return;
2809         }
2810
2811         reg_request = list_first_entry(&reg_requests_list,
2812                                        struct regulatory_request,
2813                                        list);
2814         list_del_init(&reg_request->list);
2815
2816         spin_unlock(&reg_requests_lock);
2817
2818         notify_self_managed_wiphys(reg_request);
2819
2820         reg_process_hint(reg_request);
2821
2822         lr = get_last_request();
2823
2824         spin_lock(&reg_requests_lock);
2825         if (!list_empty(&reg_requests_list) && lr && lr->processed)
2826                 schedule_work(&reg_work);
2827         spin_unlock(&reg_requests_lock);
2828 }
2829
2830 /* Processes beacon hints -- this has nothing to do with country IEs */
2831 static void reg_process_pending_beacon_hints(void)
2832 {
2833         struct cfg80211_registered_device *rdev;
2834         struct reg_beacon *pending_beacon, *tmp;
2835
2836         /* This goes through the _pending_ beacon list */
2837         spin_lock_bh(&reg_pending_beacons_lock);
2838
2839         list_for_each_entry_safe(pending_beacon, tmp,
2840                                  &reg_pending_beacons, list) {
2841                 list_del_init(&pending_beacon->list);
2842
2843                 /* Applies the beacon hint to current wiphys */
2844                 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2845                         wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
2846
2847                 /* Remembers the beacon hint for new wiphys or reg changes */
2848                 list_add_tail(&pending_beacon->list, &reg_beacon_list);
2849         }
2850
2851         spin_unlock_bh(&reg_pending_beacons_lock);
2852 }
2853
2854 static void reg_process_self_managed_hints(void)
2855 {
2856         struct cfg80211_registered_device *rdev;
2857         struct wiphy *wiphy;
2858         const struct ieee80211_regdomain *tmp;
2859         const struct ieee80211_regdomain *regd;
2860         enum nl80211_band band;
2861         struct regulatory_request request = {};
2862
2863         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2864                 wiphy = &rdev->wiphy;
2865
2866                 spin_lock(&reg_requests_lock);
2867                 regd = rdev->requested_regd;
2868                 rdev->requested_regd = NULL;
2869                 spin_unlock(&reg_requests_lock);
2870
2871                 if (regd == NULL)
2872                         continue;
2873
2874                 tmp = get_wiphy_regdom(wiphy);
2875                 rcu_assign_pointer(wiphy->regd, regd);
2876                 rcu_free_regdom(tmp);
2877
2878                 for (band = 0; band < NUM_NL80211_BANDS; band++)
2879                         handle_band_custom(wiphy, wiphy->bands[band], regd);
2880
2881                 reg_process_ht_flags(wiphy);
2882
2883                 request.wiphy_idx = get_wiphy_idx(wiphy);
2884                 request.alpha2[0] = regd->alpha2[0];
2885                 request.alpha2[1] = regd->alpha2[1];
2886                 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
2887
2888                 nl80211_send_wiphy_reg_change_event(&request);
2889         }
2890
2891         reg_check_channels();
2892 }
2893
2894 static void reg_todo(struct work_struct *work)
2895 {
2896         rtnl_lock();
2897         reg_process_pending_hints();
2898         reg_process_pending_beacon_hints();
2899         reg_process_self_managed_hints();
2900         rtnl_unlock();
2901 }
2902
2903 static void queue_regulatory_request(struct regulatory_request *request)
2904 {
2905         request->alpha2[0] = toupper(request->alpha2[0]);
2906         request->alpha2[1] = toupper(request->alpha2[1]);
2907
2908         spin_lock(&reg_requests_lock);
2909         list_add_tail(&request->list, &reg_requests_list);
2910         spin_unlock(&reg_requests_lock);
2911
2912         schedule_work(&reg_work);
2913 }
2914
2915 /*
2916  * Core regulatory hint -- happens during cfg80211_init()
2917  * and when we restore regulatory settings.
2918  */
2919 static int regulatory_hint_core(const char *alpha2)
2920 {
2921         struct regulatory_request *request;
2922
2923         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2924         if (!request)
2925                 return -ENOMEM;
2926
2927         request->alpha2[0] = alpha2[0];
2928         request->alpha2[1] = alpha2[1];
2929         request->initiator = NL80211_REGDOM_SET_BY_CORE;
2930         request->wiphy_idx = WIPHY_IDX_INVALID;
2931
2932         queue_regulatory_request(request);
2933
2934         return 0;
2935 }
2936
2937 /* User hints */
2938 int regulatory_hint_user(const char *alpha2,
2939                          enum nl80211_user_reg_hint_type user_reg_hint_type)
2940 {
2941         struct regulatory_request *request;
2942
2943         if (WARN_ON(!alpha2))
2944                 return -EINVAL;
2945
2946         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
2947         if (!request)
2948                 return -ENOMEM;
2949
2950         request->wiphy_idx = WIPHY_IDX_INVALID;
2951         request->alpha2[0] = alpha2[0];
2952         request->alpha2[1] = alpha2[1];
2953         request->initiator = NL80211_REGDOM_SET_BY_USER;
2954         request->user_reg_hint_type = user_reg_hint_type;
2955
2956         /* Allow calling CRDA again */
2957         reset_crda_timeouts();
2958
2959         queue_regulatory_request(request);
2960
2961         return 0;
2962 }
2963
2964 int regulatory_hint_indoor(bool is_indoor, u32 portid)
2965 {
2966         spin_lock(&reg_indoor_lock);
2967
2968         /* It is possible that more than one user space process is trying to
2969          * configure the indoor setting. To handle such cases, clear the indoor
2970          * setting in case that some process does not think that the device
2971          * is operating in an indoor environment. In addition, if a user space
2972          * process indicates that it is controlling the indoor setting, save its
2973          * portid, i.e., make it the owner.
2974          */
2975         reg_is_indoor = is_indoor;
2976         if (reg_is_indoor) {
2977                 if (!reg_is_indoor_portid)
2978                         reg_is_indoor_portid = portid;
2979         } else {
2980                 reg_is_indoor_portid = 0;
2981         }
2982
2983         spin_unlock(&reg_indoor_lock);
2984
2985         if (!is_indoor)
2986                 reg_check_channels();
2987
2988         return 0;
2989 }
2990
2991 void regulatory_netlink_notify(u32 portid)
2992 {
2993         spin_lock(&reg_indoor_lock);
2994
2995         if (reg_is_indoor_portid != portid) {
2996                 spin_unlock(&reg_indoor_lock);
2997                 return;
2998         }
2999
3000         reg_is_indoor = false;
3001         reg_is_indoor_portid = 0;
3002
3003         spin_unlock(&reg_indoor_lock);
3004
3005         reg_check_channels();
3006 }
3007
3008 /* Driver hints */
3009 int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3010 {
3011         struct regulatory_request *request;
3012
3013         if (WARN_ON(!alpha2 || !wiphy))
3014                 return -EINVAL;
3015
3016         wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3017
3018         request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3019         if (!request)
3020                 return -ENOMEM;
3021
3022         request->wiphy_idx = get_wiphy_idx(wiphy);
3023
3024         request->alpha2[0] = alpha2[0];
3025         request->alpha2[1] = alpha2[1];
3026         request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3027
3028         /* Allow calling CRDA again */
3029         reset_crda_timeouts();
3030
3031         queue_regulatory_request(request);
3032
3033         return 0;
3034 }
3035 EXPORT_SYMBOL(regulatory_hint);
3036
3037 void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3038                                 const u8 *country_ie, u8 country_ie_len)
3039 {
3040         char alpha2[2];
3041         enum environment_cap env = ENVIRON_ANY;
3042         struct regulatory_request *request = NULL, *lr;
3043
3044         /* IE len must be evenly divisible by 2 */
3045         if (country_ie_len & 0x01)
3046                 return;
3047
3048         if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3049                 return;
3050
3051         request = kzalloc(sizeof(*request), GFP_KERNEL);
3052         if (!request)
3053                 return;
3054
3055         alpha2[0] = country_ie[0];
3056         alpha2[1] = country_ie[1];
3057
3058         if (country_ie[2] == 'I')
3059                 env = ENVIRON_INDOOR;
3060         else if (country_ie[2] == 'O')
3061                 env = ENVIRON_OUTDOOR;
3062
3063         rcu_read_lock();
3064         lr = get_last_request();
3065
3066         if (unlikely(!lr))
3067                 goto out;
3068
3069         /*
3070          * We will run this only upon a successful connection on cfg80211.
3071          * We leave conflict resolution to the workqueue, where can hold
3072          * the RTNL.
3073          */
3074         if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3075             lr->wiphy_idx != WIPHY_IDX_INVALID)
3076                 goto out;
3077
3078         request->wiphy_idx = get_wiphy_idx(wiphy);
3079         request->alpha2[0] = alpha2[0];
3080         request->alpha2[1] = alpha2[1];
3081         request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3082         request->country_ie_env = env;
3083
3084         /* Allow calling CRDA again */
3085         reset_crda_timeouts();
3086
3087         queue_regulatory_request(request);
3088         request = NULL;
3089 out:
3090         kfree(request);
3091         rcu_read_unlock();
3092 }
3093
3094 static void restore_alpha2(char *alpha2, bool reset_user)
3095 {
3096         /* indicates there is no alpha2 to consider for restoration */
3097         alpha2[0] = '9';
3098         alpha2[1] = '7';
3099
3100         /* The user setting has precedence over the module parameter */
3101         if (is_user_regdom_saved()) {
3102                 /* Unless we're asked to ignore it and reset it */
3103                 if (reset_user) {
3104                         pr_debug("Restoring regulatory settings including user preference\n");
3105                         user_alpha2[0] = '9';
3106                         user_alpha2[1] = '7';
3107
3108                         /*
3109                          * If we're ignoring user settings, we still need to
3110                          * check the module parameter to ensure we put things
3111                          * back as they were for a full restore.
3112                          */
3113                         if (!is_world_regdom(ieee80211_regdom)) {
3114                                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3115                                          ieee80211_regdom[0], ieee80211_regdom[1]);
3116                                 alpha2[0] = ieee80211_regdom[0];
3117                                 alpha2[1] = ieee80211_regdom[1];
3118                         }
3119                 } else {
3120                         pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3121                                  user_alpha2[0], user_alpha2[1]);
3122                         alpha2[0] = user_alpha2[0];
3123                         alpha2[1] = user_alpha2[1];
3124                 }
3125         } else if (!is_world_regdom(ieee80211_regdom)) {
3126                 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3127                          ieee80211_regdom[0], ieee80211_regdom[1]);
3128                 alpha2[0] = ieee80211_regdom[0];
3129                 alpha2[1] = ieee80211_regdom[1];
3130         } else
3131                 pr_debug("Restoring regulatory settings\n");
3132 }
3133
3134 static void restore_custom_reg_settings(struct wiphy *wiphy)
3135 {
3136         struct ieee80211_supported_band *sband;
3137         enum nl80211_band band;
3138         struct ieee80211_channel *chan;
3139         int i;
3140
3141         for (band = 0; band < NUM_NL80211_BANDS; band++) {
3142                 sband = wiphy->bands[band];
3143                 if (!sband)
3144                         continue;
3145                 for (i = 0; i < sband->n_channels; i++) {
3146                         chan = &sband->channels[i];
3147                         chan->flags = chan->orig_flags;
3148                         chan->max_antenna_gain = chan->orig_mag;
3149                         chan->max_power = chan->orig_mpwr;
3150                         chan->beacon_found = false;
3151                 }
3152         }
3153 }
3154
3155 /*
3156  * Restoring regulatory settings involves ingoring any
3157  * possibly stale country IE information and user regulatory
3158  * settings if so desired, this includes any beacon hints
3159  * learned as we could have traveled outside to another country
3160  * after disconnection. To restore regulatory settings we do
3161  * exactly what we did at bootup:
3162  *
3163  *   - send a core regulatory hint
3164  *   - send a user regulatory hint if applicable
3165  *
3166  * Device drivers that send a regulatory hint for a specific country
3167  * keep their own regulatory domain on wiphy->regd so that does does
3168  * not need to be remembered.
3169  */
3170 static void restore_regulatory_settings(bool reset_user, bool cached)
3171 {
3172         char alpha2[2];
3173         char world_alpha2[2];
3174         struct reg_beacon *reg_beacon, *btmp;
3175         LIST_HEAD(tmp_reg_req_list);
3176         struct cfg80211_registered_device *rdev;
3177
3178         ASSERT_RTNL();
3179
3180         /*
3181          * Clear the indoor setting in case that it is not controlled by user
3182          * space, as otherwise there is no guarantee that the device is still
3183          * operating in an indoor environment.
3184          */
3185         spin_lock(&reg_indoor_lock);
3186         if (reg_is_indoor && !reg_is_indoor_portid) {
3187                 reg_is_indoor = false;
3188                 reg_check_channels();
3189         }
3190         spin_unlock(&reg_indoor_lock);
3191
3192         reset_regdomains(true, &world_regdom);
3193         restore_alpha2(alpha2, reset_user);
3194
3195         /*
3196          * If there's any pending requests we simply
3197          * stash them to a temporary pending queue and
3198          * add then after we've restored regulatory
3199          * settings.
3200          */
3201         spin_lock(&reg_requests_lock);
3202         list_splice_tail_init(&reg_requests_list, &tmp_reg_req_list);
3203         spin_unlock(&reg_requests_lock);
3204
3205         /* Clear beacon hints */
3206         spin_lock_bh(&reg_pending_beacons_lock);
3207         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
3208                 list_del(&reg_beacon->list);
3209                 kfree(reg_beacon);
3210         }
3211         spin_unlock_bh(&reg_pending_beacons_lock);
3212
3213         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
3214                 list_del(&reg_beacon->list);
3215                 kfree(reg_beacon);
3216         }
3217
3218         /* First restore to the basic regulatory settings */
3219         world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3220         world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3221
3222         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3223                 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3224                         continue;
3225                 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3226                         restore_custom_reg_settings(&rdev->wiphy);
3227         }
3228
3229         if (cached && (!is_an_alpha2(alpha2) ||
3230                        !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3231                 reset_regdomains(false, cfg80211_world_regdom);
3232                 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3233                 print_regdomain(get_cfg80211_regdom());
3234                 nl80211_send_reg_change_event(&core_request_world);
3235                 reg_set_request_processed();
3236
3237                 if (is_an_alpha2(alpha2) &&
3238                     !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3239                         struct regulatory_request *ureq;
3240
3241                         spin_lock(&reg_requests_lock);
3242                         ureq = list_last_entry(&reg_requests_list,
3243                                                struct regulatory_request,
3244                                                list);
3245                         list_del(&ureq->list);
3246                         spin_unlock(&reg_requests_lock);
3247
3248                         notify_self_managed_wiphys(ureq);
3249                         reg_update_last_request(ureq);
3250                         set_regdom(reg_copy_regd(cfg80211_user_regdom),
3251                                    REGD_SOURCE_CACHED);
3252                 }
3253         } else {
3254                 regulatory_hint_core(world_alpha2);
3255
3256                 /*
3257                  * This restores the ieee80211_regdom module parameter
3258                  * preference or the last user requested regulatory
3259                  * settings, user regulatory settings takes precedence.
3260                  */
3261                 if (is_an_alpha2(alpha2))
3262                         regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3263         }
3264
3265         spin_lock(&reg_requests_lock);
3266         list_splice_tail_init(&tmp_reg_req_list, &reg_requests_list);
3267         spin_unlock(&reg_requests_lock);
3268
3269         pr_debug("Kicking the queue\n");
3270
3271         schedule_work(&reg_work);
3272 }
3273
3274 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3275 {
3276         struct cfg80211_registered_device *rdev;
3277         struct wireless_dev *wdev;
3278
3279         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3280                 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3281                         wdev_lock(wdev);
3282                         if (!(wdev->wiphy->regulatory_flags & flag)) {
3283                                 wdev_unlock(wdev);
3284                                 return false;
3285                         }
3286                         wdev_unlock(wdev);
3287                 }
3288         }
3289
3290         return true;
3291 }
3292
3293 void regulatory_hint_disconnect(void)
3294 {
3295         /* Restore of regulatory settings is not required when wiphy(s)
3296          * ignore IE from connected access point but clearance of beacon hints
3297          * is required when wiphy(s) supports beacon hints.
3298          */
3299         if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3300                 struct reg_beacon *reg_beacon, *btmp;
3301
3302                 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3303                         return;
3304
3305                 spin_lock_bh(&reg_pending_beacons_lock);
3306                 list_for_each_entry_safe(reg_beacon, btmp,
3307                                          &reg_pending_beacons, list) {
3308                         list_del(&reg_beacon->list);
3309                         kfree(reg_beacon);
3310                 }
3311                 spin_unlock_bh(&reg_pending_beacons_lock);
3312
3313                 list_for_each_entry_safe(reg_beacon, btmp,
3314                                          &reg_beacon_list, list) {
3315                         list_del(&reg_beacon->list);
3316                         kfree(reg_beacon);
3317                 }
3318
3319                 return;
3320         }
3321
3322         pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3323         restore_regulatory_settings(false, true);
3324 }
3325
3326 static bool freq_is_chan_12_13_14(u32 freq)
3327 {
3328         if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3329             freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3330             freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3331                 return true;
3332         return false;
3333 }
3334
3335 static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3336 {
3337         struct reg_beacon *pending_beacon;
3338
3339         list_for_each_entry(pending_beacon, &reg_pending_beacons, list)
3340                 if (beacon_chan->center_freq ==
3341                     pending_beacon->chan.center_freq)
3342                         return true;
3343         return false;
3344 }
3345
3346 int regulatory_hint_found_beacon(struct wiphy *wiphy,
3347                                  struct ieee80211_channel *beacon_chan,
3348                                  gfp_t gfp)
3349 {
3350         struct reg_beacon *reg_beacon;
3351         bool processing;
3352
3353         if (beacon_chan->beacon_found ||
3354             beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3355             (beacon_chan->band == NL80211_BAND_2GHZ &&
3356              !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3357                 return 0;
3358
3359         spin_lock_bh(&reg_pending_beacons_lock);
3360         processing = pending_reg_beacon(beacon_chan);
3361         spin_unlock_bh(&reg_pending_beacons_lock);
3362
3363         if (processing)
3364                 return 0;
3365
3366         reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3367         if (!reg_beacon)
3368                 return -ENOMEM;
3369
3370         pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3371                  beacon_chan->center_freq,
3372                  ieee80211_frequency_to_channel(beacon_chan->center_freq),
3373                  wiphy_name(wiphy));
3374
3375         memcpy(&reg_beacon->chan, beacon_chan,
3376                sizeof(struct ieee80211_channel));
3377
3378         /*
3379          * Since we can be called from BH or and non-BH context
3380          * we must use spin_lock_bh()
3381          */
3382         spin_lock_bh(&reg_pending_beacons_lock);
3383         list_add_tail(&reg_beacon->list, &reg_pending_beacons);
3384         spin_unlock_bh(&reg_pending_beacons_lock);
3385
3386         schedule_work(&reg_work);
3387
3388         return 0;
3389 }
3390
3391 static void print_rd_rules(const struct ieee80211_regdomain *rd)
3392 {
3393         unsigned int i;
3394         const struct ieee80211_reg_rule *reg_rule = NULL;
3395         const struct ieee80211_freq_range *freq_range = NULL;
3396         const struct ieee80211_power_rule *power_rule = NULL;
3397         char bw[32], cac_time[32];
3398
3399         pr_debug("  (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3400
3401         for (i = 0; i < rd->n_reg_rules; i++) {
3402                 reg_rule = &rd->reg_rules[i];
3403                 freq_range = &reg_rule->freq_range;
3404                 power_rule = &reg_rule->power_rule;
3405
3406                 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3407                         snprintf(bw, sizeof(bw), "%d KHz, %d KHz AUTO",
3408                                  freq_range->max_bandwidth_khz,
3409                                  reg_get_max_bandwidth(rd, reg_rule));
3410                 else
3411                         snprintf(bw, sizeof(bw), "%d KHz",
3412                                  freq_range->max_bandwidth_khz);
3413
3414                 if (reg_rule->flags & NL80211_RRF_DFS)
3415                         scnprintf(cac_time, sizeof(cac_time), "%u s",
3416                                   reg_rule->dfs_cac_ms/1000);
3417                 else
3418                         scnprintf(cac_time, sizeof(cac_time), "N/A");
3419
3420
3421                 /*
3422                  * There may not be documentation for max antenna gain
3423                  * in certain regions
3424                  */
3425                 if (power_rule->max_antenna_gain)
3426                         pr_debug("  (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3427                                 freq_range->start_freq_khz,
3428                                 freq_range->end_freq_khz,
3429                                 bw,
3430                                 power_rule->max_antenna_gain,
3431                                 power_rule->max_eirp,
3432                                 cac_time);
3433                 else
3434                         pr_debug("  (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3435                                 freq_range->start_freq_khz,
3436                                 freq_range->end_freq_khz,
3437                                 bw,
3438                                 power_rule->max_eirp,
3439                                 cac_time);
3440         }
3441 }
3442
3443 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3444 {
3445         switch (dfs_region) {
3446         case NL80211_DFS_UNSET:
3447         case NL80211_DFS_FCC:
3448         case NL80211_DFS_ETSI:
3449         case NL80211_DFS_JP:
3450                 return true;
3451         default:
3452                 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3453                 return false;
3454         }
3455 }
3456
3457 static void print_regdomain(const struct ieee80211_regdomain *rd)
3458 {
3459         struct regulatory_request *lr = get_last_request();
3460
3461         if (is_intersected_alpha2(rd->alpha2)) {
3462                 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3463                         struct cfg80211_registered_device *rdev;
3464                         rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3465                         if (rdev) {
3466                                 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3467                                         rdev->country_ie_alpha2[0],
3468                                         rdev->country_ie_alpha2[1]);
3469                         } else
3470                                 pr_debug("Current regulatory domain intersected:\n");
3471                 } else
3472                         pr_debug("Current regulatory domain intersected:\n");
3473         } else if (is_world_regdom(rd->alpha2)) {
3474                 pr_debug("World regulatory domain updated:\n");
3475         } else {
3476                 if (is_unknown_alpha2(rd->alpha2))
3477                         pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3478                 else {
3479                         if (reg_request_cell_base(lr))
3480                                 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3481                                         rd->alpha2[0], rd->alpha2[1]);
3482                         else
3483                                 pr_debug("Regulatory domain changed to country: %c%c\n",
3484                                         rd->alpha2[0], rd->alpha2[1]);
3485                 }
3486         }
3487
3488         pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3489         print_rd_rules(rd);
3490 }
3491
3492 static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3493 {
3494         pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3495         print_rd_rules(rd);
3496 }
3497
3498 static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3499 {
3500         if (!is_world_regdom(rd->alpha2))
3501                 return -EINVAL;
3502         update_world_regdomain(rd);
3503         return 0;
3504 }
3505
3506 static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3507                            struct regulatory_request *user_request)
3508 {
3509         const struct ieee80211_regdomain *intersected_rd = NULL;
3510
3511         if (!regdom_changes(rd->alpha2))
3512                 return -EALREADY;
3513
3514         if (!is_valid_rd(rd)) {
3515                 pr_err("Invalid regulatory domain detected: %c%c\n",
3516                        rd->alpha2[0], rd->alpha2[1]);
3517                 print_regdomain_info(rd);
3518                 return -EINVAL;
3519         }
3520
3521         if (!user_request->intersect) {
3522                 reset_regdomains(false, rd);
3523                 return 0;
3524         }
3525
3526         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3527         if (!intersected_rd)
3528                 return -EINVAL;
3529
3530         kfree(rd);
3531         rd = NULL;
3532         reset_regdomains(false, intersected_rd);
3533
3534         return 0;
3535 }
3536
3537 static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3538                              struct regulatory_request *driver_request)
3539 {
3540         const struct ieee80211_regdomain *regd;
3541         const struct ieee80211_regdomain *intersected_rd = NULL;
3542         const struct ieee80211_regdomain *tmp;
3543         struct wiphy *request_wiphy;
3544
3545         if (is_world_regdom(rd->alpha2))
3546                 return -EINVAL;
3547
3548         if (!regdom_changes(rd->alpha2))
3549                 return -EALREADY;
3550
3551         if (!is_valid_rd(rd)) {
3552                 pr_err("Invalid regulatory domain detected: %c%c\n",
3553                        rd->alpha2[0], rd->alpha2[1]);
3554                 print_regdomain_info(rd);
3555                 return -EINVAL;
3556         }
3557
3558         request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3559         if (!request_wiphy)
3560                 return -ENODEV;
3561
3562         if (!driver_request->intersect) {
3563                 if (request_wiphy->regd)
3564                         return -EALREADY;
3565
3566                 regd = reg_copy_regd(rd);
3567                 if (IS_ERR(regd))
3568                         return PTR_ERR(regd);
3569
3570                 rcu_assign_pointer(request_wiphy->regd, regd);
3571                 reset_regdomains(false, rd);
3572                 return 0;
3573         }
3574
3575         intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3576         if (!intersected_rd)
3577                 return -EINVAL;
3578
3579         /*
3580          * We can trash what CRDA provided now.
3581          * However if a driver requested this specific regulatory
3582          * domain we keep it for its private use
3583          */
3584         tmp = get_wiphy_regdom(request_wiphy);
3585         rcu_assign_pointer(request_wiphy->regd, rd);
3586         rcu_free_regdom(tmp);
3587
3588         rd = NULL;
3589
3590         reset_regdomains(false, intersected_rd);
3591
3592         return 0;
3593 }
3594
3595 static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3596                                  struct regulatory_request *country_ie_request)
3597 {
3598         struct wiphy *request_wiphy;
3599
3600         if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3601             !is_unknown_alpha2(rd->alpha2))
3602                 return -EINVAL;
3603
3604         /*
3605          * Lets only bother proceeding on the same alpha2 if the current
3606          * rd is non static (it means CRDA was present and was used last)
3607          * and the pending request came in from a country IE
3608          */
3609
3610         if (!is_valid_rd(rd)) {
3611                 pr_err("Invalid regulatory domain detected: %c%c\n",
3612                        rd->alpha2[0], rd->alpha2[1]);
3613                 print_regdomain_info(rd);
3614                 return -EINVAL;
3615         }
3616
3617         request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3618         if (!request_wiphy)
3619                 return -ENODEV;
3620
3621         if (country_ie_request->intersect)
3622                 return -EINVAL;
3623
3624         reset_regdomains(false, rd);
3625         return 0;
3626 }
3627
3628 /*
3629  * Use this call to set the current regulatory domain. Conflicts with
3630  * multiple drivers can be ironed out later. Caller must've already
3631  * kmalloc'd the rd structure.
3632  */
3633 int set_regdom(const struct ieee80211_regdomain *rd,
3634                enum ieee80211_regd_source regd_src)
3635 {
3636         struct regulatory_request *lr;
3637         bool user_reset = false;
3638         int r;
3639
3640         if (IS_ERR_OR_NULL(rd))
3641                 return -ENODATA;
3642
3643         if (!reg_is_valid_request(rd->alpha2)) {
3644                 kfree(rd);
3645                 return -EINVAL;
3646         }
3647
3648         if (regd_src == REGD_SOURCE_CRDA)
3649                 reset_crda_timeouts();
3650
3651         lr = get_last_request();
3652
3653         /* Note that this doesn't update the wiphys, this is done below */
3654         switch (lr->initiator) {
3655         case NL80211_REGDOM_SET_BY_CORE:
3656                 r = reg_set_rd_core(rd);
3657                 break;
3658         case NL80211_REGDOM_SET_BY_USER:
3659                 cfg80211_save_user_regdom(rd);
3660                 r = reg_set_rd_user(rd, lr);
3661                 user_reset = true;
3662                 break;
3663         case NL80211_REGDOM_SET_BY_DRIVER:
3664                 r = reg_set_rd_driver(rd, lr);
3665                 break;
3666         case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3667                 r = reg_set_rd_country_ie(rd, lr);
3668                 break;
3669         default:
3670                 WARN(1, "invalid initiator %d\n", lr->initiator);
3671                 kfree(rd);
3672                 return -EINVAL;
3673         }
3674
3675         if (r) {
3676                 switch (r) {
3677                 case -EALREADY:
3678                         reg_set_request_processed();
3679                         break;
3680                 default:
3681                         /* Back to world regulatory in case of errors */
3682                         restore_regulatory_settings(user_reset, false);
3683                 }
3684
3685                 kfree(rd);
3686                 return r;
3687         }
3688
3689         /* This would make this whole thing pointless */
3690         if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3691                 return -EINVAL;
3692
3693         /* update all wiphys now with the new established regulatory domain */
3694         update_all_wiphy_regulatory(lr->initiator);
3695
3696         print_regdomain(get_cfg80211_regdom());
3697
3698         nl80211_send_reg_change_event(lr);
3699
3700         reg_set_request_processed();
3701
3702         return 0;
3703 }
3704
3705 static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
3706                                        struct ieee80211_regdomain *rd)
3707 {
3708         const struct ieee80211_regdomain *regd;
3709         const struct ieee80211_regdomain *prev_regd;
3710         struct cfg80211_registered_device *rdev;
3711
3712         if (WARN_ON(!wiphy || !rd))
3713                 return -EINVAL;
3714
3715         if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
3716                  "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3717                 return -EPERM;
3718
3719         if (WARN(!is_valid_rd(rd), "Invalid regulatory domain detected\n")) {
3720                 print_regdomain_info(rd);
3721                 return -EINVAL;
3722         }
3723
3724         regd = reg_copy_regd(rd);
3725         if (IS_ERR(regd))
3726                 return PTR_ERR(regd);
3727
3728         rdev = wiphy_to_rdev(wiphy);
3729
3730         spin_lock(&reg_requests_lock);
3731         prev_regd = rdev->requested_regd;
3732         rdev->requested_regd = regd;
3733         spin_unlock(&reg_requests_lock);
3734
3735         kfree(prev_regd);
3736         return 0;
3737 }
3738
3739 int regulatory_set_wiphy_regd(struct wiphy *wiphy,
3740                               struct ieee80211_regdomain *rd)
3741 {
3742         int ret = __regulatory_set_wiphy_regd(wiphy, rd);
3743
3744         if (ret)
3745                 return ret;
3746
3747         schedule_work(&reg_work);
3748         return 0;
3749 }
3750 EXPORT_SYMBOL(regulatory_set_wiphy_regd);
3751
3752 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy *wiphy,
3753                                         struct ieee80211_regdomain *rd)
3754 {
3755         int ret;
3756
3757         ASSERT_RTNL();
3758
3759         ret = __regulatory_set_wiphy_regd(wiphy, rd);
3760         if (ret)
3761                 return ret;
3762
3763         /* process the request immediately */
3764         reg_process_self_managed_hints();
3765         return 0;
3766 }
3767 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl);
3768
3769 void wiphy_regulatory_register(struct wiphy *wiphy)
3770 {
3771         struct regulatory_request *lr = get_last_request();
3772
3773         /* self-managed devices ignore beacon hints and country IE */
3774         if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
3775                 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
3776                                            REGULATORY_COUNTRY_IE_IGNORE;
3777
3778                 /*
3779                  * The last request may have been received before this
3780                  * registration call. Call the driver notifier if
3781                  * initiator is USER and user type is CELL_BASE.
3782                  */
3783                 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
3784                     lr->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE)
3785                         reg_call_notifier(wiphy, lr);
3786         }
3787
3788         if (!reg_dev_ignore_cell_hint(wiphy))
3789                 reg_num_devs_support_basehint++;
3790
3791         wiphy_update_regulatory(wiphy, lr->initiator);
3792         wiphy_all_share_dfs_chan_state(wiphy);
3793 }
3794
3795 void wiphy_regulatory_deregister(struct wiphy *wiphy)
3796 {
3797         struct wiphy *request_wiphy = NULL;
3798         struct regulatory_request *lr;
3799
3800         lr = get_last_request();
3801
3802         if (!reg_dev_ignore_cell_hint(wiphy))
3803                 reg_num_devs_support_basehint--;
3804
3805         rcu_free_regdom(get_wiphy_regdom(wiphy));
3806         RCU_INIT_POINTER(wiphy->regd, NULL);
3807
3808         if (lr)
3809                 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
3810
3811         if (!request_wiphy || request_wiphy != wiphy)
3812                 return;
3813
3814         lr->wiphy_idx = WIPHY_IDX_INVALID;
3815         lr->country_ie_env = ENVIRON_ANY;
3816 }
3817
3818 /*
3819  * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3820  * UNII band definitions
3821  */
3822 int cfg80211_get_unii(int freq)
3823 {
3824         /* UNII-1 */
3825         if (freq >= 5150 && freq <= 5250)
3826                 return 0;
3827
3828         /* UNII-2A */
3829         if (freq > 5250 && freq <= 5350)
3830                 return 1;
3831
3832         /* UNII-2B */
3833         if (freq > 5350 && freq <= 5470)
3834                 return 2;
3835
3836         /* UNII-2C */
3837         if (freq > 5470 && freq <= 5725)
3838                 return 3;
3839
3840         /* UNII-3 */
3841         if (freq > 5725 && freq <= 5825)
3842                 return 4;
3843
3844         return -EINVAL;
3845 }
3846
3847 bool regulatory_indoor_allowed(void)
3848 {
3849         return reg_is_indoor;
3850 }
3851
3852 bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
3853 {
3854         const struct ieee80211_regdomain *regd = NULL;
3855         const struct ieee80211_regdomain *wiphy_regd = NULL;
3856         bool pre_cac_allowed = false;
3857
3858         rcu_read_lock();
3859
3860         regd = rcu_dereference(cfg80211_regdomain);
3861         wiphy_regd = rcu_dereference(wiphy->regd);
3862         if (!wiphy_regd) {
3863                 if (regd->dfs_region == NL80211_DFS_ETSI)
3864                         pre_cac_allowed = true;
3865
3866                 rcu_read_unlock();
3867
3868                 return pre_cac_allowed;
3869         }
3870
3871         if (regd->dfs_region == wiphy_regd->dfs_region &&
3872             wiphy_regd->dfs_region == NL80211_DFS_ETSI)
3873                 pre_cac_allowed = true;
3874
3875         rcu_read_unlock();
3876
3877         return pre_cac_allowed;
3878 }
3879
3880 void regulatory_propagate_dfs_state(struct wiphy *wiphy,
3881                                     struct cfg80211_chan_def *chandef,
3882                                     enum nl80211_dfs_state dfs_state,
3883                                     enum nl80211_radar_event event)
3884 {
3885         struct cfg80211_registered_device *rdev;
3886
3887         ASSERT_RTNL();
3888
3889         if (WARN_ON(!cfg80211_chandef_valid(chandef)))
3890                 return;
3891
3892         list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3893                 if (wiphy == &rdev->wiphy)
3894                         continue;
3895
3896                 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
3897                         continue;
3898
3899                 if (!ieee80211_get_channel(&rdev->wiphy,
3900                                            chandef->chan->center_freq))
3901                         continue;
3902
3903                 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
3904
3905                 if (event == NL80211_RADAR_DETECTED ||
3906                     event == NL80211_RADAR_CAC_FINISHED)
3907                         cfg80211_sched_dfs_chan_update(rdev);
3908
3909                 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
3910         }
3911 }
3912
3913 static int __init regulatory_init_db(void)
3914 {
3915         int err;
3916
3917         /*
3918          * It's possible that - due to other bugs/issues - cfg80211
3919          * never called regulatory_init() below, or that it failed;
3920          * in that case, don't try to do any further work here as
3921          * it's doomed to lead to crashes.
3922          */
3923         if (IS_ERR_OR_NULL(reg_pdev))
3924                 return -EINVAL;
3925
3926         err = load_builtin_regdb_keys();
3927         if (err)
3928                 return err;
3929
3930         /* We always try to get an update for the static regdomain */
3931         err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
3932         if (err) {
3933                 if (err == -ENOMEM) {
3934                         platform_device_unregister(reg_pdev);
3935                         return err;
3936                 }
3937                 /*
3938                  * N.B. kobject_uevent_env() can fail mainly for when we're out
3939                  * memory which is handled and propagated appropriately above
3940                  * but it can also fail during a netlink_broadcast() or during
3941                  * early boot for call_usermodehelper(). For now treat these
3942                  * errors as non-fatal.
3943                  */
3944                 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3945         }
3946
3947         /*
3948          * Finally, if the user set the module parameter treat it
3949          * as a user hint.
3950          */
3951         if (!is_world_regdom(ieee80211_regdom))
3952                 regulatory_hint_user(ieee80211_regdom,
3953                                      NL80211_USER_REG_HINT_USER);
3954
3955         return 0;
3956 }
3957 #ifndef MODULE
3958 late_initcall(regulatory_init_db);
3959 #endif
3960
3961 int __init regulatory_init(void)
3962 {
3963         reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
3964         if (IS_ERR(reg_pdev))
3965                 return PTR_ERR(reg_pdev);
3966
3967         spin_lock_init(&reg_requests_lock);
3968         spin_lock_init(&reg_pending_beacons_lock);
3969         spin_lock_init(&reg_indoor_lock);
3970
3971         rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
3972
3973         user_alpha2[0] = '9';
3974         user_alpha2[1] = '7';
3975
3976 #ifdef MODULE
3977         return regulatory_init_db();
3978 #else
3979         return 0;
3980 #endif
3981 }
3982
3983 void regulatory_exit(void)
3984 {
3985         struct regulatory_request *reg_request, *tmp;
3986         struct reg_beacon *reg_beacon, *btmp;
3987
3988         cancel_work_sync(&reg_work);
3989         cancel_crda_timeout_sync();
3990         cancel_delayed_work_sync(&reg_check_chans);
3991
3992         /* Lock to suppress warnings */
3993         rtnl_lock();
3994         reset_regdomains(true, NULL);
3995         rtnl_unlock();
3996
3997         dev_set_uevent_suppress(&reg_pdev->dev, true);
3998
3999         platform_device_unregister(reg_pdev);
4000
4001         list_for_each_entry_safe(reg_beacon, btmp, &reg_pending_beacons, list) {
4002                 list_del(&reg_beacon->list);
4003                 kfree(reg_beacon);
4004         }
4005
4006         list_for_each_entry_safe(reg_beacon, btmp, &reg_beacon_list, list) {
4007                 list_del(&reg_beacon->list);
4008                 kfree(reg_beacon);
4009         }
4010
4011         list_for_each_entry_safe(reg_request, tmp, &reg_requests_list, list) {
4012                 list_del(&reg_request->list);
4013                 kfree(reg_request);
4014         }
4015
4016         if (!IS_ERR_OR_NULL(regdb))
4017                 kfree(regdb);
4018         if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4019                 kfree(cfg80211_user_regdom);
4020
4021         free_regdb_keyring();
4022 }