]> asedeno.scripts.mit.edu Git - linux.git/blob - net/wireless/util.c
Merge tag 'trace-v4.11-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux.git] / net / wireless / util.c
1 /*
2  * Wireless utility functions
3  *
4  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
5  * Copyright 2013-2014  Intel Mobile Communications GmbH
6  */
7 #include <linux/export.h>
8 #include <linux/bitops.h>
9 #include <linux/etherdevice.h>
10 #include <linux/slab.h>
11 #include <net/cfg80211.h>
12 #include <net/ip.h>
13 #include <net/dsfield.h>
14 #include <linux/if_vlan.h>
15 #include <linux/mpls.h>
16 #include <linux/gcd.h>
17 #include "core.h"
18 #include "rdev-ops.h"
19
20
21 struct ieee80211_rate *
22 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
23                             u32 basic_rates, int bitrate)
24 {
25         struct ieee80211_rate *result = &sband->bitrates[0];
26         int i;
27
28         for (i = 0; i < sband->n_bitrates; i++) {
29                 if (!(basic_rates & BIT(i)))
30                         continue;
31                 if (sband->bitrates[i].bitrate > bitrate)
32                         continue;
33                 result = &sband->bitrates[i];
34         }
35
36         return result;
37 }
38 EXPORT_SYMBOL(ieee80211_get_response_rate);
39
40 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
41                               enum nl80211_bss_scan_width scan_width)
42 {
43         struct ieee80211_rate *bitrates;
44         u32 mandatory_rates = 0;
45         enum ieee80211_rate_flags mandatory_flag;
46         int i;
47
48         if (WARN_ON(!sband))
49                 return 1;
50
51         if (sband->band == NL80211_BAND_2GHZ) {
52                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
53                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
54                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
55                 else
56                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
57         } else {
58                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
59         }
60
61         bitrates = sband->bitrates;
62         for (i = 0; i < sband->n_bitrates; i++)
63                 if (bitrates[i].flags & mandatory_flag)
64                         mandatory_rates |= BIT(i);
65         return mandatory_rates;
66 }
67 EXPORT_SYMBOL(ieee80211_mandatory_rates);
68
69 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
70 {
71         /* see 802.11 17.3.8.3.2 and Annex J
72          * there are overlapping channel numbers in 5GHz and 2GHz bands */
73         if (chan <= 0)
74                 return 0; /* not supported */
75         switch (band) {
76         case NL80211_BAND_2GHZ:
77                 if (chan == 14)
78                         return 2484;
79                 else if (chan < 14)
80                         return 2407 + chan * 5;
81                 break;
82         case NL80211_BAND_5GHZ:
83                 if (chan >= 182 && chan <= 196)
84                         return 4000 + chan * 5;
85                 else
86                         return 5000 + chan * 5;
87                 break;
88         case NL80211_BAND_60GHZ:
89                 if (chan < 5)
90                         return 56160 + chan * 2160;
91                 break;
92         default:
93                 ;
94         }
95         return 0; /* not supported */
96 }
97 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
98
99 int ieee80211_frequency_to_channel(int freq)
100 {
101         /* see 802.11 17.3.8.3.2 and Annex J */
102         if (freq == 2484)
103                 return 14;
104         else if (freq < 2484)
105                 return (freq - 2407) / 5;
106         else if (freq >= 4910 && freq <= 4980)
107                 return (freq - 4000) / 5;
108         else if (freq <= 45000) /* DMG band lower limit */
109                 return (freq - 5000) / 5;
110         else if (freq >= 58320 && freq <= 64800)
111                 return (freq - 56160) / 2160;
112         else
113                 return 0;
114 }
115 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
116
117 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
118 {
119         enum nl80211_band band;
120         struct ieee80211_supported_band *sband;
121         int i;
122
123         for (band = 0; band < NUM_NL80211_BANDS; band++) {
124                 sband = wiphy->bands[band];
125
126                 if (!sband)
127                         continue;
128
129                 for (i = 0; i < sband->n_channels; i++) {
130                         if (sband->channels[i].center_freq == freq)
131                                 return &sband->channels[i];
132                 }
133         }
134
135         return NULL;
136 }
137 EXPORT_SYMBOL(ieee80211_get_channel);
138
139 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
140 {
141         int i, want;
142
143         switch (sband->band) {
144         case NL80211_BAND_5GHZ:
145                 want = 3;
146                 for (i = 0; i < sband->n_bitrates; i++) {
147                         if (sband->bitrates[i].bitrate == 60 ||
148                             sband->bitrates[i].bitrate == 120 ||
149                             sband->bitrates[i].bitrate == 240) {
150                                 sband->bitrates[i].flags |=
151                                         IEEE80211_RATE_MANDATORY_A;
152                                 want--;
153                         }
154                 }
155                 WARN_ON(want);
156                 break;
157         case NL80211_BAND_2GHZ:
158                 want = 7;
159                 for (i = 0; i < sband->n_bitrates; i++) {
160                         if (sband->bitrates[i].bitrate == 10) {
161                                 sband->bitrates[i].flags |=
162                                         IEEE80211_RATE_MANDATORY_B |
163                                         IEEE80211_RATE_MANDATORY_G;
164                                 want--;
165                         }
166
167                         if (sband->bitrates[i].bitrate == 20 ||
168                             sband->bitrates[i].bitrate == 55 ||
169                             sband->bitrates[i].bitrate == 110 ||
170                             sband->bitrates[i].bitrate == 60 ||
171                             sband->bitrates[i].bitrate == 120 ||
172                             sband->bitrates[i].bitrate == 240) {
173                                 sband->bitrates[i].flags |=
174                                         IEEE80211_RATE_MANDATORY_G;
175                                 want--;
176                         }
177
178                         if (sband->bitrates[i].bitrate != 10 &&
179                             sband->bitrates[i].bitrate != 20 &&
180                             sband->bitrates[i].bitrate != 55 &&
181                             sband->bitrates[i].bitrate != 110)
182                                 sband->bitrates[i].flags |=
183                                         IEEE80211_RATE_ERP_G;
184                 }
185                 WARN_ON(want != 0 && want != 3 && want != 6);
186                 break;
187         case NL80211_BAND_60GHZ:
188                 /* check for mandatory HT MCS 1..4 */
189                 WARN_ON(!sband->ht_cap.ht_supported);
190                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
191                 break;
192         case NUM_NL80211_BANDS:
193         default:
194                 WARN_ON(1);
195                 break;
196         }
197 }
198
199 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
200 {
201         enum nl80211_band band;
202
203         for (band = 0; band < NUM_NL80211_BANDS; band++)
204                 if (wiphy->bands[band])
205                         set_mandatory_flags_band(wiphy->bands[band]);
206 }
207
208 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
209 {
210         int i;
211         for (i = 0; i < wiphy->n_cipher_suites; i++)
212                 if (cipher == wiphy->cipher_suites[i])
213                         return true;
214         return false;
215 }
216
217 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
218                                    struct key_params *params, int key_idx,
219                                    bool pairwise, const u8 *mac_addr)
220 {
221         if (key_idx < 0 || key_idx > 5)
222                 return -EINVAL;
223
224         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
225                 return -EINVAL;
226
227         if (pairwise && !mac_addr)
228                 return -EINVAL;
229
230         switch (params->cipher) {
231         case WLAN_CIPHER_SUITE_TKIP:
232         case WLAN_CIPHER_SUITE_CCMP:
233         case WLAN_CIPHER_SUITE_CCMP_256:
234         case WLAN_CIPHER_SUITE_GCMP:
235         case WLAN_CIPHER_SUITE_GCMP_256:
236                 /* Disallow pairwise keys with non-zero index unless it's WEP
237                  * or a vendor specific cipher (because current deployments use
238                  * pairwise WEP keys with non-zero indices and for vendor
239                  * specific ciphers this should be validated in the driver or
240                  * hardware level - but 802.11i clearly specifies to use zero)
241                  */
242                 if (pairwise && key_idx)
243                         return -EINVAL;
244                 break;
245         case WLAN_CIPHER_SUITE_AES_CMAC:
246         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
247         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
248         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
249                 /* Disallow BIP (group-only) cipher as pairwise cipher */
250                 if (pairwise)
251                         return -EINVAL;
252                 if (key_idx < 4)
253                         return -EINVAL;
254                 break;
255         case WLAN_CIPHER_SUITE_WEP40:
256         case WLAN_CIPHER_SUITE_WEP104:
257                 if (key_idx > 3)
258                         return -EINVAL;
259         default:
260                 break;
261         }
262
263         switch (params->cipher) {
264         case WLAN_CIPHER_SUITE_WEP40:
265                 if (params->key_len != WLAN_KEY_LEN_WEP40)
266                         return -EINVAL;
267                 break;
268         case WLAN_CIPHER_SUITE_TKIP:
269                 if (params->key_len != WLAN_KEY_LEN_TKIP)
270                         return -EINVAL;
271                 break;
272         case WLAN_CIPHER_SUITE_CCMP:
273                 if (params->key_len != WLAN_KEY_LEN_CCMP)
274                         return -EINVAL;
275                 break;
276         case WLAN_CIPHER_SUITE_CCMP_256:
277                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
278                         return -EINVAL;
279                 break;
280         case WLAN_CIPHER_SUITE_GCMP:
281                 if (params->key_len != WLAN_KEY_LEN_GCMP)
282                         return -EINVAL;
283                 break;
284         case WLAN_CIPHER_SUITE_GCMP_256:
285                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
286                         return -EINVAL;
287                 break;
288         case WLAN_CIPHER_SUITE_WEP104:
289                 if (params->key_len != WLAN_KEY_LEN_WEP104)
290                         return -EINVAL;
291                 break;
292         case WLAN_CIPHER_SUITE_AES_CMAC:
293                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
294                         return -EINVAL;
295                 break;
296         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
297                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
298                         return -EINVAL;
299                 break;
300         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
301                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
302                         return -EINVAL;
303                 break;
304         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
305                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
306                         return -EINVAL;
307                 break;
308         default:
309                 /*
310                  * We don't know anything about this algorithm,
311                  * allow using it -- but the driver must check
312                  * all parameters! We still check below whether
313                  * or not the driver supports this algorithm,
314                  * of course.
315                  */
316                 break;
317         }
318
319         if (params->seq) {
320                 switch (params->cipher) {
321                 case WLAN_CIPHER_SUITE_WEP40:
322                 case WLAN_CIPHER_SUITE_WEP104:
323                         /* These ciphers do not use key sequence */
324                         return -EINVAL;
325                 case WLAN_CIPHER_SUITE_TKIP:
326                 case WLAN_CIPHER_SUITE_CCMP:
327                 case WLAN_CIPHER_SUITE_CCMP_256:
328                 case WLAN_CIPHER_SUITE_GCMP:
329                 case WLAN_CIPHER_SUITE_GCMP_256:
330                 case WLAN_CIPHER_SUITE_AES_CMAC:
331                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
332                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
333                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
334                         if (params->seq_len != 6)
335                                 return -EINVAL;
336                         break;
337                 }
338         }
339
340         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
341                 return -EINVAL;
342
343         return 0;
344 }
345
346 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
347 {
348         unsigned int hdrlen = 24;
349
350         if (ieee80211_is_data(fc)) {
351                 if (ieee80211_has_a4(fc))
352                         hdrlen = 30;
353                 if (ieee80211_is_data_qos(fc)) {
354                         hdrlen += IEEE80211_QOS_CTL_LEN;
355                         if (ieee80211_has_order(fc))
356                                 hdrlen += IEEE80211_HT_CTL_LEN;
357                 }
358                 goto out;
359         }
360
361         if (ieee80211_is_mgmt(fc)) {
362                 if (ieee80211_has_order(fc))
363                         hdrlen += IEEE80211_HT_CTL_LEN;
364                 goto out;
365         }
366
367         if (ieee80211_is_ctl(fc)) {
368                 /*
369                  * ACK and CTS are 10 bytes, all others 16. To see how
370                  * to get this condition consider
371                  *   subtype mask:   0b0000000011110000 (0x00F0)
372                  *   ACK subtype:    0b0000000011010000 (0x00D0)
373                  *   CTS subtype:    0b0000000011000000 (0x00C0)
374                  *   bits that matter:         ^^^      (0x00E0)
375                  *   value of those: 0b0000000011000000 (0x00C0)
376                  */
377                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
378                         hdrlen = 10;
379                 else
380                         hdrlen = 16;
381         }
382 out:
383         return hdrlen;
384 }
385 EXPORT_SYMBOL(ieee80211_hdrlen);
386
387 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
388 {
389         const struct ieee80211_hdr *hdr =
390                         (const struct ieee80211_hdr *)skb->data;
391         unsigned int hdrlen;
392
393         if (unlikely(skb->len < 10))
394                 return 0;
395         hdrlen = ieee80211_hdrlen(hdr->frame_control);
396         if (unlikely(hdrlen > skb->len))
397                 return 0;
398         return hdrlen;
399 }
400 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
401
402 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
403 {
404         int ae = flags & MESH_FLAGS_AE;
405         /* 802.11-2012, 8.2.4.7.3 */
406         switch (ae) {
407         default:
408         case 0:
409                 return 6;
410         case MESH_FLAGS_AE_A4:
411                 return 12;
412         case MESH_FLAGS_AE_A5_A6:
413                 return 18;
414         }
415 }
416
417 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
418 {
419         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
420 }
421 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
422
423 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
424                                   const u8 *addr, enum nl80211_iftype iftype)
425 {
426         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
427         struct {
428                 u8 hdr[ETH_ALEN] __aligned(2);
429                 __be16 proto;
430         } payload;
431         struct ethhdr tmp;
432         u16 hdrlen;
433         u8 mesh_flags = 0;
434
435         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
436                 return -1;
437
438         hdrlen = ieee80211_hdrlen(hdr->frame_control);
439         if (skb->len < hdrlen + 8)
440                 return -1;
441
442         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
443          * header
444          * IEEE 802.11 address fields:
445          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
446          *   0     0   DA    SA    BSSID n/a
447          *   0     1   DA    BSSID SA    n/a
448          *   1     0   BSSID SA    DA    n/a
449          *   1     1   RA    TA    DA    SA
450          */
451         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
452         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
453
454         if (iftype == NL80211_IFTYPE_MESH_POINT)
455                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
456
457         switch (hdr->frame_control &
458                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
459         case cpu_to_le16(IEEE80211_FCTL_TODS):
460                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
461                              iftype != NL80211_IFTYPE_AP_VLAN &&
462                              iftype != NL80211_IFTYPE_P2P_GO))
463                         return -1;
464                 break;
465         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
466                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
467                              iftype != NL80211_IFTYPE_MESH_POINT &&
468                              iftype != NL80211_IFTYPE_AP_VLAN &&
469                              iftype != NL80211_IFTYPE_STATION))
470                         return -1;
471                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
472                         if (mesh_flags & MESH_FLAGS_AE_A4)
473                                 return -1;
474                         if (mesh_flags & MESH_FLAGS_AE_A5_A6) {
475                                 skb_copy_bits(skb, hdrlen +
476                                         offsetof(struct ieee80211s_hdr, eaddr1),
477                                         tmp.h_dest, 2 * ETH_ALEN);
478                         }
479                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
480                 }
481                 break;
482         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
483                 if ((iftype != NL80211_IFTYPE_STATION &&
484                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
485                      iftype != NL80211_IFTYPE_MESH_POINT) ||
486                     (is_multicast_ether_addr(tmp.h_dest) &&
487                      ether_addr_equal(tmp.h_source, addr)))
488                         return -1;
489                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
490                         if (mesh_flags & MESH_FLAGS_AE_A5_A6)
491                                 return -1;
492                         if (mesh_flags & MESH_FLAGS_AE_A4)
493                                 skb_copy_bits(skb, hdrlen +
494                                         offsetof(struct ieee80211s_hdr, eaddr1),
495                                         tmp.h_source, ETH_ALEN);
496                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
497                 }
498                 break;
499         case cpu_to_le16(0):
500                 if (iftype != NL80211_IFTYPE_ADHOC &&
501                     iftype != NL80211_IFTYPE_STATION &&
502                     iftype != NL80211_IFTYPE_OCB)
503                                 return -1;
504                 break;
505         }
506
507         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
508         tmp.h_proto = payload.proto;
509
510         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
511                     tmp.h_proto != htons(ETH_P_AARP) &&
512                     tmp.h_proto != htons(ETH_P_IPX)) ||
513                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
514                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
515                  * replace EtherType */
516                 hdrlen += ETH_ALEN + 2;
517         else
518                 tmp.h_proto = htons(skb->len - hdrlen);
519
520         pskb_pull(skb, hdrlen);
521
522         if (!ehdr)
523                 ehdr = (struct ethhdr *) skb_push(skb, sizeof(struct ethhdr));
524         memcpy(ehdr, &tmp, sizeof(tmp));
525
526         return 0;
527 }
528 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
529
530 int ieee80211_data_from_8023(struct sk_buff *skb, const u8 *addr,
531                              enum nl80211_iftype iftype,
532                              const u8 *bssid, bool qos)
533 {
534         struct ieee80211_hdr hdr;
535         u16 hdrlen, ethertype;
536         __le16 fc;
537         const u8 *encaps_data;
538         int encaps_len, skip_header_bytes;
539         int nh_pos, h_pos;
540         int head_need;
541
542         if (unlikely(skb->len < ETH_HLEN))
543                 return -EINVAL;
544
545         nh_pos = skb_network_header(skb) - skb->data;
546         h_pos = skb_transport_header(skb) - skb->data;
547
548         /* convert Ethernet header to proper 802.11 header (based on
549          * operation mode) */
550         ethertype = (skb->data[12] << 8) | skb->data[13];
551         fc = cpu_to_le16(IEEE80211_FTYPE_DATA | IEEE80211_STYPE_DATA);
552
553         switch (iftype) {
554         case NL80211_IFTYPE_AP:
555         case NL80211_IFTYPE_AP_VLAN:
556         case NL80211_IFTYPE_P2P_GO:
557                 fc |= cpu_to_le16(IEEE80211_FCTL_FROMDS);
558                 /* DA BSSID SA */
559                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
560                 memcpy(hdr.addr2, addr, ETH_ALEN);
561                 memcpy(hdr.addr3, skb->data + ETH_ALEN, ETH_ALEN);
562                 hdrlen = 24;
563                 break;
564         case NL80211_IFTYPE_STATION:
565         case NL80211_IFTYPE_P2P_CLIENT:
566                 fc |= cpu_to_le16(IEEE80211_FCTL_TODS);
567                 /* BSSID SA DA */
568                 memcpy(hdr.addr1, bssid, ETH_ALEN);
569                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
570                 memcpy(hdr.addr3, skb->data, ETH_ALEN);
571                 hdrlen = 24;
572                 break;
573         case NL80211_IFTYPE_OCB:
574         case NL80211_IFTYPE_ADHOC:
575                 /* DA SA BSSID */
576                 memcpy(hdr.addr1, skb->data, ETH_ALEN);
577                 memcpy(hdr.addr2, skb->data + ETH_ALEN, ETH_ALEN);
578                 memcpy(hdr.addr3, bssid, ETH_ALEN);
579                 hdrlen = 24;
580                 break;
581         default:
582                 return -EOPNOTSUPP;
583         }
584
585         if (qos) {
586                 fc |= cpu_to_le16(IEEE80211_STYPE_QOS_DATA);
587                 hdrlen += 2;
588         }
589
590         hdr.frame_control = fc;
591         hdr.duration_id = 0;
592         hdr.seq_ctrl = 0;
593
594         skip_header_bytes = ETH_HLEN;
595         if (ethertype == ETH_P_AARP || ethertype == ETH_P_IPX) {
596                 encaps_data = bridge_tunnel_header;
597                 encaps_len = sizeof(bridge_tunnel_header);
598                 skip_header_bytes -= 2;
599         } else if (ethertype >= ETH_P_802_3_MIN) {
600                 encaps_data = rfc1042_header;
601                 encaps_len = sizeof(rfc1042_header);
602                 skip_header_bytes -= 2;
603         } else {
604                 encaps_data = NULL;
605                 encaps_len = 0;
606         }
607
608         skb_pull(skb, skip_header_bytes);
609         nh_pos -= skip_header_bytes;
610         h_pos -= skip_header_bytes;
611
612         head_need = hdrlen + encaps_len - skb_headroom(skb);
613
614         if (head_need > 0 || skb_cloned(skb)) {
615                 head_need = max(head_need, 0);
616                 if (head_need)
617                         skb_orphan(skb);
618
619                 if (pskb_expand_head(skb, head_need, 0, GFP_ATOMIC))
620                         return -ENOMEM;
621         }
622
623         if (encaps_data) {
624                 memcpy(skb_push(skb, encaps_len), encaps_data, encaps_len);
625                 nh_pos += encaps_len;
626                 h_pos += encaps_len;
627         }
628
629         memcpy(skb_push(skb, hdrlen), &hdr, hdrlen);
630
631         nh_pos += hdrlen;
632         h_pos += hdrlen;
633
634         /* Update skb pointers to various headers since this modified frame
635          * is going to go through Linux networking code that may potentially
636          * need things like pointer to IP header. */
637         skb_reset_mac_header(skb);
638         skb_set_network_header(skb, nh_pos);
639         skb_set_transport_header(skb, h_pos);
640
641         return 0;
642 }
643 EXPORT_SYMBOL(ieee80211_data_from_8023);
644
645 static void
646 __frame_add_frag(struct sk_buff *skb, struct page *page,
647                  void *ptr, int len, int size)
648 {
649         struct skb_shared_info *sh = skb_shinfo(skb);
650         int page_offset;
651
652         page_ref_inc(page);
653         page_offset = ptr - page_address(page);
654         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
655 }
656
657 static void
658 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
659                             int offset, int len)
660 {
661         struct skb_shared_info *sh = skb_shinfo(skb);
662         const skb_frag_t *frag = &sh->frags[-1];
663         struct page *frag_page;
664         void *frag_ptr;
665         int frag_len, frag_size;
666         int head_size = skb->len - skb->data_len;
667         int cur_len;
668
669         frag_page = virt_to_head_page(skb->head);
670         frag_ptr = skb->data;
671         frag_size = head_size;
672
673         while (offset >= frag_size) {
674                 offset -= frag_size;
675                 frag++;
676                 frag_page = skb_frag_page(frag);
677                 frag_ptr = skb_frag_address(frag);
678                 frag_size = skb_frag_size(frag);
679         }
680
681         frag_ptr += offset;
682         frag_len = frag_size - offset;
683
684         cur_len = min(len, frag_len);
685
686         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
687         len -= cur_len;
688
689         while (len > 0) {
690                 frag++;
691                 frag_len = skb_frag_size(frag);
692                 cur_len = min(len, frag_len);
693                 __frame_add_frag(frame, skb_frag_page(frag),
694                                  skb_frag_address(frag), cur_len, frag_len);
695                 len -= cur_len;
696         }
697 }
698
699 static struct sk_buff *
700 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
701                        int offset, int len, bool reuse_frag)
702 {
703         struct sk_buff *frame;
704         int cur_len = len;
705
706         if (skb->len - offset < len)
707                 return NULL;
708
709         /*
710          * When reusing framents, copy some data to the head to simplify
711          * ethernet header handling and speed up protocol header processing
712          * in the stack later.
713          */
714         if (reuse_frag)
715                 cur_len = min_t(int, len, 32);
716
717         /*
718          * Allocate and reserve two bytes more for payload
719          * alignment since sizeof(struct ethhdr) is 14.
720          */
721         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
722         if (!frame)
723                 return NULL;
724
725         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
726         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
727
728         len -= cur_len;
729         if (!len)
730                 return frame;
731
732         offset += cur_len;
733         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
734
735         return frame;
736 }
737
738 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
739                               const u8 *addr, enum nl80211_iftype iftype,
740                               const unsigned int extra_headroom,
741                               const u8 *check_da, const u8 *check_sa)
742 {
743         unsigned int hlen = ALIGN(extra_headroom, 4);
744         struct sk_buff *frame = NULL;
745         u16 ethertype;
746         u8 *payload;
747         int offset = 0, remaining;
748         struct ethhdr eth;
749         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
750         bool reuse_skb = false;
751         bool last = false;
752
753         while (!last) {
754                 unsigned int subframe_len;
755                 int len;
756                 u8 padding;
757
758                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
759                 len = ntohs(eth.h_proto);
760                 subframe_len = sizeof(struct ethhdr) + len;
761                 padding = (4 - subframe_len) & 0x3;
762
763                 /* the last MSDU has no padding */
764                 remaining = skb->len - offset;
765                 if (subframe_len > remaining)
766                         goto purge;
767
768                 offset += sizeof(struct ethhdr);
769                 last = remaining <= subframe_len + padding;
770
771                 /* FIXME: should we really accept multicast DA? */
772                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
773                      !ether_addr_equal(check_da, eth.h_dest)) ||
774                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
775                         offset += len + padding;
776                         continue;
777                 }
778
779                 /* reuse skb for the last subframe */
780                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
781                         skb_pull(skb, offset);
782                         frame = skb;
783                         reuse_skb = true;
784                 } else {
785                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
786                                                        reuse_frag);
787                         if (!frame)
788                                 goto purge;
789
790                         offset += len + padding;
791                 }
792
793                 skb_reset_network_header(frame);
794                 frame->dev = skb->dev;
795                 frame->priority = skb->priority;
796
797                 payload = frame->data;
798                 ethertype = (payload[6] << 8) | payload[7];
799                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
800                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
801                            ether_addr_equal(payload, bridge_tunnel_header))) {
802                         eth.h_proto = htons(ethertype);
803                         skb_pull(frame, ETH_ALEN + 2);
804                 }
805
806                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
807                 __skb_queue_tail(list, frame);
808         }
809
810         if (!reuse_skb)
811                 dev_kfree_skb(skb);
812
813         return;
814
815  purge:
816         __skb_queue_purge(list);
817         dev_kfree_skb(skb);
818 }
819 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
820
821 /* Given a data frame determine the 802.1p/1d tag to use. */
822 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
823                                     struct cfg80211_qos_map *qos_map)
824 {
825         unsigned int dscp;
826         unsigned char vlan_priority;
827
828         /* skb->priority values from 256->263 are magic values to
829          * directly indicate a specific 802.1d priority.  This is used
830          * to allow 802.1d priority to be passed directly in from VLAN
831          * tags, etc.
832          */
833         if (skb->priority >= 256 && skb->priority <= 263)
834                 return skb->priority - 256;
835
836         if (skb_vlan_tag_present(skb)) {
837                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
838                         >> VLAN_PRIO_SHIFT;
839                 if (vlan_priority > 0)
840                         return vlan_priority;
841         }
842
843         switch (skb->protocol) {
844         case htons(ETH_P_IP):
845                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
846                 break;
847         case htons(ETH_P_IPV6):
848                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
849                 break;
850         case htons(ETH_P_MPLS_UC):
851         case htons(ETH_P_MPLS_MC): {
852                 struct mpls_label mpls_tmp, *mpls;
853
854                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
855                                           sizeof(*mpls), &mpls_tmp);
856                 if (!mpls)
857                         return 0;
858
859                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
860                         >> MPLS_LS_TC_SHIFT;
861         }
862         case htons(ETH_P_80221):
863                 /* 802.21 is always network control traffic */
864                 return 7;
865         default:
866                 return 0;
867         }
868
869         if (qos_map) {
870                 unsigned int i, tmp_dscp = dscp >> 2;
871
872                 for (i = 0; i < qos_map->num_des; i++) {
873                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
874                                 return qos_map->dscp_exception[i].up;
875                 }
876
877                 for (i = 0; i < 8; i++) {
878                         if (tmp_dscp >= qos_map->up[i].low &&
879                             tmp_dscp <= qos_map->up[i].high)
880                                 return i;
881                 }
882         }
883
884         return dscp >> 5;
885 }
886 EXPORT_SYMBOL(cfg80211_classify8021d);
887
888 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
889 {
890         const struct cfg80211_bss_ies *ies;
891
892         ies = rcu_dereference(bss->ies);
893         if (!ies)
894                 return NULL;
895
896         return cfg80211_find_ie(ie, ies->data, ies->len);
897 }
898 EXPORT_SYMBOL(ieee80211_bss_get_ie);
899
900 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
901 {
902         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
903         struct net_device *dev = wdev->netdev;
904         int i;
905
906         if (!wdev->connect_keys)
907                 return;
908
909         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
910                 if (!wdev->connect_keys->params[i].cipher)
911                         continue;
912                 if (rdev_add_key(rdev, dev, i, false, NULL,
913                                  &wdev->connect_keys->params[i])) {
914                         netdev_err(dev, "failed to set key %d\n", i);
915                         continue;
916                 }
917                 if (wdev->connect_keys->def == i)
918                         if (rdev_set_default_key(rdev, dev, i, true, true)) {
919                                 netdev_err(dev, "failed to set defkey %d\n", i);
920                                 continue;
921                         }
922         }
923
924         kzfree(wdev->connect_keys);
925         wdev->connect_keys = NULL;
926 }
927
928 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
929 {
930         struct cfg80211_event *ev;
931         unsigned long flags;
932         const u8 *bssid = NULL;
933
934         spin_lock_irqsave(&wdev->event_lock, flags);
935         while (!list_empty(&wdev->event_list)) {
936                 ev = list_first_entry(&wdev->event_list,
937                                       struct cfg80211_event, list);
938                 list_del(&ev->list);
939                 spin_unlock_irqrestore(&wdev->event_lock, flags);
940
941                 wdev_lock(wdev);
942                 switch (ev->type) {
943                 case EVENT_CONNECT_RESULT:
944                         if (!is_zero_ether_addr(ev->cr.bssid))
945                                 bssid = ev->cr.bssid;
946                         __cfg80211_connect_result(
947                                 wdev->netdev, bssid,
948                                 ev->cr.req_ie, ev->cr.req_ie_len,
949                                 ev->cr.resp_ie, ev->cr.resp_ie_len,
950                                 ev->cr.status,
951                                 ev->cr.status == WLAN_STATUS_SUCCESS,
952                                 ev->cr.bss, ev->cr.timeout_reason);
953                         break;
954                 case EVENT_ROAMED:
955                         __cfg80211_roamed(wdev, ev->rm.bss, ev->rm.req_ie,
956                                           ev->rm.req_ie_len, ev->rm.resp_ie,
957                                           ev->rm.resp_ie_len);
958                         break;
959                 case EVENT_DISCONNECTED:
960                         __cfg80211_disconnected(wdev->netdev,
961                                                 ev->dc.ie, ev->dc.ie_len,
962                                                 ev->dc.reason,
963                                                 !ev->dc.locally_generated);
964                         break;
965                 case EVENT_IBSS_JOINED:
966                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
967                                                ev->ij.channel);
968                         break;
969                 case EVENT_STOPPED:
970                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
971                         break;
972                 }
973                 wdev_unlock(wdev);
974
975                 kfree(ev);
976
977                 spin_lock_irqsave(&wdev->event_lock, flags);
978         }
979         spin_unlock_irqrestore(&wdev->event_lock, flags);
980 }
981
982 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
983 {
984         struct wireless_dev *wdev;
985
986         ASSERT_RTNL();
987
988         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
989                 cfg80211_process_wdev_events(wdev);
990 }
991
992 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
993                           struct net_device *dev, enum nl80211_iftype ntype,
994                           u32 *flags, struct vif_params *params)
995 {
996         int err;
997         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
998
999         ASSERT_RTNL();
1000
1001         /* don't support changing VLANs, you just re-create them */
1002         if (otype == NL80211_IFTYPE_AP_VLAN)
1003                 return -EOPNOTSUPP;
1004
1005         /* cannot change into P2P device or NAN */
1006         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1007             ntype == NL80211_IFTYPE_NAN)
1008                 return -EOPNOTSUPP;
1009
1010         if (!rdev->ops->change_virtual_intf ||
1011             !(rdev->wiphy.interface_modes & (1 << ntype)))
1012                 return -EOPNOTSUPP;
1013
1014         /* if it's part of a bridge, reject changing type to station/ibss */
1015         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
1016             (ntype == NL80211_IFTYPE_ADHOC ||
1017              ntype == NL80211_IFTYPE_STATION ||
1018              ntype == NL80211_IFTYPE_P2P_CLIENT))
1019                 return -EBUSY;
1020
1021         if (ntype != otype) {
1022                 dev->ieee80211_ptr->use_4addr = false;
1023                 dev->ieee80211_ptr->mesh_id_up_len = 0;
1024                 wdev_lock(dev->ieee80211_ptr);
1025                 rdev_set_qos_map(rdev, dev, NULL);
1026                 wdev_unlock(dev->ieee80211_ptr);
1027
1028                 switch (otype) {
1029                 case NL80211_IFTYPE_AP:
1030                         cfg80211_stop_ap(rdev, dev, true);
1031                         break;
1032                 case NL80211_IFTYPE_ADHOC:
1033                         cfg80211_leave_ibss(rdev, dev, false);
1034                         break;
1035                 case NL80211_IFTYPE_STATION:
1036                 case NL80211_IFTYPE_P2P_CLIENT:
1037                         wdev_lock(dev->ieee80211_ptr);
1038                         cfg80211_disconnect(rdev, dev,
1039                                             WLAN_REASON_DEAUTH_LEAVING, true);
1040                         wdev_unlock(dev->ieee80211_ptr);
1041                         break;
1042                 case NL80211_IFTYPE_MESH_POINT:
1043                         /* mesh should be handled? */
1044                         break;
1045                 default:
1046                         break;
1047                 }
1048
1049                 cfg80211_process_rdev_events(rdev);
1050         }
1051
1052         err = rdev_change_virtual_intf(rdev, dev, ntype, flags, params);
1053
1054         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1055
1056         if (!err && params && params->use_4addr != -1)
1057                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1058
1059         if (!err) {
1060                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1061                 switch (ntype) {
1062                 case NL80211_IFTYPE_STATION:
1063                         if (dev->ieee80211_ptr->use_4addr)
1064                                 break;
1065                         /* fall through */
1066                 case NL80211_IFTYPE_OCB:
1067                 case NL80211_IFTYPE_P2P_CLIENT:
1068                 case NL80211_IFTYPE_ADHOC:
1069                         dev->priv_flags |= IFF_DONT_BRIDGE;
1070                         break;
1071                 case NL80211_IFTYPE_P2P_GO:
1072                 case NL80211_IFTYPE_AP:
1073                 case NL80211_IFTYPE_AP_VLAN:
1074                 case NL80211_IFTYPE_WDS:
1075                 case NL80211_IFTYPE_MESH_POINT:
1076                         /* bridging OK */
1077                         break;
1078                 case NL80211_IFTYPE_MONITOR:
1079                         /* monitor can't bridge anyway */
1080                         break;
1081                 case NL80211_IFTYPE_UNSPECIFIED:
1082                 case NUM_NL80211_IFTYPES:
1083                         /* not happening */
1084                         break;
1085                 case NL80211_IFTYPE_P2P_DEVICE:
1086                 case NL80211_IFTYPE_NAN:
1087                         WARN_ON(1);
1088                         break;
1089                 }
1090         }
1091
1092         if (!err && ntype != otype && netif_running(dev)) {
1093                 cfg80211_update_iface_num(rdev, ntype, 1);
1094                 cfg80211_update_iface_num(rdev, otype, -1);
1095         }
1096
1097         return err;
1098 }
1099
1100 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1101 {
1102         static const u32 __mcs2bitrate[] = {
1103                 /* control PHY */
1104                 [0] =   275,
1105                 /* SC PHY */
1106                 [1] =  3850,
1107                 [2] =  7700,
1108                 [3] =  9625,
1109                 [4] = 11550,
1110                 [5] = 12512, /* 1251.25 mbps */
1111                 [6] = 15400,
1112                 [7] = 19250,
1113                 [8] = 23100,
1114                 [9] = 25025,
1115                 [10] = 30800,
1116                 [11] = 38500,
1117                 [12] = 46200,
1118                 /* OFDM PHY */
1119                 [13] =  6930,
1120                 [14] =  8662, /* 866.25 mbps */
1121                 [15] = 13860,
1122                 [16] = 17325,
1123                 [17] = 20790,
1124                 [18] = 27720,
1125                 [19] = 34650,
1126                 [20] = 41580,
1127                 [21] = 45045,
1128                 [22] = 51975,
1129                 [23] = 62370,
1130                 [24] = 67568, /* 6756.75 mbps */
1131                 /* LP-SC PHY */
1132                 [25] =  6260,
1133                 [26] =  8340,
1134                 [27] = 11120,
1135                 [28] = 12510,
1136                 [29] = 16680,
1137                 [30] = 22240,
1138                 [31] = 25030,
1139         };
1140
1141         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1142                 return 0;
1143
1144         return __mcs2bitrate[rate->mcs];
1145 }
1146
1147 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1148 {
1149         static const u32 base[4][10] = {
1150                 {   6500000,
1151                    13000000,
1152                    19500000,
1153                    26000000,
1154                    39000000,
1155                    52000000,
1156                    58500000,
1157                    65000000,
1158                    78000000,
1159                 /* not in the spec, but some devices use this: */
1160                    86500000,
1161                 },
1162                 {  13500000,
1163                    27000000,
1164                    40500000,
1165                    54000000,
1166                    81000000,
1167                   108000000,
1168                   121500000,
1169                   135000000,
1170                   162000000,
1171                   180000000,
1172                 },
1173                 {  29300000,
1174                    58500000,
1175                    87800000,
1176                   117000000,
1177                   175500000,
1178                   234000000,
1179                   263300000,
1180                   292500000,
1181                   351000000,
1182                   390000000,
1183                 },
1184                 {  58500000,
1185                   117000000,
1186                   175500000,
1187                   234000000,
1188                   351000000,
1189                   468000000,
1190                   526500000,
1191                   585000000,
1192                   702000000,
1193                   780000000,
1194                 },
1195         };
1196         u32 bitrate;
1197         int idx;
1198
1199         if (WARN_ON_ONCE(rate->mcs > 9))
1200                 return 0;
1201
1202         switch (rate->bw) {
1203         case RATE_INFO_BW_160:
1204                 idx = 3;
1205                 break;
1206         case RATE_INFO_BW_80:
1207                 idx = 2;
1208                 break;
1209         case RATE_INFO_BW_40:
1210                 idx = 1;
1211                 break;
1212         case RATE_INFO_BW_5:
1213         case RATE_INFO_BW_10:
1214         default:
1215                 WARN_ON(1);
1216                 /* fall through */
1217         case RATE_INFO_BW_20:
1218                 idx = 0;
1219         }
1220
1221         bitrate = base[idx][rate->mcs];
1222         bitrate *= rate->nss;
1223
1224         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1225                 bitrate = (bitrate / 9) * 10;
1226
1227         /* do NOT round down here */
1228         return (bitrate + 50000) / 100000;
1229 }
1230
1231 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1232 {
1233         int modulation, streams, bitrate;
1234
1235         if (!(rate->flags & RATE_INFO_FLAGS_MCS) &&
1236             !(rate->flags & RATE_INFO_FLAGS_VHT_MCS))
1237                 return rate->legacy;
1238         if (rate->flags & RATE_INFO_FLAGS_60G)
1239                 return cfg80211_calculate_bitrate_60g(rate);
1240         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1241                 return cfg80211_calculate_bitrate_vht(rate);
1242
1243         /* the formula below does only work for MCS values smaller than 32 */
1244         if (WARN_ON_ONCE(rate->mcs >= 32))
1245                 return 0;
1246
1247         modulation = rate->mcs & 7;
1248         streams = (rate->mcs >> 3) + 1;
1249
1250         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1251
1252         if (modulation < 4)
1253                 bitrate *= (modulation + 1);
1254         else if (modulation == 4)
1255                 bitrate *= (modulation + 2);
1256         else
1257                 bitrate *= (modulation + 3);
1258
1259         bitrate *= streams;
1260
1261         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1262                 bitrate = (bitrate / 9) * 10;
1263
1264         /* do NOT round down here */
1265         return (bitrate + 50000) / 100000;
1266 }
1267 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1268
1269 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1270                           enum ieee80211_p2p_attr_id attr,
1271                           u8 *buf, unsigned int bufsize)
1272 {
1273         u8 *out = buf;
1274         u16 attr_remaining = 0;
1275         bool desired_attr = false;
1276         u16 desired_len = 0;
1277
1278         while (len > 0) {
1279                 unsigned int iedatalen;
1280                 unsigned int copy;
1281                 const u8 *iedata;
1282
1283                 if (len < 2)
1284                         return -EILSEQ;
1285                 iedatalen = ies[1];
1286                 if (iedatalen + 2 > len)
1287                         return -EILSEQ;
1288
1289                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1290                         goto cont;
1291
1292                 if (iedatalen < 4)
1293                         goto cont;
1294
1295                 iedata = ies + 2;
1296
1297                 /* check WFA OUI, P2P subtype */
1298                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1299                     iedata[2] != 0x9a || iedata[3] != 0x09)
1300                         goto cont;
1301
1302                 iedatalen -= 4;
1303                 iedata += 4;
1304
1305                 /* check attribute continuation into this IE */
1306                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1307                 if (copy && desired_attr) {
1308                         desired_len += copy;
1309                         if (out) {
1310                                 memcpy(out, iedata, min(bufsize, copy));
1311                                 out += min(bufsize, copy);
1312                                 bufsize -= min(bufsize, copy);
1313                         }
1314
1315
1316                         if (copy == attr_remaining)
1317                                 return desired_len;
1318                 }
1319
1320                 attr_remaining -= copy;
1321                 if (attr_remaining)
1322                         goto cont;
1323
1324                 iedatalen -= copy;
1325                 iedata += copy;
1326
1327                 while (iedatalen > 0) {
1328                         u16 attr_len;
1329
1330                         /* P2P attribute ID & size must fit */
1331                         if (iedatalen < 3)
1332                                 return -EILSEQ;
1333                         desired_attr = iedata[0] == attr;
1334                         attr_len = get_unaligned_le16(iedata + 1);
1335                         iedatalen -= 3;
1336                         iedata += 3;
1337
1338                         copy = min_t(unsigned int, attr_len, iedatalen);
1339
1340                         if (desired_attr) {
1341                                 desired_len += copy;
1342                                 if (out) {
1343                                         memcpy(out, iedata, min(bufsize, copy));
1344                                         out += min(bufsize, copy);
1345                                         bufsize -= min(bufsize, copy);
1346                                 }
1347
1348                                 if (copy == attr_len)
1349                                         return desired_len;
1350                         }
1351
1352                         iedata += copy;
1353                         iedatalen -= copy;
1354                         attr_remaining = attr_len - copy;
1355                 }
1356
1357  cont:
1358                 len -= ies[1] + 2;
1359                 ies += ies[1] + 2;
1360         }
1361
1362         if (attr_remaining && desired_attr)
1363                 return -EILSEQ;
1364
1365         return -ENOENT;
1366 }
1367 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1368
1369 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id)
1370 {
1371         int i;
1372
1373         for (i = 0; i < n_ids; i++)
1374                 if (ids[i] == id)
1375                         return true;
1376         return false;
1377 }
1378
1379 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1380 {
1381         /* we assume a validly formed IEs buffer */
1382         u8 len = ies[pos + 1];
1383
1384         pos += 2 + len;
1385
1386         /* the IE itself must have 255 bytes for fragments to follow */
1387         if (len < 255)
1388                 return pos;
1389
1390         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1391                 len = ies[pos + 1];
1392                 pos += 2 + len;
1393         }
1394
1395         return pos;
1396 }
1397
1398 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1399                               const u8 *ids, int n_ids,
1400                               const u8 *after_ric, int n_after_ric,
1401                               size_t offset)
1402 {
1403         size_t pos = offset;
1404
1405         while (pos < ielen && ieee80211_id_in_list(ids, n_ids, ies[pos])) {
1406                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1407                         pos = skip_ie(ies, ielen, pos);
1408
1409                         while (pos < ielen &&
1410                                !ieee80211_id_in_list(after_ric, n_after_ric,
1411                                                      ies[pos]))
1412                                 pos = skip_ie(ies, ielen, pos);
1413                 } else {
1414                         pos = skip_ie(ies, ielen, pos);
1415                 }
1416         }
1417
1418         return pos;
1419 }
1420 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1421
1422 bool ieee80211_operating_class_to_band(u8 operating_class,
1423                                        enum nl80211_band *band)
1424 {
1425         switch (operating_class) {
1426         case 112:
1427         case 115 ... 127:
1428         case 128 ... 130:
1429                 *band = NL80211_BAND_5GHZ;
1430                 return true;
1431         case 81:
1432         case 82:
1433         case 83:
1434         case 84:
1435                 *band = NL80211_BAND_2GHZ;
1436                 return true;
1437         case 180:
1438                 *band = NL80211_BAND_60GHZ;
1439                 return true;
1440         }
1441
1442         return false;
1443 }
1444 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1445
1446 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1447                                           u8 *op_class)
1448 {
1449         u8 vht_opclass;
1450         u16 freq = chandef->center_freq1;
1451
1452         if (freq >= 2412 && freq <= 2472) {
1453                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1454                         return false;
1455
1456                 /* 2.407 GHz, channels 1..13 */
1457                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1458                         if (freq > chandef->chan->center_freq)
1459                                 *op_class = 83; /* HT40+ */
1460                         else
1461                                 *op_class = 84; /* HT40- */
1462                 } else {
1463                         *op_class = 81;
1464                 }
1465
1466                 return true;
1467         }
1468
1469         if (freq == 2484) {
1470                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1471                         return false;
1472
1473                 *op_class = 82; /* channel 14 */
1474                 return true;
1475         }
1476
1477         switch (chandef->width) {
1478         case NL80211_CHAN_WIDTH_80:
1479                 vht_opclass = 128;
1480                 break;
1481         case NL80211_CHAN_WIDTH_160:
1482                 vht_opclass = 129;
1483                 break;
1484         case NL80211_CHAN_WIDTH_80P80:
1485                 vht_opclass = 130;
1486                 break;
1487         case NL80211_CHAN_WIDTH_10:
1488         case NL80211_CHAN_WIDTH_5:
1489                 return false; /* unsupported for now */
1490         default:
1491                 vht_opclass = 0;
1492                 break;
1493         }
1494
1495         /* 5 GHz, channels 36..48 */
1496         if (freq >= 5180 && freq <= 5240) {
1497                 if (vht_opclass) {
1498                         *op_class = vht_opclass;
1499                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1500                         if (freq > chandef->chan->center_freq)
1501                                 *op_class = 116;
1502                         else
1503                                 *op_class = 117;
1504                 } else {
1505                         *op_class = 115;
1506                 }
1507
1508                 return true;
1509         }
1510
1511         /* 5 GHz, channels 52..64 */
1512         if (freq >= 5260 && freq <= 5320) {
1513                 if (vht_opclass) {
1514                         *op_class = vht_opclass;
1515                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1516                         if (freq > chandef->chan->center_freq)
1517                                 *op_class = 119;
1518                         else
1519                                 *op_class = 120;
1520                 } else {
1521                         *op_class = 118;
1522                 }
1523
1524                 return true;
1525         }
1526
1527         /* 5 GHz, channels 100..144 */
1528         if (freq >= 5500 && freq <= 5720) {
1529                 if (vht_opclass) {
1530                         *op_class = vht_opclass;
1531                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1532                         if (freq > chandef->chan->center_freq)
1533                                 *op_class = 122;
1534                         else
1535                                 *op_class = 123;
1536                 } else {
1537                         *op_class = 121;
1538                 }
1539
1540                 return true;
1541         }
1542
1543         /* 5 GHz, channels 149..169 */
1544         if (freq >= 5745 && freq <= 5845) {
1545                 if (vht_opclass) {
1546                         *op_class = vht_opclass;
1547                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1548                         if (freq > chandef->chan->center_freq)
1549                                 *op_class = 126;
1550                         else
1551                                 *op_class = 127;
1552                 } else if (freq <= 5805) {
1553                         *op_class = 124;
1554                 } else {
1555                         *op_class = 125;
1556                 }
1557
1558                 return true;
1559         }
1560
1561         /* 56.16 GHz, channel 1..4 */
1562         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 4) {
1563                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1564                         return false;
1565
1566                 *op_class = 180;
1567                 return true;
1568         }
1569
1570         /* not supported yet */
1571         return false;
1572 }
1573 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1574
1575 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1576                                        u32 *beacon_int_gcd,
1577                                        bool *beacon_int_different)
1578 {
1579         struct wireless_dev *wdev;
1580
1581         *beacon_int_gcd = 0;
1582         *beacon_int_different = false;
1583
1584         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1585                 if (!wdev->beacon_interval)
1586                         continue;
1587
1588                 if (!*beacon_int_gcd) {
1589                         *beacon_int_gcd = wdev->beacon_interval;
1590                         continue;
1591                 }
1592
1593                 if (wdev->beacon_interval == *beacon_int_gcd)
1594                         continue;
1595
1596                 *beacon_int_different = true;
1597                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1598         }
1599
1600         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1601                 if (*beacon_int_gcd)
1602                         *beacon_int_different = true;
1603                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1604         }
1605 }
1606
1607 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1608                                  enum nl80211_iftype iftype, u32 beacon_int)
1609 {
1610         /*
1611          * This is just a basic pre-condition check; if interface combinations
1612          * are possible the driver must already be checking those with a call
1613          * to cfg80211_check_combinations(), in which case we'll validate more
1614          * through the cfg80211_calculate_bi_data() call and code in
1615          * cfg80211_iter_combinations().
1616          */
1617
1618         if (beacon_int < 10 || beacon_int > 10000)
1619                 return -EINVAL;
1620
1621         return 0;
1622 }
1623
1624 int cfg80211_iter_combinations(struct wiphy *wiphy,
1625                                struct iface_combination_params *params,
1626                                void (*iter)(const struct ieee80211_iface_combination *c,
1627                                             void *data),
1628                                void *data)
1629 {
1630         const struct ieee80211_regdomain *regdom;
1631         enum nl80211_dfs_regions region = 0;
1632         int i, j, iftype;
1633         int num_interfaces = 0;
1634         u32 used_iftypes = 0;
1635         u32 beacon_int_gcd;
1636         bool beacon_int_different;
1637
1638         /*
1639          * This is a bit strange, since the iteration used to rely only on
1640          * the data given by the driver, but here it now relies on context,
1641          * in form of the currently operating interfaces.
1642          * This is OK for all current users, and saves us from having to
1643          * push the GCD calculations into all the drivers.
1644          * In the future, this should probably rely more on data that's in
1645          * cfg80211 already - the only thing not would appear to be any new
1646          * interfaces (while being brought up) and channel/radar data.
1647          */
1648         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1649                                    &beacon_int_gcd, &beacon_int_different);
1650
1651         if (params->radar_detect) {
1652                 rcu_read_lock();
1653                 regdom = rcu_dereference(cfg80211_regdomain);
1654                 if (regdom)
1655                         region = regdom->dfs_region;
1656                 rcu_read_unlock();
1657         }
1658
1659         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1660                 num_interfaces += params->iftype_num[iftype];
1661                 if (params->iftype_num[iftype] > 0 &&
1662                     !(wiphy->software_iftypes & BIT(iftype)))
1663                         used_iftypes |= BIT(iftype);
1664         }
1665
1666         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1667                 const struct ieee80211_iface_combination *c;
1668                 struct ieee80211_iface_limit *limits;
1669                 u32 all_iftypes = 0;
1670
1671                 c = &wiphy->iface_combinations[i];
1672
1673                 if (num_interfaces > c->max_interfaces)
1674                         continue;
1675                 if (params->num_different_channels > c->num_different_channels)
1676                         continue;
1677
1678                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1679                                  GFP_KERNEL);
1680                 if (!limits)
1681                         return -ENOMEM;
1682
1683                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1684                         if (wiphy->software_iftypes & BIT(iftype))
1685                                 continue;
1686                         for (j = 0; j < c->n_limits; j++) {
1687                                 all_iftypes |= limits[j].types;
1688                                 if (!(limits[j].types & BIT(iftype)))
1689                                         continue;
1690                                 if (limits[j].max < params->iftype_num[iftype])
1691                                         goto cont;
1692                                 limits[j].max -= params->iftype_num[iftype];
1693                         }
1694                 }
1695
1696                 if (params->radar_detect !=
1697                         (c->radar_detect_widths & params->radar_detect))
1698                         goto cont;
1699
1700                 if (params->radar_detect && c->radar_detect_regions &&
1701                     !(c->radar_detect_regions & BIT(region)))
1702                         goto cont;
1703
1704                 /* Finally check that all iftypes that we're currently
1705                  * using are actually part of this combination. If they
1706                  * aren't then we can't use this combination and have
1707                  * to continue to the next.
1708                  */
1709                 if ((all_iftypes & used_iftypes) != used_iftypes)
1710                         goto cont;
1711
1712                 if (beacon_int_gcd) {
1713                         if (c->beacon_int_min_gcd &&
1714                             beacon_int_gcd < c->beacon_int_min_gcd)
1715                                 goto cont;
1716                         if (!c->beacon_int_min_gcd && beacon_int_different)
1717                                 goto cont;
1718                 }
1719
1720                 /* This combination covered all interface types and
1721                  * supported the requested numbers, so we're good.
1722                  */
1723
1724                 (*iter)(c, data);
1725  cont:
1726                 kfree(limits);
1727         }
1728
1729         return 0;
1730 }
1731 EXPORT_SYMBOL(cfg80211_iter_combinations);
1732
1733 static void
1734 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1735                           void *data)
1736 {
1737         int *num = data;
1738         (*num)++;
1739 }
1740
1741 int cfg80211_check_combinations(struct wiphy *wiphy,
1742                                 struct iface_combination_params *params)
1743 {
1744         int err, num = 0;
1745
1746         err = cfg80211_iter_combinations(wiphy, params,
1747                                          cfg80211_iter_sum_ifcombs, &num);
1748         if (err)
1749                 return err;
1750         if (num == 0)
1751                 return -EBUSY;
1752
1753         return 0;
1754 }
1755 EXPORT_SYMBOL(cfg80211_check_combinations);
1756
1757 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1758                            const u8 *rates, unsigned int n_rates,
1759                            u32 *mask)
1760 {
1761         int i, j;
1762
1763         if (!sband)
1764                 return -EINVAL;
1765
1766         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1767                 return -EINVAL;
1768
1769         *mask = 0;
1770
1771         for (i = 0; i < n_rates; i++) {
1772                 int rate = (rates[i] & 0x7f) * 5;
1773                 bool found = false;
1774
1775                 for (j = 0; j < sband->n_bitrates; j++) {
1776                         if (sband->bitrates[j].bitrate == rate) {
1777                                 found = true;
1778                                 *mask |= BIT(j);
1779                                 break;
1780                         }
1781                 }
1782                 if (!found)
1783                         return -EINVAL;
1784         }
1785
1786         /*
1787          * mask must have at least one bit set here since we
1788          * didn't accept a 0-length rates array nor allowed
1789          * entries in the array that didn't exist
1790          */
1791
1792         return 0;
1793 }
1794
1795 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1796 {
1797         enum nl80211_band band;
1798         unsigned int n_channels = 0;
1799
1800         for (band = 0; band < NUM_NL80211_BANDS; band++)
1801                 if (wiphy->bands[band])
1802                         n_channels += wiphy->bands[band]->n_channels;
1803
1804         return n_channels;
1805 }
1806 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1807
1808 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1809                          struct station_info *sinfo)
1810 {
1811         struct cfg80211_registered_device *rdev;
1812         struct wireless_dev *wdev;
1813
1814         wdev = dev->ieee80211_ptr;
1815         if (!wdev)
1816                 return -EOPNOTSUPP;
1817
1818         rdev = wiphy_to_rdev(wdev->wiphy);
1819         if (!rdev->ops->get_station)
1820                 return -EOPNOTSUPP;
1821
1822         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1823 }
1824 EXPORT_SYMBOL(cfg80211_get_station);
1825
1826 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1827 {
1828         int i;
1829
1830         if (!f)
1831                 return;
1832
1833         kfree(f->serv_spec_info);
1834         kfree(f->srf_bf);
1835         kfree(f->srf_macs);
1836         for (i = 0; i < f->num_rx_filters; i++)
1837                 kfree(f->rx_filters[i].filter);
1838
1839         for (i = 0; i < f->num_tx_filters; i++)
1840                 kfree(f->tx_filters[i].filter);
1841
1842         kfree(f->rx_filters);
1843         kfree(f->tx_filters);
1844         kfree(f);
1845 }
1846 EXPORT_SYMBOL(cfg80211_free_nan_func);
1847
1848 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1849                                 u32 center_freq_khz, u32 bw_khz)
1850 {
1851         u32 start_freq_khz, end_freq_khz;
1852
1853         start_freq_khz = center_freq_khz - (bw_khz / 2);
1854         end_freq_khz = center_freq_khz + (bw_khz / 2);
1855
1856         if (start_freq_khz >= freq_range->start_freq_khz &&
1857             end_freq_khz <= freq_range->end_freq_khz)
1858                 return true;
1859
1860         return false;
1861 }
1862
1863 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1864 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1865 const unsigned char rfc1042_header[] __aligned(2) =
1866         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1867 EXPORT_SYMBOL(rfc1042_header);
1868
1869 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1870 const unsigned char bridge_tunnel_header[] __aligned(2) =
1871         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1872 EXPORT_SYMBOL(bridge_tunnel_header);