]> asedeno.scripts.mit.edu Git - linux.git/blob - net/wireless/util.c
nl80211: Add support for EDMG channels
[linux.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018-2019 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include <linux/nospec.h>
23 #include "core.h"
24 #include "rdev-ops.h"
25
26
27 struct ieee80211_rate *
28 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29                             u32 basic_rates, int bitrate)
30 {
31         struct ieee80211_rate *result = &sband->bitrates[0];
32         int i;
33
34         for (i = 0; i < sband->n_bitrates; i++) {
35                 if (!(basic_rates & BIT(i)))
36                         continue;
37                 if (sband->bitrates[i].bitrate > bitrate)
38                         continue;
39                 result = &sband->bitrates[i];
40         }
41
42         return result;
43 }
44 EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47                               enum nl80211_bss_scan_width scan_width)
48 {
49         struct ieee80211_rate *bitrates;
50         u32 mandatory_rates = 0;
51         enum ieee80211_rate_flags mandatory_flag;
52         int i;
53
54         if (WARN_ON(!sband))
55                 return 1;
56
57         if (sband->band == NL80211_BAND_2GHZ) {
58                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
60                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61                 else
62                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63         } else {
64                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65         }
66
67         bitrates = sband->bitrates;
68         for (i = 0; i < sband->n_bitrates; i++)
69                 if (bitrates[i].flags & mandatory_flag)
70                         mandatory_rates |= BIT(i);
71         return mandatory_rates;
72 }
73 EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
76 {
77         /* see 802.11 17.3.8.3.2 and Annex J
78          * there are overlapping channel numbers in 5GHz and 2GHz bands */
79         if (chan <= 0)
80                 return 0; /* not supported */
81         switch (band) {
82         case NL80211_BAND_2GHZ:
83                 if (chan == 14)
84                         return 2484;
85                 else if (chan < 14)
86                         return 2407 + chan * 5;
87                 break;
88         case NL80211_BAND_5GHZ:
89                 if (chan >= 182 && chan <= 196)
90                         return 4000 + chan * 5;
91                 else
92                         return 5000 + chan * 5;
93                 break;
94         case NL80211_BAND_6GHZ:
95                 /* see 802.11ax D4.1 27.3.22.2 */
96                 if (chan <= 253)
97                         return 5940 + chan * 5;
98                 break;
99         case NL80211_BAND_60GHZ:
100                 if (chan < 7)
101                         return 56160 + chan * 2160;
102                 break;
103         default:
104                 ;
105         }
106         return 0; /* not supported */
107 }
108 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
109
110 int ieee80211_frequency_to_channel(int freq)
111 {
112         /* see 802.11 17.3.8.3.2 and Annex J */
113         if (freq == 2484)
114                 return 14;
115         else if (freq < 2484)
116                 return (freq - 2407) / 5;
117         else if (freq >= 4910 && freq <= 4980)
118                 return (freq - 4000) / 5;
119         else if (freq < 5940)
120                 return (freq - 5000) / 5;
121         else if (freq <= 45000) /* DMG band lower limit */
122                 /* see 802.11ax D4.1 27.3.22.2 */
123                 return (freq - 5940) / 5;
124         else if (freq >= 58320 && freq <= 70200)
125                 return (freq - 56160) / 2160;
126         else
127                 return 0;
128 }
129 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
130
131 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
132 {
133         enum nl80211_band band;
134         struct ieee80211_supported_band *sband;
135         int i;
136
137         for (band = 0; band < NUM_NL80211_BANDS; band++) {
138                 sband = wiphy->bands[band];
139
140                 if (!sband)
141                         continue;
142
143                 for (i = 0; i < sband->n_channels; i++) {
144                         if (sband->channels[i].center_freq == freq)
145                                 return &sband->channels[i];
146                 }
147         }
148
149         return NULL;
150 }
151 EXPORT_SYMBOL(ieee80211_get_channel);
152
153 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
154 {
155         int i, want;
156
157         switch (sband->band) {
158         case NL80211_BAND_5GHZ:
159         case NL80211_BAND_6GHZ:
160                 want = 3;
161                 for (i = 0; i < sband->n_bitrates; i++) {
162                         if (sband->bitrates[i].bitrate == 60 ||
163                             sband->bitrates[i].bitrate == 120 ||
164                             sband->bitrates[i].bitrate == 240) {
165                                 sband->bitrates[i].flags |=
166                                         IEEE80211_RATE_MANDATORY_A;
167                                 want--;
168                         }
169                 }
170                 WARN_ON(want);
171                 break;
172         case NL80211_BAND_2GHZ:
173                 want = 7;
174                 for (i = 0; i < sband->n_bitrates; i++) {
175                         switch (sband->bitrates[i].bitrate) {
176                         case 10:
177                         case 20:
178                         case 55:
179                         case 110:
180                                 sband->bitrates[i].flags |=
181                                         IEEE80211_RATE_MANDATORY_B |
182                                         IEEE80211_RATE_MANDATORY_G;
183                                 want--;
184                                 break;
185                         case 60:
186                         case 120:
187                         case 240:
188                                 sband->bitrates[i].flags |=
189                                         IEEE80211_RATE_MANDATORY_G;
190                                 want--;
191                                 /* fall through */
192                         default:
193                                 sband->bitrates[i].flags |=
194                                         IEEE80211_RATE_ERP_G;
195                                 break;
196                         }
197                 }
198                 WARN_ON(want != 0 && want != 3);
199                 break;
200         case NL80211_BAND_60GHZ:
201                 /* check for mandatory HT MCS 1..4 */
202                 WARN_ON(!sband->ht_cap.ht_supported);
203                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
204                 break;
205         case NUM_NL80211_BANDS:
206         default:
207                 WARN_ON(1);
208                 break;
209         }
210 }
211
212 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
213 {
214         enum nl80211_band band;
215
216         for (band = 0; band < NUM_NL80211_BANDS; band++)
217                 if (wiphy->bands[band])
218                         set_mandatory_flags_band(wiphy->bands[band]);
219 }
220
221 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
222 {
223         int i;
224         for (i = 0; i < wiphy->n_cipher_suites; i++)
225                 if (cipher == wiphy->cipher_suites[i])
226                         return true;
227         return false;
228 }
229
230 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
231                                    struct key_params *params, int key_idx,
232                                    bool pairwise, const u8 *mac_addr)
233 {
234         if (key_idx < 0 || key_idx > 5)
235                 return -EINVAL;
236
237         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
238                 return -EINVAL;
239
240         if (pairwise && !mac_addr)
241                 return -EINVAL;
242
243         switch (params->cipher) {
244         case WLAN_CIPHER_SUITE_TKIP:
245         case WLAN_CIPHER_SUITE_CCMP:
246         case WLAN_CIPHER_SUITE_CCMP_256:
247         case WLAN_CIPHER_SUITE_GCMP:
248         case WLAN_CIPHER_SUITE_GCMP_256:
249                 /* IEEE802.11-2016 allows only 0 and - when using Extended Key
250                  * ID - 1 as index for pairwise keys.
251                  * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
252                  * the driver supports Extended Key ID.
253                  * @NL80211_KEY_SET_TX can't be set when installing and
254                  * validating a key.
255                  */
256                 if (params->mode == NL80211_KEY_NO_TX) {
257                         if (!wiphy_ext_feature_isset(&rdev->wiphy,
258                                                      NL80211_EXT_FEATURE_EXT_KEY_ID))
259                                 return -EINVAL;
260                         else if (!pairwise || key_idx < 0 || key_idx > 1)
261                                 return -EINVAL;
262                 } else if ((pairwise && key_idx) ||
263                            params->mode == NL80211_KEY_SET_TX) {
264                         return -EINVAL;
265                 }
266                 break;
267         case WLAN_CIPHER_SUITE_AES_CMAC:
268         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
269         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
270         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
271                 /* Disallow BIP (group-only) cipher as pairwise cipher */
272                 if (pairwise)
273                         return -EINVAL;
274                 if (key_idx < 4)
275                         return -EINVAL;
276                 break;
277         case WLAN_CIPHER_SUITE_WEP40:
278         case WLAN_CIPHER_SUITE_WEP104:
279                 if (key_idx > 3)
280                         return -EINVAL;
281         default:
282                 break;
283         }
284
285         switch (params->cipher) {
286         case WLAN_CIPHER_SUITE_WEP40:
287                 if (params->key_len != WLAN_KEY_LEN_WEP40)
288                         return -EINVAL;
289                 break;
290         case WLAN_CIPHER_SUITE_TKIP:
291                 if (params->key_len != WLAN_KEY_LEN_TKIP)
292                         return -EINVAL;
293                 break;
294         case WLAN_CIPHER_SUITE_CCMP:
295                 if (params->key_len != WLAN_KEY_LEN_CCMP)
296                         return -EINVAL;
297                 break;
298         case WLAN_CIPHER_SUITE_CCMP_256:
299                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
300                         return -EINVAL;
301                 break;
302         case WLAN_CIPHER_SUITE_GCMP:
303                 if (params->key_len != WLAN_KEY_LEN_GCMP)
304                         return -EINVAL;
305                 break;
306         case WLAN_CIPHER_SUITE_GCMP_256:
307                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
308                         return -EINVAL;
309                 break;
310         case WLAN_CIPHER_SUITE_WEP104:
311                 if (params->key_len != WLAN_KEY_LEN_WEP104)
312                         return -EINVAL;
313                 break;
314         case WLAN_CIPHER_SUITE_AES_CMAC:
315                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
316                         return -EINVAL;
317                 break;
318         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
319                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
320                         return -EINVAL;
321                 break;
322         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
323                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
324                         return -EINVAL;
325                 break;
326         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
327                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
328                         return -EINVAL;
329                 break;
330         default:
331                 /*
332                  * We don't know anything about this algorithm,
333                  * allow using it -- but the driver must check
334                  * all parameters! We still check below whether
335                  * or not the driver supports this algorithm,
336                  * of course.
337                  */
338                 break;
339         }
340
341         if (params->seq) {
342                 switch (params->cipher) {
343                 case WLAN_CIPHER_SUITE_WEP40:
344                 case WLAN_CIPHER_SUITE_WEP104:
345                         /* These ciphers do not use key sequence */
346                         return -EINVAL;
347                 case WLAN_CIPHER_SUITE_TKIP:
348                 case WLAN_CIPHER_SUITE_CCMP:
349                 case WLAN_CIPHER_SUITE_CCMP_256:
350                 case WLAN_CIPHER_SUITE_GCMP:
351                 case WLAN_CIPHER_SUITE_GCMP_256:
352                 case WLAN_CIPHER_SUITE_AES_CMAC:
353                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
354                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
355                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
356                         if (params->seq_len != 6)
357                                 return -EINVAL;
358                         break;
359                 }
360         }
361
362         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
363                 return -EINVAL;
364
365         return 0;
366 }
367
368 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
369 {
370         unsigned int hdrlen = 24;
371
372         if (ieee80211_is_data(fc)) {
373                 if (ieee80211_has_a4(fc))
374                         hdrlen = 30;
375                 if (ieee80211_is_data_qos(fc)) {
376                         hdrlen += IEEE80211_QOS_CTL_LEN;
377                         if (ieee80211_has_order(fc))
378                                 hdrlen += IEEE80211_HT_CTL_LEN;
379                 }
380                 goto out;
381         }
382
383         if (ieee80211_is_mgmt(fc)) {
384                 if (ieee80211_has_order(fc))
385                         hdrlen += IEEE80211_HT_CTL_LEN;
386                 goto out;
387         }
388
389         if (ieee80211_is_ctl(fc)) {
390                 /*
391                  * ACK and CTS are 10 bytes, all others 16. To see how
392                  * to get this condition consider
393                  *   subtype mask:   0b0000000011110000 (0x00F0)
394                  *   ACK subtype:    0b0000000011010000 (0x00D0)
395                  *   CTS subtype:    0b0000000011000000 (0x00C0)
396                  *   bits that matter:         ^^^      (0x00E0)
397                  *   value of those: 0b0000000011000000 (0x00C0)
398                  */
399                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
400                         hdrlen = 10;
401                 else
402                         hdrlen = 16;
403         }
404 out:
405         return hdrlen;
406 }
407 EXPORT_SYMBOL(ieee80211_hdrlen);
408
409 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
410 {
411         const struct ieee80211_hdr *hdr =
412                         (const struct ieee80211_hdr *)skb->data;
413         unsigned int hdrlen;
414
415         if (unlikely(skb->len < 10))
416                 return 0;
417         hdrlen = ieee80211_hdrlen(hdr->frame_control);
418         if (unlikely(hdrlen > skb->len))
419                 return 0;
420         return hdrlen;
421 }
422 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
423
424 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
425 {
426         int ae = flags & MESH_FLAGS_AE;
427         /* 802.11-2012, 8.2.4.7.3 */
428         switch (ae) {
429         default:
430         case 0:
431                 return 6;
432         case MESH_FLAGS_AE_A4:
433                 return 12;
434         case MESH_FLAGS_AE_A5_A6:
435                 return 18;
436         }
437 }
438
439 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
440 {
441         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
442 }
443 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
444
445 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
446                                   const u8 *addr, enum nl80211_iftype iftype,
447                                   u8 data_offset)
448 {
449         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
450         struct {
451                 u8 hdr[ETH_ALEN] __aligned(2);
452                 __be16 proto;
453         } payload;
454         struct ethhdr tmp;
455         u16 hdrlen;
456         u8 mesh_flags = 0;
457
458         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
459                 return -1;
460
461         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
462         if (skb->len < hdrlen + 8)
463                 return -1;
464
465         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
466          * header
467          * IEEE 802.11 address fields:
468          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
469          *   0     0   DA    SA    BSSID n/a
470          *   0     1   DA    BSSID SA    n/a
471          *   1     0   BSSID SA    DA    n/a
472          *   1     1   RA    TA    DA    SA
473          */
474         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
475         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
476
477         if (iftype == NL80211_IFTYPE_MESH_POINT)
478                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
479
480         mesh_flags &= MESH_FLAGS_AE;
481
482         switch (hdr->frame_control &
483                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
484         case cpu_to_le16(IEEE80211_FCTL_TODS):
485                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
486                              iftype != NL80211_IFTYPE_AP_VLAN &&
487                              iftype != NL80211_IFTYPE_P2P_GO))
488                         return -1;
489                 break;
490         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
491                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
492                              iftype != NL80211_IFTYPE_MESH_POINT &&
493                              iftype != NL80211_IFTYPE_AP_VLAN &&
494                              iftype != NL80211_IFTYPE_STATION))
495                         return -1;
496                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
497                         if (mesh_flags == MESH_FLAGS_AE_A4)
498                                 return -1;
499                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
500                                 skb_copy_bits(skb, hdrlen +
501                                         offsetof(struct ieee80211s_hdr, eaddr1),
502                                         tmp.h_dest, 2 * ETH_ALEN);
503                         }
504                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
505                 }
506                 break;
507         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
508                 if ((iftype != NL80211_IFTYPE_STATION &&
509                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
510                      iftype != NL80211_IFTYPE_MESH_POINT) ||
511                     (is_multicast_ether_addr(tmp.h_dest) &&
512                      ether_addr_equal(tmp.h_source, addr)))
513                         return -1;
514                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
515                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
516                                 return -1;
517                         if (mesh_flags == MESH_FLAGS_AE_A4)
518                                 skb_copy_bits(skb, hdrlen +
519                                         offsetof(struct ieee80211s_hdr, eaddr1),
520                                         tmp.h_source, ETH_ALEN);
521                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
522                 }
523                 break;
524         case cpu_to_le16(0):
525                 if (iftype != NL80211_IFTYPE_ADHOC &&
526                     iftype != NL80211_IFTYPE_STATION &&
527                     iftype != NL80211_IFTYPE_OCB)
528                                 return -1;
529                 break;
530         }
531
532         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
533         tmp.h_proto = payload.proto;
534
535         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
536                     tmp.h_proto != htons(ETH_P_AARP) &&
537                     tmp.h_proto != htons(ETH_P_IPX)) ||
538                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
539                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
540                  * replace EtherType */
541                 hdrlen += ETH_ALEN + 2;
542         else
543                 tmp.h_proto = htons(skb->len - hdrlen);
544
545         pskb_pull(skb, hdrlen);
546
547         if (!ehdr)
548                 ehdr = skb_push(skb, sizeof(struct ethhdr));
549         memcpy(ehdr, &tmp, sizeof(tmp));
550
551         return 0;
552 }
553 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
554
555 static void
556 __frame_add_frag(struct sk_buff *skb, struct page *page,
557                  void *ptr, int len, int size)
558 {
559         struct skb_shared_info *sh = skb_shinfo(skb);
560         int page_offset;
561
562         page_ref_inc(page);
563         page_offset = ptr - page_address(page);
564         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
565 }
566
567 static void
568 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
569                             int offset, int len)
570 {
571         struct skb_shared_info *sh = skb_shinfo(skb);
572         const skb_frag_t *frag = &sh->frags[0];
573         struct page *frag_page;
574         void *frag_ptr;
575         int frag_len, frag_size;
576         int head_size = skb->len - skb->data_len;
577         int cur_len;
578
579         frag_page = virt_to_head_page(skb->head);
580         frag_ptr = skb->data;
581         frag_size = head_size;
582
583         while (offset >= frag_size) {
584                 offset -= frag_size;
585                 frag_page = skb_frag_page(frag);
586                 frag_ptr = skb_frag_address(frag);
587                 frag_size = skb_frag_size(frag);
588                 frag++;
589         }
590
591         frag_ptr += offset;
592         frag_len = frag_size - offset;
593
594         cur_len = min(len, frag_len);
595
596         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
597         len -= cur_len;
598
599         while (len > 0) {
600                 frag_len = skb_frag_size(frag);
601                 cur_len = min(len, frag_len);
602                 __frame_add_frag(frame, skb_frag_page(frag),
603                                  skb_frag_address(frag), cur_len, frag_len);
604                 len -= cur_len;
605                 frag++;
606         }
607 }
608
609 static struct sk_buff *
610 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
611                        int offset, int len, bool reuse_frag)
612 {
613         struct sk_buff *frame;
614         int cur_len = len;
615
616         if (skb->len - offset < len)
617                 return NULL;
618
619         /*
620          * When reusing framents, copy some data to the head to simplify
621          * ethernet header handling and speed up protocol header processing
622          * in the stack later.
623          */
624         if (reuse_frag)
625                 cur_len = min_t(int, len, 32);
626
627         /*
628          * Allocate and reserve two bytes more for payload
629          * alignment since sizeof(struct ethhdr) is 14.
630          */
631         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
632         if (!frame)
633                 return NULL;
634
635         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
636         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
637
638         len -= cur_len;
639         if (!len)
640                 return frame;
641
642         offset += cur_len;
643         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
644
645         return frame;
646 }
647
648 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
649                               const u8 *addr, enum nl80211_iftype iftype,
650                               const unsigned int extra_headroom,
651                               const u8 *check_da, const u8 *check_sa)
652 {
653         unsigned int hlen = ALIGN(extra_headroom, 4);
654         struct sk_buff *frame = NULL;
655         u16 ethertype;
656         u8 *payload;
657         int offset = 0, remaining;
658         struct ethhdr eth;
659         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
660         bool reuse_skb = false;
661         bool last = false;
662
663         while (!last) {
664                 unsigned int subframe_len;
665                 int len;
666                 u8 padding;
667
668                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
669                 len = ntohs(eth.h_proto);
670                 subframe_len = sizeof(struct ethhdr) + len;
671                 padding = (4 - subframe_len) & 0x3;
672
673                 /* the last MSDU has no padding */
674                 remaining = skb->len - offset;
675                 if (subframe_len > remaining)
676                         goto purge;
677
678                 offset += sizeof(struct ethhdr);
679                 last = remaining <= subframe_len + padding;
680
681                 /* FIXME: should we really accept multicast DA? */
682                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
683                      !ether_addr_equal(check_da, eth.h_dest)) ||
684                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
685                         offset += len + padding;
686                         continue;
687                 }
688
689                 /* reuse skb for the last subframe */
690                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
691                         skb_pull(skb, offset);
692                         frame = skb;
693                         reuse_skb = true;
694                 } else {
695                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
696                                                        reuse_frag);
697                         if (!frame)
698                                 goto purge;
699
700                         offset += len + padding;
701                 }
702
703                 skb_reset_network_header(frame);
704                 frame->dev = skb->dev;
705                 frame->priority = skb->priority;
706
707                 payload = frame->data;
708                 ethertype = (payload[6] << 8) | payload[7];
709                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
710                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
711                            ether_addr_equal(payload, bridge_tunnel_header))) {
712                         eth.h_proto = htons(ethertype);
713                         skb_pull(frame, ETH_ALEN + 2);
714                 }
715
716                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
717                 __skb_queue_tail(list, frame);
718         }
719
720         if (!reuse_skb)
721                 dev_kfree_skb(skb);
722
723         return;
724
725  purge:
726         __skb_queue_purge(list);
727         dev_kfree_skb(skb);
728 }
729 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
730
731 /* Given a data frame determine the 802.1p/1d tag to use. */
732 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
733                                     struct cfg80211_qos_map *qos_map)
734 {
735         unsigned int dscp;
736         unsigned char vlan_priority;
737         unsigned int ret;
738
739         /* skb->priority values from 256->263 are magic values to
740          * directly indicate a specific 802.1d priority.  This is used
741          * to allow 802.1d priority to be passed directly in from VLAN
742          * tags, etc.
743          */
744         if (skb->priority >= 256 && skb->priority <= 263) {
745                 ret = skb->priority - 256;
746                 goto out;
747         }
748
749         if (skb_vlan_tag_present(skb)) {
750                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
751                         >> VLAN_PRIO_SHIFT;
752                 if (vlan_priority > 0) {
753                         ret = vlan_priority;
754                         goto out;
755                 }
756         }
757
758         switch (skb->protocol) {
759         case htons(ETH_P_IP):
760                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
761                 break;
762         case htons(ETH_P_IPV6):
763                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
764                 break;
765         case htons(ETH_P_MPLS_UC):
766         case htons(ETH_P_MPLS_MC): {
767                 struct mpls_label mpls_tmp, *mpls;
768
769                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
770                                           sizeof(*mpls), &mpls_tmp);
771                 if (!mpls)
772                         return 0;
773
774                 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
775                         >> MPLS_LS_TC_SHIFT;
776                 goto out;
777         }
778         case htons(ETH_P_80221):
779                 /* 802.21 is always network control traffic */
780                 return 7;
781         default:
782                 return 0;
783         }
784
785         if (qos_map) {
786                 unsigned int i, tmp_dscp = dscp >> 2;
787
788                 for (i = 0; i < qos_map->num_des; i++) {
789                         if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
790                                 ret = qos_map->dscp_exception[i].up;
791                                 goto out;
792                         }
793                 }
794
795                 for (i = 0; i < 8; i++) {
796                         if (tmp_dscp >= qos_map->up[i].low &&
797                             tmp_dscp <= qos_map->up[i].high) {
798                                 ret = i;
799                                 goto out;
800                         }
801                 }
802         }
803
804         ret = dscp >> 5;
805 out:
806         return array_index_nospec(ret, IEEE80211_NUM_TIDS);
807 }
808 EXPORT_SYMBOL(cfg80211_classify8021d);
809
810 const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
811 {
812         const struct cfg80211_bss_ies *ies;
813
814         ies = rcu_dereference(bss->ies);
815         if (!ies)
816                 return NULL;
817
818         return cfg80211_find_elem(id, ies->data, ies->len);
819 }
820 EXPORT_SYMBOL(ieee80211_bss_get_elem);
821
822 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
823 {
824         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
825         struct net_device *dev = wdev->netdev;
826         int i;
827
828         if (!wdev->connect_keys)
829                 return;
830
831         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
832                 if (!wdev->connect_keys->params[i].cipher)
833                         continue;
834                 if (rdev_add_key(rdev, dev, i, false, NULL,
835                                  &wdev->connect_keys->params[i])) {
836                         netdev_err(dev, "failed to set key %d\n", i);
837                         continue;
838                 }
839                 if (wdev->connect_keys->def == i &&
840                     rdev_set_default_key(rdev, dev, i, true, true)) {
841                         netdev_err(dev, "failed to set defkey %d\n", i);
842                         continue;
843                 }
844         }
845
846         kzfree(wdev->connect_keys);
847         wdev->connect_keys = NULL;
848 }
849
850 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
851 {
852         struct cfg80211_event *ev;
853         unsigned long flags;
854
855         spin_lock_irqsave(&wdev->event_lock, flags);
856         while (!list_empty(&wdev->event_list)) {
857                 ev = list_first_entry(&wdev->event_list,
858                                       struct cfg80211_event, list);
859                 list_del(&ev->list);
860                 spin_unlock_irqrestore(&wdev->event_lock, flags);
861
862                 wdev_lock(wdev);
863                 switch (ev->type) {
864                 case EVENT_CONNECT_RESULT:
865                         __cfg80211_connect_result(
866                                 wdev->netdev,
867                                 &ev->cr,
868                                 ev->cr.status == WLAN_STATUS_SUCCESS);
869                         break;
870                 case EVENT_ROAMED:
871                         __cfg80211_roamed(wdev, &ev->rm);
872                         break;
873                 case EVENT_DISCONNECTED:
874                         __cfg80211_disconnected(wdev->netdev,
875                                                 ev->dc.ie, ev->dc.ie_len,
876                                                 ev->dc.reason,
877                                                 !ev->dc.locally_generated);
878                         break;
879                 case EVENT_IBSS_JOINED:
880                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
881                                                ev->ij.channel);
882                         break;
883                 case EVENT_STOPPED:
884                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
885                         break;
886                 case EVENT_PORT_AUTHORIZED:
887                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
888                         break;
889                 }
890                 wdev_unlock(wdev);
891
892                 kfree(ev);
893
894                 spin_lock_irqsave(&wdev->event_lock, flags);
895         }
896         spin_unlock_irqrestore(&wdev->event_lock, flags);
897 }
898
899 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
900 {
901         struct wireless_dev *wdev;
902
903         ASSERT_RTNL();
904
905         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
906                 cfg80211_process_wdev_events(wdev);
907 }
908
909 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
910                           struct net_device *dev, enum nl80211_iftype ntype,
911                           struct vif_params *params)
912 {
913         int err;
914         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
915
916         ASSERT_RTNL();
917
918         /* don't support changing VLANs, you just re-create them */
919         if (otype == NL80211_IFTYPE_AP_VLAN)
920                 return -EOPNOTSUPP;
921
922         /* cannot change into P2P device or NAN */
923         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
924             ntype == NL80211_IFTYPE_NAN)
925                 return -EOPNOTSUPP;
926
927         if (!rdev->ops->change_virtual_intf ||
928             !(rdev->wiphy.interface_modes & (1 << ntype)))
929                 return -EOPNOTSUPP;
930
931         /* if it's part of a bridge, reject changing type to station/ibss */
932         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
933             (ntype == NL80211_IFTYPE_ADHOC ||
934              ntype == NL80211_IFTYPE_STATION ||
935              ntype == NL80211_IFTYPE_P2P_CLIENT))
936                 return -EBUSY;
937
938         if (ntype != otype) {
939                 dev->ieee80211_ptr->use_4addr = false;
940                 dev->ieee80211_ptr->mesh_id_up_len = 0;
941                 wdev_lock(dev->ieee80211_ptr);
942                 rdev_set_qos_map(rdev, dev, NULL);
943                 wdev_unlock(dev->ieee80211_ptr);
944
945                 switch (otype) {
946                 case NL80211_IFTYPE_AP:
947                         cfg80211_stop_ap(rdev, dev, true);
948                         break;
949                 case NL80211_IFTYPE_ADHOC:
950                         cfg80211_leave_ibss(rdev, dev, false);
951                         break;
952                 case NL80211_IFTYPE_STATION:
953                 case NL80211_IFTYPE_P2P_CLIENT:
954                         wdev_lock(dev->ieee80211_ptr);
955                         cfg80211_disconnect(rdev, dev,
956                                             WLAN_REASON_DEAUTH_LEAVING, true);
957                         wdev_unlock(dev->ieee80211_ptr);
958                         break;
959                 case NL80211_IFTYPE_MESH_POINT:
960                         /* mesh should be handled? */
961                         break;
962                 default:
963                         break;
964                 }
965
966                 cfg80211_process_rdev_events(rdev);
967         }
968
969         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
970
971         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
972
973         if (!err && params && params->use_4addr != -1)
974                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
975
976         if (!err) {
977                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
978                 switch (ntype) {
979                 case NL80211_IFTYPE_STATION:
980                         if (dev->ieee80211_ptr->use_4addr)
981                                 break;
982                         /* fall through */
983                 case NL80211_IFTYPE_OCB:
984                 case NL80211_IFTYPE_P2P_CLIENT:
985                 case NL80211_IFTYPE_ADHOC:
986                         dev->priv_flags |= IFF_DONT_BRIDGE;
987                         break;
988                 case NL80211_IFTYPE_P2P_GO:
989                 case NL80211_IFTYPE_AP:
990                 case NL80211_IFTYPE_AP_VLAN:
991                 case NL80211_IFTYPE_WDS:
992                 case NL80211_IFTYPE_MESH_POINT:
993                         /* bridging OK */
994                         break;
995                 case NL80211_IFTYPE_MONITOR:
996                         /* monitor can't bridge anyway */
997                         break;
998                 case NL80211_IFTYPE_UNSPECIFIED:
999                 case NUM_NL80211_IFTYPES:
1000                         /* not happening */
1001                         break;
1002                 case NL80211_IFTYPE_P2P_DEVICE:
1003                 case NL80211_IFTYPE_NAN:
1004                         WARN_ON(1);
1005                         break;
1006                 }
1007         }
1008
1009         if (!err && ntype != otype && netif_running(dev)) {
1010                 cfg80211_update_iface_num(rdev, ntype, 1);
1011                 cfg80211_update_iface_num(rdev, otype, -1);
1012         }
1013
1014         return err;
1015 }
1016
1017 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1018 {
1019         int modulation, streams, bitrate;
1020
1021         /* the formula below does only work for MCS values smaller than 32 */
1022         if (WARN_ON_ONCE(rate->mcs >= 32))
1023                 return 0;
1024
1025         modulation = rate->mcs & 7;
1026         streams = (rate->mcs >> 3) + 1;
1027
1028         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1029
1030         if (modulation < 4)
1031                 bitrate *= (modulation + 1);
1032         else if (modulation == 4)
1033                 bitrate *= (modulation + 2);
1034         else
1035                 bitrate *= (modulation + 3);
1036
1037         bitrate *= streams;
1038
1039         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1040                 bitrate = (bitrate / 9) * 10;
1041
1042         /* do NOT round down here */
1043         return (bitrate + 50000) / 100000;
1044 }
1045
1046 static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1047 {
1048         static const u32 __mcs2bitrate[] = {
1049                 /* control PHY */
1050                 [0] =   275,
1051                 /* SC PHY */
1052                 [1] =  3850,
1053                 [2] =  7700,
1054                 [3] =  9625,
1055                 [4] = 11550,
1056                 [5] = 12512, /* 1251.25 mbps */
1057                 [6] = 15400,
1058                 [7] = 19250,
1059                 [8] = 23100,
1060                 [9] = 25025,
1061                 [10] = 30800,
1062                 [11] = 38500,
1063                 [12] = 46200,
1064                 /* OFDM PHY */
1065                 [13] =  6930,
1066                 [14] =  8662, /* 866.25 mbps */
1067                 [15] = 13860,
1068                 [16] = 17325,
1069                 [17] = 20790,
1070                 [18] = 27720,
1071                 [19] = 34650,
1072                 [20] = 41580,
1073                 [21] = 45045,
1074                 [22] = 51975,
1075                 [23] = 62370,
1076                 [24] = 67568, /* 6756.75 mbps */
1077                 /* LP-SC PHY */
1078                 [25] =  6260,
1079                 [26] =  8340,
1080                 [27] = 11120,
1081                 [28] = 12510,
1082                 [29] = 16680,
1083                 [30] = 22240,
1084                 [31] = 25030,
1085         };
1086
1087         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1088                 return 0;
1089
1090         return __mcs2bitrate[rate->mcs];
1091 }
1092
1093 static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1094 {
1095         static const u32 __mcs2bitrate[] = {
1096                 /* control PHY */
1097                 [0] =   275,
1098                 /* SC PHY */
1099                 [1] =  3850,
1100                 [2] =  7700,
1101                 [3] =  9625,
1102                 [4] = 11550,
1103                 [5] = 12512, /* 1251.25 mbps */
1104                 [6] = 13475,
1105                 [7] = 15400,
1106                 [8] = 19250,
1107                 [9] = 23100,
1108                 [10] = 25025,
1109                 [11] = 26950,
1110                 [12] = 30800,
1111                 [13] = 38500,
1112                 [14] = 46200,
1113                 [15] = 50050,
1114                 [16] = 53900,
1115                 [17] = 57750,
1116                 [18] = 69300,
1117                 [19] = 75075,
1118                 [20] = 80850,
1119         };
1120
1121         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1122                 return 0;
1123
1124         return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1125 }
1126
1127 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1128 {
1129         static const u32 base[4][10] = {
1130                 {   6500000,
1131                    13000000,
1132                    19500000,
1133                    26000000,
1134                    39000000,
1135                    52000000,
1136                    58500000,
1137                    65000000,
1138                    78000000,
1139                 /* not in the spec, but some devices use this: */
1140                    86500000,
1141                 },
1142                 {  13500000,
1143                    27000000,
1144                    40500000,
1145                    54000000,
1146                    81000000,
1147                   108000000,
1148                   121500000,
1149                   135000000,
1150                   162000000,
1151                   180000000,
1152                 },
1153                 {  29300000,
1154                    58500000,
1155                    87800000,
1156                   117000000,
1157                   175500000,
1158                   234000000,
1159                   263300000,
1160                   292500000,
1161                   351000000,
1162                   390000000,
1163                 },
1164                 {  58500000,
1165                   117000000,
1166                   175500000,
1167                   234000000,
1168                   351000000,
1169                   468000000,
1170                   526500000,
1171                   585000000,
1172                   702000000,
1173                   780000000,
1174                 },
1175         };
1176         u32 bitrate;
1177         int idx;
1178
1179         if (rate->mcs > 9)
1180                 goto warn;
1181
1182         switch (rate->bw) {
1183         case RATE_INFO_BW_160:
1184                 idx = 3;
1185                 break;
1186         case RATE_INFO_BW_80:
1187                 idx = 2;
1188                 break;
1189         case RATE_INFO_BW_40:
1190                 idx = 1;
1191                 break;
1192         case RATE_INFO_BW_5:
1193         case RATE_INFO_BW_10:
1194         default:
1195                 goto warn;
1196         case RATE_INFO_BW_20:
1197                 idx = 0;
1198         }
1199
1200         bitrate = base[idx][rate->mcs];
1201         bitrate *= rate->nss;
1202
1203         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1204                 bitrate = (bitrate / 9) * 10;
1205
1206         /* do NOT round down here */
1207         return (bitrate + 50000) / 100000;
1208  warn:
1209         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1210                   rate->bw, rate->mcs, rate->nss);
1211         return 0;
1212 }
1213
1214 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1215 {
1216 #define SCALE 2048
1217         u16 mcs_divisors[12] = {
1218                 34133, /* 16.666666... */
1219                 17067, /*  8.333333... */
1220                 11378, /*  5.555555... */
1221                  8533, /*  4.166666... */
1222                  5689, /*  2.777777... */
1223                  4267, /*  2.083333... */
1224                  3923, /*  1.851851... */
1225                  3413, /*  1.666666... */
1226                  2844, /*  1.388888... */
1227                  2560, /*  1.250000... */
1228                  2276, /*  1.111111... */
1229                  2048, /*  1.000000... */
1230         };
1231         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1232         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1233         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1234         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1235         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1236         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1237         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1238         u64 tmp;
1239         u32 result;
1240
1241         if (WARN_ON_ONCE(rate->mcs > 11))
1242                 return 0;
1243
1244         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1245                 return 0;
1246         if (WARN_ON_ONCE(rate->he_ru_alloc >
1247                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1248                 return 0;
1249         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1250                 return 0;
1251
1252         if (rate->bw == RATE_INFO_BW_160)
1253                 result = rates_160M[rate->he_gi];
1254         else if (rate->bw == RATE_INFO_BW_80 ||
1255                  (rate->bw == RATE_INFO_BW_HE_RU &&
1256                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1257                 result = rates_969[rate->he_gi];
1258         else if (rate->bw == RATE_INFO_BW_40 ||
1259                  (rate->bw == RATE_INFO_BW_HE_RU &&
1260                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1261                 result = rates_484[rate->he_gi];
1262         else if (rate->bw == RATE_INFO_BW_20 ||
1263                  (rate->bw == RATE_INFO_BW_HE_RU &&
1264                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1265                 result = rates_242[rate->he_gi];
1266         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1267                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1268                 result = rates_106[rate->he_gi];
1269         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1270                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1271                 result = rates_52[rate->he_gi];
1272         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1273                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1274                 result = rates_26[rate->he_gi];
1275         else {
1276                 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1277                      rate->bw, rate->he_ru_alloc);
1278                 return 0;
1279         }
1280
1281         /* now scale to the appropriate MCS */
1282         tmp = result;
1283         tmp *= SCALE;
1284         do_div(tmp, mcs_divisors[rate->mcs]);
1285         result = tmp;
1286
1287         /* and take NSS, DCM into account */
1288         result = (result * rate->nss) / 8;
1289         if (rate->he_dcm)
1290                 result /= 2;
1291
1292         return result / 10000;
1293 }
1294
1295 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1296 {
1297         if (rate->flags & RATE_INFO_FLAGS_MCS)
1298                 return cfg80211_calculate_bitrate_ht(rate);
1299         if (rate->flags & RATE_INFO_FLAGS_DMG)
1300                 return cfg80211_calculate_bitrate_dmg(rate);
1301         if (rate->flags & RATE_INFO_FLAGS_EDMG)
1302                 return cfg80211_calculate_bitrate_edmg(rate);
1303         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1304                 return cfg80211_calculate_bitrate_vht(rate);
1305         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1306                 return cfg80211_calculate_bitrate_he(rate);
1307
1308         return rate->legacy;
1309 }
1310 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1311
1312 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1313                           enum ieee80211_p2p_attr_id attr,
1314                           u8 *buf, unsigned int bufsize)
1315 {
1316         u8 *out = buf;
1317         u16 attr_remaining = 0;
1318         bool desired_attr = false;
1319         u16 desired_len = 0;
1320
1321         while (len > 0) {
1322                 unsigned int iedatalen;
1323                 unsigned int copy;
1324                 const u8 *iedata;
1325
1326                 if (len < 2)
1327                         return -EILSEQ;
1328                 iedatalen = ies[1];
1329                 if (iedatalen + 2 > len)
1330                         return -EILSEQ;
1331
1332                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1333                         goto cont;
1334
1335                 if (iedatalen < 4)
1336                         goto cont;
1337
1338                 iedata = ies + 2;
1339
1340                 /* check WFA OUI, P2P subtype */
1341                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1342                     iedata[2] != 0x9a || iedata[3] != 0x09)
1343                         goto cont;
1344
1345                 iedatalen -= 4;
1346                 iedata += 4;
1347
1348                 /* check attribute continuation into this IE */
1349                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1350                 if (copy && desired_attr) {
1351                         desired_len += copy;
1352                         if (out) {
1353                                 memcpy(out, iedata, min(bufsize, copy));
1354                                 out += min(bufsize, copy);
1355                                 bufsize -= min(bufsize, copy);
1356                         }
1357
1358
1359                         if (copy == attr_remaining)
1360                                 return desired_len;
1361                 }
1362
1363                 attr_remaining -= copy;
1364                 if (attr_remaining)
1365                         goto cont;
1366
1367                 iedatalen -= copy;
1368                 iedata += copy;
1369
1370                 while (iedatalen > 0) {
1371                         u16 attr_len;
1372
1373                         /* P2P attribute ID & size must fit */
1374                         if (iedatalen < 3)
1375                                 return -EILSEQ;
1376                         desired_attr = iedata[0] == attr;
1377                         attr_len = get_unaligned_le16(iedata + 1);
1378                         iedatalen -= 3;
1379                         iedata += 3;
1380
1381                         copy = min_t(unsigned int, attr_len, iedatalen);
1382
1383                         if (desired_attr) {
1384                                 desired_len += copy;
1385                                 if (out) {
1386                                         memcpy(out, iedata, min(bufsize, copy));
1387                                         out += min(bufsize, copy);
1388                                         bufsize -= min(bufsize, copy);
1389                                 }
1390
1391                                 if (copy == attr_len)
1392                                         return desired_len;
1393                         }
1394
1395                         iedata += copy;
1396                         iedatalen -= copy;
1397                         attr_remaining = attr_len - copy;
1398                 }
1399
1400  cont:
1401                 len -= ies[1] + 2;
1402                 ies += ies[1] + 2;
1403         }
1404
1405         if (attr_remaining && desired_attr)
1406                 return -EILSEQ;
1407
1408         return -ENOENT;
1409 }
1410 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1411
1412 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1413 {
1414         int i;
1415
1416         /* Make sure array values are legal */
1417         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1418                 return false;
1419
1420         i = 0;
1421         while (i < n_ids) {
1422                 if (ids[i] == WLAN_EID_EXTENSION) {
1423                         if (id_ext && (ids[i + 1] == id))
1424                                 return true;
1425
1426                         i += 2;
1427                         continue;
1428                 }
1429
1430                 if (ids[i] == id && !id_ext)
1431                         return true;
1432
1433                 i++;
1434         }
1435         return false;
1436 }
1437
1438 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1439 {
1440         /* we assume a validly formed IEs buffer */
1441         u8 len = ies[pos + 1];
1442
1443         pos += 2 + len;
1444
1445         /* the IE itself must have 255 bytes for fragments to follow */
1446         if (len < 255)
1447                 return pos;
1448
1449         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1450                 len = ies[pos + 1];
1451                 pos += 2 + len;
1452         }
1453
1454         return pos;
1455 }
1456
1457 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1458                               const u8 *ids, int n_ids,
1459                               const u8 *after_ric, int n_after_ric,
1460                               size_t offset)
1461 {
1462         size_t pos = offset;
1463
1464         while (pos < ielen) {
1465                 u8 ext = 0;
1466
1467                 if (ies[pos] == WLAN_EID_EXTENSION)
1468                         ext = 2;
1469                 if ((pos + ext) >= ielen)
1470                         break;
1471
1472                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1473                                           ies[pos] == WLAN_EID_EXTENSION))
1474                         break;
1475
1476                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1477                         pos = skip_ie(ies, ielen, pos);
1478
1479                         while (pos < ielen) {
1480                                 if (ies[pos] == WLAN_EID_EXTENSION)
1481                                         ext = 2;
1482                                 else
1483                                         ext = 0;
1484
1485                                 if ((pos + ext) >= ielen)
1486                                         break;
1487
1488                                 if (!ieee80211_id_in_list(after_ric,
1489                                                           n_after_ric,
1490                                                           ies[pos + ext],
1491                                                           ext == 2))
1492                                         pos = skip_ie(ies, ielen, pos);
1493                                 else
1494                                         break;
1495                         }
1496                 } else {
1497                         pos = skip_ie(ies, ielen, pos);
1498                 }
1499         }
1500
1501         return pos;
1502 }
1503 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1504
1505 bool ieee80211_operating_class_to_band(u8 operating_class,
1506                                        enum nl80211_band *band)
1507 {
1508         switch (operating_class) {
1509         case 112:
1510         case 115 ... 127:
1511         case 128 ... 130:
1512                 *band = NL80211_BAND_5GHZ;
1513                 return true;
1514         case 131 ... 135:
1515                 *band = NL80211_BAND_6GHZ;
1516                 return true;
1517         case 81:
1518         case 82:
1519         case 83:
1520         case 84:
1521                 *band = NL80211_BAND_2GHZ;
1522                 return true;
1523         case 180:
1524                 *band = NL80211_BAND_60GHZ;
1525                 return true;
1526         }
1527
1528         return false;
1529 }
1530 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1531
1532 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1533                                           u8 *op_class)
1534 {
1535         u8 vht_opclass;
1536         u32 freq = chandef->center_freq1;
1537
1538         if (freq >= 2412 && freq <= 2472) {
1539                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1540                         return false;
1541
1542                 /* 2.407 GHz, channels 1..13 */
1543                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1544                         if (freq > chandef->chan->center_freq)
1545                                 *op_class = 83; /* HT40+ */
1546                         else
1547                                 *op_class = 84; /* HT40- */
1548                 } else {
1549                         *op_class = 81;
1550                 }
1551
1552                 return true;
1553         }
1554
1555         if (freq == 2484) {
1556                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1557                         return false;
1558
1559                 *op_class = 82; /* channel 14 */
1560                 return true;
1561         }
1562
1563         switch (chandef->width) {
1564         case NL80211_CHAN_WIDTH_80:
1565                 vht_opclass = 128;
1566                 break;
1567         case NL80211_CHAN_WIDTH_160:
1568                 vht_opclass = 129;
1569                 break;
1570         case NL80211_CHAN_WIDTH_80P80:
1571                 vht_opclass = 130;
1572                 break;
1573         case NL80211_CHAN_WIDTH_10:
1574         case NL80211_CHAN_WIDTH_5:
1575                 return false; /* unsupported for now */
1576         default:
1577                 vht_opclass = 0;
1578                 break;
1579         }
1580
1581         /* 5 GHz, channels 36..48 */
1582         if (freq >= 5180 && freq <= 5240) {
1583                 if (vht_opclass) {
1584                         *op_class = vht_opclass;
1585                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1586                         if (freq > chandef->chan->center_freq)
1587                                 *op_class = 116;
1588                         else
1589                                 *op_class = 117;
1590                 } else {
1591                         *op_class = 115;
1592                 }
1593
1594                 return true;
1595         }
1596
1597         /* 5 GHz, channels 52..64 */
1598         if (freq >= 5260 && freq <= 5320) {
1599                 if (vht_opclass) {
1600                         *op_class = vht_opclass;
1601                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1602                         if (freq > chandef->chan->center_freq)
1603                                 *op_class = 119;
1604                         else
1605                                 *op_class = 120;
1606                 } else {
1607                         *op_class = 118;
1608                 }
1609
1610                 return true;
1611         }
1612
1613         /* 5 GHz, channels 100..144 */
1614         if (freq >= 5500 && freq <= 5720) {
1615                 if (vht_opclass) {
1616                         *op_class = vht_opclass;
1617                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1618                         if (freq > chandef->chan->center_freq)
1619                                 *op_class = 122;
1620                         else
1621                                 *op_class = 123;
1622                 } else {
1623                         *op_class = 121;
1624                 }
1625
1626                 return true;
1627         }
1628
1629         /* 5 GHz, channels 149..169 */
1630         if (freq >= 5745 && freq <= 5845) {
1631                 if (vht_opclass) {
1632                         *op_class = vht_opclass;
1633                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1634                         if (freq > chandef->chan->center_freq)
1635                                 *op_class = 126;
1636                         else
1637                                 *op_class = 127;
1638                 } else if (freq <= 5805) {
1639                         *op_class = 124;
1640                 } else {
1641                         *op_class = 125;
1642                 }
1643
1644                 return true;
1645         }
1646
1647         /* 56.16 GHz, channel 1..4 */
1648         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1649                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1650                         return false;
1651
1652                 *op_class = 180;
1653                 return true;
1654         }
1655
1656         /* not supported yet */
1657         return false;
1658 }
1659 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1660
1661 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1662                                        u32 *beacon_int_gcd,
1663                                        bool *beacon_int_different)
1664 {
1665         struct wireless_dev *wdev;
1666
1667         *beacon_int_gcd = 0;
1668         *beacon_int_different = false;
1669
1670         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1671                 if (!wdev->beacon_interval)
1672                         continue;
1673
1674                 if (!*beacon_int_gcd) {
1675                         *beacon_int_gcd = wdev->beacon_interval;
1676                         continue;
1677                 }
1678
1679                 if (wdev->beacon_interval == *beacon_int_gcd)
1680                         continue;
1681
1682                 *beacon_int_different = true;
1683                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1684         }
1685
1686         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1687                 if (*beacon_int_gcd)
1688                         *beacon_int_different = true;
1689                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1690         }
1691 }
1692
1693 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1694                                  enum nl80211_iftype iftype, u32 beacon_int)
1695 {
1696         /*
1697          * This is just a basic pre-condition check; if interface combinations
1698          * are possible the driver must already be checking those with a call
1699          * to cfg80211_check_combinations(), in which case we'll validate more
1700          * through the cfg80211_calculate_bi_data() call and code in
1701          * cfg80211_iter_combinations().
1702          */
1703
1704         if (beacon_int < 10 || beacon_int > 10000)
1705                 return -EINVAL;
1706
1707         return 0;
1708 }
1709
1710 int cfg80211_iter_combinations(struct wiphy *wiphy,
1711                                struct iface_combination_params *params,
1712                                void (*iter)(const struct ieee80211_iface_combination *c,
1713                                             void *data),
1714                                void *data)
1715 {
1716         const struct ieee80211_regdomain *regdom;
1717         enum nl80211_dfs_regions region = 0;
1718         int i, j, iftype;
1719         int num_interfaces = 0;
1720         u32 used_iftypes = 0;
1721         u32 beacon_int_gcd;
1722         bool beacon_int_different;
1723
1724         /*
1725          * This is a bit strange, since the iteration used to rely only on
1726          * the data given by the driver, but here it now relies on context,
1727          * in form of the currently operating interfaces.
1728          * This is OK for all current users, and saves us from having to
1729          * push the GCD calculations into all the drivers.
1730          * In the future, this should probably rely more on data that's in
1731          * cfg80211 already - the only thing not would appear to be any new
1732          * interfaces (while being brought up) and channel/radar data.
1733          */
1734         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1735                                    &beacon_int_gcd, &beacon_int_different);
1736
1737         if (params->radar_detect) {
1738                 rcu_read_lock();
1739                 regdom = rcu_dereference(cfg80211_regdomain);
1740                 if (regdom)
1741                         region = regdom->dfs_region;
1742                 rcu_read_unlock();
1743         }
1744
1745         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1746                 num_interfaces += params->iftype_num[iftype];
1747                 if (params->iftype_num[iftype] > 0 &&
1748                     !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1749                         used_iftypes |= BIT(iftype);
1750         }
1751
1752         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1753                 const struct ieee80211_iface_combination *c;
1754                 struct ieee80211_iface_limit *limits;
1755                 u32 all_iftypes = 0;
1756
1757                 c = &wiphy->iface_combinations[i];
1758
1759                 if (num_interfaces > c->max_interfaces)
1760                         continue;
1761                 if (params->num_different_channels > c->num_different_channels)
1762                         continue;
1763
1764                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1765                                  GFP_KERNEL);
1766                 if (!limits)
1767                         return -ENOMEM;
1768
1769                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1770                         if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
1771                                 continue;
1772                         for (j = 0; j < c->n_limits; j++) {
1773                                 all_iftypes |= limits[j].types;
1774                                 if (!(limits[j].types & BIT(iftype)))
1775                                         continue;
1776                                 if (limits[j].max < params->iftype_num[iftype])
1777                                         goto cont;
1778                                 limits[j].max -= params->iftype_num[iftype];
1779                         }
1780                 }
1781
1782                 if (params->radar_detect !=
1783                         (c->radar_detect_widths & params->radar_detect))
1784                         goto cont;
1785
1786                 if (params->radar_detect && c->radar_detect_regions &&
1787                     !(c->radar_detect_regions & BIT(region)))
1788                         goto cont;
1789
1790                 /* Finally check that all iftypes that we're currently
1791                  * using are actually part of this combination. If they
1792                  * aren't then we can't use this combination and have
1793                  * to continue to the next.
1794                  */
1795                 if ((all_iftypes & used_iftypes) != used_iftypes)
1796                         goto cont;
1797
1798                 if (beacon_int_gcd) {
1799                         if (c->beacon_int_min_gcd &&
1800                             beacon_int_gcd < c->beacon_int_min_gcd)
1801                                 goto cont;
1802                         if (!c->beacon_int_min_gcd && beacon_int_different)
1803                                 goto cont;
1804                 }
1805
1806                 /* This combination covered all interface types and
1807                  * supported the requested numbers, so we're good.
1808                  */
1809
1810                 (*iter)(c, data);
1811  cont:
1812                 kfree(limits);
1813         }
1814
1815         return 0;
1816 }
1817 EXPORT_SYMBOL(cfg80211_iter_combinations);
1818
1819 static void
1820 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1821                           void *data)
1822 {
1823         int *num = data;
1824         (*num)++;
1825 }
1826
1827 int cfg80211_check_combinations(struct wiphy *wiphy,
1828                                 struct iface_combination_params *params)
1829 {
1830         int err, num = 0;
1831
1832         err = cfg80211_iter_combinations(wiphy, params,
1833                                          cfg80211_iter_sum_ifcombs, &num);
1834         if (err)
1835                 return err;
1836         if (num == 0)
1837                 return -EBUSY;
1838
1839         return 0;
1840 }
1841 EXPORT_SYMBOL(cfg80211_check_combinations);
1842
1843 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1844                            const u8 *rates, unsigned int n_rates,
1845                            u32 *mask)
1846 {
1847         int i, j;
1848
1849         if (!sband)
1850                 return -EINVAL;
1851
1852         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1853                 return -EINVAL;
1854
1855         *mask = 0;
1856
1857         for (i = 0; i < n_rates; i++) {
1858                 int rate = (rates[i] & 0x7f) * 5;
1859                 bool found = false;
1860
1861                 for (j = 0; j < sband->n_bitrates; j++) {
1862                         if (sband->bitrates[j].bitrate == rate) {
1863                                 found = true;
1864                                 *mask |= BIT(j);
1865                                 break;
1866                         }
1867                 }
1868                 if (!found)
1869                         return -EINVAL;
1870         }
1871
1872         /*
1873          * mask must have at least one bit set here since we
1874          * didn't accept a 0-length rates array nor allowed
1875          * entries in the array that didn't exist
1876          */
1877
1878         return 0;
1879 }
1880
1881 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1882 {
1883         enum nl80211_band band;
1884         unsigned int n_channels = 0;
1885
1886         for (band = 0; band < NUM_NL80211_BANDS; band++)
1887                 if (wiphy->bands[band])
1888                         n_channels += wiphy->bands[band]->n_channels;
1889
1890         return n_channels;
1891 }
1892 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1893
1894 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1895                          struct station_info *sinfo)
1896 {
1897         struct cfg80211_registered_device *rdev;
1898         struct wireless_dev *wdev;
1899
1900         wdev = dev->ieee80211_ptr;
1901         if (!wdev)
1902                 return -EOPNOTSUPP;
1903
1904         rdev = wiphy_to_rdev(wdev->wiphy);
1905         if (!rdev->ops->get_station)
1906                 return -EOPNOTSUPP;
1907
1908         memset(sinfo, 0, sizeof(*sinfo));
1909
1910         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1911 }
1912 EXPORT_SYMBOL(cfg80211_get_station);
1913
1914 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1915 {
1916         int i;
1917
1918         if (!f)
1919                 return;
1920
1921         kfree(f->serv_spec_info);
1922         kfree(f->srf_bf);
1923         kfree(f->srf_macs);
1924         for (i = 0; i < f->num_rx_filters; i++)
1925                 kfree(f->rx_filters[i].filter);
1926
1927         for (i = 0; i < f->num_tx_filters; i++)
1928                 kfree(f->tx_filters[i].filter);
1929
1930         kfree(f->rx_filters);
1931         kfree(f->tx_filters);
1932         kfree(f);
1933 }
1934 EXPORT_SYMBOL(cfg80211_free_nan_func);
1935
1936 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1937                                 u32 center_freq_khz, u32 bw_khz)
1938 {
1939         u32 start_freq_khz, end_freq_khz;
1940
1941         start_freq_khz = center_freq_khz - (bw_khz / 2);
1942         end_freq_khz = center_freq_khz + (bw_khz / 2);
1943
1944         if (start_freq_khz >= freq_range->start_freq_khz &&
1945             end_freq_khz <= freq_range->end_freq_khz)
1946                 return true;
1947
1948         return false;
1949 }
1950
1951 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1952 {
1953         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1954                                 sizeof(*(sinfo->pertid)),
1955                                 gfp);
1956         if (!sinfo->pertid)
1957                 return -ENOMEM;
1958
1959         return 0;
1960 }
1961 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1962
1963 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1964 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1965 const unsigned char rfc1042_header[] __aligned(2) =
1966         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1967 EXPORT_SYMBOL(rfc1042_header);
1968
1969 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1970 const unsigned char bridge_tunnel_header[] __aligned(2) =
1971         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1972 EXPORT_SYMBOL(bridge_tunnel_header);
1973
1974 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1975 struct iapp_layer2_update {
1976         u8 da[ETH_ALEN];        /* broadcast */
1977         u8 sa[ETH_ALEN];        /* STA addr */
1978         __be16 len;             /* 6 */
1979         u8 dsap;                /* 0 */
1980         u8 ssap;                /* 0 */
1981         u8 control;
1982         u8 xid_info[3];
1983 } __packed;
1984
1985 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1986 {
1987         struct iapp_layer2_update *msg;
1988         struct sk_buff *skb;
1989
1990         /* Send Level 2 Update Frame to update forwarding tables in layer 2
1991          * bridge devices */
1992
1993         skb = dev_alloc_skb(sizeof(*msg));
1994         if (!skb)
1995                 return;
1996         msg = skb_put(skb, sizeof(*msg));
1997
1998         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1999          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2000
2001         eth_broadcast_addr(msg->da);
2002         ether_addr_copy(msg->sa, addr);
2003         msg->len = htons(6);
2004         msg->dsap = 0;
2005         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
2006         msg->control = 0xaf;    /* XID response lsb.1111F101.
2007                                  * F=0 (no poll command; unsolicited frame) */
2008         msg->xid_info[0] = 0x81;        /* XID format identifier */
2009         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
2010         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
2011
2012         skb->dev = dev;
2013         skb->protocol = eth_type_trans(skb, dev);
2014         memset(skb->cb, 0, sizeof(skb->cb));
2015         netif_rx_ni(skb);
2016 }
2017 EXPORT_SYMBOL(cfg80211_send_layer2_update);
2018
2019 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2020                               enum ieee80211_vht_chanwidth bw,
2021                               int mcs, bool ext_nss_bw_capable)
2022 {
2023         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2024         int max_vht_nss = 0;
2025         int ext_nss_bw;
2026         int supp_width;
2027         int i, mcs_encoding;
2028
2029         if (map == 0xffff)
2030                 return 0;
2031
2032         if (WARN_ON(mcs > 9))
2033                 return 0;
2034         if (mcs <= 7)
2035                 mcs_encoding = 0;
2036         else if (mcs == 8)
2037                 mcs_encoding = 1;
2038         else
2039                 mcs_encoding = 2;
2040
2041         /* find max_vht_nss for the given MCS */
2042         for (i = 7; i >= 0; i--) {
2043                 int supp = (map >> (2 * i)) & 3;
2044
2045                 if (supp == 3)
2046                         continue;
2047
2048                 if (supp >= mcs_encoding) {
2049                         max_vht_nss = i + 1;
2050                         break;
2051                 }
2052         }
2053
2054         if (!(cap->supp_mcs.tx_mcs_map &
2055                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2056                 return max_vht_nss;
2057
2058         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2059                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2060         supp_width = le32_get_bits(cap->vht_cap_info,
2061                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2062
2063         /* if not capable, treat ext_nss_bw as 0 */
2064         if (!ext_nss_bw_capable)
2065                 ext_nss_bw = 0;
2066
2067         /* This is invalid */
2068         if (supp_width == 3)
2069                 return 0;
2070
2071         /* This is an invalid combination so pretend nothing is supported */
2072         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2073                 return 0;
2074
2075         /*
2076          * Cover all the special cases according to IEEE 802.11-2016
2077          * Table 9-250. All other cases are either factor of 1 or not
2078          * valid/supported.
2079          */
2080         switch (bw) {
2081         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2082         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2083                 if ((supp_width == 1 || supp_width == 2) &&
2084                     ext_nss_bw == 3)
2085                         return 2 * max_vht_nss;
2086                 break;
2087         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2088                 if (supp_width == 0 &&
2089                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2090                         return max_vht_nss / 2;
2091                 if (supp_width == 0 &&
2092                     ext_nss_bw == 3)
2093                         return (3 * max_vht_nss) / 4;
2094                 if (supp_width == 1 &&
2095                     ext_nss_bw == 3)
2096                         return 2 * max_vht_nss;
2097                 break;
2098         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2099                 if (supp_width == 0 && ext_nss_bw == 1)
2100                         return 0; /* not possible */
2101                 if (supp_width == 0 &&
2102                     ext_nss_bw == 2)
2103                         return max_vht_nss / 2;
2104                 if (supp_width == 0 &&
2105                     ext_nss_bw == 3)
2106                         return (3 * max_vht_nss) / 4;
2107                 if (supp_width == 1 &&
2108                     ext_nss_bw == 0)
2109                         return 0; /* not possible */
2110                 if (supp_width == 1 &&
2111                     ext_nss_bw == 1)
2112                         return max_vht_nss / 2;
2113                 if (supp_width == 1 &&
2114                     ext_nss_bw == 2)
2115                         return (3 * max_vht_nss) / 4;
2116                 break;
2117         }
2118
2119         /* not covered or invalid combination received */
2120         return max_vht_nss;
2121 }
2122 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2123
2124 bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2125                              bool is_4addr, u8 check_swif)
2126
2127 {
2128         bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2129
2130         switch (check_swif) {
2131         case 0:
2132                 if (is_vlan && is_4addr)
2133                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2134                 return wiphy->interface_modes & BIT(iftype);
2135         case 1:
2136                 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2137                         return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2138                 return wiphy->software_iftypes & BIT(iftype);
2139         default:
2140                 break;
2141         }
2142
2143         return false;
2144 }
2145 EXPORT_SYMBOL(cfg80211_iftype_allowed);