]> asedeno.scripts.mit.edu Git - linux.git/blob - net/wireless/util.c
Merge tag 'gvt-fixes-2018-11-26' of https://github.com/intel/gvt-linux into drm-intel...
[linux.git] / net / wireless / util.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Wireless utility functions
4  *
5  * Copyright 2007-2009  Johannes Berg <johannes@sipsolutions.net>
6  * Copyright 2013-2014  Intel Mobile Communications GmbH
7  * Copyright 2017       Intel Deutschland GmbH
8  * Copyright (C) 2018 Intel Corporation
9  */
10 #include <linux/export.h>
11 #include <linux/bitops.h>
12 #include <linux/etherdevice.h>
13 #include <linux/slab.h>
14 #include <linux/ieee80211.h>
15 #include <net/cfg80211.h>
16 #include <net/ip.h>
17 #include <net/dsfield.h>
18 #include <linux/if_vlan.h>
19 #include <linux/mpls.h>
20 #include <linux/gcd.h>
21 #include <linux/bitfield.h>
22 #include "core.h"
23 #include "rdev-ops.h"
24
25
26 struct ieee80211_rate *
27 ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
28                             u32 basic_rates, int bitrate)
29 {
30         struct ieee80211_rate *result = &sband->bitrates[0];
31         int i;
32
33         for (i = 0; i < sband->n_bitrates; i++) {
34                 if (!(basic_rates & BIT(i)))
35                         continue;
36                 if (sband->bitrates[i].bitrate > bitrate)
37                         continue;
38                 result = &sband->bitrates[i];
39         }
40
41         return result;
42 }
43 EXPORT_SYMBOL(ieee80211_get_response_rate);
44
45 u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
46                               enum nl80211_bss_scan_width scan_width)
47 {
48         struct ieee80211_rate *bitrates;
49         u32 mandatory_rates = 0;
50         enum ieee80211_rate_flags mandatory_flag;
51         int i;
52
53         if (WARN_ON(!sband))
54                 return 1;
55
56         if (sband->band == NL80211_BAND_2GHZ) {
57                 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
58                     scan_width == NL80211_BSS_CHAN_WIDTH_10)
59                         mandatory_flag = IEEE80211_RATE_MANDATORY_G;
60                 else
61                         mandatory_flag = IEEE80211_RATE_MANDATORY_B;
62         } else {
63                 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
64         }
65
66         bitrates = sband->bitrates;
67         for (i = 0; i < sband->n_bitrates; i++)
68                 if (bitrates[i].flags & mandatory_flag)
69                         mandatory_rates |= BIT(i);
70         return mandatory_rates;
71 }
72 EXPORT_SYMBOL(ieee80211_mandatory_rates);
73
74 int ieee80211_channel_to_frequency(int chan, enum nl80211_band band)
75 {
76         /* see 802.11 17.3.8.3.2 and Annex J
77          * there are overlapping channel numbers in 5GHz and 2GHz bands */
78         if (chan <= 0)
79                 return 0; /* not supported */
80         switch (band) {
81         case NL80211_BAND_2GHZ:
82                 if (chan == 14)
83                         return 2484;
84                 else if (chan < 14)
85                         return 2407 + chan * 5;
86                 break;
87         case NL80211_BAND_5GHZ:
88                 if (chan >= 182 && chan <= 196)
89                         return 4000 + chan * 5;
90                 else
91                         return 5000 + chan * 5;
92                 break;
93         case NL80211_BAND_60GHZ:
94                 if (chan < 7)
95                         return 56160 + chan * 2160;
96                 break;
97         default:
98                 ;
99         }
100         return 0; /* not supported */
101 }
102 EXPORT_SYMBOL(ieee80211_channel_to_frequency);
103
104 int ieee80211_frequency_to_channel(int freq)
105 {
106         /* see 802.11 17.3.8.3.2 and Annex J */
107         if (freq == 2484)
108                 return 14;
109         else if (freq < 2484)
110                 return (freq - 2407) / 5;
111         else if (freq >= 4910 && freq <= 4980)
112                 return (freq - 4000) / 5;
113         else if (freq <= 45000) /* DMG band lower limit */
114                 return (freq - 5000) / 5;
115         else if (freq >= 58320 && freq <= 70200)
116                 return (freq - 56160) / 2160;
117         else
118                 return 0;
119 }
120 EXPORT_SYMBOL(ieee80211_frequency_to_channel);
121
122 struct ieee80211_channel *ieee80211_get_channel(struct wiphy *wiphy, int freq)
123 {
124         enum nl80211_band band;
125         struct ieee80211_supported_band *sband;
126         int i;
127
128         for (band = 0; band < NUM_NL80211_BANDS; band++) {
129                 sband = wiphy->bands[band];
130
131                 if (!sband)
132                         continue;
133
134                 for (i = 0; i < sband->n_channels; i++) {
135                         if (sband->channels[i].center_freq == freq)
136                                 return &sband->channels[i];
137                 }
138         }
139
140         return NULL;
141 }
142 EXPORT_SYMBOL(ieee80211_get_channel);
143
144 static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
145 {
146         int i, want;
147
148         switch (sband->band) {
149         case NL80211_BAND_5GHZ:
150                 want = 3;
151                 for (i = 0; i < sband->n_bitrates; i++) {
152                         if (sband->bitrates[i].bitrate == 60 ||
153                             sband->bitrates[i].bitrate == 120 ||
154                             sband->bitrates[i].bitrate == 240) {
155                                 sband->bitrates[i].flags |=
156                                         IEEE80211_RATE_MANDATORY_A;
157                                 want--;
158                         }
159                 }
160                 WARN_ON(want);
161                 break;
162         case NL80211_BAND_2GHZ:
163                 want = 7;
164                 for (i = 0; i < sband->n_bitrates; i++) {
165                         switch (sband->bitrates[i].bitrate) {
166                         case 10:
167                         case 20:
168                         case 55:
169                         case 110:
170                                 sband->bitrates[i].flags |=
171                                         IEEE80211_RATE_MANDATORY_B |
172                                         IEEE80211_RATE_MANDATORY_G;
173                                 want--;
174                                 break;
175                         case 60:
176                         case 120:
177                         case 240:
178                                 sband->bitrates[i].flags |=
179                                         IEEE80211_RATE_MANDATORY_G;
180                                 want--;
181                                 /* fall through */
182                         default:
183                                 sband->bitrates[i].flags |=
184                                         IEEE80211_RATE_ERP_G;
185                                 break;
186                         }
187                 }
188                 WARN_ON(want != 0 && want != 3);
189                 break;
190         case NL80211_BAND_60GHZ:
191                 /* check for mandatory HT MCS 1..4 */
192                 WARN_ON(!sband->ht_cap.ht_supported);
193                 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
194                 break;
195         case NUM_NL80211_BANDS:
196         default:
197                 WARN_ON(1);
198                 break;
199         }
200 }
201
202 void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
203 {
204         enum nl80211_band band;
205
206         for (band = 0; band < NUM_NL80211_BANDS; band++)
207                 if (wiphy->bands[band])
208                         set_mandatory_flags_band(wiphy->bands[band]);
209 }
210
211 bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
212 {
213         int i;
214         for (i = 0; i < wiphy->n_cipher_suites; i++)
215                 if (cipher == wiphy->cipher_suites[i])
216                         return true;
217         return false;
218 }
219
220 int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
221                                    struct key_params *params, int key_idx,
222                                    bool pairwise, const u8 *mac_addr)
223 {
224         if (key_idx < 0 || key_idx > 5)
225                 return -EINVAL;
226
227         if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
228                 return -EINVAL;
229
230         if (pairwise && !mac_addr)
231                 return -EINVAL;
232
233         switch (params->cipher) {
234         case WLAN_CIPHER_SUITE_TKIP:
235         case WLAN_CIPHER_SUITE_CCMP:
236         case WLAN_CIPHER_SUITE_CCMP_256:
237         case WLAN_CIPHER_SUITE_GCMP:
238         case WLAN_CIPHER_SUITE_GCMP_256:
239                 /* Disallow pairwise keys with non-zero index unless it's WEP
240                  * or a vendor specific cipher (because current deployments use
241                  * pairwise WEP keys with non-zero indices and for vendor
242                  * specific ciphers this should be validated in the driver or
243                  * hardware level - but 802.11i clearly specifies to use zero)
244                  */
245                 if (pairwise && key_idx)
246                         return -EINVAL;
247                 break;
248         case WLAN_CIPHER_SUITE_AES_CMAC:
249         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
250         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
251         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
252                 /* Disallow BIP (group-only) cipher as pairwise cipher */
253                 if (pairwise)
254                         return -EINVAL;
255                 if (key_idx < 4)
256                         return -EINVAL;
257                 break;
258         case WLAN_CIPHER_SUITE_WEP40:
259         case WLAN_CIPHER_SUITE_WEP104:
260                 if (key_idx > 3)
261                         return -EINVAL;
262         default:
263                 break;
264         }
265
266         switch (params->cipher) {
267         case WLAN_CIPHER_SUITE_WEP40:
268                 if (params->key_len != WLAN_KEY_LEN_WEP40)
269                         return -EINVAL;
270                 break;
271         case WLAN_CIPHER_SUITE_TKIP:
272                 if (params->key_len != WLAN_KEY_LEN_TKIP)
273                         return -EINVAL;
274                 break;
275         case WLAN_CIPHER_SUITE_CCMP:
276                 if (params->key_len != WLAN_KEY_LEN_CCMP)
277                         return -EINVAL;
278                 break;
279         case WLAN_CIPHER_SUITE_CCMP_256:
280                 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
281                         return -EINVAL;
282                 break;
283         case WLAN_CIPHER_SUITE_GCMP:
284                 if (params->key_len != WLAN_KEY_LEN_GCMP)
285                         return -EINVAL;
286                 break;
287         case WLAN_CIPHER_SUITE_GCMP_256:
288                 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
289                         return -EINVAL;
290                 break;
291         case WLAN_CIPHER_SUITE_WEP104:
292                 if (params->key_len != WLAN_KEY_LEN_WEP104)
293                         return -EINVAL;
294                 break;
295         case WLAN_CIPHER_SUITE_AES_CMAC:
296                 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
297                         return -EINVAL;
298                 break;
299         case WLAN_CIPHER_SUITE_BIP_CMAC_256:
300                 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
301                         return -EINVAL;
302                 break;
303         case WLAN_CIPHER_SUITE_BIP_GMAC_128:
304                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
305                         return -EINVAL;
306                 break;
307         case WLAN_CIPHER_SUITE_BIP_GMAC_256:
308                 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
309                         return -EINVAL;
310                 break;
311         default:
312                 /*
313                  * We don't know anything about this algorithm,
314                  * allow using it -- but the driver must check
315                  * all parameters! We still check below whether
316                  * or not the driver supports this algorithm,
317                  * of course.
318                  */
319                 break;
320         }
321
322         if (params->seq) {
323                 switch (params->cipher) {
324                 case WLAN_CIPHER_SUITE_WEP40:
325                 case WLAN_CIPHER_SUITE_WEP104:
326                         /* These ciphers do not use key sequence */
327                         return -EINVAL;
328                 case WLAN_CIPHER_SUITE_TKIP:
329                 case WLAN_CIPHER_SUITE_CCMP:
330                 case WLAN_CIPHER_SUITE_CCMP_256:
331                 case WLAN_CIPHER_SUITE_GCMP:
332                 case WLAN_CIPHER_SUITE_GCMP_256:
333                 case WLAN_CIPHER_SUITE_AES_CMAC:
334                 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
335                 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
336                 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
337                         if (params->seq_len != 6)
338                                 return -EINVAL;
339                         break;
340                 }
341         }
342
343         if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
344                 return -EINVAL;
345
346         return 0;
347 }
348
349 unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
350 {
351         unsigned int hdrlen = 24;
352
353         if (ieee80211_is_data(fc)) {
354                 if (ieee80211_has_a4(fc))
355                         hdrlen = 30;
356                 if (ieee80211_is_data_qos(fc)) {
357                         hdrlen += IEEE80211_QOS_CTL_LEN;
358                         if (ieee80211_has_order(fc))
359                                 hdrlen += IEEE80211_HT_CTL_LEN;
360                 }
361                 goto out;
362         }
363
364         if (ieee80211_is_mgmt(fc)) {
365                 if (ieee80211_has_order(fc))
366                         hdrlen += IEEE80211_HT_CTL_LEN;
367                 goto out;
368         }
369
370         if (ieee80211_is_ctl(fc)) {
371                 /*
372                  * ACK and CTS are 10 bytes, all others 16. To see how
373                  * to get this condition consider
374                  *   subtype mask:   0b0000000011110000 (0x00F0)
375                  *   ACK subtype:    0b0000000011010000 (0x00D0)
376                  *   CTS subtype:    0b0000000011000000 (0x00C0)
377                  *   bits that matter:         ^^^      (0x00E0)
378                  *   value of those: 0b0000000011000000 (0x00C0)
379                  */
380                 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
381                         hdrlen = 10;
382                 else
383                         hdrlen = 16;
384         }
385 out:
386         return hdrlen;
387 }
388 EXPORT_SYMBOL(ieee80211_hdrlen);
389
390 unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
391 {
392         const struct ieee80211_hdr *hdr =
393                         (const struct ieee80211_hdr *)skb->data;
394         unsigned int hdrlen;
395
396         if (unlikely(skb->len < 10))
397                 return 0;
398         hdrlen = ieee80211_hdrlen(hdr->frame_control);
399         if (unlikely(hdrlen > skb->len))
400                 return 0;
401         return hdrlen;
402 }
403 EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
404
405 static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
406 {
407         int ae = flags & MESH_FLAGS_AE;
408         /* 802.11-2012, 8.2.4.7.3 */
409         switch (ae) {
410         default:
411         case 0:
412                 return 6;
413         case MESH_FLAGS_AE_A4:
414                 return 12;
415         case MESH_FLAGS_AE_A5_A6:
416                 return 18;
417         }
418 }
419
420 unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
421 {
422         return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
423 }
424 EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
425
426 int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
427                                   const u8 *addr, enum nl80211_iftype iftype,
428                                   u8 data_offset)
429 {
430         struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
431         struct {
432                 u8 hdr[ETH_ALEN] __aligned(2);
433                 __be16 proto;
434         } payload;
435         struct ethhdr tmp;
436         u16 hdrlen;
437         u8 mesh_flags = 0;
438
439         if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
440                 return -1;
441
442         hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
443         if (skb->len < hdrlen + 8)
444                 return -1;
445
446         /* convert IEEE 802.11 header + possible LLC headers into Ethernet
447          * header
448          * IEEE 802.11 address fields:
449          * ToDS FromDS Addr1 Addr2 Addr3 Addr4
450          *   0     0   DA    SA    BSSID n/a
451          *   0     1   DA    BSSID SA    n/a
452          *   1     0   BSSID SA    DA    n/a
453          *   1     1   RA    TA    DA    SA
454          */
455         memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
456         memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
457
458         if (iftype == NL80211_IFTYPE_MESH_POINT)
459                 skb_copy_bits(skb, hdrlen, &mesh_flags, 1);
460
461         mesh_flags &= MESH_FLAGS_AE;
462
463         switch (hdr->frame_control &
464                 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
465         case cpu_to_le16(IEEE80211_FCTL_TODS):
466                 if (unlikely(iftype != NL80211_IFTYPE_AP &&
467                              iftype != NL80211_IFTYPE_AP_VLAN &&
468                              iftype != NL80211_IFTYPE_P2P_GO))
469                         return -1;
470                 break;
471         case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
472                 if (unlikely(iftype != NL80211_IFTYPE_WDS &&
473                              iftype != NL80211_IFTYPE_MESH_POINT &&
474                              iftype != NL80211_IFTYPE_AP_VLAN &&
475                              iftype != NL80211_IFTYPE_STATION))
476                         return -1;
477                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
478                         if (mesh_flags == MESH_FLAGS_AE_A4)
479                                 return -1;
480                         if (mesh_flags == MESH_FLAGS_AE_A5_A6) {
481                                 skb_copy_bits(skb, hdrlen +
482                                         offsetof(struct ieee80211s_hdr, eaddr1),
483                                         tmp.h_dest, 2 * ETH_ALEN);
484                         }
485                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
486                 }
487                 break;
488         case cpu_to_le16(IEEE80211_FCTL_FROMDS):
489                 if ((iftype != NL80211_IFTYPE_STATION &&
490                      iftype != NL80211_IFTYPE_P2P_CLIENT &&
491                      iftype != NL80211_IFTYPE_MESH_POINT) ||
492                     (is_multicast_ether_addr(tmp.h_dest) &&
493                      ether_addr_equal(tmp.h_source, addr)))
494                         return -1;
495                 if (iftype == NL80211_IFTYPE_MESH_POINT) {
496                         if (mesh_flags == MESH_FLAGS_AE_A5_A6)
497                                 return -1;
498                         if (mesh_flags == MESH_FLAGS_AE_A4)
499                                 skb_copy_bits(skb, hdrlen +
500                                         offsetof(struct ieee80211s_hdr, eaddr1),
501                                         tmp.h_source, ETH_ALEN);
502                         hdrlen += __ieee80211_get_mesh_hdrlen(mesh_flags);
503                 }
504                 break;
505         case cpu_to_le16(0):
506                 if (iftype != NL80211_IFTYPE_ADHOC &&
507                     iftype != NL80211_IFTYPE_STATION &&
508                     iftype != NL80211_IFTYPE_OCB)
509                                 return -1;
510                 break;
511         }
512
513         skb_copy_bits(skb, hdrlen, &payload, sizeof(payload));
514         tmp.h_proto = payload.proto;
515
516         if (likely((ether_addr_equal(payload.hdr, rfc1042_header) &&
517                     tmp.h_proto != htons(ETH_P_AARP) &&
518                     tmp.h_proto != htons(ETH_P_IPX)) ||
519                    ether_addr_equal(payload.hdr, bridge_tunnel_header)))
520                 /* remove RFC1042 or Bridge-Tunnel encapsulation and
521                  * replace EtherType */
522                 hdrlen += ETH_ALEN + 2;
523         else
524                 tmp.h_proto = htons(skb->len - hdrlen);
525
526         pskb_pull(skb, hdrlen);
527
528         if (!ehdr)
529                 ehdr = skb_push(skb, sizeof(struct ethhdr));
530         memcpy(ehdr, &tmp, sizeof(tmp));
531
532         return 0;
533 }
534 EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
535
536 static void
537 __frame_add_frag(struct sk_buff *skb, struct page *page,
538                  void *ptr, int len, int size)
539 {
540         struct skb_shared_info *sh = skb_shinfo(skb);
541         int page_offset;
542
543         page_ref_inc(page);
544         page_offset = ptr - page_address(page);
545         skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
546 }
547
548 static void
549 __ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
550                             int offset, int len)
551 {
552         struct skb_shared_info *sh = skb_shinfo(skb);
553         const skb_frag_t *frag = &sh->frags[0];
554         struct page *frag_page;
555         void *frag_ptr;
556         int frag_len, frag_size;
557         int head_size = skb->len - skb->data_len;
558         int cur_len;
559
560         frag_page = virt_to_head_page(skb->head);
561         frag_ptr = skb->data;
562         frag_size = head_size;
563
564         while (offset >= frag_size) {
565                 offset -= frag_size;
566                 frag_page = skb_frag_page(frag);
567                 frag_ptr = skb_frag_address(frag);
568                 frag_size = skb_frag_size(frag);
569                 frag++;
570         }
571
572         frag_ptr += offset;
573         frag_len = frag_size - offset;
574
575         cur_len = min(len, frag_len);
576
577         __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
578         len -= cur_len;
579
580         while (len > 0) {
581                 frag_len = skb_frag_size(frag);
582                 cur_len = min(len, frag_len);
583                 __frame_add_frag(frame, skb_frag_page(frag),
584                                  skb_frag_address(frag), cur_len, frag_len);
585                 len -= cur_len;
586                 frag++;
587         }
588 }
589
590 static struct sk_buff *
591 __ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
592                        int offset, int len, bool reuse_frag)
593 {
594         struct sk_buff *frame;
595         int cur_len = len;
596
597         if (skb->len - offset < len)
598                 return NULL;
599
600         /*
601          * When reusing framents, copy some data to the head to simplify
602          * ethernet header handling and speed up protocol header processing
603          * in the stack later.
604          */
605         if (reuse_frag)
606                 cur_len = min_t(int, len, 32);
607
608         /*
609          * Allocate and reserve two bytes more for payload
610          * alignment since sizeof(struct ethhdr) is 14.
611          */
612         frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
613         if (!frame)
614                 return NULL;
615
616         skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
617         skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
618
619         len -= cur_len;
620         if (!len)
621                 return frame;
622
623         offset += cur_len;
624         __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
625
626         return frame;
627 }
628
629 void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
630                               const u8 *addr, enum nl80211_iftype iftype,
631                               const unsigned int extra_headroom,
632                               const u8 *check_da, const u8 *check_sa)
633 {
634         unsigned int hlen = ALIGN(extra_headroom, 4);
635         struct sk_buff *frame = NULL;
636         u16 ethertype;
637         u8 *payload;
638         int offset = 0, remaining;
639         struct ethhdr eth;
640         bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
641         bool reuse_skb = false;
642         bool last = false;
643
644         while (!last) {
645                 unsigned int subframe_len;
646                 int len;
647                 u8 padding;
648
649                 skb_copy_bits(skb, offset, &eth, sizeof(eth));
650                 len = ntohs(eth.h_proto);
651                 subframe_len = sizeof(struct ethhdr) + len;
652                 padding = (4 - subframe_len) & 0x3;
653
654                 /* the last MSDU has no padding */
655                 remaining = skb->len - offset;
656                 if (subframe_len > remaining)
657                         goto purge;
658
659                 offset += sizeof(struct ethhdr);
660                 last = remaining <= subframe_len + padding;
661
662                 /* FIXME: should we really accept multicast DA? */
663                 if ((check_da && !is_multicast_ether_addr(eth.h_dest) &&
664                      !ether_addr_equal(check_da, eth.h_dest)) ||
665                     (check_sa && !ether_addr_equal(check_sa, eth.h_source))) {
666                         offset += len + padding;
667                         continue;
668                 }
669
670                 /* reuse skb for the last subframe */
671                 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
672                         skb_pull(skb, offset);
673                         frame = skb;
674                         reuse_skb = true;
675                 } else {
676                         frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
677                                                        reuse_frag);
678                         if (!frame)
679                                 goto purge;
680
681                         offset += len + padding;
682                 }
683
684                 skb_reset_network_header(frame);
685                 frame->dev = skb->dev;
686                 frame->priority = skb->priority;
687
688                 payload = frame->data;
689                 ethertype = (payload[6] << 8) | payload[7];
690                 if (likely((ether_addr_equal(payload, rfc1042_header) &&
691                             ethertype != ETH_P_AARP && ethertype != ETH_P_IPX) ||
692                            ether_addr_equal(payload, bridge_tunnel_header))) {
693                         eth.h_proto = htons(ethertype);
694                         skb_pull(frame, ETH_ALEN + 2);
695                 }
696
697                 memcpy(skb_push(frame, sizeof(eth)), &eth, sizeof(eth));
698                 __skb_queue_tail(list, frame);
699         }
700
701         if (!reuse_skb)
702                 dev_kfree_skb(skb);
703
704         return;
705
706  purge:
707         __skb_queue_purge(list);
708         dev_kfree_skb(skb);
709 }
710 EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
711
712 /* Given a data frame determine the 802.1p/1d tag to use. */
713 unsigned int cfg80211_classify8021d(struct sk_buff *skb,
714                                     struct cfg80211_qos_map *qos_map)
715 {
716         unsigned int dscp;
717         unsigned char vlan_priority;
718
719         /* skb->priority values from 256->263 are magic values to
720          * directly indicate a specific 802.1d priority.  This is used
721          * to allow 802.1d priority to be passed directly in from VLAN
722          * tags, etc.
723          */
724         if (skb->priority >= 256 && skb->priority <= 263)
725                 return skb->priority - 256;
726
727         if (skb_vlan_tag_present(skb)) {
728                 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
729                         >> VLAN_PRIO_SHIFT;
730                 if (vlan_priority > 0)
731                         return vlan_priority;
732         }
733
734         switch (skb->protocol) {
735         case htons(ETH_P_IP):
736                 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
737                 break;
738         case htons(ETH_P_IPV6):
739                 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
740                 break;
741         case htons(ETH_P_MPLS_UC):
742         case htons(ETH_P_MPLS_MC): {
743                 struct mpls_label mpls_tmp, *mpls;
744
745                 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
746                                           sizeof(*mpls), &mpls_tmp);
747                 if (!mpls)
748                         return 0;
749
750                 return (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
751                         >> MPLS_LS_TC_SHIFT;
752         }
753         case htons(ETH_P_80221):
754                 /* 802.21 is always network control traffic */
755                 return 7;
756         default:
757                 return 0;
758         }
759
760         if (qos_map) {
761                 unsigned int i, tmp_dscp = dscp >> 2;
762
763                 for (i = 0; i < qos_map->num_des; i++) {
764                         if (tmp_dscp == qos_map->dscp_exception[i].dscp)
765                                 return qos_map->dscp_exception[i].up;
766                 }
767
768                 for (i = 0; i < 8; i++) {
769                         if (tmp_dscp >= qos_map->up[i].low &&
770                             tmp_dscp <= qos_map->up[i].high)
771                                 return i;
772                 }
773         }
774
775         return dscp >> 5;
776 }
777 EXPORT_SYMBOL(cfg80211_classify8021d);
778
779 const u8 *ieee80211_bss_get_ie(struct cfg80211_bss *bss, u8 ie)
780 {
781         const struct cfg80211_bss_ies *ies;
782
783         ies = rcu_dereference(bss->ies);
784         if (!ies)
785                 return NULL;
786
787         return cfg80211_find_ie(ie, ies->data, ies->len);
788 }
789 EXPORT_SYMBOL(ieee80211_bss_get_ie);
790
791 void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
792 {
793         struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
794         struct net_device *dev = wdev->netdev;
795         int i;
796
797         if (!wdev->connect_keys)
798                 return;
799
800         for (i = 0; i < CFG80211_MAX_WEP_KEYS; i++) {
801                 if (!wdev->connect_keys->params[i].cipher)
802                         continue;
803                 if (rdev_add_key(rdev, dev, i, false, NULL,
804                                  &wdev->connect_keys->params[i])) {
805                         netdev_err(dev, "failed to set key %d\n", i);
806                         continue;
807                 }
808                 if (wdev->connect_keys->def == i &&
809                     rdev_set_default_key(rdev, dev, i, true, true)) {
810                         netdev_err(dev, "failed to set defkey %d\n", i);
811                         continue;
812                 }
813         }
814
815         kzfree(wdev->connect_keys);
816         wdev->connect_keys = NULL;
817 }
818
819 void cfg80211_process_wdev_events(struct wireless_dev *wdev)
820 {
821         struct cfg80211_event *ev;
822         unsigned long flags;
823
824         spin_lock_irqsave(&wdev->event_lock, flags);
825         while (!list_empty(&wdev->event_list)) {
826                 ev = list_first_entry(&wdev->event_list,
827                                       struct cfg80211_event, list);
828                 list_del(&ev->list);
829                 spin_unlock_irqrestore(&wdev->event_lock, flags);
830
831                 wdev_lock(wdev);
832                 switch (ev->type) {
833                 case EVENT_CONNECT_RESULT:
834                         __cfg80211_connect_result(
835                                 wdev->netdev,
836                                 &ev->cr,
837                                 ev->cr.status == WLAN_STATUS_SUCCESS);
838                         break;
839                 case EVENT_ROAMED:
840                         __cfg80211_roamed(wdev, &ev->rm);
841                         break;
842                 case EVENT_DISCONNECTED:
843                         __cfg80211_disconnected(wdev->netdev,
844                                                 ev->dc.ie, ev->dc.ie_len,
845                                                 ev->dc.reason,
846                                                 !ev->dc.locally_generated);
847                         break;
848                 case EVENT_IBSS_JOINED:
849                         __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
850                                                ev->ij.channel);
851                         break;
852                 case EVENT_STOPPED:
853                         __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
854                         break;
855                 case EVENT_PORT_AUTHORIZED:
856                         __cfg80211_port_authorized(wdev, ev->pa.bssid);
857                         break;
858                 }
859                 wdev_unlock(wdev);
860
861                 kfree(ev);
862
863                 spin_lock_irqsave(&wdev->event_lock, flags);
864         }
865         spin_unlock_irqrestore(&wdev->event_lock, flags);
866 }
867
868 void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
869 {
870         struct wireless_dev *wdev;
871
872         ASSERT_RTNL();
873
874         list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
875                 cfg80211_process_wdev_events(wdev);
876 }
877
878 int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
879                           struct net_device *dev, enum nl80211_iftype ntype,
880                           struct vif_params *params)
881 {
882         int err;
883         enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
884
885         ASSERT_RTNL();
886
887         /* don't support changing VLANs, you just re-create them */
888         if (otype == NL80211_IFTYPE_AP_VLAN)
889                 return -EOPNOTSUPP;
890
891         /* cannot change into P2P device or NAN */
892         if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
893             ntype == NL80211_IFTYPE_NAN)
894                 return -EOPNOTSUPP;
895
896         if (!rdev->ops->change_virtual_intf ||
897             !(rdev->wiphy.interface_modes & (1 << ntype)))
898                 return -EOPNOTSUPP;
899
900         /* if it's part of a bridge, reject changing type to station/ibss */
901         if ((dev->priv_flags & IFF_BRIDGE_PORT) &&
902             (ntype == NL80211_IFTYPE_ADHOC ||
903              ntype == NL80211_IFTYPE_STATION ||
904              ntype == NL80211_IFTYPE_P2P_CLIENT))
905                 return -EBUSY;
906
907         if (ntype != otype) {
908                 dev->ieee80211_ptr->use_4addr = false;
909                 dev->ieee80211_ptr->mesh_id_up_len = 0;
910                 wdev_lock(dev->ieee80211_ptr);
911                 rdev_set_qos_map(rdev, dev, NULL);
912                 wdev_unlock(dev->ieee80211_ptr);
913
914                 switch (otype) {
915                 case NL80211_IFTYPE_AP:
916                         cfg80211_stop_ap(rdev, dev, true);
917                         break;
918                 case NL80211_IFTYPE_ADHOC:
919                         cfg80211_leave_ibss(rdev, dev, false);
920                         break;
921                 case NL80211_IFTYPE_STATION:
922                 case NL80211_IFTYPE_P2P_CLIENT:
923                         wdev_lock(dev->ieee80211_ptr);
924                         cfg80211_disconnect(rdev, dev,
925                                             WLAN_REASON_DEAUTH_LEAVING, true);
926                         wdev_unlock(dev->ieee80211_ptr);
927                         break;
928                 case NL80211_IFTYPE_MESH_POINT:
929                         /* mesh should be handled? */
930                         break;
931                 default:
932                         break;
933                 }
934
935                 cfg80211_process_rdev_events(rdev);
936         }
937
938         err = rdev_change_virtual_intf(rdev, dev, ntype, params);
939
940         WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
941
942         if (!err && params && params->use_4addr != -1)
943                 dev->ieee80211_ptr->use_4addr = params->use_4addr;
944
945         if (!err) {
946                 dev->priv_flags &= ~IFF_DONT_BRIDGE;
947                 switch (ntype) {
948                 case NL80211_IFTYPE_STATION:
949                         if (dev->ieee80211_ptr->use_4addr)
950                                 break;
951                         /* fall through */
952                 case NL80211_IFTYPE_OCB:
953                 case NL80211_IFTYPE_P2P_CLIENT:
954                 case NL80211_IFTYPE_ADHOC:
955                         dev->priv_flags |= IFF_DONT_BRIDGE;
956                         break;
957                 case NL80211_IFTYPE_P2P_GO:
958                 case NL80211_IFTYPE_AP:
959                 case NL80211_IFTYPE_AP_VLAN:
960                 case NL80211_IFTYPE_WDS:
961                 case NL80211_IFTYPE_MESH_POINT:
962                         /* bridging OK */
963                         break;
964                 case NL80211_IFTYPE_MONITOR:
965                         /* monitor can't bridge anyway */
966                         break;
967                 case NL80211_IFTYPE_UNSPECIFIED:
968                 case NUM_NL80211_IFTYPES:
969                         /* not happening */
970                         break;
971                 case NL80211_IFTYPE_P2P_DEVICE:
972                 case NL80211_IFTYPE_NAN:
973                         WARN_ON(1);
974                         break;
975                 }
976         }
977
978         if (!err && ntype != otype && netif_running(dev)) {
979                 cfg80211_update_iface_num(rdev, ntype, 1);
980                 cfg80211_update_iface_num(rdev, otype, -1);
981         }
982
983         return err;
984 }
985
986 static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
987 {
988         int modulation, streams, bitrate;
989
990         /* the formula below does only work for MCS values smaller than 32 */
991         if (WARN_ON_ONCE(rate->mcs >= 32))
992                 return 0;
993
994         modulation = rate->mcs & 7;
995         streams = (rate->mcs >> 3) + 1;
996
997         bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
998
999         if (modulation < 4)
1000                 bitrate *= (modulation + 1);
1001         else if (modulation == 4)
1002                 bitrate *= (modulation + 2);
1003         else
1004                 bitrate *= (modulation + 3);
1005
1006         bitrate *= streams;
1007
1008         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1009                 bitrate = (bitrate / 9) * 10;
1010
1011         /* do NOT round down here */
1012         return (bitrate + 50000) / 100000;
1013 }
1014
1015 static u32 cfg80211_calculate_bitrate_60g(struct rate_info *rate)
1016 {
1017         static const u32 __mcs2bitrate[] = {
1018                 /* control PHY */
1019                 [0] =   275,
1020                 /* SC PHY */
1021                 [1] =  3850,
1022                 [2] =  7700,
1023                 [3] =  9625,
1024                 [4] = 11550,
1025                 [5] = 12512, /* 1251.25 mbps */
1026                 [6] = 15400,
1027                 [7] = 19250,
1028                 [8] = 23100,
1029                 [9] = 25025,
1030                 [10] = 30800,
1031                 [11] = 38500,
1032                 [12] = 46200,
1033                 /* OFDM PHY */
1034                 [13] =  6930,
1035                 [14] =  8662, /* 866.25 mbps */
1036                 [15] = 13860,
1037                 [16] = 17325,
1038                 [17] = 20790,
1039                 [18] = 27720,
1040                 [19] = 34650,
1041                 [20] = 41580,
1042                 [21] = 45045,
1043                 [22] = 51975,
1044                 [23] = 62370,
1045                 [24] = 67568, /* 6756.75 mbps */
1046                 /* LP-SC PHY */
1047                 [25] =  6260,
1048                 [26] =  8340,
1049                 [27] = 11120,
1050                 [28] = 12510,
1051                 [29] = 16680,
1052                 [30] = 22240,
1053                 [31] = 25030,
1054         };
1055
1056         if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1057                 return 0;
1058
1059         return __mcs2bitrate[rate->mcs];
1060 }
1061
1062 static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1063 {
1064         static const u32 base[4][10] = {
1065                 {   6500000,
1066                    13000000,
1067                    19500000,
1068                    26000000,
1069                    39000000,
1070                    52000000,
1071                    58500000,
1072                    65000000,
1073                    78000000,
1074                 /* not in the spec, but some devices use this: */
1075                    86500000,
1076                 },
1077                 {  13500000,
1078                    27000000,
1079                    40500000,
1080                    54000000,
1081                    81000000,
1082                   108000000,
1083                   121500000,
1084                   135000000,
1085                   162000000,
1086                   180000000,
1087                 },
1088                 {  29300000,
1089                    58500000,
1090                    87800000,
1091                   117000000,
1092                   175500000,
1093                   234000000,
1094                   263300000,
1095                   292500000,
1096                   351000000,
1097                   390000000,
1098                 },
1099                 {  58500000,
1100                   117000000,
1101                   175500000,
1102                   234000000,
1103                   351000000,
1104                   468000000,
1105                   526500000,
1106                   585000000,
1107                   702000000,
1108                   780000000,
1109                 },
1110         };
1111         u32 bitrate;
1112         int idx;
1113
1114         if (rate->mcs > 9)
1115                 goto warn;
1116
1117         switch (rate->bw) {
1118         case RATE_INFO_BW_160:
1119                 idx = 3;
1120                 break;
1121         case RATE_INFO_BW_80:
1122                 idx = 2;
1123                 break;
1124         case RATE_INFO_BW_40:
1125                 idx = 1;
1126                 break;
1127         case RATE_INFO_BW_5:
1128         case RATE_INFO_BW_10:
1129         default:
1130                 goto warn;
1131         case RATE_INFO_BW_20:
1132                 idx = 0;
1133         }
1134
1135         bitrate = base[idx][rate->mcs];
1136         bitrate *= rate->nss;
1137
1138         if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1139                 bitrate = (bitrate / 9) * 10;
1140
1141         /* do NOT round down here */
1142         return (bitrate + 50000) / 100000;
1143  warn:
1144         WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1145                   rate->bw, rate->mcs, rate->nss);
1146         return 0;
1147 }
1148
1149 static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1150 {
1151 #define SCALE 2048
1152         u16 mcs_divisors[12] = {
1153                 34133, /* 16.666666... */
1154                 17067, /*  8.333333... */
1155                 11378, /*  5.555555... */
1156                  8533, /*  4.166666... */
1157                  5689, /*  2.777777... */
1158                  4267, /*  2.083333... */
1159                  3923, /*  1.851851... */
1160                  3413, /*  1.666666... */
1161                  2844, /*  1.388888... */
1162                  2560, /*  1.250000... */
1163                  2276, /*  1.111111... */
1164                  2048, /*  1.000000... */
1165         };
1166         u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1167         u32 rates_969[3] =  { 480388888, 453700000, 408333333 };
1168         u32 rates_484[3] =  { 229411111, 216666666, 195000000 };
1169         u32 rates_242[3] =  { 114711111, 108333333,  97500000 };
1170         u32 rates_106[3] =  {  40000000,  37777777,  34000000 };
1171         u32 rates_52[3]  =  {  18820000,  17777777,  16000000 };
1172         u32 rates_26[3]  =  {   9411111,   8888888,   8000000 };
1173         u64 tmp;
1174         u32 result;
1175
1176         if (WARN_ON_ONCE(rate->mcs > 11))
1177                 return 0;
1178
1179         if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1180                 return 0;
1181         if (WARN_ON_ONCE(rate->he_ru_alloc >
1182                          NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1183                 return 0;
1184         if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1185                 return 0;
1186
1187         if (rate->bw == RATE_INFO_BW_160)
1188                 result = rates_160M[rate->he_gi];
1189         else if (rate->bw == RATE_INFO_BW_80 ||
1190                  (rate->bw == RATE_INFO_BW_HE_RU &&
1191                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1192                 result = rates_969[rate->he_gi];
1193         else if (rate->bw == RATE_INFO_BW_40 ||
1194                  (rate->bw == RATE_INFO_BW_HE_RU &&
1195                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1196                 result = rates_484[rate->he_gi];
1197         else if (rate->bw == RATE_INFO_BW_20 ||
1198                  (rate->bw == RATE_INFO_BW_HE_RU &&
1199                   rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1200                 result = rates_242[rate->he_gi];
1201         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1202                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1203                 result = rates_106[rate->he_gi];
1204         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1205                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1206                 result = rates_52[rate->he_gi];
1207         else if (rate->bw == RATE_INFO_BW_HE_RU &&
1208                  rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1209                 result = rates_26[rate->he_gi];
1210         else if (WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1211                       rate->bw, rate->he_ru_alloc))
1212                 return 0;
1213
1214         /* now scale to the appropriate MCS */
1215         tmp = result;
1216         tmp *= SCALE;
1217         do_div(tmp, mcs_divisors[rate->mcs]);
1218         result = tmp;
1219
1220         /* and take NSS, DCM into account */
1221         result = (result * rate->nss) / 8;
1222         if (rate->he_dcm)
1223                 result /= 2;
1224
1225         return result;
1226 }
1227
1228 u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1229 {
1230         if (rate->flags & RATE_INFO_FLAGS_MCS)
1231                 return cfg80211_calculate_bitrate_ht(rate);
1232         if (rate->flags & RATE_INFO_FLAGS_60G)
1233                 return cfg80211_calculate_bitrate_60g(rate);
1234         if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1235                 return cfg80211_calculate_bitrate_vht(rate);
1236         if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1237                 return cfg80211_calculate_bitrate_he(rate);
1238
1239         return rate->legacy;
1240 }
1241 EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1242
1243 int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1244                           enum ieee80211_p2p_attr_id attr,
1245                           u8 *buf, unsigned int bufsize)
1246 {
1247         u8 *out = buf;
1248         u16 attr_remaining = 0;
1249         bool desired_attr = false;
1250         u16 desired_len = 0;
1251
1252         while (len > 0) {
1253                 unsigned int iedatalen;
1254                 unsigned int copy;
1255                 const u8 *iedata;
1256
1257                 if (len < 2)
1258                         return -EILSEQ;
1259                 iedatalen = ies[1];
1260                 if (iedatalen + 2 > len)
1261                         return -EILSEQ;
1262
1263                 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1264                         goto cont;
1265
1266                 if (iedatalen < 4)
1267                         goto cont;
1268
1269                 iedata = ies + 2;
1270
1271                 /* check WFA OUI, P2P subtype */
1272                 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1273                     iedata[2] != 0x9a || iedata[3] != 0x09)
1274                         goto cont;
1275
1276                 iedatalen -= 4;
1277                 iedata += 4;
1278
1279                 /* check attribute continuation into this IE */
1280                 copy = min_t(unsigned int, attr_remaining, iedatalen);
1281                 if (copy && desired_attr) {
1282                         desired_len += copy;
1283                         if (out) {
1284                                 memcpy(out, iedata, min(bufsize, copy));
1285                                 out += min(bufsize, copy);
1286                                 bufsize -= min(bufsize, copy);
1287                         }
1288
1289
1290                         if (copy == attr_remaining)
1291                                 return desired_len;
1292                 }
1293
1294                 attr_remaining -= copy;
1295                 if (attr_remaining)
1296                         goto cont;
1297
1298                 iedatalen -= copy;
1299                 iedata += copy;
1300
1301                 while (iedatalen > 0) {
1302                         u16 attr_len;
1303
1304                         /* P2P attribute ID & size must fit */
1305                         if (iedatalen < 3)
1306                                 return -EILSEQ;
1307                         desired_attr = iedata[0] == attr;
1308                         attr_len = get_unaligned_le16(iedata + 1);
1309                         iedatalen -= 3;
1310                         iedata += 3;
1311
1312                         copy = min_t(unsigned int, attr_len, iedatalen);
1313
1314                         if (desired_attr) {
1315                                 desired_len += copy;
1316                                 if (out) {
1317                                         memcpy(out, iedata, min(bufsize, copy));
1318                                         out += min(bufsize, copy);
1319                                         bufsize -= min(bufsize, copy);
1320                                 }
1321
1322                                 if (copy == attr_len)
1323                                         return desired_len;
1324                         }
1325
1326                         iedata += copy;
1327                         iedatalen -= copy;
1328                         attr_remaining = attr_len - copy;
1329                 }
1330
1331  cont:
1332                 len -= ies[1] + 2;
1333                 ies += ies[1] + 2;
1334         }
1335
1336         if (attr_remaining && desired_attr)
1337                 return -EILSEQ;
1338
1339         return -ENOENT;
1340 }
1341 EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1342
1343 static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1344 {
1345         int i;
1346
1347         /* Make sure array values are legal */
1348         if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1349                 return false;
1350
1351         i = 0;
1352         while (i < n_ids) {
1353                 if (ids[i] == WLAN_EID_EXTENSION) {
1354                         if (id_ext && (ids[i + 1] == id))
1355                                 return true;
1356
1357                         i += 2;
1358                         continue;
1359                 }
1360
1361                 if (ids[i] == id && !id_ext)
1362                         return true;
1363
1364                 i++;
1365         }
1366         return false;
1367 }
1368
1369 static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1370 {
1371         /* we assume a validly formed IEs buffer */
1372         u8 len = ies[pos + 1];
1373
1374         pos += 2 + len;
1375
1376         /* the IE itself must have 255 bytes for fragments to follow */
1377         if (len < 255)
1378                 return pos;
1379
1380         while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1381                 len = ies[pos + 1];
1382                 pos += 2 + len;
1383         }
1384
1385         return pos;
1386 }
1387
1388 size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1389                               const u8 *ids, int n_ids,
1390                               const u8 *after_ric, int n_after_ric,
1391                               size_t offset)
1392 {
1393         size_t pos = offset;
1394
1395         while (pos < ielen) {
1396                 u8 ext = 0;
1397
1398                 if (ies[pos] == WLAN_EID_EXTENSION)
1399                         ext = 2;
1400                 if ((pos + ext) >= ielen)
1401                         break;
1402
1403                 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1404                                           ies[pos] == WLAN_EID_EXTENSION))
1405                         break;
1406
1407                 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1408                         pos = skip_ie(ies, ielen, pos);
1409
1410                         while (pos < ielen) {
1411                                 if (ies[pos] == WLAN_EID_EXTENSION)
1412                                         ext = 2;
1413                                 else
1414                                         ext = 0;
1415
1416                                 if ((pos + ext) >= ielen)
1417                                         break;
1418
1419                                 if (!ieee80211_id_in_list(after_ric,
1420                                                           n_after_ric,
1421                                                           ies[pos + ext],
1422                                                           ext == 2))
1423                                         pos = skip_ie(ies, ielen, pos);
1424                         }
1425                 } else {
1426                         pos = skip_ie(ies, ielen, pos);
1427                 }
1428         }
1429
1430         return pos;
1431 }
1432 EXPORT_SYMBOL(ieee80211_ie_split_ric);
1433
1434 bool ieee80211_operating_class_to_band(u8 operating_class,
1435                                        enum nl80211_band *band)
1436 {
1437         switch (operating_class) {
1438         case 112:
1439         case 115 ... 127:
1440         case 128 ... 130:
1441                 *band = NL80211_BAND_5GHZ;
1442                 return true;
1443         case 81:
1444         case 82:
1445         case 83:
1446         case 84:
1447                 *band = NL80211_BAND_2GHZ;
1448                 return true;
1449         case 180:
1450                 *band = NL80211_BAND_60GHZ;
1451                 return true;
1452         }
1453
1454         return false;
1455 }
1456 EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1457
1458 bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1459                                           u8 *op_class)
1460 {
1461         u8 vht_opclass;
1462         u32 freq = chandef->center_freq1;
1463
1464         if (freq >= 2412 && freq <= 2472) {
1465                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1466                         return false;
1467
1468                 /* 2.407 GHz, channels 1..13 */
1469                 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1470                         if (freq > chandef->chan->center_freq)
1471                                 *op_class = 83; /* HT40+ */
1472                         else
1473                                 *op_class = 84; /* HT40- */
1474                 } else {
1475                         *op_class = 81;
1476                 }
1477
1478                 return true;
1479         }
1480
1481         if (freq == 2484) {
1482                 if (chandef->width > NL80211_CHAN_WIDTH_40)
1483                         return false;
1484
1485                 *op_class = 82; /* channel 14 */
1486                 return true;
1487         }
1488
1489         switch (chandef->width) {
1490         case NL80211_CHAN_WIDTH_80:
1491                 vht_opclass = 128;
1492                 break;
1493         case NL80211_CHAN_WIDTH_160:
1494                 vht_opclass = 129;
1495                 break;
1496         case NL80211_CHAN_WIDTH_80P80:
1497                 vht_opclass = 130;
1498                 break;
1499         case NL80211_CHAN_WIDTH_10:
1500         case NL80211_CHAN_WIDTH_5:
1501                 return false; /* unsupported for now */
1502         default:
1503                 vht_opclass = 0;
1504                 break;
1505         }
1506
1507         /* 5 GHz, channels 36..48 */
1508         if (freq >= 5180 && freq <= 5240) {
1509                 if (vht_opclass) {
1510                         *op_class = vht_opclass;
1511                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1512                         if (freq > chandef->chan->center_freq)
1513                                 *op_class = 116;
1514                         else
1515                                 *op_class = 117;
1516                 } else {
1517                         *op_class = 115;
1518                 }
1519
1520                 return true;
1521         }
1522
1523         /* 5 GHz, channels 52..64 */
1524         if (freq >= 5260 && freq <= 5320) {
1525                 if (vht_opclass) {
1526                         *op_class = vht_opclass;
1527                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1528                         if (freq > chandef->chan->center_freq)
1529                                 *op_class = 119;
1530                         else
1531                                 *op_class = 120;
1532                 } else {
1533                         *op_class = 118;
1534                 }
1535
1536                 return true;
1537         }
1538
1539         /* 5 GHz, channels 100..144 */
1540         if (freq >= 5500 && freq <= 5720) {
1541                 if (vht_opclass) {
1542                         *op_class = vht_opclass;
1543                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1544                         if (freq > chandef->chan->center_freq)
1545                                 *op_class = 122;
1546                         else
1547                                 *op_class = 123;
1548                 } else {
1549                         *op_class = 121;
1550                 }
1551
1552                 return true;
1553         }
1554
1555         /* 5 GHz, channels 149..169 */
1556         if (freq >= 5745 && freq <= 5845) {
1557                 if (vht_opclass) {
1558                         *op_class = vht_opclass;
1559                 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1560                         if (freq > chandef->chan->center_freq)
1561                                 *op_class = 126;
1562                         else
1563                                 *op_class = 127;
1564                 } else if (freq <= 5805) {
1565                         *op_class = 124;
1566                 } else {
1567                         *op_class = 125;
1568                 }
1569
1570                 return true;
1571         }
1572
1573         /* 56.16 GHz, channel 1..4 */
1574         if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
1575                 if (chandef->width >= NL80211_CHAN_WIDTH_40)
1576                         return false;
1577
1578                 *op_class = 180;
1579                 return true;
1580         }
1581
1582         /* not supported yet */
1583         return false;
1584 }
1585 EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
1586
1587 static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
1588                                        u32 *beacon_int_gcd,
1589                                        bool *beacon_int_different)
1590 {
1591         struct wireless_dev *wdev;
1592
1593         *beacon_int_gcd = 0;
1594         *beacon_int_different = false;
1595
1596         list_for_each_entry(wdev, &wiphy->wdev_list, list) {
1597                 if (!wdev->beacon_interval)
1598                         continue;
1599
1600                 if (!*beacon_int_gcd) {
1601                         *beacon_int_gcd = wdev->beacon_interval;
1602                         continue;
1603                 }
1604
1605                 if (wdev->beacon_interval == *beacon_int_gcd)
1606                         continue;
1607
1608                 *beacon_int_different = true;
1609                 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev->beacon_interval);
1610         }
1611
1612         if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
1613                 if (*beacon_int_gcd)
1614                         *beacon_int_different = true;
1615                 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
1616         }
1617 }
1618
1619 int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
1620                                  enum nl80211_iftype iftype, u32 beacon_int)
1621 {
1622         /*
1623          * This is just a basic pre-condition check; if interface combinations
1624          * are possible the driver must already be checking those with a call
1625          * to cfg80211_check_combinations(), in which case we'll validate more
1626          * through the cfg80211_calculate_bi_data() call and code in
1627          * cfg80211_iter_combinations().
1628          */
1629
1630         if (beacon_int < 10 || beacon_int > 10000)
1631                 return -EINVAL;
1632
1633         return 0;
1634 }
1635
1636 int cfg80211_iter_combinations(struct wiphy *wiphy,
1637                                struct iface_combination_params *params,
1638                                void (*iter)(const struct ieee80211_iface_combination *c,
1639                                             void *data),
1640                                void *data)
1641 {
1642         const struct ieee80211_regdomain *regdom;
1643         enum nl80211_dfs_regions region = 0;
1644         int i, j, iftype;
1645         int num_interfaces = 0;
1646         u32 used_iftypes = 0;
1647         u32 beacon_int_gcd;
1648         bool beacon_int_different;
1649
1650         /*
1651          * This is a bit strange, since the iteration used to rely only on
1652          * the data given by the driver, but here it now relies on context,
1653          * in form of the currently operating interfaces.
1654          * This is OK for all current users, and saves us from having to
1655          * push the GCD calculations into all the drivers.
1656          * In the future, this should probably rely more on data that's in
1657          * cfg80211 already - the only thing not would appear to be any new
1658          * interfaces (while being brought up) and channel/radar data.
1659          */
1660         cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
1661                                    &beacon_int_gcd, &beacon_int_different);
1662
1663         if (params->radar_detect) {
1664                 rcu_read_lock();
1665                 regdom = rcu_dereference(cfg80211_regdomain);
1666                 if (regdom)
1667                         region = regdom->dfs_region;
1668                 rcu_read_unlock();
1669         }
1670
1671         for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1672                 num_interfaces += params->iftype_num[iftype];
1673                 if (params->iftype_num[iftype] > 0 &&
1674                     !(wiphy->software_iftypes & BIT(iftype)))
1675                         used_iftypes |= BIT(iftype);
1676         }
1677
1678         for (i = 0; i < wiphy->n_iface_combinations; i++) {
1679                 const struct ieee80211_iface_combination *c;
1680                 struct ieee80211_iface_limit *limits;
1681                 u32 all_iftypes = 0;
1682
1683                 c = &wiphy->iface_combinations[i];
1684
1685                 if (num_interfaces > c->max_interfaces)
1686                         continue;
1687                 if (params->num_different_channels > c->num_different_channels)
1688                         continue;
1689
1690                 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
1691                                  GFP_KERNEL);
1692                 if (!limits)
1693                         return -ENOMEM;
1694
1695                 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
1696                         if (wiphy->software_iftypes & BIT(iftype))
1697                                 continue;
1698                         for (j = 0; j < c->n_limits; j++) {
1699                                 all_iftypes |= limits[j].types;
1700                                 if (!(limits[j].types & BIT(iftype)))
1701                                         continue;
1702                                 if (limits[j].max < params->iftype_num[iftype])
1703                                         goto cont;
1704                                 limits[j].max -= params->iftype_num[iftype];
1705                         }
1706                 }
1707
1708                 if (params->radar_detect !=
1709                         (c->radar_detect_widths & params->radar_detect))
1710                         goto cont;
1711
1712                 if (params->radar_detect && c->radar_detect_regions &&
1713                     !(c->radar_detect_regions & BIT(region)))
1714                         goto cont;
1715
1716                 /* Finally check that all iftypes that we're currently
1717                  * using are actually part of this combination. If they
1718                  * aren't then we can't use this combination and have
1719                  * to continue to the next.
1720                  */
1721                 if ((all_iftypes & used_iftypes) != used_iftypes)
1722                         goto cont;
1723
1724                 if (beacon_int_gcd) {
1725                         if (c->beacon_int_min_gcd &&
1726                             beacon_int_gcd < c->beacon_int_min_gcd)
1727                                 goto cont;
1728                         if (!c->beacon_int_min_gcd && beacon_int_different)
1729                                 goto cont;
1730                 }
1731
1732                 /* This combination covered all interface types and
1733                  * supported the requested numbers, so we're good.
1734                  */
1735
1736                 (*iter)(c, data);
1737  cont:
1738                 kfree(limits);
1739         }
1740
1741         return 0;
1742 }
1743 EXPORT_SYMBOL(cfg80211_iter_combinations);
1744
1745 static void
1746 cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
1747                           void *data)
1748 {
1749         int *num = data;
1750         (*num)++;
1751 }
1752
1753 int cfg80211_check_combinations(struct wiphy *wiphy,
1754                                 struct iface_combination_params *params)
1755 {
1756         int err, num = 0;
1757
1758         err = cfg80211_iter_combinations(wiphy, params,
1759                                          cfg80211_iter_sum_ifcombs, &num);
1760         if (err)
1761                 return err;
1762         if (num == 0)
1763                 return -EBUSY;
1764
1765         return 0;
1766 }
1767 EXPORT_SYMBOL(cfg80211_check_combinations);
1768
1769 int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
1770                            const u8 *rates, unsigned int n_rates,
1771                            u32 *mask)
1772 {
1773         int i, j;
1774
1775         if (!sband)
1776                 return -EINVAL;
1777
1778         if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
1779                 return -EINVAL;
1780
1781         *mask = 0;
1782
1783         for (i = 0; i < n_rates; i++) {
1784                 int rate = (rates[i] & 0x7f) * 5;
1785                 bool found = false;
1786
1787                 for (j = 0; j < sband->n_bitrates; j++) {
1788                         if (sband->bitrates[j].bitrate == rate) {
1789                                 found = true;
1790                                 *mask |= BIT(j);
1791                                 break;
1792                         }
1793                 }
1794                 if (!found)
1795                         return -EINVAL;
1796         }
1797
1798         /*
1799          * mask must have at least one bit set here since we
1800          * didn't accept a 0-length rates array nor allowed
1801          * entries in the array that didn't exist
1802          */
1803
1804         return 0;
1805 }
1806
1807 unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
1808 {
1809         enum nl80211_band band;
1810         unsigned int n_channels = 0;
1811
1812         for (band = 0; band < NUM_NL80211_BANDS; band++)
1813                 if (wiphy->bands[band])
1814                         n_channels += wiphy->bands[band]->n_channels;
1815
1816         return n_channels;
1817 }
1818 EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
1819
1820 int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
1821                          struct station_info *sinfo)
1822 {
1823         struct cfg80211_registered_device *rdev;
1824         struct wireless_dev *wdev;
1825
1826         wdev = dev->ieee80211_ptr;
1827         if (!wdev)
1828                 return -EOPNOTSUPP;
1829
1830         rdev = wiphy_to_rdev(wdev->wiphy);
1831         if (!rdev->ops->get_station)
1832                 return -EOPNOTSUPP;
1833
1834         memset(sinfo, 0, sizeof(*sinfo));
1835
1836         return rdev_get_station(rdev, dev, mac_addr, sinfo);
1837 }
1838 EXPORT_SYMBOL(cfg80211_get_station);
1839
1840 void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
1841 {
1842         int i;
1843
1844         if (!f)
1845                 return;
1846
1847         kfree(f->serv_spec_info);
1848         kfree(f->srf_bf);
1849         kfree(f->srf_macs);
1850         for (i = 0; i < f->num_rx_filters; i++)
1851                 kfree(f->rx_filters[i].filter);
1852
1853         for (i = 0; i < f->num_tx_filters; i++)
1854                 kfree(f->tx_filters[i].filter);
1855
1856         kfree(f->rx_filters);
1857         kfree(f->tx_filters);
1858         kfree(f);
1859 }
1860 EXPORT_SYMBOL(cfg80211_free_nan_func);
1861
1862 bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
1863                                 u32 center_freq_khz, u32 bw_khz)
1864 {
1865         u32 start_freq_khz, end_freq_khz;
1866
1867         start_freq_khz = center_freq_khz - (bw_khz / 2);
1868         end_freq_khz = center_freq_khz + (bw_khz / 2);
1869
1870         if (start_freq_khz >= freq_range->start_freq_khz &&
1871             end_freq_khz <= freq_range->end_freq_khz)
1872                 return true;
1873
1874         return false;
1875 }
1876
1877 int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
1878 {
1879         sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
1880                                 sizeof(*(sinfo->pertid)),
1881                                 gfp);
1882         if (!sinfo->pertid)
1883                 return -ENOMEM;
1884
1885         return 0;
1886 }
1887 EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
1888
1889 /* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
1890 /* Ethernet-II snap header (RFC1042 for most EtherTypes) */
1891 const unsigned char rfc1042_header[] __aligned(2) =
1892         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
1893 EXPORT_SYMBOL(rfc1042_header);
1894
1895 /* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
1896 const unsigned char bridge_tunnel_header[] __aligned(2) =
1897         { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
1898 EXPORT_SYMBOL(bridge_tunnel_header);
1899
1900 /* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
1901 struct iapp_layer2_update {
1902         u8 da[ETH_ALEN];        /* broadcast */
1903         u8 sa[ETH_ALEN];        /* STA addr */
1904         __be16 len;             /* 6 */
1905         u8 dsap;                /* 0 */
1906         u8 ssap;                /* 0 */
1907         u8 control;
1908         u8 xid_info[3];
1909 } __packed;
1910
1911 void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
1912 {
1913         struct iapp_layer2_update *msg;
1914         struct sk_buff *skb;
1915
1916         /* Send Level 2 Update Frame to update forwarding tables in layer 2
1917          * bridge devices */
1918
1919         skb = dev_alloc_skb(sizeof(*msg));
1920         if (!skb)
1921                 return;
1922         msg = skb_put(skb, sizeof(*msg));
1923
1924         /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
1925          * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
1926
1927         eth_broadcast_addr(msg->da);
1928         ether_addr_copy(msg->sa, addr);
1929         msg->len = htons(6);
1930         msg->dsap = 0;
1931         msg->ssap = 0x01;       /* NULL LSAP, CR Bit: Response */
1932         msg->control = 0xaf;    /* XID response lsb.1111F101.
1933                                  * F=0 (no poll command; unsolicited frame) */
1934         msg->xid_info[0] = 0x81;        /* XID format identifier */
1935         msg->xid_info[1] = 1;   /* LLC types/classes: Type 1 LLC */
1936         msg->xid_info[2] = 0;   /* XID sender's receive window size (RW) */
1937
1938         skb->dev = dev;
1939         skb->protocol = eth_type_trans(skb, dev);
1940         memset(skb->cb, 0, sizeof(skb->cb));
1941         netif_rx_ni(skb);
1942 }
1943 EXPORT_SYMBOL(cfg80211_send_layer2_update);
1944
1945 int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
1946                               enum ieee80211_vht_chanwidth bw,
1947                               int mcs, bool ext_nss_bw_capable)
1948 {
1949         u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
1950         int max_vht_nss = 0;
1951         int ext_nss_bw;
1952         int supp_width;
1953         int i, mcs_encoding;
1954
1955         if (map == 0xffff)
1956                 return 0;
1957
1958         if (WARN_ON(mcs > 9))
1959                 return 0;
1960         if (mcs <= 7)
1961                 mcs_encoding = 0;
1962         else if (mcs == 8)
1963                 mcs_encoding = 1;
1964         else
1965                 mcs_encoding = 2;
1966
1967         /* find max_vht_nss for the given MCS */
1968         for (i = 7; i >= 0; i--) {
1969                 int supp = (map >> (2 * i)) & 3;
1970
1971                 if (supp == 3)
1972                         continue;
1973
1974                 if (supp >= mcs_encoding) {
1975                         max_vht_nss = i;
1976                         break;
1977                 }
1978         }
1979
1980         if (!(cap->supp_mcs.tx_mcs_map &
1981                         cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
1982                 return max_vht_nss;
1983
1984         ext_nss_bw = le32_get_bits(cap->vht_cap_info,
1985                                    IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
1986         supp_width = le32_get_bits(cap->vht_cap_info,
1987                                    IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
1988
1989         /* if not capable, treat ext_nss_bw as 0 */
1990         if (!ext_nss_bw_capable)
1991                 ext_nss_bw = 0;
1992
1993         /* This is invalid */
1994         if (supp_width == 3)
1995                 return 0;
1996
1997         /* This is an invalid combination so pretend nothing is supported */
1998         if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
1999                 return 0;
2000
2001         /*
2002          * Cover all the special cases according to IEEE 802.11-2016
2003          * Table 9-250. All other cases are either factor of 1 or not
2004          * valid/supported.
2005          */
2006         switch (bw) {
2007         case IEEE80211_VHT_CHANWIDTH_USE_HT:
2008         case IEEE80211_VHT_CHANWIDTH_80MHZ:
2009                 if ((supp_width == 1 || supp_width == 2) &&
2010                     ext_nss_bw == 3)
2011                         return 2 * max_vht_nss;
2012                 break;
2013         case IEEE80211_VHT_CHANWIDTH_160MHZ:
2014                 if (supp_width == 0 &&
2015                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2016                         return DIV_ROUND_UP(max_vht_nss, 2);
2017                 if (supp_width == 0 &&
2018                     ext_nss_bw == 3)
2019                         return DIV_ROUND_UP(3 * max_vht_nss, 4);
2020                 if (supp_width == 1 &&
2021                     ext_nss_bw == 3)
2022                         return 2 * max_vht_nss;
2023                 break;
2024         case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2025                 if (supp_width == 0 &&
2026                     (ext_nss_bw == 1 || ext_nss_bw == 2))
2027                         return 0; /* not possible */
2028                 if (supp_width == 0 &&
2029                     ext_nss_bw == 2)
2030                         return DIV_ROUND_UP(max_vht_nss, 2);
2031                 if (supp_width == 0 &&
2032                     ext_nss_bw == 3)
2033                         return DIV_ROUND_UP(3 * max_vht_nss, 4);
2034                 if (supp_width == 1 &&
2035                     ext_nss_bw == 0)
2036                         return 0; /* not possible */
2037                 if (supp_width == 1 &&
2038                     ext_nss_bw == 1)
2039                         return DIV_ROUND_UP(max_vht_nss, 2);
2040                 if (supp_width == 1 &&
2041                     ext_nss_bw == 2)
2042                         return DIV_ROUND_UP(3 * max_vht_nss, 4);
2043                 break;
2044         }
2045
2046         /* not covered or invalid combination received */
2047         return max_vht_nss;
2048 }
2049 EXPORT_SYMBOL(ieee80211_get_vht_max_nss);