]> asedeno.scripts.mit.edu Git - linux.git/blob - security/security.c
11a42cd313c5aba51ae59c40e30f28b3b1013e6d
[linux.git] / security / security.c
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *      This program is free software; you can redistribute it and/or modify
10  *      it under the terms of the GNU General Public License as published by
11  *      the Free Software Foundation; either version 2 of the License, or
12  *      (at your option) any later version.
13  */
14
15 #define pr_fmt(fmt) "LSM: " fmt
16
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <net/flow.h>
34
35 #define MAX_LSM_EVM_XATTR       2
36
37 /* Maximum number of letters for an LSM name string */
38 #define SECURITY_NAME_MAX       10
39
40 /* How many LSMs were built into the kernel? */
41 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
42
43 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
44 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
45
46 char *lsm_names;
47 /* Boot-time LSM user choice */
48 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
49         CONFIG_DEFAULT_SECURITY;
50
51 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52
53 /* Ordered list of LSMs to initialize. */
54 static __initdata struct lsm_info **ordered_lsms;
55
56 static __initdata bool debug;
57 #define init_debug(...)                                         \
58         do {                                                    \
59                 if (debug)                                      \
60                         pr_info(__VA_ARGS__);                   \
61         } while (0)
62
63 static bool __init is_enabled(struct lsm_info *lsm)
64 {
65         if (!lsm->enabled || *lsm->enabled)
66                 return true;
67
68         return false;
69 }
70
71 /* Mark an LSM's enabled flag. */
72 static int lsm_enabled_true __initdata = 1;
73 static int lsm_enabled_false __initdata = 0;
74 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
75 {
76         /*
77          * When an LSM hasn't configured an enable variable, we can use
78          * a hard-coded location for storing the default enabled state.
79          */
80         if (!lsm->enabled) {
81                 if (enabled)
82                         lsm->enabled = &lsm_enabled_true;
83                 else
84                         lsm->enabled = &lsm_enabled_false;
85         } else if (lsm->enabled == &lsm_enabled_true) {
86                 if (!enabled)
87                         lsm->enabled = &lsm_enabled_false;
88         } else if (lsm->enabled == &lsm_enabled_false) {
89                 if (enabled)
90                         lsm->enabled = &lsm_enabled_true;
91         } else {
92                 *lsm->enabled = enabled;
93         }
94 }
95
96 /* Is an LSM already listed in the ordered LSMs list? */
97 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
98 {
99         struct lsm_info **check;
100
101         for (check = ordered_lsms; *check; check++)
102                 if (*check == lsm)
103                         return true;
104
105         return false;
106 }
107
108 /* Append an LSM to the list of ordered LSMs to initialize. */
109 static int last_lsm __initdata;
110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
111 {
112         /* Ignore duplicate selections. */
113         if (exists_ordered_lsm(lsm))
114                 return;
115
116         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
117                 return;
118
119         ordered_lsms[last_lsm++] = lsm;
120         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
121                    is_enabled(lsm) ? "en" : "dis");
122 }
123
124 /* Is an LSM allowed to be initialized? */
125 static bool __init lsm_allowed(struct lsm_info *lsm)
126 {
127         /* Skip if the LSM is disabled. */
128         if (!is_enabled(lsm))
129                 return false;
130
131         /* Skip major-specific checks if not a major LSM. */
132         if ((lsm->flags & LSM_FLAG_LEGACY_MAJOR) == 0)
133                 return true;
134
135         /* Disabled if this LSM isn't the chosen one. */
136         if (strcmp(lsm->name, chosen_lsm) != 0)
137                 return false;
138
139         return true;
140 }
141
142 /* Check if LSM should be initialized. */
143 static void __init maybe_initialize_lsm(struct lsm_info *lsm)
144 {
145         int enabled = lsm_allowed(lsm);
146
147         /* Record enablement (to handle any following exclusive LSMs). */
148         set_enabled(lsm, enabled);
149
150         /* If selected, initialize the LSM. */
151         if (enabled) {
152                 int ret;
153
154                 init_debug("initializing %s\n", lsm->name);
155                 ret = lsm->init();
156                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
157         }
158 }
159
160 /* Populate ordered LSMs list from comma-separated LSM name list. */
161 static void __init ordered_lsm_parse(const char *order, const char *origin)
162 {
163         struct lsm_info *lsm;
164         char *sep, *name, *next;
165
166         sep = kstrdup(order, GFP_KERNEL);
167         next = sep;
168         /* Walk the list, looking for matching LSMs. */
169         while ((name = strsep(&next, ",")) != NULL) {
170                 bool found = false;
171
172                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
173                         if ((lsm->flags & LSM_FLAG_LEGACY_MAJOR) == 0 &&
174                             strcmp(lsm->name, name) == 0) {
175                                 append_ordered_lsm(lsm, origin);
176                                 found = true;
177                         }
178                 }
179
180                 if (!found)
181                         init_debug("%s ignored: %s\n", origin, name);
182         }
183         kfree(sep);
184 }
185
186 static void __init ordered_lsm_init(void)
187 {
188         struct lsm_info **lsm;
189
190         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
191                                 GFP_KERNEL);
192
193         ordered_lsm_parse(builtin_lsm_order, "builtin");
194
195         for (lsm = ordered_lsms; *lsm; lsm++)
196                 maybe_initialize_lsm(*lsm);
197
198         kfree(ordered_lsms);
199 }
200
201 static void __init major_lsm_init(void)
202 {
203         struct lsm_info *lsm;
204
205         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
206                 if ((lsm->flags & LSM_FLAG_LEGACY_MAJOR) == 0)
207                         continue;
208
209                 maybe_initialize_lsm(lsm);
210         }
211 }
212
213 /**
214  * security_init - initializes the security framework
215  *
216  * This should be called early in the kernel initialization sequence.
217  */
218 int __init security_init(void)
219 {
220         int i;
221         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
222
223         pr_info("Security Framework initializing\n");
224
225         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
226              i++)
227                 INIT_HLIST_HEAD(&list[i]);
228
229         /*
230          * Load minor LSMs, with the capability module always first.
231          */
232         capability_add_hooks();
233         yama_add_hooks();
234         loadpin_add_hooks();
235
236         /* Load LSMs in specified order. */
237         ordered_lsm_init();
238
239         /*
240          * Load all the remaining security modules.
241          */
242         major_lsm_init();
243
244         return 0;
245 }
246
247 /* Save user chosen LSM */
248 static int __init choose_lsm(char *str)
249 {
250         strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
251         return 1;
252 }
253 __setup("security=", choose_lsm);
254
255 /* Enable LSM order debugging. */
256 static int __init enable_debug(char *str)
257 {
258         debug = true;
259         return 1;
260 }
261 __setup("lsm.debug", enable_debug);
262
263 static bool match_last_lsm(const char *list, const char *lsm)
264 {
265         const char *last;
266
267         if (WARN_ON(!list || !lsm))
268                 return false;
269         last = strrchr(list, ',');
270         if (last)
271                 /* Pass the comma, strcmp() will check for '\0' */
272                 last++;
273         else
274                 last = list;
275         return !strcmp(last, lsm);
276 }
277
278 static int lsm_append(char *new, char **result)
279 {
280         char *cp;
281
282         if (*result == NULL) {
283                 *result = kstrdup(new, GFP_KERNEL);
284                 if (*result == NULL)
285                         return -ENOMEM;
286         } else {
287                 /* Check if it is the last registered name */
288                 if (match_last_lsm(*result, new))
289                         return 0;
290                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
291                 if (cp == NULL)
292                         return -ENOMEM;
293                 kfree(*result);
294                 *result = cp;
295         }
296         return 0;
297 }
298
299 /**
300  * security_add_hooks - Add a modules hooks to the hook lists.
301  * @hooks: the hooks to add
302  * @count: the number of hooks to add
303  * @lsm: the name of the security module
304  *
305  * Each LSM has to register its hooks with the infrastructure.
306  */
307 void __init security_add_hooks(struct security_hook_list *hooks, int count,
308                                 char *lsm)
309 {
310         int i;
311
312         for (i = 0; i < count; i++) {
313                 hooks[i].lsm = lsm;
314                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
315         }
316         if (lsm_append(lsm, &lsm_names) < 0)
317                 panic("%s - Cannot get early memory.\n", __func__);
318 }
319
320 int call_lsm_notifier(enum lsm_event event, void *data)
321 {
322         return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
323 }
324 EXPORT_SYMBOL(call_lsm_notifier);
325
326 int register_lsm_notifier(struct notifier_block *nb)
327 {
328         return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
329 }
330 EXPORT_SYMBOL(register_lsm_notifier);
331
332 int unregister_lsm_notifier(struct notifier_block *nb)
333 {
334         return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
335 }
336 EXPORT_SYMBOL(unregister_lsm_notifier);
337
338 /*
339  * Hook list operation macros.
340  *
341  * call_void_hook:
342  *      This is a hook that does not return a value.
343  *
344  * call_int_hook:
345  *      This is a hook that returns a value.
346  */
347
348 #define call_void_hook(FUNC, ...)                               \
349         do {                                                    \
350                 struct security_hook_list *P;                   \
351                                                                 \
352                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
353                         P->hook.FUNC(__VA_ARGS__);              \
354         } while (0)
355
356 #define call_int_hook(FUNC, IRC, ...) ({                        \
357         int RC = IRC;                                           \
358         do {                                                    \
359                 struct security_hook_list *P;                   \
360                                                                 \
361                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
362                         RC = P->hook.FUNC(__VA_ARGS__);         \
363                         if (RC != 0)                            \
364                                 break;                          \
365                 }                                               \
366         } while (0);                                            \
367         RC;                                                     \
368 })
369
370 /* Security operations */
371
372 int security_binder_set_context_mgr(struct task_struct *mgr)
373 {
374         return call_int_hook(binder_set_context_mgr, 0, mgr);
375 }
376
377 int security_binder_transaction(struct task_struct *from,
378                                 struct task_struct *to)
379 {
380         return call_int_hook(binder_transaction, 0, from, to);
381 }
382
383 int security_binder_transfer_binder(struct task_struct *from,
384                                     struct task_struct *to)
385 {
386         return call_int_hook(binder_transfer_binder, 0, from, to);
387 }
388
389 int security_binder_transfer_file(struct task_struct *from,
390                                   struct task_struct *to, struct file *file)
391 {
392         return call_int_hook(binder_transfer_file, 0, from, to, file);
393 }
394
395 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
396 {
397         return call_int_hook(ptrace_access_check, 0, child, mode);
398 }
399
400 int security_ptrace_traceme(struct task_struct *parent)
401 {
402         return call_int_hook(ptrace_traceme, 0, parent);
403 }
404
405 int security_capget(struct task_struct *target,
406                      kernel_cap_t *effective,
407                      kernel_cap_t *inheritable,
408                      kernel_cap_t *permitted)
409 {
410         return call_int_hook(capget, 0, target,
411                                 effective, inheritable, permitted);
412 }
413
414 int security_capset(struct cred *new, const struct cred *old,
415                     const kernel_cap_t *effective,
416                     const kernel_cap_t *inheritable,
417                     const kernel_cap_t *permitted)
418 {
419         return call_int_hook(capset, 0, new, old,
420                                 effective, inheritable, permitted);
421 }
422
423 int security_capable(const struct cred *cred, struct user_namespace *ns,
424                      int cap)
425 {
426         return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT);
427 }
428
429 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
430                              int cap)
431 {
432         return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT);
433 }
434
435 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
436 {
437         return call_int_hook(quotactl, 0, cmds, type, id, sb);
438 }
439
440 int security_quota_on(struct dentry *dentry)
441 {
442         return call_int_hook(quota_on, 0, dentry);
443 }
444
445 int security_syslog(int type)
446 {
447         return call_int_hook(syslog, 0, type);
448 }
449
450 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
451 {
452         return call_int_hook(settime, 0, ts, tz);
453 }
454
455 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
456 {
457         struct security_hook_list *hp;
458         int cap_sys_admin = 1;
459         int rc;
460
461         /*
462          * The module will respond with a positive value if
463          * it thinks the __vm_enough_memory() call should be
464          * made with the cap_sys_admin set. If all of the modules
465          * agree that it should be set it will. If any module
466          * thinks it should not be set it won't.
467          */
468         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
469                 rc = hp->hook.vm_enough_memory(mm, pages);
470                 if (rc <= 0) {
471                         cap_sys_admin = 0;
472                         break;
473                 }
474         }
475         return __vm_enough_memory(mm, pages, cap_sys_admin);
476 }
477
478 int security_bprm_set_creds(struct linux_binprm *bprm)
479 {
480         return call_int_hook(bprm_set_creds, 0, bprm);
481 }
482
483 int security_bprm_check(struct linux_binprm *bprm)
484 {
485         int ret;
486
487         ret = call_int_hook(bprm_check_security, 0, bprm);
488         if (ret)
489                 return ret;
490         return ima_bprm_check(bprm);
491 }
492
493 void security_bprm_committing_creds(struct linux_binprm *bprm)
494 {
495         call_void_hook(bprm_committing_creds, bprm);
496 }
497
498 void security_bprm_committed_creds(struct linux_binprm *bprm)
499 {
500         call_void_hook(bprm_committed_creds, bprm);
501 }
502
503 int security_sb_alloc(struct super_block *sb)
504 {
505         return call_int_hook(sb_alloc_security, 0, sb);
506 }
507
508 void security_sb_free(struct super_block *sb)
509 {
510         call_void_hook(sb_free_security, sb);
511 }
512
513 void security_free_mnt_opts(void **mnt_opts)
514 {
515         if (!*mnt_opts)
516                 return;
517         call_void_hook(sb_free_mnt_opts, *mnt_opts);
518         *mnt_opts = NULL;
519 }
520 EXPORT_SYMBOL(security_free_mnt_opts);
521
522 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
523 {
524         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
525 }
526 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
527
528 int security_sb_remount(struct super_block *sb,
529                         void *mnt_opts)
530 {
531         return call_int_hook(sb_remount, 0, sb, mnt_opts);
532 }
533 EXPORT_SYMBOL(security_sb_remount);
534
535 int security_sb_kern_mount(struct super_block *sb)
536 {
537         return call_int_hook(sb_kern_mount, 0, sb);
538 }
539
540 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
541 {
542         return call_int_hook(sb_show_options, 0, m, sb);
543 }
544
545 int security_sb_statfs(struct dentry *dentry)
546 {
547         return call_int_hook(sb_statfs, 0, dentry);
548 }
549
550 int security_sb_mount(const char *dev_name, const struct path *path,
551                        const char *type, unsigned long flags, void *data)
552 {
553         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
554 }
555
556 int security_sb_umount(struct vfsmount *mnt, int flags)
557 {
558         return call_int_hook(sb_umount, 0, mnt, flags);
559 }
560
561 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
562 {
563         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
564 }
565
566 int security_sb_set_mnt_opts(struct super_block *sb,
567                                 void *mnt_opts,
568                                 unsigned long kern_flags,
569                                 unsigned long *set_kern_flags)
570 {
571         return call_int_hook(sb_set_mnt_opts,
572                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
573                                 mnt_opts, kern_flags, set_kern_flags);
574 }
575 EXPORT_SYMBOL(security_sb_set_mnt_opts);
576
577 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
578                                 struct super_block *newsb,
579                                 unsigned long kern_flags,
580                                 unsigned long *set_kern_flags)
581 {
582         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
583                                 kern_flags, set_kern_flags);
584 }
585 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
586
587 int security_add_mnt_opt(const char *option, const char *val, int len,
588                          void **mnt_opts)
589 {
590         return call_int_hook(sb_add_mnt_opt, -EINVAL,
591                                         option, val, len, mnt_opts);
592 }
593 EXPORT_SYMBOL(security_add_mnt_opt);
594
595 int security_inode_alloc(struct inode *inode)
596 {
597         inode->i_security = NULL;
598         return call_int_hook(inode_alloc_security, 0, inode);
599 }
600
601 void security_inode_free(struct inode *inode)
602 {
603         integrity_inode_free(inode);
604         call_void_hook(inode_free_security, inode);
605 }
606
607 int security_dentry_init_security(struct dentry *dentry, int mode,
608                                         const struct qstr *name, void **ctx,
609                                         u32 *ctxlen)
610 {
611         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
612                                 name, ctx, ctxlen);
613 }
614 EXPORT_SYMBOL(security_dentry_init_security);
615
616 int security_dentry_create_files_as(struct dentry *dentry, int mode,
617                                     struct qstr *name,
618                                     const struct cred *old, struct cred *new)
619 {
620         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
621                                 name, old, new);
622 }
623 EXPORT_SYMBOL(security_dentry_create_files_as);
624
625 int security_inode_init_security(struct inode *inode, struct inode *dir,
626                                  const struct qstr *qstr,
627                                  const initxattrs initxattrs, void *fs_data)
628 {
629         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
630         struct xattr *lsm_xattr, *evm_xattr, *xattr;
631         int ret;
632
633         if (unlikely(IS_PRIVATE(inode)))
634                 return 0;
635
636         if (!initxattrs)
637                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
638                                      dir, qstr, NULL, NULL, NULL);
639         memset(new_xattrs, 0, sizeof(new_xattrs));
640         lsm_xattr = new_xattrs;
641         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
642                                                 &lsm_xattr->name,
643                                                 &lsm_xattr->value,
644                                                 &lsm_xattr->value_len);
645         if (ret)
646                 goto out;
647
648         evm_xattr = lsm_xattr + 1;
649         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
650         if (ret)
651                 goto out;
652         ret = initxattrs(inode, new_xattrs, fs_data);
653 out:
654         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
655                 kfree(xattr->value);
656         return (ret == -EOPNOTSUPP) ? 0 : ret;
657 }
658 EXPORT_SYMBOL(security_inode_init_security);
659
660 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
661                                      const struct qstr *qstr, const char **name,
662                                      void **value, size_t *len)
663 {
664         if (unlikely(IS_PRIVATE(inode)))
665                 return -EOPNOTSUPP;
666         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
667                              qstr, name, value, len);
668 }
669 EXPORT_SYMBOL(security_old_inode_init_security);
670
671 #ifdef CONFIG_SECURITY_PATH
672 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
673                         unsigned int dev)
674 {
675         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
676                 return 0;
677         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
678 }
679 EXPORT_SYMBOL(security_path_mknod);
680
681 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
682 {
683         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
684                 return 0;
685         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
686 }
687 EXPORT_SYMBOL(security_path_mkdir);
688
689 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
690 {
691         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
692                 return 0;
693         return call_int_hook(path_rmdir, 0, dir, dentry);
694 }
695
696 int security_path_unlink(const struct path *dir, struct dentry *dentry)
697 {
698         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
699                 return 0;
700         return call_int_hook(path_unlink, 0, dir, dentry);
701 }
702 EXPORT_SYMBOL(security_path_unlink);
703
704 int security_path_symlink(const struct path *dir, struct dentry *dentry,
705                           const char *old_name)
706 {
707         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
708                 return 0;
709         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
710 }
711
712 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
713                        struct dentry *new_dentry)
714 {
715         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
716                 return 0;
717         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
718 }
719
720 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
721                          const struct path *new_dir, struct dentry *new_dentry,
722                          unsigned int flags)
723 {
724         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
725                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
726                 return 0;
727
728         if (flags & RENAME_EXCHANGE) {
729                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
730                                         old_dir, old_dentry);
731                 if (err)
732                         return err;
733         }
734
735         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
736                                 new_dentry);
737 }
738 EXPORT_SYMBOL(security_path_rename);
739
740 int security_path_truncate(const struct path *path)
741 {
742         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
743                 return 0;
744         return call_int_hook(path_truncate, 0, path);
745 }
746
747 int security_path_chmod(const struct path *path, umode_t mode)
748 {
749         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
750                 return 0;
751         return call_int_hook(path_chmod, 0, path, mode);
752 }
753
754 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
755 {
756         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
757                 return 0;
758         return call_int_hook(path_chown, 0, path, uid, gid);
759 }
760
761 int security_path_chroot(const struct path *path)
762 {
763         return call_int_hook(path_chroot, 0, path);
764 }
765 #endif
766
767 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
768 {
769         if (unlikely(IS_PRIVATE(dir)))
770                 return 0;
771         return call_int_hook(inode_create, 0, dir, dentry, mode);
772 }
773 EXPORT_SYMBOL_GPL(security_inode_create);
774
775 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
776                          struct dentry *new_dentry)
777 {
778         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
779                 return 0;
780         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
781 }
782
783 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
784 {
785         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
786                 return 0;
787         return call_int_hook(inode_unlink, 0, dir, dentry);
788 }
789
790 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
791                             const char *old_name)
792 {
793         if (unlikely(IS_PRIVATE(dir)))
794                 return 0;
795         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
796 }
797
798 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
799 {
800         if (unlikely(IS_PRIVATE(dir)))
801                 return 0;
802         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
803 }
804 EXPORT_SYMBOL_GPL(security_inode_mkdir);
805
806 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
807 {
808         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
809                 return 0;
810         return call_int_hook(inode_rmdir, 0, dir, dentry);
811 }
812
813 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
814 {
815         if (unlikely(IS_PRIVATE(dir)))
816                 return 0;
817         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
818 }
819
820 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
821                            struct inode *new_dir, struct dentry *new_dentry,
822                            unsigned int flags)
823 {
824         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
825             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
826                 return 0;
827
828         if (flags & RENAME_EXCHANGE) {
829                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
830                                                      old_dir, old_dentry);
831                 if (err)
832                         return err;
833         }
834
835         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
836                                            new_dir, new_dentry);
837 }
838
839 int security_inode_readlink(struct dentry *dentry)
840 {
841         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
842                 return 0;
843         return call_int_hook(inode_readlink, 0, dentry);
844 }
845
846 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
847                                bool rcu)
848 {
849         if (unlikely(IS_PRIVATE(inode)))
850                 return 0;
851         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
852 }
853
854 int security_inode_permission(struct inode *inode, int mask)
855 {
856         if (unlikely(IS_PRIVATE(inode)))
857                 return 0;
858         return call_int_hook(inode_permission, 0, inode, mask);
859 }
860
861 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
862 {
863         int ret;
864
865         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
866                 return 0;
867         ret = call_int_hook(inode_setattr, 0, dentry, attr);
868         if (ret)
869                 return ret;
870         return evm_inode_setattr(dentry, attr);
871 }
872 EXPORT_SYMBOL_GPL(security_inode_setattr);
873
874 int security_inode_getattr(const struct path *path)
875 {
876         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
877                 return 0;
878         return call_int_hook(inode_getattr, 0, path);
879 }
880
881 int security_inode_setxattr(struct dentry *dentry, const char *name,
882                             const void *value, size_t size, int flags)
883 {
884         int ret;
885
886         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
887                 return 0;
888         /*
889          * SELinux and Smack integrate the cap call,
890          * so assume that all LSMs supplying this call do so.
891          */
892         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
893                                 flags);
894
895         if (ret == 1)
896                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
897         if (ret)
898                 return ret;
899         ret = ima_inode_setxattr(dentry, name, value, size);
900         if (ret)
901                 return ret;
902         return evm_inode_setxattr(dentry, name, value, size);
903 }
904
905 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
906                                   const void *value, size_t size, int flags)
907 {
908         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
909                 return;
910         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
911         evm_inode_post_setxattr(dentry, name, value, size);
912 }
913
914 int security_inode_getxattr(struct dentry *dentry, const char *name)
915 {
916         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
917                 return 0;
918         return call_int_hook(inode_getxattr, 0, dentry, name);
919 }
920
921 int security_inode_listxattr(struct dentry *dentry)
922 {
923         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
924                 return 0;
925         return call_int_hook(inode_listxattr, 0, dentry);
926 }
927
928 int security_inode_removexattr(struct dentry *dentry, const char *name)
929 {
930         int ret;
931
932         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
933                 return 0;
934         /*
935          * SELinux and Smack integrate the cap call,
936          * so assume that all LSMs supplying this call do so.
937          */
938         ret = call_int_hook(inode_removexattr, 1, dentry, name);
939         if (ret == 1)
940                 ret = cap_inode_removexattr(dentry, name);
941         if (ret)
942                 return ret;
943         ret = ima_inode_removexattr(dentry, name);
944         if (ret)
945                 return ret;
946         return evm_inode_removexattr(dentry, name);
947 }
948
949 int security_inode_need_killpriv(struct dentry *dentry)
950 {
951         return call_int_hook(inode_need_killpriv, 0, dentry);
952 }
953
954 int security_inode_killpriv(struct dentry *dentry)
955 {
956         return call_int_hook(inode_killpriv, 0, dentry);
957 }
958
959 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
960 {
961         struct security_hook_list *hp;
962         int rc;
963
964         if (unlikely(IS_PRIVATE(inode)))
965                 return -EOPNOTSUPP;
966         /*
967          * Only one module will provide an attribute with a given name.
968          */
969         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
970                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
971                 if (rc != -EOPNOTSUPP)
972                         return rc;
973         }
974         return -EOPNOTSUPP;
975 }
976
977 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
978 {
979         struct security_hook_list *hp;
980         int rc;
981
982         if (unlikely(IS_PRIVATE(inode)))
983                 return -EOPNOTSUPP;
984         /*
985          * Only one module will provide an attribute with a given name.
986          */
987         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
988                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
989                                                                 flags);
990                 if (rc != -EOPNOTSUPP)
991                         return rc;
992         }
993         return -EOPNOTSUPP;
994 }
995
996 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
997 {
998         if (unlikely(IS_PRIVATE(inode)))
999                 return 0;
1000         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1001 }
1002 EXPORT_SYMBOL(security_inode_listsecurity);
1003
1004 void security_inode_getsecid(struct inode *inode, u32 *secid)
1005 {
1006         call_void_hook(inode_getsecid, inode, secid);
1007 }
1008
1009 int security_inode_copy_up(struct dentry *src, struct cred **new)
1010 {
1011         return call_int_hook(inode_copy_up, 0, src, new);
1012 }
1013 EXPORT_SYMBOL(security_inode_copy_up);
1014
1015 int security_inode_copy_up_xattr(const char *name)
1016 {
1017         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1018 }
1019 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1020
1021 int security_file_permission(struct file *file, int mask)
1022 {
1023         int ret;
1024
1025         ret = call_int_hook(file_permission, 0, file, mask);
1026         if (ret)
1027                 return ret;
1028
1029         return fsnotify_perm(file, mask);
1030 }
1031
1032 int security_file_alloc(struct file *file)
1033 {
1034         return call_int_hook(file_alloc_security, 0, file);
1035 }
1036
1037 void security_file_free(struct file *file)
1038 {
1039         call_void_hook(file_free_security, file);
1040 }
1041
1042 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1043 {
1044         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1045 }
1046
1047 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1048 {
1049         /*
1050          * Does we have PROT_READ and does the application expect
1051          * it to imply PROT_EXEC?  If not, nothing to talk about...
1052          */
1053         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1054                 return prot;
1055         if (!(current->personality & READ_IMPLIES_EXEC))
1056                 return prot;
1057         /*
1058          * if that's an anonymous mapping, let it.
1059          */
1060         if (!file)
1061                 return prot | PROT_EXEC;
1062         /*
1063          * ditto if it's not on noexec mount, except that on !MMU we need
1064          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1065          */
1066         if (!path_noexec(&file->f_path)) {
1067 #ifndef CONFIG_MMU
1068                 if (file->f_op->mmap_capabilities) {
1069                         unsigned caps = file->f_op->mmap_capabilities(file);
1070                         if (!(caps & NOMMU_MAP_EXEC))
1071                                 return prot;
1072                 }
1073 #endif
1074                 return prot | PROT_EXEC;
1075         }
1076         /* anything on noexec mount won't get PROT_EXEC */
1077         return prot;
1078 }
1079
1080 int security_mmap_file(struct file *file, unsigned long prot,
1081                         unsigned long flags)
1082 {
1083         int ret;
1084         ret = call_int_hook(mmap_file, 0, file, prot,
1085                                         mmap_prot(file, prot), flags);
1086         if (ret)
1087                 return ret;
1088         return ima_file_mmap(file, prot);
1089 }
1090
1091 int security_mmap_addr(unsigned long addr)
1092 {
1093         return call_int_hook(mmap_addr, 0, addr);
1094 }
1095
1096 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1097                             unsigned long prot)
1098 {
1099         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1100 }
1101
1102 int security_file_lock(struct file *file, unsigned int cmd)
1103 {
1104         return call_int_hook(file_lock, 0, file, cmd);
1105 }
1106
1107 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1108 {
1109         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1110 }
1111
1112 void security_file_set_fowner(struct file *file)
1113 {
1114         call_void_hook(file_set_fowner, file);
1115 }
1116
1117 int security_file_send_sigiotask(struct task_struct *tsk,
1118                                   struct fown_struct *fown, int sig)
1119 {
1120         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1121 }
1122
1123 int security_file_receive(struct file *file)
1124 {
1125         return call_int_hook(file_receive, 0, file);
1126 }
1127
1128 int security_file_open(struct file *file)
1129 {
1130         int ret;
1131
1132         ret = call_int_hook(file_open, 0, file);
1133         if (ret)
1134                 return ret;
1135
1136         return fsnotify_perm(file, MAY_OPEN);
1137 }
1138
1139 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1140 {
1141         return call_int_hook(task_alloc, 0, task, clone_flags);
1142 }
1143
1144 void security_task_free(struct task_struct *task)
1145 {
1146         call_void_hook(task_free, task);
1147 }
1148
1149 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1150 {
1151         return call_int_hook(cred_alloc_blank, 0, cred, gfp);
1152 }
1153
1154 void security_cred_free(struct cred *cred)
1155 {
1156         call_void_hook(cred_free, cred);
1157 }
1158
1159 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1160 {
1161         return call_int_hook(cred_prepare, 0, new, old, gfp);
1162 }
1163
1164 void security_transfer_creds(struct cred *new, const struct cred *old)
1165 {
1166         call_void_hook(cred_transfer, new, old);
1167 }
1168
1169 void security_cred_getsecid(const struct cred *c, u32 *secid)
1170 {
1171         *secid = 0;
1172         call_void_hook(cred_getsecid, c, secid);
1173 }
1174 EXPORT_SYMBOL(security_cred_getsecid);
1175
1176 int security_kernel_act_as(struct cred *new, u32 secid)
1177 {
1178         return call_int_hook(kernel_act_as, 0, new, secid);
1179 }
1180
1181 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1182 {
1183         return call_int_hook(kernel_create_files_as, 0, new, inode);
1184 }
1185
1186 int security_kernel_module_request(char *kmod_name)
1187 {
1188         int ret;
1189
1190         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1191         if (ret)
1192                 return ret;
1193         return integrity_kernel_module_request(kmod_name);
1194 }
1195
1196 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1197 {
1198         int ret;
1199
1200         ret = call_int_hook(kernel_read_file, 0, file, id);
1201         if (ret)
1202                 return ret;
1203         return ima_read_file(file, id);
1204 }
1205 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1206
1207 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1208                                    enum kernel_read_file_id id)
1209 {
1210         int ret;
1211
1212         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1213         if (ret)
1214                 return ret;
1215         return ima_post_read_file(file, buf, size, id);
1216 }
1217 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1218
1219 int security_kernel_load_data(enum kernel_load_data_id id)
1220 {
1221         int ret;
1222
1223         ret = call_int_hook(kernel_load_data, 0, id);
1224         if (ret)
1225                 return ret;
1226         return ima_load_data(id);
1227 }
1228 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1229
1230 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1231                              int flags)
1232 {
1233         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1234 }
1235
1236 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1237 {
1238         return call_int_hook(task_setpgid, 0, p, pgid);
1239 }
1240
1241 int security_task_getpgid(struct task_struct *p)
1242 {
1243         return call_int_hook(task_getpgid, 0, p);
1244 }
1245
1246 int security_task_getsid(struct task_struct *p)
1247 {
1248         return call_int_hook(task_getsid, 0, p);
1249 }
1250
1251 void security_task_getsecid(struct task_struct *p, u32 *secid)
1252 {
1253         *secid = 0;
1254         call_void_hook(task_getsecid, p, secid);
1255 }
1256 EXPORT_SYMBOL(security_task_getsecid);
1257
1258 int security_task_setnice(struct task_struct *p, int nice)
1259 {
1260         return call_int_hook(task_setnice, 0, p, nice);
1261 }
1262
1263 int security_task_setioprio(struct task_struct *p, int ioprio)
1264 {
1265         return call_int_hook(task_setioprio, 0, p, ioprio);
1266 }
1267
1268 int security_task_getioprio(struct task_struct *p)
1269 {
1270         return call_int_hook(task_getioprio, 0, p);
1271 }
1272
1273 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1274                           unsigned int flags)
1275 {
1276         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1277 }
1278
1279 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1280                 struct rlimit *new_rlim)
1281 {
1282         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1283 }
1284
1285 int security_task_setscheduler(struct task_struct *p)
1286 {
1287         return call_int_hook(task_setscheduler, 0, p);
1288 }
1289
1290 int security_task_getscheduler(struct task_struct *p)
1291 {
1292         return call_int_hook(task_getscheduler, 0, p);
1293 }
1294
1295 int security_task_movememory(struct task_struct *p)
1296 {
1297         return call_int_hook(task_movememory, 0, p);
1298 }
1299
1300 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1301                         int sig, const struct cred *cred)
1302 {
1303         return call_int_hook(task_kill, 0, p, info, sig, cred);
1304 }
1305
1306 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1307                          unsigned long arg4, unsigned long arg5)
1308 {
1309         int thisrc;
1310         int rc = -ENOSYS;
1311         struct security_hook_list *hp;
1312
1313         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1314                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1315                 if (thisrc != -ENOSYS) {
1316                         rc = thisrc;
1317                         if (thisrc != 0)
1318                                 break;
1319                 }
1320         }
1321         return rc;
1322 }
1323
1324 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1325 {
1326         call_void_hook(task_to_inode, p, inode);
1327 }
1328
1329 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1330 {
1331         return call_int_hook(ipc_permission, 0, ipcp, flag);
1332 }
1333
1334 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1335 {
1336         *secid = 0;
1337         call_void_hook(ipc_getsecid, ipcp, secid);
1338 }
1339
1340 int security_msg_msg_alloc(struct msg_msg *msg)
1341 {
1342         return call_int_hook(msg_msg_alloc_security, 0, msg);
1343 }
1344
1345 void security_msg_msg_free(struct msg_msg *msg)
1346 {
1347         call_void_hook(msg_msg_free_security, msg);
1348 }
1349
1350 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1351 {
1352         return call_int_hook(msg_queue_alloc_security, 0, msq);
1353 }
1354
1355 void security_msg_queue_free(struct kern_ipc_perm *msq)
1356 {
1357         call_void_hook(msg_queue_free_security, msq);
1358 }
1359
1360 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1361 {
1362         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1363 }
1364
1365 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1366 {
1367         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1368 }
1369
1370 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1371                                struct msg_msg *msg, int msqflg)
1372 {
1373         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1374 }
1375
1376 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1377                                struct task_struct *target, long type, int mode)
1378 {
1379         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1380 }
1381
1382 int security_shm_alloc(struct kern_ipc_perm *shp)
1383 {
1384         return call_int_hook(shm_alloc_security, 0, shp);
1385 }
1386
1387 void security_shm_free(struct kern_ipc_perm *shp)
1388 {
1389         call_void_hook(shm_free_security, shp);
1390 }
1391
1392 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1393 {
1394         return call_int_hook(shm_associate, 0, shp, shmflg);
1395 }
1396
1397 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1398 {
1399         return call_int_hook(shm_shmctl, 0, shp, cmd);
1400 }
1401
1402 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1403 {
1404         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1405 }
1406
1407 int security_sem_alloc(struct kern_ipc_perm *sma)
1408 {
1409         return call_int_hook(sem_alloc_security, 0, sma);
1410 }
1411
1412 void security_sem_free(struct kern_ipc_perm *sma)
1413 {
1414         call_void_hook(sem_free_security, sma);
1415 }
1416
1417 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1418 {
1419         return call_int_hook(sem_associate, 0, sma, semflg);
1420 }
1421
1422 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1423 {
1424         return call_int_hook(sem_semctl, 0, sma, cmd);
1425 }
1426
1427 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1428                         unsigned nsops, int alter)
1429 {
1430         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1431 }
1432
1433 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1434 {
1435         if (unlikely(inode && IS_PRIVATE(inode)))
1436                 return;
1437         call_void_hook(d_instantiate, dentry, inode);
1438 }
1439 EXPORT_SYMBOL(security_d_instantiate);
1440
1441 int security_getprocattr(struct task_struct *p, char *name, char **value)
1442 {
1443         return call_int_hook(getprocattr, -EINVAL, p, name, value);
1444 }
1445
1446 int security_setprocattr(const char *name, void *value, size_t size)
1447 {
1448         return call_int_hook(setprocattr, -EINVAL, name, value, size);
1449 }
1450
1451 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1452 {
1453         return call_int_hook(netlink_send, 0, sk, skb);
1454 }
1455
1456 int security_ismaclabel(const char *name)
1457 {
1458         return call_int_hook(ismaclabel, 0, name);
1459 }
1460 EXPORT_SYMBOL(security_ismaclabel);
1461
1462 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1463 {
1464         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1465                                 seclen);
1466 }
1467 EXPORT_SYMBOL(security_secid_to_secctx);
1468
1469 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1470 {
1471         *secid = 0;
1472         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1473 }
1474 EXPORT_SYMBOL(security_secctx_to_secid);
1475
1476 void security_release_secctx(char *secdata, u32 seclen)
1477 {
1478         call_void_hook(release_secctx, secdata, seclen);
1479 }
1480 EXPORT_SYMBOL(security_release_secctx);
1481
1482 void security_inode_invalidate_secctx(struct inode *inode)
1483 {
1484         call_void_hook(inode_invalidate_secctx, inode);
1485 }
1486 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1487
1488 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1489 {
1490         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1491 }
1492 EXPORT_SYMBOL(security_inode_notifysecctx);
1493
1494 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1495 {
1496         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1497 }
1498 EXPORT_SYMBOL(security_inode_setsecctx);
1499
1500 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1501 {
1502         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1503 }
1504 EXPORT_SYMBOL(security_inode_getsecctx);
1505
1506 #ifdef CONFIG_SECURITY_NETWORK
1507
1508 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1509 {
1510         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1511 }
1512 EXPORT_SYMBOL(security_unix_stream_connect);
1513
1514 int security_unix_may_send(struct socket *sock,  struct socket *other)
1515 {
1516         return call_int_hook(unix_may_send, 0, sock, other);
1517 }
1518 EXPORT_SYMBOL(security_unix_may_send);
1519
1520 int security_socket_create(int family, int type, int protocol, int kern)
1521 {
1522         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1523 }
1524
1525 int security_socket_post_create(struct socket *sock, int family,
1526                                 int type, int protocol, int kern)
1527 {
1528         return call_int_hook(socket_post_create, 0, sock, family, type,
1529                                                 protocol, kern);
1530 }
1531
1532 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1533 {
1534         return call_int_hook(socket_socketpair, 0, socka, sockb);
1535 }
1536 EXPORT_SYMBOL(security_socket_socketpair);
1537
1538 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1539 {
1540         return call_int_hook(socket_bind, 0, sock, address, addrlen);
1541 }
1542
1543 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1544 {
1545         return call_int_hook(socket_connect, 0, sock, address, addrlen);
1546 }
1547
1548 int security_socket_listen(struct socket *sock, int backlog)
1549 {
1550         return call_int_hook(socket_listen, 0, sock, backlog);
1551 }
1552
1553 int security_socket_accept(struct socket *sock, struct socket *newsock)
1554 {
1555         return call_int_hook(socket_accept, 0, sock, newsock);
1556 }
1557
1558 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1559 {
1560         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1561 }
1562
1563 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1564                             int size, int flags)
1565 {
1566         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1567 }
1568
1569 int security_socket_getsockname(struct socket *sock)
1570 {
1571         return call_int_hook(socket_getsockname, 0, sock);
1572 }
1573
1574 int security_socket_getpeername(struct socket *sock)
1575 {
1576         return call_int_hook(socket_getpeername, 0, sock);
1577 }
1578
1579 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1580 {
1581         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1582 }
1583
1584 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1585 {
1586         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1587 }
1588
1589 int security_socket_shutdown(struct socket *sock, int how)
1590 {
1591         return call_int_hook(socket_shutdown, 0, sock, how);
1592 }
1593
1594 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1595 {
1596         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1597 }
1598 EXPORT_SYMBOL(security_sock_rcv_skb);
1599
1600 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1601                                       int __user *optlen, unsigned len)
1602 {
1603         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1604                                 optval, optlen, len);
1605 }
1606
1607 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1608 {
1609         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
1610                              skb, secid);
1611 }
1612 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1613
1614 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1615 {
1616         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
1617 }
1618
1619 void security_sk_free(struct sock *sk)
1620 {
1621         call_void_hook(sk_free_security, sk);
1622 }
1623
1624 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1625 {
1626         call_void_hook(sk_clone_security, sk, newsk);
1627 }
1628 EXPORT_SYMBOL(security_sk_clone);
1629
1630 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1631 {
1632         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
1633 }
1634 EXPORT_SYMBOL(security_sk_classify_flow);
1635
1636 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1637 {
1638         call_void_hook(req_classify_flow, req, fl);
1639 }
1640 EXPORT_SYMBOL(security_req_classify_flow);
1641
1642 void security_sock_graft(struct sock *sk, struct socket *parent)
1643 {
1644         call_void_hook(sock_graft, sk, parent);
1645 }
1646 EXPORT_SYMBOL(security_sock_graft);
1647
1648 int security_inet_conn_request(struct sock *sk,
1649                         struct sk_buff *skb, struct request_sock *req)
1650 {
1651         return call_int_hook(inet_conn_request, 0, sk, skb, req);
1652 }
1653 EXPORT_SYMBOL(security_inet_conn_request);
1654
1655 void security_inet_csk_clone(struct sock *newsk,
1656                         const struct request_sock *req)
1657 {
1658         call_void_hook(inet_csk_clone, newsk, req);
1659 }
1660
1661 void security_inet_conn_established(struct sock *sk,
1662                         struct sk_buff *skb)
1663 {
1664         call_void_hook(inet_conn_established, sk, skb);
1665 }
1666 EXPORT_SYMBOL(security_inet_conn_established);
1667
1668 int security_secmark_relabel_packet(u32 secid)
1669 {
1670         return call_int_hook(secmark_relabel_packet, 0, secid);
1671 }
1672 EXPORT_SYMBOL(security_secmark_relabel_packet);
1673
1674 void security_secmark_refcount_inc(void)
1675 {
1676         call_void_hook(secmark_refcount_inc);
1677 }
1678 EXPORT_SYMBOL(security_secmark_refcount_inc);
1679
1680 void security_secmark_refcount_dec(void)
1681 {
1682         call_void_hook(secmark_refcount_dec);
1683 }
1684 EXPORT_SYMBOL(security_secmark_refcount_dec);
1685
1686 int security_tun_dev_alloc_security(void **security)
1687 {
1688         return call_int_hook(tun_dev_alloc_security, 0, security);
1689 }
1690 EXPORT_SYMBOL(security_tun_dev_alloc_security);
1691
1692 void security_tun_dev_free_security(void *security)
1693 {
1694         call_void_hook(tun_dev_free_security, security);
1695 }
1696 EXPORT_SYMBOL(security_tun_dev_free_security);
1697
1698 int security_tun_dev_create(void)
1699 {
1700         return call_int_hook(tun_dev_create, 0);
1701 }
1702 EXPORT_SYMBOL(security_tun_dev_create);
1703
1704 int security_tun_dev_attach_queue(void *security)
1705 {
1706         return call_int_hook(tun_dev_attach_queue, 0, security);
1707 }
1708 EXPORT_SYMBOL(security_tun_dev_attach_queue);
1709
1710 int security_tun_dev_attach(struct sock *sk, void *security)
1711 {
1712         return call_int_hook(tun_dev_attach, 0, sk, security);
1713 }
1714 EXPORT_SYMBOL(security_tun_dev_attach);
1715
1716 int security_tun_dev_open(void *security)
1717 {
1718         return call_int_hook(tun_dev_open, 0, security);
1719 }
1720 EXPORT_SYMBOL(security_tun_dev_open);
1721
1722 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
1723 {
1724         return call_int_hook(sctp_assoc_request, 0, ep, skb);
1725 }
1726 EXPORT_SYMBOL(security_sctp_assoc_request);
1727
1728 int security_sctp_bind_connect(struct sock *sk, int optname,
1729                                struct sockaddr *address, int addrlen)
1730 {
1731         return call_int_hook(sctp_bind_connect, 0, sk, optname,
1732                              address, addrlen);
1733 }
1734 EXPORT_SYMBOL(security_sctp_bind_connect);
1735
1736 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
1737                             struct sock *newsk)
1738 {
1739         call_void_hook(sctp_sk_clone, ep, sk, newsk);
1740 }
1741 EXPORT_SYMBOL(security_sctp_sk_clone);
1742
1743 #endif  /* CONFIG_SECURITY_NETWORK */
1744
1745 #ifdef CONFIG_SECURITY_INFINIBAND
1746
1747 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
1748 {
1749         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
1750 }
1751 EXPORT_SYMBOL(security_ib_pkey_access);
1752
1753 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
1754 {
1755         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
1756 }
1757 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
1758
1759 int security_ib_alloc_security(void **sec)
1760 {
1761         return call_int_hook(ib_alloc_security, 0, sec);
1762 }
1763 EXPORT_SYMBOL(security_ib_alloc_security);
1764
1765 void security_ib_free_security(void *sec)
1766 {
1767         call_void_hook(ib_free_security, sec);
1768 }
1769 EXPORT_SYMBOL(security_ib_free_security);
1770 #endif  /* CONFIG_SECURITY_INFINIBAND */
1771
1772 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1773
1774 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1775                                struct xfrm_user_sec_ctx *sec_ctx,
1776                                gfp_t gfp)
1777 {
1778         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
1779 }
1780 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1781
1782 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1783                               struct xfrm_sec_ctx **new_ctxp)
1784 {
1785         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
1786 }
1787
1788 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1789 {
1790         call_void_hook(xfrm_policy_free_security, ctx);
1791 }
1792 EXPORT_SYMBOL(security_xfrm_policy_free);
1793
1794 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1795 {
1796         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
1797 }
1798
1799 int security_xfrm_state_alloc(struct xfrm_state *x,
1800                               struct xfrm_user_sec_ctx *sec_ctx)
1801 {
1802         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
1803 }
1804 EXPORT_SYMBOL(security_xfrm_state_alloc);
1805
1806 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1807                                       struct xfrm_sec_ctx *polsec, u32 secid)
1808 {
1809         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
1810 }
1811
1812 int security_xfrm_state_delete(struct xfrm_state *x)
1813 {
1814         return call_int_hook(xfrm_state_delete_security, 0, x);
1815 }
1816 EXPORT_SYMBOL(security_xfrm_state_delete);
1817
1818 void security_xfrm_state_free(struct xfrm_state *x)
1819 {
1820         call_void_hook(xfrm_state_free_security, x);
1821 }
1822
1823 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1824 {
1825         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
1826 }
1827
1828 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1829                                        struct xfrm_policy *xp,
1830                                        const struct flowi *fl)
1831 {
1832         struct security_hook_list *hp;
1833         int rc = 1;
1834
1835         /*
1836          * Since this function is expected to return 0 or 1, the judgment
1837          * becomes difficult if multiple LSMs supply this call. Fortunately,
1838          * we can use the first LSM's judgment because currently only SELinux
1839          * supplies this call.
1840          *
1841          * For speed optimization, we explicitly break the loop rather than
1842          * using the macro
1843          */
1844         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
1845                                 list) {
1846                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
1847                 break;
1848         }
1849         return rc;
1850 }
1851
1852 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1853 {
1854         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
1855 }
1856
1857 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1858 {
1859         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
1860                                 0);
1861
1862         BUG_ON(rc);
1863 }
1864 EXPORT_SYMBOL(security_skb_classify_flow);
1865
1866 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
1867
1868 #ifdef CONFIG_KEYS
1869
1870 int security_key_alloc(struct key *key, const struct cred *cred,
1871                        unsigned long flags)
1872 {
1873         return call_int_hook(key_alloc, 0, key, cred, flags);
1874 }
1875
1876 void security_key_free(struct key *key)
1877 {
1878         call_void_hook(key_free, key);
1879 }
1880
1881 int security_key_permission(key_ref_t key_ref,
1882                             const struct cred *cred, unsigned perm)
1883 {
1884         return call_int_hook(key_permission, 0, key_ref, cred, perm);
1885 }
1886
1887 int security_key_getsecurity(struct key *key, char **_buffer)
1888 {
1889         *_buffer = NULL;
1890         return call_int_hook(key_getsecurity, 0, key, _buffer);
1891 }
1892
1893 #endif  /* CONFIG_KEYS */
1894
1895 #ifdef CONFIG_AUDIT
1896
1897 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1898 {
1899         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
1900 }
1901
1902 int security_audit_rule_known(struct audit_krule *krule)
1903 {
1904         return call_int_hook(audit_rule_known, 0, krule);
1905 }
1906
1907 void security_audit_rule_free(void *lsmrule)
1908 {
1909         call_void_hook(audit_rule_free, lsmrule);
1910 }
1911
1912 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1913                               struct audit_context *actx)
1914 {
1915         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule,
1916                                 actx);
1917 }
1918 #endif /* CONFIG_AUDIT */
1919
1920 #ifdef CONFIG_BPF_SYSCALL
1921 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
1922 {
1923         return call_int_hook(bpf, 0, cmd, attr, size);
1924 }
1925 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
1926 {
1927         return call_int_hook(bpf_map, 0, map, fmode);
1928 }
1929 int security_bpf_prog(struct bpf_prog *prog)
1930 {
1931         return call_int_hook(bpf_prog, 0, prog);
1932 }
1933 int security_bpf_map_alloc(struct bpf_map *map)
1934 {
1935         return call_int_hook(bpf_map_alloc_security, 0, map);
1936 }
1937 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
1938 {
1939         return call_int_hook(bpf_prog_alloc_security, 0, aux);
1940 }
1941 void security_bpf_map_free(struct bpf_map *map)
1942 {
1943         call_void_hook(bpf_map_free_security, map);
1944 }
1945 void security_bpf_prog_free(struct bpf_prog_aux *aux)
1946 {
1947         call_void_hook(bpf_prog_free_security, aux);
1948 }
1949 #endif /* CONFIG_BPF_SYSCALL */