]> asedeno.scripts.mit.edu Git - linux.git/blob - security/security.c
security: remove EARLY_LSM_COUNT which never used
[linux.git] / security / security.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31
32 #define MAX_LSM_EVM_XATTR       2
33
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36
37 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
38 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
39
40 static struct kmem_cache *lsm_file_cache;
41 static struct kmem_cache *lsm_inode_cache;
42
43 char *lsm_names;
44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
45
46 /* Boot-time LSM user choice */
47 static __initdata const char *chosen_lsm_order;
48 static __initdata const char *chosen_major_lsm;
49
50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
51
52 /* Ordered list of LSMs to initialize. */
53 static __initdata struct lsm_info **ordered_lsms;
54 static __initdata struct lsm_info *exclusive;
55
56 static __initdata bool debug;
57 #define init_debug(...)                                         \
58         do {                                                    \
59                 if (debug)                                      \
60                         pr_info(__VA_ARGS__);                   \
61         } while (0)
62
63 static bool __init is_enabled(struct lsm_info *lsm)
64 {
65         if (!lsm->enabled)
66                 return false;
67
68         return *lsm->enabled;
69 }
70
71 /* Mark an LSM's enabled flag. */
72 static int lsm_enabled_true __initdata = 1;
73 static int lsm_enabled_false __initdata = 0;
74 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
75 {
76         /*
77          * When an LSM hasn't configured an enable variable, we can use
78          * a hard-coded location for storing the default enabled state.
79          */
80         if (!lsm->enabled) {
81                 if (enabled)
82                         lsm->enabled = &lsm_enabled_true;
83                 else
84                         lsm->enabled = &lsm_enabled_false;
85         } else if (lsm->enabled == &lsm_enabled_true) {
86                 if (!enabled)
87                         lsm->enabled = &lsm_enabled_false;
88         } else if (lsm->enabled == &lsm_enabled_false) {
89                 if (enabled)
90                         lsm->enabled = &lsm_enabled_true;
91         } else {
92                 *lsm->enabled = enabled;
93         }
94 }
95
96 /* Is an LSM already listed in the ordered LSMs list? */
97 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
98 {
99         struct lsm_info **check;
100
101         for (check = ordered_lsms; *check; check++)
102                 if (*check == lsm)
103                         return true;
104
105         return false;
106 }
107
108 /* Append an LSM to the list of ordered LSMs to initialize. */
109 static int last_lsm __initdata;
110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
111 {
112         /* Ignore duplicate selections. */
113         if (exists_ordered_lsm(lsm))
114                 return;
115
116         if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
117                 return;
118
119         /* Enable this LSM, if it is not already set. */
120         if (!lsm->enabled)
121                 lsm->enabled = &lsm_enabled_true;
122         ordered_lsms[last_lsm++] = lsm;
123
124         init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
125                    is_enabled(lsm) ? "en" : "dis");
126 }
127
128 /* Is an LSM allowed to be initialized? */
129 static bool __init lsm_allowed(struct lsm_info *lsm)
130 {
131         /* Skip if the LSM is disabled. */
132         if (!is_enabled(lsm))
133                 return false;
134
135         /* Not allowed if another exclusive LSM already initialized. */
136         if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
137                 init_debug("exclusive disabled: %s\n", lsm->name);
138                 return false;
139         }
140
141         return true;
142 }
143
144 static void __init lsm_set_blob_size(int *need, int *lbs)
145 {
146         int offset;
147
148         if (*need > 0) {
149                 offset = *lbs;
150                 *lbs += *need;
151                 *need = offset;
152         }
153 }
154
155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
156 {
157         if (!needed)
158                 return;
159
160         lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
161         lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
162         /*
163          * The inode blob gets an rcu_head in addition to
164          * what the modules might need.
165          */
166         if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
167                 blob_sizes.lbs_inode = sizeof(struct rcu_head);
168         lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
169         lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
170         lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
171         lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
172 }
173
174 /* Prepare LSM for initialization. */
175 static void __init prepare_lsm(struct lsm_info *lsm)
176 {
177         int enabled = lsm_allowed(lsm);
178
179         /* Record enablement (to handle any following exclusive LSMs). */
180         set_enabled(lsm, enabled);
181
182         /* If enabled, do pre-initialization work. */
183         if (enabled) {
184                 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
185                         exclusive = lsm;
186                         init_debug("exclusive chosen: %s\n", lsm->name);
187                 }
188
189                 lsm_set_blob_sizes(lsm->blobs);
190         }
191 }
192
193 /* Initialize a given LSM, if it is enabled. */
194 static void __init initialize_lsm(struct lsm_info *lsm)
195 {
196         if (is_enabled(lsm)) {
197                 int ret;
198
199                 init_debug("initializing %s\n", lsm->name);
200                 ret = lsm->init();
201                 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
202         }
203 }
204
205 /* Populate ordered LSMs list from comma-separated LSM name list. */
206 static void __init ordered_lsm_parse(const char *order, const char *origin)
207 {
208         struct lsm_info *lsm;
209         char *sep, *name, *next;
210
211         /* LSM_ORDER_FIRST is always first. */
212         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
213                 if (lsm->order == LSM_ORDER_FIRST)
214                         append_ordered_lsm(lsm, "first");
215         }
216
217         /* Process "security=", if given. */
218         if (chosen_major_lsm) {
219                 struct lsm_info *major;
220
221                 /*
222                  * To match the original "security=" behavior, this
223                  * explicitly does NOT fallback to another Legacy Major
224                  * if the selected one was separately disabled: disable
225                  * all non-matching Legacy Major LSMs.
226                  */
227                 for (major = __start_lsm_info; major < __end_lsm_info;
228                      major++) {
229                         if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
230                             strcmp(major->name, chosen_major_lsm) != 0) {
231                                 set_enabled(major, false);
232                                 init_debug("security=%s disabled: %s\n",
233                                            chosen_major_lsm, major->name);
234                         }
235                 }
236         }
237
238         sep = kstrdup(order, GFP_KERNEL);
239         next = sep;
240         /* Walk the list, looking for matching LSMs. */
241         while ((name = strsep(&next, ",")) != NULL) {
242                 bool found = false;
243
244                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
245                         if (lsm->order == LSM_ORDER_MUTABLE &&
246                             strcmp(lsm->name, name) == 0) {
247                                 append_ordered_lsm(lsm, origin);
248                                 found = true;
249                         }
250                 }
251
252                 if (!found)
253                         init_debug("%s ignored: %s\n", origin, name);
254         }
255
256         /* Process "security=", if given. */
257         if (chosen_major_lsm) {
258                 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
259                         if (exists_ordered_lsm(lsm))
260                                 continue;
261                         if (strcmp(lsm->name, chosen_major_lsm) == 0)
262                                 append_ordered_lsm(lsm, "security=");
263                 }
264         }
265
266         /* Disable all LSMs not in the ordered list. */
267         for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
268                 if (exists_ordered_lsm(lsm))
269                         continue;
270                 set_enabled(lsm, false);
271                 init_debug("%s disabled: %s\n", origin, lsm->name);
272         }
273
274         kfree(sep);
275 }
276
277 static void __init lsm_early_cred(struct cred *cred);
278 static void __init lsm_early_task(struct task_struct *task);
279
280 static int lsm_append(const char *new, char **result);
281
282 static void __init ordered_lsm_init(void)
283 {
284         struct lsm_info **lsm;
285
286         ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
287                                 GFP_KERNEL);
288
289         if (chosen_lsm_order) {
290                 if (chosen_major_lsm) {
291                         pr_info("security= is ignored because it is superseded by lsm=\n");
292                         chosen_major_lsm = NULL;
293                 }
294                 ordered_lsm_parse(chosen_lsm_order, "cmdline");
295         } else
296                 ordered_lsm_parse(builtin_lsm_order, "builtin");
297
298         for (lsm = ordered_lsms; *lsm; lsm++)
299                 prepare_lsm(*lsm);
300
301         init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
302         init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
303         init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
304         init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
305         init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
306         init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
307
308         /*
309          * Create any kmem_caches needed for blobs
310          */
311         if (blob_sizes.lbs_file)
312                 lsm_file_cache = kmem_cache_create("lsm_file_cache",
313                                                    blob_sizes.lbs_file, 0,
314                                                    SLAB_PANIC, NULL);
315         if (blob_sizes.lbs_inode)
316                 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
317                                                     blob_sizes.lbs_inode, 0,
318                                                     SLAB_PANIC, NULL);
319
320         lsm_early_cred((struct cred *) current->cred);
321         lsm_early_task(current);
322         for (lsm = ordered_lsms; *lsm; lsm++)
323                 initialize_lsm(*lsm);
324
325         kfree(ordered_lsms);
326 }
327
328 int __init early_security_init(void)
329 {
330         int i;
331         struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
332         struct lsm_info *lsm;
333
334         for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
335              i++)
336                 INIT_HLIST_HEAD(&list[i]);
337
338         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
339                 if (!lsm->enabled)
340                         lsm->enabled = &lsm_enabled_true;
341                 prepare_lsm(lsm);
342                 initialize_lsm(lsm);
343         }
344
345         return 0;
346 }
347
348 /**
349  * security_init - initializes the security framework
350  *
351  * This should be called early in the kernel initialization sequence.
352  */
353 int __init security_init(void)
354 {
355         struct lsm_info *lsm;
356
357         pr_info("Security Framework initializing\n");
358
359         /*
360          * Append the names of the early LSM modules now that kmalloc() is
361          * available
362          */
363         for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
364                 if (lsm->enabled)
365                         lsm_append(lsm->name, &lsm_names);
366         }
367
368         /* Load LSMs in specified order. */
369         ordered_lsm_init();
370
371         return 0;
372 }
373
374 /* Save user chosen LSM */
375 static int __init choose_major_lsm(char *str)
376 {
377         chosen_major_lsm = str;
378         return 1;
379 }
380 __setup("security=", choose_major_lsm);
381
382 /* Explicitly choose LSM initialization order. */
383 static int __init choose_lsm_order(char *str)
384 {
385         chosen_lsm_order = str;
386         return 1;
387 }
388 __setup("lsm=", choose_lsm_order);
389
390 /* Enable LSM order debugging. */
391 static int __init enable_debug(char *str)
392 {
393         debug = true;
394         return 1;
395 }
396 __setup("lsm.debug", enable_debug);
397
398 static bool match_last_lsm(const char *list, const char *lsm)
399 {
400         const char *last;
401
402         if (WARN_ON(!list || !lsm))
403                 return false;
404         last = strrchr(list, ',');
405         if (last)
406                 /* Pass the comma, strcmp() will check for '\0' */
407                 last++;
408         else
409                 last = list;
410         return !strcmp(last, lsm);
411 }
412
413 static int lsm_append(const char *new, char **result)
414 {
415         char *cp;
416
417         if (*result == NULL) {
418                 *result = kstrdup(new, GFP_KERNEL);
419                 if (*result == NULL)
420                         return -ENOMEM;
421         } else {
422                 /* Check if it is the last registered name */
423                 if (match_last_lsm(*result, new))
424                         return 0;
425                 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
426                 if (cp == NULL)
427                         return -ENOMEM;
428                 kfree(*result);
429                 *result = cp;
430         }
431         return 0;
432 }
433
434 /**
435  * security_add_hooks - Add a modules hooks to the hook lists.
436  * @hooks: the hooks to add
437  * @count: the number of hooks to add
438  * @lsm: the name of the security module
439  *
440  * Each LSM has to register its hooks with the infrastructure.
441  */
442 void __init security_add_hooks(struct security_hook_list *hooks, int count,
443                                 char *lsm)
444 {
445         int i;
446
447         for (i = 0; i < count; i++) {
448                 hooks[i].lsm = lsm;
449                 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
450         }
451
452         /*
453          * Don't try to append during early_security_init(), we'll come back
454          * and fix this up afterwards.
455          */
456         if (slab_is_available()) {
457                 if (lsm_append(lsm, &lsm_names) < 0)
458                         panic("%s - Cannot get early memory.\n", __func__);
459         }
460 }
461
462 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
463 {
464         return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
465                                             event, data);
466 }
467 EXPORT_SYMBOL(call_blocking_lsm_notifier);
468
469 int register_blocking_lsm_notifier(struct notifier_block *nb)
470 {
471         return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
472                                                 nb);
473 }
474 EXPORT_SYMBOL(register_blocking_lsm_notifier);
475
476 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
477 {
478         return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
479                                                   nb);
480 }
481 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
482
483 /**
484  * lsm_cred_alloc - allocate a composite cred blob
485  * @cred: the cred that needs a blob
486  * @gfp: allocation type
487  *
488  * Allocate the cred blob for all the modules
489  *
490  * Returns 0, or -ENOMEM if memory can't be allocated.
491  */
492 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
493 {
494         if (blob_sizes.lbs_cred == 0) {
495                 cred->security = NULL;
496                 return 0;
497         }
498
499         cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
500         if (cred->security == NULL)
501                 return -ENOMEM;
502         return 0;
503 }
504
505 /**
506  * lsm_early_cred - during initialization allocate a composite cred blob
507  * @cred: the cred that needs a blob
508  *
509  * Allocate the cred blob for all the modules
510  */
511 static void __init lsm_early_cred(struct cred *cred)
512 {
513         int rc = lsm_cred_alloc(cred, GFP_KERNEL);
514
515         if (rc)
516                 panic("%s: Early cred alloc failed.\n", __func__);
517 }
518
519 /**
520  * lsm_file_alloc - allocate a composite file blob
521  * @file: the file that needs a blob
522  *
523  * Allocate the file blob for all the modules
524  *
525  * Returns 0, or -ENOMEM if memory can't be allocated.
526  */
527 static int lsm_file_alloc(struct file *file)
528 {
529         if (!lsm_file_cache) {
530                 file->f_security = NULL;
531                 return 0;
532         }
533
534         file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
535         if (file->f_security == NULL)
536                 return -ENOMEM;
537         return 0;
538 }
539
540 /**
541  * lsm_inode_alloc - allocate a composite inode blob
542  * @inode: the inode that needs a blob
543  *
544  * Allocate the inode blob for all the modules
545  *
546  * Returns 0, or -ENOMEM if memory can't be allocated.
547  */
548 int lsm_inode_alloc(struct inode *inode)
549 {
550         if (!lsm_inode_cache) {
551                 inode->i_security = NULL;
552                 return 0;
553         }
554
555         inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
556         if (inode->i_security == NULL)
557                 return -ENOMEM;
558         return 0;
559 }
560
561 /**
562  * lsm_task_alloc - allocate a composite task blob
563  * @task: the task that needs a blob
564  *
565  * Allocate the task blob for all the modules
566  *
567  * Returns 0, or -ENOMEM if memory can't be allocated.
568  */
569 static int lsm_task_alloc(struct task_struct *task)
570 {
571         if (blob_sizes.lbs_task == 0) {
572                 task->security = NULL;
573                 return 0;
574         }
575
576         task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
577         if (task->security == NULL)
578                 return -ENOMEM;
579         return 0;
580 }
581
582 /**
583  * lsm_ipc_alloc - allocate a composite ipc blob
584  * @kip: the ipc that needs a blob
585  *
586  * Allocate the ipc blob for all the modules
587  *
588  * Returns 0, or -ENOMEM if memory can't be allocated.
589  */
590 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
591 {
592         if (blob_sizes.lbs_ipc == 0) {
593                 kip->security = NULL;
594                 return 0;
595         }
596
597         kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
598         if (kip->security == NULL)
599                 return -ENOMEM;
600         return 0;
601 }
602
603 /**
604  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
605  * @mp: the msg_msg that needs a blob
606  *
607  * Allocate the ipc blob for all the modules
608  *
609  * Returns 0, or -ENOMEM if memory can't be allocated.
610  */
611 static int lsm_msg_msg_alloc(struct msg_msg *mp)
612 {
613         if (blob_sizes.lbs_msg_msg == 0) {
614                 mp->security = NULL;
615                 return 0;
616         }
617
618         mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
619         if (mp->security == NULL)
620                 return -ENOMEM;
621         return 0;
622 }
623
624 /**
625  * lsm_early_task - during initialization allocate a composite task blob
626  * @task: the task that needs a blob
627  *
628  * Allocate the task blob for all the modules
629  */
630 static void __init lsm_early_task(struct task_struct *task)
631 {
632         int rc = lsm_task_alloc(task);
633
634         if (rc)
635                 panic("%s: Early task alloc failed.\n", __func__);
636 }
637
638 /*
639  * Hook list operation macros.
640  *
641  * call_void_hook:
642  *      This is a hook that does not return a value.
643  *
644  * call_int_hook:
645  *      This is a hook that returns a value.
646  */
647
648 #define call_void_hook(FUNC, ...)                               \
649         do {                                                    \
650                 struct security_hook_list *P;                   \
651                                                                 \
652                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
653                         P->hook.FUNC(__VA_ARGS__);              \
654         } while (0)
655
656 #define call_int_hook(FUNC, IRC, ...) ({                        \
657         int RC = IRC;                                           \
658         do {                                                    \
659                 struct security_hook_list *P;                   \
660                                                                 \
661                 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
662                         RC = P->hook.FUNC(__VA_ARGS__);         \
663                         if (RC != 0)                            \
664                                 break;                          \
665                 }                                               \
666         } while (0);                                            \
667         RC;                                                     \
668 })
669
670 /* Security operations */
671
672 int security_binder_set_context_mgr(struct task_struct *mgr)
673 {
674         return call_int_hook(binder_set_context_mgr, 0, mgr);
675 }
676
677 int security_binder_transaction(struct task_struct *from,
678                                 struct task_struct *to)
679 {
680         return call_int_hook(binder_transaction, 0, from, to);
681 }
682
683 int security_binder_transfer_binder(struct task_struct *from,
684                                     struct task_struct *to)
685 {
686         return call_int_hook(binder_transfer_binder, 0, from, to);
687 }
688
689 int security_binder_transfer_file(struct task_struct *from,
690                                   struct task_struct *to, struct file *file)
691 {
692         return call_int_hook(binder_transfer_file, 0, from, to, file);
693 }
694
695 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
696 {
697         return call_int_hook(ptrace_access_check, 0, child, mode);
698 }
699
700 int security_ptrace_traceme(struct task_struct *parent)
701 {
702         return call_int_hook(ptrace_traceme, 0, parent);
703 }
704
705 int security_capget(struct task_struct *target,
706                      kernel_cap_t *effective,
707                      kernel_cap_t *inheritable,
708                      kernel_cap_t *permitted)
709 {
710         return call_int_hook(capget, 0, target,
711                                 effective, inheritable, permitted);
712 }
713
714 int security_capset(struct cred *new, const struct cred *old,
715                     const kernel_cap_t *effective,
716                     const kernel_cap_t *inheritable,
717                     const kernel_cap_t *permitted)
718 {
719         return call_int_hook(capset, 0, new, old,
720                                 effective, inheritable, permitted);
721 }
722
723 int security_capable(const struct cred *cred,
724                      struct user_namespace *ns,
725                      int cap,
726                      unsigned int opts)
727 {
728         return call_int_hook(capable, 0, cred, ns, cap, opts);
729 }
730
731 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
732 {
733         return call_int_hook(quotactl, 0, cmds, type, id, sb);
734 }
735
736 int security_quota_on(struct dentry *dentry)
737 {
738         return call_int_hook(quota_on, 0, dentry);
739 }
740
741 int security_syslog(int type)
742 {
743         return call_int_hook(syslog, 0, type);
744 }
745
746 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
747 {
748         return call_int_hook(settime, 0, ts, tz);
749 }
750
751 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
752 {
753         struct security_hook_list *hp;
754         int cap_sys_admin = 1;
755         int rc;
756
757         /*
758          * The module will respond with a positive value if
759          * it thinks the __vm_enough_memory() call should be
760          * made with the cap_sys_admin set. If all of the modules
761          * agree that it should be set it will. If any module
762          * thinks it should not be set it won't.
763          */
764         hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
765                 rc = hp->hook.vm_enough_memory(mm, pages);
766                 if (rc <= 0) {
767                         cap_sys_admin = 0;
768                         break;
769                 }
770         }
771         return __vm_enough_memory(mm, pages, cap_sys_admin);
772 }
773
774 int security_bprm_set_creds(struct linux_binprm *bprm)
775 {
776         return call_int_hook(bprm_set_creds, 0, bprm);
777 }
778
779 int security_bprm_check(struct linux_binprm *bprm)
780 {
781         int ret;
782
783         ret = call_int_hook(bprm_check_security, 0, bprm);
784         if (ret)
785                 return ret;
786         return ima_bprm_check(bprm);
787 }
788
789 void security_bprm_committing_creds(struct linux_binprm *bprm)
790 {
791         call_void_hook(bprm_committing_creds, bprm);
792 }
793
794 void security_bprm_committed_creds(struct linux_binprm *bprm)
795 {
796         call_void_hook(bprm_committed_creds, bprm);
797 }
798
799 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
800 {
801         return call_int_hook(fs_context_dup, 0, fc, src_fc);
802 }
803
804 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
805 {
806         return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
807 }
808
809 int security_sb_alloc(struct super_block *sb)
810 {
811         return call_int_hook(sb_alloc_security, 0, sb);
812 }
813
814 void security_sb_free(struct super_block *sb)
815 {
816         call_void_hook(sb_free_security, sb);
817 }
818
819 void security_free_mnt_opts(void **mnt_opts)
820 {
821         if (!*mnt_opts)
822                 return;
823         call_void_hook(sb_free_mnt_opts, *mnt_opts);
824         *mnt_opts = NULL;
825 }
826 EXPORT_SYMBOL(security_free_mnt_opts);
827
828 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
829 {
830         return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
831 }
832 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
833
834 int security_sb_remount(struct super_block *sb,
835                         void *mnt_opts)
836 {
837         return call_int_hook(sb_remount, 0, sb, mnt_opts);
838 }
839 EXPORT_SYMBOL(security_sb_remount);
840
841 int security_sb_kern_mount(struct super_block *sb)
842 {
843         return call_int_hook(sb_kern_mount, 0, sb);
844 }
845
846 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
847 {
848         return call_int_hook(sb_show_options, 0, m, sb);
849 }
850
851 int security_sb_statfs(struct dentry *dentry)
852 {
853         return call_int_hook(sb_statfs, 0, dentry);
854 }
855
856 int security_sb_mount(const char *dev_name, const struct path *path,
857                        const char *type, unsigned long flags, void *data)
858 {
859         return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
860 }
861
862 int security_sb_umount(struct vfsmount *mnt, int flags)
863 {
864         return call_int_hook(sb_umount, 0, mnt, flags);
865 }
866
867 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
868 {
869         return call_int_hook(sb_pivotroot, 0, old_path, new_path);
870 }
871
872 int security_sb_set_mnt_opts(struct super_block *sb,
873                                 void *mnt_opts,
874                                 unsigned long kern_flags,
875                                 unsigned long *set_kern_flags)
876 {
877         return call_int_hook(sb_set_mnt_opts,
878                                 mnt_opts ? -EOPNOTSUPP : 0, sb,
879                                 mnt_opts, kern_flags, set_kern_flags);
880 }
881 EXPORT_SYMBOL(security_sb_set_mnt_opts);
882
883 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
884                                 struct super_block *newsb,
885                                 unsigned long kern_flags,
886                                 unsigned long *set_kern_flags)
887 {
888         return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
889                                 kern_flags, set_kern_flags);
890 }
891 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
892
893 int security_add_mnt_opt(const char *option, const char *val, int len,
894                          void **mnt_opts)
895 {
896         return call_int_hook(sb_add_mnt_opt, -EINVAL,
897                                         option, val, len, mnt_opts);
898 }
899 EXPORT_SYMBOL(security_add_mnt_opt);
900
901 int security_move_mount(const struct path *from_path, const struct path *to_path)
902 {
903         return call_int_hook(move_mount, 0, from_path, to_path);
904 }
905
906 int security_path_notify(const struct path *path, u64 mask,
907                                 unsigned int obj_type)
908 {
909         return call_int_hook(path_notify, 0, path, mask, obj_type);
910 }
911
912 int security_inode_alloc(struct inode *inode)
913 {
914         int rc = lsm_inode_alloc(inode);
915
916         if (unlikely(rc))
917                 return rc;
918         rc = call_int_hook(inode_alloc_security, 0, inode);
919         if (unlikely(rc))
920                 security_inode_free(inode);
921         return rc;
922 }
923
924 static void inode_free_by_rcu(struct rcu_head *head)
925 {
926         /*
927          * The rcu head is at the start of the inode blob
928          */
929         kmem_cache_free(lsm_inode_cache, head);
930 }
931
932 void security_inode_free(struct inode *inode)
933 {
934         integrity_inode_free(inode);
935         call_void_hook(inode_free_security, inode);
936         /*
937          * The inode may still be referenced in a path walk and
938          * a call to security_inode_permission() can be made
939          * after inode_free_security() is called. Ideally, the VFS
940          * wouldn't do this, but fixing that is a much harder
941          * job. For now, simply free the i_security via RCU, and
942          * leave the current inode->i_security pointer intact.
943          * The inode will be freed after the RCU grace period too.
944          */
945         if (inode->i_security)
946                 call_rcu((struct rcu_head *)inode->i_security,
947                                 inode_free_by_rcu);
948 }
949
950 int security_dentry_init_security(struct dentry *dentry, int mode,
951                                         const struct qstr *name, void **ctx,
952                                         u32 *ctxlen)
953 {
954         return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
955                                 name, ctx, ctxlen);
956 }
957 EXPORT_SYMBOL(security_dentry_init_security);
958
959 int security_dentry_create_files_as(struct dentry *dentry, int mode,
960                                     struct qstr *name,
961                                     const struct cred *old, struct cred *new)
962 {
963         return call_int_hook(dentry_create_files_as, 0, dentry, mode,
964                                 name, old, new);
965 }
966 EXPORT_SYMBOL(security_dentry_create_files_as);
967
968 int security_inode_init_security(struct inode *inode, struct inode *dir,
969                                  const struct qstr *qstr,
970                                  const initxattrs initxattrs, void *fs_data)
971 {
972         struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
973         struct xattr *lsm_xattr, *evm_xattr, *xattr;
974         int ret;
975
976         if (unlikely(IS_PRIVATE(inode)))
977                 return 0;
978
979         if (!initxattrs)
980                 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
981                                      dir, qstr, NULL, NULL, NULL);
982         memset(new_xattrs, 0, sizeof(new_xattrs));
983         lsm_xattr = new_xattrs;
984         ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
985                                                 &lsm_xattr->name,
986                                                 &lsm_xattr->value,
987                                                 &lsm_xattr->value_len);
988         if (ret)
989                 goto out;
990
991         evm_xattr = lsm_xattr + 1;
992         ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
993         if (ret)
994                 goto out;
995         ret = initxattrs(inode, new_xattrs, fs_data);
996 out:
997         for (xattr = new_xattrs; xattr->value != NULL; xattr++)
998                 kfree(xattr->value);
999         return (ret == -EOPNOTSUPP) ? 0 : ret;
1000 }
1001 EXPORT_SYMBOL(security_inode_init_security);
1002
1003 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1004                                      const struct qstr *qstr, const char **name,
1005                                      void **value, size_t *len)
1006 {
1007         if (unlikely(IS_PRIVATE(inode)))
1008                 return -EOPNOTSUPP;
1009         return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1010                              qstr, name, value, len);
1011 }
1012 EXPORT_SYMBOL(security_old_inode_init_security);
1013
1014 #ifdef CONFIG_SECURITY_PATH
1015 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1016                         unsigned int dev)
1017 {
1018         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1019                 return 0;
1020         return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1021 }
1022 EXPORT_SYMBOL(security_path_mknod);
1023
1024 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1025 {
1026         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1027                 return 0;
1028         return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1029 }
1030 EXPORT_SYMBOL(security_path_mkdir);
1031
1032 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1033 {
1034         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1035                 return 0;
1036         return call_int_hook(path_rmdir, 0, dir, dentry);
1037 }
1038
1039 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1040 {
1041         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1042                 return 0;
1043         return call_int_hook(path_unlink, 0, dir, dentry);
1044 }
1045 EXPORT_SYMBOL(security_path_unlink);
1046
1047 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1048                           const char *old_name)
1049 {
1050         if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1051                 return 0;
1052         return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1053 }
1054
1055 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1056                        struct dentry *new_dentry)
1057 {
1058         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1059                 return 0;
1060         return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1061 }
1062
1063 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1064                          const struct path *new_dir, struct dentry *new_dentry,
1065                          unsigned int flags)
1066 {
1067         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1068                      (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1069                 return 0;
1070
1071         if (flags & RENAME_EXCHANGE) {
1072                 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1073                                         old_dir, old_dentry);
1074                 if (err)
1075                         return err;
1076         }
1077
1078         return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1079                                 new_dentry);
1080 }
1081 EXPORT_SYMBOL(security_path_rename);
1082
1083 int security_path_truncate(const struct path *path)
1084 {
1085         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1086                 return 0;
1087         return call_int_hook(path_truncate, 0, path);
1088 }
1089
1090 int security_path_chmod(const struct path *path, umode_t mode)
1091 {
1092         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1093                 return 0;
1094         return call_int_hook(path_chmod, 0, path, mode);
1095 }
1096
1097 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1098 {
1099         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1100                 return 0;
1101         return call_int_hook(path_chown, 0, path, uid, gid);
1102 }
1103
1104 int security_path_chroot(const struct path *path)
1105 {
1106         return call_int_hook(path_chroot, 0, path);
1107 }
1108 #endif
1109
1110 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1111 {
1112         if (unlikely(IS_PRIVATE(dir)))
1113                 return 0;
1114         return call_int_hook(inode_create, 0, dir, dentry, mode);
1115 }
1116 EXPORT_SYMBOL_GPL(security_inode_create);
1117
1118 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1119                          struct dentry *new_dentry)
1120 {
1121         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1122                 return 0;
1123         return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1124 }
1125
1126 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1127 {
1128         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1129                 return 0;
1130         return call_int_hook(inode_unlink, 0, dir, dentry);
1131 }
1132
1133 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1134                             const char *old_name)
1135 {
1136         if (unlikely(IS_PRIVATE(dir)))
1137                 return 0;
1138         return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1139 }
1140
1141 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1142 {
1143         if (unlikely(IS_PRIVATE(dir)))
1144                 return 0;
1145         return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1146 }
1147 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1148
1149 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1150 {
1151         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1152                 return 0;
1153         return call_int_hook(inode_rmdir, 0, dir, dentry);
1154 }
1155
1156 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1157 {
1158         if (unlikely(IS_PRIVATE(dir)))
1159                 return 0;
1160         return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1161 }
1162
1163 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1164                            struct inode *new_dir, struct dentry *new_dentry,
1165                            unsigned int flags)
1166 {
1167         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1168             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1169                 return 0;
1170
1171         if (flags & RENAME_EXCHANGE) {
1172                 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1173                                                      old_dir, old_dentry);
1174                 if (err)
1175                         return err;
1176         }
1177
1178         return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1179                                            new_dir, new_dentry);
1180 }
1181
1182 int security_inode_readlink(struct dentry *dentry)
1183 {
1184         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1185                 return 0;
1186         return call_int_hook(inode_readlink, 0, dentry);
1187 }
1188
1189 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1190                                bool rcu)
1191 {
1192         if (unlikely(IS_PRIVATE(inode)))
1193                 return 0;
1194         return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1195 }
1196
1197 int security_inode_permission(struct inode *inode, int mask)
1198 {
1199         if (unlikely(IS_PRIVATE(inode)))
1200                 return 0;
1201         return call_int_hook(inode_permission, 0, inode, mask);
1202 }
1203
1204 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1205 {
1206         int ret;
1207
1208         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209                 return 0;
1210         ret = call_int_hook(inode_setattr, 0, dentry, attr);
1211         if (ret)
1212                 return ret;
1213         return evm_inode_setattr(dentry, attr);
1214 }
1215 EXPORT_SYMBOL_GPL(security_inode_setattr);
1216
1217 int security_inode_getattr(const struct path *path)
1218 {
1219         if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1220                 return 0;
1221         return call_int_hook(inode_getattr, 0, path);
1222 }
1223
1224 int security_inode_setxattr(struct dentry *dentry, const char *name,
1225                             const void *value, size_t size, int flags)
1226 {
1227         int ret;
1228
1229         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1230                 return 0;
1231         /*
1232          * SELinux and Smack integrate the cap call,
1233          * so assume that all LSMs supplying this call do so.
1234          */
1235         ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1236                                 flags);
1237
1238         if (ret == 1)
1239                 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1240         if (ret)
1241                 return ret;
1242         ret = ima_inode_setxattr(dentry, name, value, size);
1243         if (ret)
1244                 return ret;
1245         return evm_inode_setxattr(dentry, name, value, size);
1246 }
1247
1248 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1249                                   const void *value, size_t size, int flags)
1250 {
1251         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252                 return;
1253         call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1254         evm_inode_post_setxattr(dentry, name, value, size);
1255 }
1256
1257 int security_inode_getxattr(struct dentry *dentry, const char *name)
1258 {
1259         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1260                 return 0;
1261         return call_int_hook(inode_getxattr, 0, dentry, name);
1262 }
1263
1264 int security_inode_listxattr(struct dentry *dentry)
1265 {
1266         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1267                 return 0;
1268         return call_int_hook(inode_listxattr, 0, dentry);
1269 }
1270
1271 int security_inode_removexattr(struct dentry *dentry, const char *name)
1272 {
1273         int ret;
1274
1275         if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1276                 return 0;
1277         /*
1278          * SELinux and Smack integrate the cap call,
1279          * so assume that all LSMs supplying this call do so.
1280          */
1281         ret = call_int_hook(inode_removexattr, 1, dentry, name);
1282         if (ret == 1)
1283                 ret = cap_inode_removexattr(dentry, name);
1284         if (ret)
1285                 return ret;
1286         ret = ima_inode_removexattr(dentry, name);
1287         if (ret)
1288                 return ret;
1289         return evm_inode_removexattr(dentry, name);
1290 }
1291
1292 int security_inode_need_killpriv(struct dentry *dentry)
1293 {
1294         return call_int_hook(inode_need_killpriv, 0, dentry);
1295 }
1296
1297 int security_inode_killpriv(struct dentry *dentry)
1298 {
1299         return call_int_hook(inode_killpriv, 0, dentry);
1300 }
1301
1302 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1303 {
1304         struct security_hook_list *hp;
1305         int rc;
1306
1307         if (unlikely(IS_PRIVATE(inode)))
1308                 return -EOPNOTSUPP;
1309         /*
1310          * Only one module will provide an attribute with a given name.
1311          */
1312         hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1313                 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1314                 if (rc != -EOPNOTSUPP)
1315                         return rc;
1316         }
1317         return -EOPNOTSUPP;
1318 }
1319
1320 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1321 {
1322         struct security_hook_list *hp;
1323         int rc;
1324
1325         if (unlikely(IS_PRIVATE(inode)))
1326                 return -EOPNOTSUPP;
1327         /*
1328          * Only one module will provide an attribute with a given name.
1329          */
1330         hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1331                 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1332                                                                 flags);
1333                 if (rc != -EOPNOTSUPP)
1334                         return rc;
1335         }
1336         return -EOPNOTSUPP;
1337 }
1338
1339 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1340 {
1341         if (unlikely(IS_PRIVATE(inode)))
1342                 return 0;
1343         return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1344 }
1345 EXPORT_SYMBOL(security_inode_listsecurity);
1346
1347 void security_inode_getsecid(struct inode *inode, u32 *secid)
1348 {
1349         call_void_hook(inode_getsecid, inode, secid);
1350 }
1351
1352 int security_inode_copy_up(struct dentry *src, struct cred **new)
1353 {
1354         return call_int_hook(inode_copy_up, 0, src, new);
1355 }
1356 EXPORT_SYMBOL(security_inode_copy_up);
1357
1358 int security_inode_copy_up_xattr(const char *name)
1359 {
1360         return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1361 }
1362 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1363
1364 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1365                                   struct kernfs_node *kn)
1366 {
1367         return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1368 }
1369
1370 int security_file_permission(struct file *file, int mask)
1371 {
1372         int ret;
1373
1374         ret = call_int_hook(file_permission, 0, file, mask);
1375         if (ret)
1376                 return ret;
1377
1378         return fsnotify_perm(file, mask);
1379 }
1380
1381 int security_file_alloc(struct file *file)
1382 {
1383         int rc = lsm_file_alloc(file);
1384
1385         if (rc)
1386                 return rc;
1387         rc = call_int_hook(file_alloc_security, 0, file);
1388         if (unlikely(rc))
1389                 security_file_free(file);
1390         return rc;
1391 }
1392
1393 void security_file_free(struct file *file)
1394 {
1395         void *blob;
1396
1397         call_void_hook(file_free_security, file);
1398
1399         blob = file->f_security;
1400         if (blob) {
1401                 file->f_security = NULL;
1402                 kmem_cache_free(lsm_file_cache, blob);
1403         }
1404 }
1405
1406 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1407 {
1408         return call_int_hook(file_ioctl, 0, file, cmd, arg);
1409 }
1410
1411 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1412 {
1413         /*
1414          * Does we have PROT_READ and does the application expect
1415          * it to imply PROT_EXEC?  If not, nothing to talk about...
1416          */
1417         if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1418                 return prot;
1419         if (!(current->personality & READ_IMPLIES_EXEC))
1420                 return prot;
1421         /*
1422          * if that's an anonymous mapping, let it.
1423          */
1424         if (!file)
1425                 return prot | PROT_EXEC;
1426         /*
1427          * ditto if it's not on noexec mount, except that on !MMU we need
1428          * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1429          */
1430         if (!path_noexec(&file->f_path)) {
1431 #ifndef CONFIG_MMU
1432                 if (file->f_op->mmap_capabilities) {
1433                         unsigned caps = file->f_op->mmap_capabilities(file);
1434                         if (!(caps & NOMMU_MAP_EXEC))
1435                                 return prot;
1436                 }
1437 #endif
1438                 return prot | PROT_EXEC;
1439         }
1440         /* anything on noexec mount won't get PROT_EXEC */
1441         return prot;
1442 }
1443
1444 int security_mmap_file(struct file *file, unsigned long prot,
1445                         unsigned long flags)
1446 {
1447         int ret;
1448         ret = call_int_hook(mmap_file, 0, file, prot,
1449                                         mmap_prot(file, prot), flags);
1450         if (ret)
1451                 return ret;
1452         return ima_file_mmap(file, prot);
1453 }
1454
1455 int security_mmap_addr(unsigned long addr)
1456 {
1457         return call_int_hook(mmap_addr, 0, addr);
1458 }
1459
1460 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1461                             unsigned long prot)
1462 {
1463         return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1464 }
1465
1466 int security_file_lock(struct file *file, unsigned int cmd)
1467 {
1468         return call_int_hook(file_lock, 0, file, cmd);
1469 }
1470
1471 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1472 {
1473         return call_int_hook(file_fcntl, 0, file, cmd, arg);
1474 }
1475
1476 void security_file_set_fowner(struct file *file)
1477 {
1478         call_void_hook(file_set_fowner, file);
1479 }
1480
1481 int security_file_send_sigiotask(struct task_struct *tsk,
1482                                   struct fown_struct *fown, int sig)
1483 {
1484         return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1485 }
1486
1487 int security_file_receive(struct file *file)
1488 {
1489         return call_int_hook(file_receive, 0, file);
1490 }
1491
1492 int security_file_open(struct file *file)
1493 {
1494         int ret;
1495
1496         ret = call_int_hook(file_open, 0, file);
1497         if (ret)
1498                 return ret;
1499
1500         return fsnotify_perm(file, MAY_OPEN);
1501 }
1502
1503 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1504 {
1505         int rc = lsm_task_alloc(task);
1506
1507         if (rc)
1508                 return rc;
1509         rc = call_int_hook(task_alloc, 0, task, clone_flags);
1510         if (unlikely(rc))
1511                 security_task_free(task);
1512         return rc;
1513 }
1514
1515 void security_task_free(struct task_struct *task)
1516 {
1517         call_void_hook(task_free, task);
1518
1519         kfree(task->security);
1520         task->security = NULL;
1521 }
1522
1523 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1524 {
1525         int rc = lsm_cred_alloc(cred, gfp);
1526
1527         if (rc)
1528                 return rc;
1529
1530         rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1531         if (unlikely(rc))
1532                 security_cred_free(cred);
1533         return rc;
1534 }
1535
1536 void security_cred_free(struct cred *cred)
1537 {
1538         /*
1539          * There is a failure case in prepare_creds() that
1540          * may result in a call here with ->security being NULL.
1541          */
1542         if (unlikely(cred->security == NULL))
1543                 return;
1544
1545         call_void_hook(cred_free, cred);
1546
1547         kfree(cred->security);
1548         cred->security = NULL;
1549 }
1550
1551 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1552 {
1553         int rc = lsm_cred_alloc(new, gfp);
1554
1555         if (rc)
1556                 return rc;
1557
1558         rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1559         if (unlikely(rc))
1560                 security_cred_free(new);
1561         return rc;
1562 }
1563
1564 void security_transfer_creds(struct cred *new, const struct cred *old)
1565 {
1566         call_void_hook(cred_transfer, new, old);
1567 }
1568
1569 void security_cred_getsecid(const struct cred *c, u32 *secid)
1570 {
1571         *secid = 0;
1572         call_void_hook(cred_getsecid, c, secid);
1573 }
1574 EXPORT_SYMBOL(security_cred_getsecid);
1575
1576 int security_kernel_act_as(struct cred *new, u32 secid)
1577 {
1578         return call_int_hook(kernel_act_as, 0, new, secid);
1579 }
1580
1581 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1582 {
1583         return call_int_hook(kernel_create_files_as, 0, new, inode);
1584 }
1585
1586 int security_kernel_module_request(char *kmod_name)
1587 {
1588         int ret;
1589
1590         ret = call_int_hook(kernel_module_request, 0, kmod_name);
1591         if (ret)
1592                 return ret;
1593         return integrity_kernel_module_request(kmod_name);
1594 }
1595
1596 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1597 {
1598         int ret;
1599
1600         ret = call_int_hook(kernel_read_file, 0, file, id);
1601         if (ret)
1602                 return ret;
1603         return ima_read_file(file, id);
1604 }
1605 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1606
1607 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1608                                    enum kernel_read_file_id id)
1609 {
1610         int ret;
1611
1612         ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1613         if (ret)
1614                 return ret;
1615         return ima_post_read_file(file, buf, size, id);
1616 }
1617 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1618
1619 int security_kernel_load_data(enum kernel_load_data_id id)
1620 {
1621         int ret;
1622
1623         ret = call_int_hook(kernel_load_data, 0, id);
1624         if (ret)
1625                 return ret;
1626         return ima_load_data(id);
1627 }
1628 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1629
1630 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1631                              int flags)
1632 {
1633         return call_int_hook(task_fix_setuid, 0, new, old, flags);
1634 }
1635
1636 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1637 {
1638         return call_int_hook(task_setpgid, 0, p, pgid);
1639 }
1640
1641 int security_task_getpgid(struct task_struct *p)
1642 {
1643         return call_int_hook(task_getpgid, 0, p);
1644 }
1645
1646 int security_task_getsid(struct task_struct *p)
1647 {
1648         return call_int_hook(task_getsid, 0, p);
1649 }
1650
1651 void security_task_getsecid(struct task_struct *p, u32 *secid)
1652 {
1653         *secid = 0;
1654         call_void_hook(task_getsecid, p, secid);
1655 }
1656 EXPORT_SYMBOL(security_task_getsecid);
1657
1658 int security_task_setnice(struct task_struct *p, int nice)
1659 {
1660         return call_int_hook(task_setnice, 0, p, nice);
1661 }
1662
1663 int security_task_setioprio(struct task_struct *p, int ioprio)
1664 {
1665         return call_int_hook(task_setioprio, 0, p, ioprio);
1666 }
1667
1668 int security_task_getioprio(struct task_struct *p)
1669 {
1670         return call_int_hook(task_getioprio, 0, p);
1671 }
1672
1673 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1674                           unsigned int flags)
1675 {
1676         return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1677 }
1678
1679 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1680                 struct rlimit *new_rlim)
1681 {
1682         return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1683 }
1684
1685 int security_task_setscheduler(struct task_struct *p)
1686 {
1687         return call_int_hook(task_setscheduler, 0, p);
1688 }
1689
1690 int security_task_getscheduler(struct task_struct *p)
1691 {
1692         return call_int_hook(task_getscheduler, 0, p);
1693 }
1694
1695 int security_task_movememory(struct task_struct *p)
1696 {
1697         return call_int_hook(task_movememory, 0, p);
1698 }
1699
1700 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1701                         int sig, const struct cred *cred)
1702 {
1703         return call_int_hook(task_kill, 0, p, info, sig, cred);
1704 }
1705
1706 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1707                          unsigned long arg4, unsigned long arg5)
1708 {
1709         int thisrc;
1710         int rc = -ENOSYS;
1711         struct security_hook_list *hp;
1712
1713         hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1714                 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1715                 if (thisrc != -ENOSYS) {
1716                         rc = thisrc;
1717                         if (thisrc != 0)
1718                                 break;
1719                 }
1720         }
1721         return rc;
1722 }
1723
1724 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1725 {
1726         call_void_hook(task_to_inode, p, inode);
1727 }
1728
1729 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1730 {
1731         return call_int_hook(ipc_permission, 0, ipcp, flag);
1732 }
1733
1734 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1735 {
1736         *secid = 0;
1737         call_void_hook(ipc_getsecid, ipcp, secid);
1738 }
1739
1740 int security_msg_msg_alloc(struct msg_msg *msg)
1741 {
1742         int rc = lsm_msg_msg_alloc(msg);
1743
1744         if (unlikely(rc))
1745                 return rc;
1746         rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1747         if (unlikely(rc))
1748                 security_msg_msg_free(msg);
1749         return rc;
1750 }
1751
1752 void security_msg_msg_free(struct msg_msg *msg)
1753 {
1754         call_void_hook(msg_msg_free_security, msg);
1755         kfree(msg->security);
1756         msg->security = NULL;
1757 }
1758
1759 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1760 {
1761         int rc = lsm_ipc_alloc(msq);
1762
1763         if (unlikely(rc))
1764                 return rc;
1765         rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1766         if (unlikely(rc))
1767                 security_msg_queue_free(msq);
1768         return rc;
1769 }
1770
1771 void security_msg_queue_free(struct kern_ipc_perm *msq)
1772 {
1773         call_void_hook(msg_queue_free_security, msq);
1774         kfree(msq->security);
1775         msq->security = NULL;
1776 }
1777
1778 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1779 {
1780         return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1781 }
1782
1783 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1784 {
1785         return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1786 }
1787
1788 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1789                                struct msg_msg *msg, int msqflg)
1790 {
1791         return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1792 }
1793
1794 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1795                                struct task_struct *target, long type, int mode)
1796 {
1797         return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1798 }
1799
1800 int security_shm_alloc(struct kern_ipc_perm *shp)
1801 {
1802         int rc = lsm_ipc_alloc(shp);
1803
1804         if (unlikely(rc))
1805                 return rc;
1806         rc = call_int_hook(shm_alloc_security, 0, shp);
1807         if (unlikely(rc))
1808                 security_shm_free(shp);
1809         return rc;
1810 }
1811
1812 void security_shm_free(struct kern_ipc_perm *shp)
1813 {
1814         call_void_hook(shm_free_security, shp);
1815         kfree(shp->security);
1816         shp->security = NULL;
1817 }
1818
1819 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1820 {
1821         return call_int_hook(shm_associate, 0, shp, shmflg);
1822 }
1823
1824 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1825 {
1826         return call_int_hook(shm_shmctl, 0, shp, cmd);
1827 }
1828
1829 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1830 {
1831         return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1832 }
1833
1834 int security_sem_alloc(struct kern_ipc_perm *sma)
1835 {
1836         int rc = lsm_ipc_alloc(sma);
1837
1838         if (unlikely(rc))
1839                 return rc;
1840         rc = call_int_hook(sem_alloc_security, 0, sma);
1841         if (unlikely(rc))
1842                 security_sem_free(sma);
1843         return rc;
1844 }
1845
1846 void security_sem_free(struct kern_ipc_perm *sma)
1847 {
1848         call_void_hook(sem_free_security, sma);
1849         kfree(sma->security);
1850         sma->security = NULL;
1851 }
1852
1853 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1854 {
1855         return call_int_hook(sem_associate, 0, sma, semflg);
1856 }
1857
1858 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1859 {
1860         return call_int_hook(sem_semctl, 0, sma, cmd);
1861 }
1862
1863 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1864                         unsigned nsops, int alter)
1865 {
1866         return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1867 }
1868
1869 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1870 {
1871         if (unlikely(inode && IS_PRIVATE(inode)))
1872                 return;
1873         call_void_hook(d_instantiate, dentry, inode);
1874 }
1875 EXPORT_SYMBOL(security_d_instantiate);
1876
1877 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1878                                 char **value)
1879 {
1880         struct security_hook_list *hp;
1881
1882         hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1883                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1884                         continue;
1885                 return hp->hook.getprocattr(p, name, value);
1886         }
1887         return -EINVAL;
1888 }
1889
1890 int security_setprocattr(const char *lsm, const char *name, void *value,
1891                          size_t size)
1892 {
1893         struct security_hook_list *hp;
1894
1895         hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1896                 if (lsm != NULL && strcmp(lsm, hp->lsm))
1897                         continue;
1898                 return hp->hook.setprocattr(name, value, size);
1899         }
1900         return -EINVAL;
1901 }
1902
1903 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1904 {
1905         return call_int_hook(netlink_send, 0, sk, skb);
1906 }
1907
1908 int security_ismaclabel(const char *name)
1909 {
1910         return call_int_hook(ismaclabel, 0, name);
1911 }
1912 EXPORT_SYMBOL(security_ismaclabel);
1913
1914 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1915 {
1916         return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1917                                 seclen);
1918 }
1919 EXPORT_SYMBOL(security_secid_to_secctx);
1920
1921 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1922 {
1923         *secid = 0;
1924         return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1925 }
1926 EXPORT_SYMBOL(security_secctx_to_secid);
1927
1928 void security_release_secctx(char *secdata, u32 seclen)
1929 {
1930         call_void_hook(release_secctx, secdata, seclen);
1931 }
1932 EXPORT_SYMBOL(security_release_secctx);
1933
1934 void security_inode_invalidate_secctx(struct inode *inode)
1935 {
1936         call_void_hook(inode_invalidate_secctx, inode);
1937 }
1938 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1939
1940 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1941 {
1942         return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1943 }
1944 EXPORT_SYMBOL(security_inode_notifysecctx);
1945
1946 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1947 {
1948         return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1949 }
1950 EXPORT_SYMBOL(security_inode_setsecctx);
1951
1952 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1953 {
1954         return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1955 }
1956 EXPORT_SYMBOL(security_inode_getsecctx);
1957
1958 #ifdef CONFIG_SECURITY_NETWORK
1959
1960 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1961 {
1962         return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1963 }
1964 EXPORT_SYMBOL(security_unix_stream_connect);
1965
1966 int security_unix_may_send(struct socket *sock,  struct socket *other)
1967 {
1968         return call_int_hook(unix_may_send, 0, sock, other);
1969 }
1970 EXPORT_SYMBOL(security_unix_may_send);
1971
1972 int security_socket_create(int family, int type, int protocol, int kern)
1973 {
1974         return call_int_hook(socket_create, 0, family, type, protocol, kern);
1975 }
1976
1977 int security_socket_post_create(struct socket *sock, int family,
1978                                 int type, int protocol, int kern)
1979 {
1980         return call_int_hook(socket_post_create, 0, sock, family, type,
1981                                                 protocol, kern);
1982 }
1983
1984 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1985 {
1986         return call_int_hook(socket_socketpair, 0, socka, sockb);
1987 }
1988 EXPORT_SYMBOL(security_socket_socketpair);
1989
1990 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1991 {
1992         return call_int_hook(socket_bind, 0, sock, address, addrlen);
1993 }
1994
1995 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1996 {
1997         return call_int_hook(socket_connect, 0, sock, address, addrlen);
1998 }
1999
2000 int security_socket_listen(struct socket *sock, int backlog)
2001 {
2002         return call_int_hook(socket_listen, 0, sock, backlog);
2003 }
2004
2005 int security_socket_accept(struct socket *sock, struct socket *newsock)
2006 {
2007         return call_int_hook(socket_accept, 0, sock, newsock);
2008 }
2009
2010 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2011 {
2012         return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2013 }
2014
2015 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2016                             int size, int flags)
2017 {
2018         return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2019 }
2020
2021 int security_socket_getsockname(struct socket *sock)
2022 {
2023         return call_int_hook(socket_getsockname, 0, sock);
2024 }
2025
2026 int security_socket_getpeername(struct socket *sock)
2027 {
2028         return call_int_hook(socket_getpeername, 0, sock);
2029 }
2030
2031 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2032 {
2033         return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2034 }
2035
2036 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2037 {
2038         return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2039 }
2040
2041 int security_socket_shutdown(struct socket *sock, int how)
2042 {
2043         return call_int_hook(socket_shutdown, 0, sock, how);
2044 }
2045
2046 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2047 {
2048         return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2049 }
2050 EXPORT_SYMBOL(security_sock_rcv_skb);
2051
2052 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2053                                       int __user *optlen, unsigned len)
2054 {
2055         return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2056                                 optval, optlen, len);
2057 }
2058
2059 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2060 {
2061         return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2062                              skb, secid);
2063 }
2064 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2065
2066 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2067 {
2068         return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2069 }
2070
2071 void security_sk_free(struct sock *sk)
2072 {
2073         call_void_hook(sk_free_security, sk);
2074 }
2075
2076 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2077 {
2078         call_void_hook(sk_clone_security, sk, newsk);
2079 }
2080 EXPORT_SYMBOL(security_sk_clone);
2081
2082 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2083 {
2084         call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2085 }
2086 EXPORT_SYMBOL(security_sk_classify_flow);
2087
2088 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2089 {
2090         call_void_hook(req_classify_flow, req, fl);
2091 }
2092 EXPORT_SYMBOL(security_req_classify_flow);
2093
2094 void security_sock_graft(struct sock *sk, struct socket *parent)
2095 {
2096         call_void_hook(sock_graft, sk, parent);
2097 }
2098 EXPORT_SYMBOL(security_sock_graft);
2099
2100 int security_inet_conn_request(struct sock *sk,
2101                         struct sk_buff *skb, struct request_sock *req)
2102 {
2103         return call_int_hook(inet_conn_request, 0, sk, skb, req);
2104 }
2105 EXPORT_SYMBOL(security_inet_conn_request);
2106
2107 void security_inet_csk_clone(struct sock *newsk,
2108                         const struct request_sock *req)
2109 {
2110         call_void_hook(inet_csk_clone, newsk, req);
2111 }
2112
2113 void security_inet_conn_established(struct sock *sk,
2114                         struct sk_buff *skb)
2115 {
2116         call_void_hook(inet_conn_established, sk, skb);
2117 }
2118 EXPORT_SYMBOL(security_inet_conn_established);
2119
2120 int security_secmark_relabel_packet(u32 secid)
2121 {
2122         return call_int_hook(secmark_relabel_packet, 0, secid);
2123 }
2124 EXPORT_SYMBOL(security_secmark_relabel_packet);
2125
2126 void security_secmark_refcount_inc(void)
2127 {
2128         call_void_hook(secmark_refcount_inc);
2129 }
2130 EXPORT_SYMBOL(security_secmark_refcount_inc);
2131
2132 void security_secmark_refcount_dec(void)
2133 {
2134         call_void_hook(secmark_refcount_dec);
2135 }
2136 EXPORT_SYMBOL(security_secmark_refcount_dec);
2137
2138 int security_tun_dev_alloc_security(void **security)
2139 {
2140         return call_int_hook(tun_dev_alloc_security, 0, security);
2141 }
2142 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2143
2144 void security_tun_dev_free_security(void *security)
2145 {
2146         call_void_hook(tun_dev_free_security, security);
2147 }
2148 EXPORT_SYMBOL(security_tun_dev_free_security);
2149
2150 int security_tun_dev_create(void)
2151 {
2152         return call_int_hook(tun_dev_create, 0);
2153 }
2154 EXPORT_SYMBOL(security_tun_dev_create);
2155
2156 int security_tun_dev_attach_queue(void *security)
2157 {
2158         return call_int_hook(tun_dev_attach_queue, 0, security);
2159 }
2160 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2161
2162 int security_tun_dev_attach(struct sock *sk, void *security)
2163 {
2164         return call_int_hook(tun_dev_attach, 0, sk, security);
2165 }
2166 EXPORT_SYMBOL(security_tun_dev_attach);
2167
2168 int security_tun_dev_open(void *security)
2169 {
2170         return call_int_hook(tun_dev_open, 0, security);
2171 }
2172 EXPORT_SYMBOL(security_tun_dev_open);
2173
2174 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2175 {
2176         return call_int_hook(sctp_assoc_request, 0, ep, skb);
2177 }
2178 EXPORT_SYMBOL(security_sctp_assoc_request);
2179
2180 int security_sctp_bind_connect(struct sock *sk, int optname,
2181                                struct sockaddr *address, int addrlen)
2182 {
2183         return call_int_hook(sctp_bind_connect, 0, sk, optname,
2184                              address, addrlen);
2185 }
2186 EXPORT_SYMBOL(security_sctp_bind_connect);
2187
2188 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2189                             struct sock *newsk)
2190 {
2191         call_void_hook(sctp_sk_clone, ep, sk, newsk);
2192 }
2193 EXPORT_SYMBOL(security_sctp_sk_clone);
2194
2195 #endif  /* CONFIG_SECURITY_NETWORK */
2196
2197 #ifdef CONFIG_SECURITY_INFINIBAND
2198
2199 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2200 {
2201         return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2202 }
2203 EXPORT_SYMBOL(security_ib_pkey_access);
2204
2205 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2206 {
2207         return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2208 }
2209 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2210
2211 int security_ib_alloc_security(void **sec)
2212 {
2213         return call_int_hook(ib_alloc_security, 0, sec);
2214 }
2215 EXPORT_SYMBOL(security_ib_alloc_security);
2216
2217 void security_ib_free_security(void *sec)
2218 {
2219         call_void_hook(ib_free_security, sec);
2220 }
2221 EXPORT_SYMBOL(security_ib_free_security);
2222 #endif  /* CONFIG_SECURITY_INFINIBAND */
2223
2224 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2225
2226 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2227                                struct xfrm_user_sec_ctx *sec_ctx,
2228                                gfp_t gfp)
2229 {
2230         return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2231 }
2232 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2233
2234 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2235                               struct xfrm_sec_ctx **new_ctxp)
2236 {
2237         return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2238 }
2239
2240 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2241 {
2242         call_void_hook(xfrm_policy_free_security, ctx);
2243 }
2244 EXPORT_SYMBOL(security_xfrm_policy_free);
2245
2246 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2247 {
2248         return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2249 }
2250
2251 int security_xfrm_state_alloc(struct xfrm_state *x,
2252                               struct xfrm_user_sec_ctx *sec_ctx)
2253 {
2254         return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2255 }
2256 EXPORT_SYMBOL(security_xfrm_state_alloc);
2257
2258 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2259                                       struct xfrm_sec_ctx *polsec, u32 secid)
2260 {
2261         return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2262 }
2263
2264 int security_xfrm_state_delete(struct xfrm_state *x)
2265 {
2266         return call_int_hook(xfrm_state_delete_security, 0, x);
2267 }
2268 EXPORT_SYMBOL(security_xfrm_state_delete);
2269
2270 void security_xfrm_state_free(struct xfrm_state *x)
2271 {
2272         call_void_hook(xfrm_state_free_security, x);
2273 }
2274
2275 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2276 {
2277         return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2278 }
2279
2280 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2281                                        struct xfrm_policy *xp,
2282                                        const struct flowi *fl)
2283 {
2284         struct security_hook_list *hp;
2285         int rc = 1;
2286
2287         /*
2288          * Since this function is expected to return 0 or 1, the judgment
2289          * becomes difficult if multiple LSMs supply this call. Fortunately,
2290          * we can use the first LSM's judgment because currently only SELinux
2291          * supplies this call.
2292          *
2293          * For speed optimization, we explicitly break the loop rather than
2294          * using the macro
2295          */
2296         hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2297                                 list) {
2298                 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2299                 break;
2300         }
2301         return rc;
2302 }
2303
2304 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2305 {
2306         return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2307 }
2308
2309 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2310 {
2311         int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2312                                 0);
2313
2314         BUG_ON(rc);
2315 }
2316 EXPORT_SYMBOL(security_skb_classify_flow);
2317
2318 #endif  /* CONFIG_SECURITY_NETWORK_XFRM */
2319
2320 #ifdef CONFIG_KEYS
2321
2322 int security_key_alloc(struct key *key, const struct cred *cred,
2323                        unsigned long flags)
2324 {
2325         return call_int_hook(key_alloc, 0, key, cred, flags);
2326 }
2327
2328 void security_key_free(struct key *key)
2329 {
2330         call_void_hook(key_free, key);
2331 }
2332
2333 int security_key_permission(key_ref_t key_ref,
2334                             const struct cred *cred, unsigned perm)
2335 {
2336         return call_int_hook(key_permission, 0, key_ref, cred, perm);
2337 }
2338
2339 int security_key_getsecurity(struct key *key, char **_buffer)
2340 {
2341         *_buffer = NULL;
2342         return call_int_hook(key_getsecurity, 0, key, _buffer);
2343 }
2344
2345 #endif  /* CONFIG_KEYS */
2346
2347 #ifdef CONFIG_AUDIT
2348
2349 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2350 {
2351         return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2352 }
2353
2354 int security_audit_rule_known(struct audit_krule *krule)
2355 {
2356         return call_int_hook(audit_rule_known, 0, krule);
2357 }
2358
2359 void security_audit_rule_free(void *lsmrule)
2360 {
2361         call_void_hook(audit_rule_free, lsmrule);
2362 }
2363
2364 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2365 {
2366         return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2367 }
2368 #endif /* CONFIG_AUDIT */
2369
2370 #ifdef CONFIG_BPF_SYSCALL
2371 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2372 {
2373         return call_int_hook(bpf, 0, cmd, attr, size);
2374 }
2375 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2376 {
2377         return call_int_hook(bpf_map, 0, map, fmode);
2378 }
2379 int security_bpf_prog(struct bpf_prog *prog)
2380 {
2381         return call_int_hook(bpf_prog, 0, prog);
2382 }
2383 int security_bpf_map_alloc(struct bpf_map *map)
2384 {
2385         return call_int_hook(bpf_map_alloc_security, 0, map);
2386 }
2387 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2388 {
2389         return call_int_hook(bpf_prog_alloc_security, 0, aux);
2390 }
2391 void security_bpf_map_free(struct bpf_map *map)
2392 {
2393         call_void_hook(bpf_map_free_security, map);
2394 }
2395 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2396 {
2397         call_void_hook(bpf_prog_free_security, aux);
2398 }
2399 #endif /* CONFIG_BPF_SYSCALL */
2400
2401 int security_locked_down(enum lockdown_reason what)
2402 {
2403         return call_int_hook(locked_down, 0, what);
2404 }
2405 EXPORT_SYMBOL(security_locked_down);