]> asedeno.scripts.mit.edu Git - linux.git/blob - sound/x86/intel_hdmi_audio.c
Merge tag 'vfio-v4.18-rc4' of git://github.com/awilliam/linux-vfio
[linux.git] / sound / x86 / intel_hdmi_audio.c
1 /*
2  *   intel_hdmi_audio.c - Intel HDMI audio driver
3  *
4  *  Copyright (C) 2016 Intel Corp
5  *  Authors:    Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>
6  *              Ramesh Babu K V <ramesh.babu@intel.com>
7  *              Vaibhav Agarwal <vaibhav.agarwal@intel.com>
8  *              Jerome Anand <jerome.anand@intel.com>
9  *  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10  *
11  *  This program is free software; you can redistribute it and/or modify
12  *  it under the terms of the GNU General Public License as published by
13  *  the Free Software Foundation; version 2 of the License.
14  *
15  *  This program is distributed in the hope that it will be useful, but
16  *  WITHOUT ANY WARRANTY; without even the implied warranty of
17  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  *  General Public License for more details.
19  *
20  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
21  * ALSA driver for Intel HDMI audio
22  */
23
24 #include <linux/types.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/slab.h>
28 #include <linux/module.h>
29 #include <linux/interrupt.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/delay.h>
33 #include <asm/set_memory.h>
34 #include <sound/core.h>
35 #include <sound/asoundef.h>
36 #include <sound/pcm.h>
37 #include <sound/pcm_params.h>
38 #include <sound/initval.h>
39 #include <sound/control.h>
40 #include <sound/jack.h>
41 #include <drm/drm_edid.h>
42 #include <drm/intel_lpe_audio.h>
43 #include "intel_hdmi_audio.h"
44
45 #define for_each_pipe(card_ctx, pipe) \
46         for ((pipe) = 0; (pipe) < (card_ctx)->num_pipes; (pipe)++)
47 #define for_each_port(card_ctx, port) \
48         for ((port) = 0; (port) < (card_ctx)->num_ports; (port)++)
49
50 /*standard module options for ALSA. This module supports only one card*/
51 static int hdmi_card_index = SNDRV_DEFAULT_IDX1;
52 static char *hdmi_card_id = SNDRV_DEFAULT_STR1;
53 static bool single_port;
54
55 module_param_named(index, hdmi_card_index, int, 0444);
56 MODULE_PARM_DESC(index,
57                 "Index value for INTEL Intel HDMI Audio controller.");
58 module_param_named(id, hdmi_card_id, charp, 0444);
59 MODULE_PARM_DESC(id,
60                 "ID string for INTEL Intel HDMI Audio controller.");
61 module_param(single_port, bool, 0444);
62 MODULE_PARM_DESC(single_port,
63                 "Single-port mode (for compatibility)");
64
65 /*
66  * ELD SA bits in the CEA Speaker Allocation data block
67  */
68 static const int eld_speaker_allocation_bits[] = {
69         [0] = FL | FR,
70         [1] = LFE,
71         [2] = FC,
72         [3] = RL | RR,
73         [4] = RC,
74         [5] = FLC | FRC,
75         [6] = RLC | RRC,
76         /* the following are not defined in ELD yet */
77         [7] = 0,
78 };
79
80 /*
81  * This is an ordered list!
82  *
83  * The preceding ones have better chances to be selected by
84  * hdmi_channel_allocation().
85  */
86 static struct cea_channel_speaker_allocation channel_allocations[] = {
87 /*                        channel:   7     6    5    4    3     2    1    0  */
88 { .ca_index = 0x00,  .speakers = {   0,    0,   0,   0,   0,    0,  FR,  FL } },
89                                 /* 2.1 */
90 { .ca_index = 0x01,  .speakers = {   0,    0,   0,   0,   0,  LFE,  FR,  FL } },
91                                 /* Dolby Surround */
92 { .ca_index = 0x02,  .speakers = {   0,    0,   0,   0,  FC,    0,  FR,  FL } },
93                                 /* surround40 */
94 { .ca_index = 0x08,  .speakers = {   0,    0,  RR,  RL,   0,    0,  FR,  FL } },
95                                 /* surround41 */
96 { .ca_index = 0x09,  .speakers = {   0,    0,  RR,  RL,   0,  LFE,  FR,  FL } },
97                                 /* surround50 */
98 { .ca_index = 0x0a,  .speakers = {   0,    0,  RR,  RL,  FC,    0,  FR,  FL } },
99                                 /* surround51 */
100 { .ca_index = 0x0b,  .speakers = {   0,    0,  RR,  RL,  FC,  LFE,  FR,  FL } },
101                                 /* 6.1 */
102 { .ca_index = 0x0f,  .speakers = {   0,   RC,  RR,  RL,  FC,  LFE,  FR,  FL } },
103                                 /* surround71 */
104 { .ca_index = 0x13,  .speakers = { RRC,  RLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
105
106 { .ca_index = 0x03,  .speakers = {   0,    0,   0,   0,  FC,  LFE,  FR,  FL } },
107 { .ca_index = 0x04,  .speakers = {   0,    0,   0,  RC,   0,    0,  FR,  FL } },
108 { .ca_index = 0x05,  .speakers = {   0,    0,   0,  RC,   0,  LFE,  FR,  FL } },
109 { .ca_index = 0x06,  .speakers = {   0,    0,   0,  RC,  FC,    0,  FR,  FL } },
110 { .ca_index = 0x07,  .speakers = {   0,    0,   0,  RC,  FC,  LFE,  FR,  FL } },
111 { .ca_index = 0x0c,  .speakers = {   0,   RC,  RR,  RL,   0,    0,  FR,  FL } },
112 { .ca_index = 0x0d,  .speakers = {   0,   RC,  RR,  RL,   0,  LFE,  FR,  FL } },
113 { .ca_index = 0x0e,  .speakers = {   0,   RC,  RR,  RL,  FC,    0,  FR,  FL } },
114 { .ca_index = 0x10,  .speakers = { RRC,  RLC,  RR,  RL,   0,    0,  FR,  FL } },
115 { .ca_index = 0x11,  .speakers = { RRC,  RLC,  RR,  RL,   0,  LFE,  FR,  FL } },
116 { .ca_index = 0x12,  .speakers = { RRC,  RLC,  RR,  RL,  FC,    0,  FR,  FL } },
117 { .ca_index = 0x14,  .speakers = { FRC,  FLC,   0,   0,   0,    0,  FR,  FL } },
118 { .ca_index = 0x15,  .speakers = { FRC,  FLC,   0,   0,   0,  LFE,  FR,  FL } },
119 { .ca_index = 0x16,  .speakers = { FRC,  FLC,   0,   0,  FC,    0,  FR,  FL } },
120 { .ca_index = 0x17,  .speakers = { FRC,  FLC,   0,   0,  FC,  LFE,  FR,  FL } },
121 { .ca_index = 0x18,  .speakers = { FRC,  FLC,   0,  RC,   0,    0,  FR,  FL } },
122 { .ca_index = 0x19,  .speakers = { FRC,  FLC,   0,  RC,   0,  LFE,  FR,  FL } },
123 { .ca_index = 0x1a,  .speakers = { FRC,  FLC,   0,  RC,  FC,    0,  FR,  FL } },
124 { .ca_index = 0x1b,  .speakers = { FRC,  FLC,   0,  RC,  FC,  LFE,  FR,  FL } },
125 { .ca_index = 0x1c,  .speakers = { FRC,  FLC,  RR,  RL,   0,    0,  FR,  FL } },
126 { .ca_index = 0x1d,  .speakers = { FRC,  FLC,  RR,  RL,   0,  LFE,  FR,  FL } },
127 { .ca_index = 0x1e,  .speakers = { FRC,  FLC,  RR,  RL,  FC,    0,  FR,  FL } },
128 { .ca_index = 0x1f,  .speakers = { FRC,  FLC,  RR,  RL,  FC,  LFE,  FR,  FL } },
129 };
130
131 static const struct channel_map_table map_tables[] = {
132         { SNDRV_CHMAP_FL,       0x00,   FL },
133         { SNDRV_CHMAP_FR,       0x01,   FR },
134         { SNDRV_CHMAP_RL,       0x04,   RL },
135         { SNDRV_CHMAP_RR,       0x05,   RR },
136         { SNDRV_CHMAP_LFE,      0x02,   LFE },
137         { SNDRV_CHMAP_FC,       0x03,   FC },
138         { SNDRV_CHMAP_RLC,      0x06,   RLC },
139         { SNDRV_CHMAP_RRC,      0x07,   RRC },
140         {} /* terminator */
141 };
142
143 /* hardware capability structure */
144 static const struct snd_pcm_hardware had_pcm_hardware = {
145         .info = (SNDRV_PCM_INFO_INTERLEAVED |
146                 SNDRV_PCM_INFO_MMAP |
147                 SNDRV_PCM_INFO_MMAP_VALID |
148                 SNDRV_PCM_INFO_NO_PERIOD_WAKEUP),
149         .formats = (SNDRV_PCM_FMTBIT_S16_LE |
150                     SNDRV_PCM_FMTBIT_S24_LE |
151                     SNDRV_PCM_FMTBIT_S32_LE),
152         .rates = SNDRV_PCM_RATE_32000 |
153                 SNDRV_PCM_RATE_44100 |
154                 SNDRV_PCM_RATE_48000 |
155                 SNDRV_PCM_RATE_88200 |
156                 SNDRV_PCM_RATE_96000 |
157                 SNDRV_PCM_RATE_176400 |
158                 SNDRV_PCM_RATE_192000,
159         .rate_min = HAD_MIN_RATE,
160         .rate_max = HAD_MAX_RATE,
161         .channels_min = HAD_MIN_CHANNEL,
162         .channels_max = HAD_MAX_CHANNEL,
163         .buffer_bytes_max = HAD_MAX_BUFFER,
164         .period_bytes_min = HAD_MIN_PERIOD_BYTES,
165         .period_bytes_max = HAD_MAX_PERIOD_BYTES,
166         .periods_min = HAD_MIN_PERIODS,
167         .periods_max = HAD_MAX_PERIODS,
168         .fifo_size = HAD_FIFO_SIZE,
169 };
170
171 /* Get the active PCM substream;
172  * Call had_substream_put() for unreferecing.
173  * Don't call this inside had_spinlock, as it takes by itself
174  */
175 static struct snd_pcm_substream *
176 had_substream_get(struct snd_intelhad *intelhaddata)
177 {
178         struct snd_pcm_substream *substream;
179         unsigned long flags;
180
181         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
182         substream = intelhaddata->stream_info.substream;
183         if (substream)
184                 intelhaddata->stream_info.substream_refcount++;
185         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
186         return substream;
187 }
188
189 /* Unref the active PCM substream;
190  * Don't call this inside had_spinlock, as it takes by itself
191  */
192 static void had_substream_put(struct snd_intelhad *intelhaddata)
193 {
194         unsigned long flags;
195
196         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
197         intelhaddata->stream_info.substream_refcount--;
198         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
199 }
200
201 static u32 had_config_offset(int pipe)
202 {
203         switch (pipe) {
204         default:
205         case 0:
206                 return AUDIO_HDMI_CONFIG_A;
207         case 1:
208                 return AUDIO_HDMI_CONFIG_B;
209         case 2:
210                 return AUDIO_HDMI_CONFIG_C;
211         }
212 }
213
214 /* Register access functions */
215 static u32 had_read_register_raw(struct snd_intelhad_card *card_ctx,
216                                  int pipe, u32 reg)
217 {
218         return ioread32(card_ctx->mmio_start + had_config_offset(pipe) + reg);
219 }
220
221 static void had_write_register_raw(struct snd_intelhad_card *card_ctx,
222                                    int pipe, u32 reg, u32 val)
223 {
224         iowrite32(val, card_ctx->mmio_start + had_config_offset(pipe) + reg);
225 }
226
227 static void had_read_register(struct snd_intelhad *ctx, u32 reg, u32 *val)
228 {
229         if (!ctx->connected)
230                 *val = 0;
231         else
232                 *val = had_read_register_raw(ctx->card_ctx, ctx->pipe, reg);
233 }
234
235 static void had_write_register(struct snd_intelhad *ctx, u32 reg, u32 val)
236 {
237         if (ctx->connected)
238                 had_write_register_raw(ctx->card_ctx, ctx->pipe, reg, val);
239 }
240
241 /*
242  * enable / disable audio configuration
243  *
244  * The normal read/modify should not directly be used on VLV2 for
245  * updating AUD_CONFIG register.
246  * This is because:
247  * Bit6 of AUD_CONFIG register is writeonly due to a silicon bug on VLV2
248  * HDMI IP. As a result a read-modify of AUD_CONFIG regiter will always
249  * clear bit6. AUD_CONFIG[6:4] represents the "channels" field of the
250  * register. This field should be 1xy binary for configuration with 6 or
251  * more channels. Read-modify of AUD_CONFIG (Eg. for enabling audio)
252  * causes the "channels" field to be updated as 0xy binary resulting in
253  * bad audio. The fix is to always write the AUD_CONFIG[6:4] with
254  * appropriate value when doing read-modify of AUD_CONFIG register.
255  */
256 static void had_enable_audio(struct snd_intelhad *intelhaddata,
257                              bool enable)
258 {
259         /* update the cached value */
260         intelhaddata->aud_config.regx.aud_en = enable;
261         had_write_register(intelhaddata, AUD_CONFIG,
262                            intelhaddata->aud_config.regval);
263 }
264
265 /* forcibly ACKs to both BUFFER_DONE and BUFFER_UNDERRUN interrupts */
266 static void had_ack_irqs(struct snd_intelhad *ctx)
267 {
268         u32 status_reg;
269
270         if (!ctx->connected)
271                 return;
272         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
273         status_reg |= HDMI_AUDIO_BUFFER_DONE | HDMI_AUDIO_UNDERRUN;
274         had_write_register(ctx, AUD_HDMI_STATUS, status_reg);
275         had_read_register(ctx, AUD_HDMI_STATUS, &status_reg);
276 }
277
278 /* Reset buffer pointers */
279 static void had_reset_audio(struct snd_intelhad *intelhaddata)
280 {
281         had_write_register(intelhaddata, AUD_HDMI_STATUS,
282                            AUD_HDMI_STATUSG_MASK_FUNCRST);
283         had_write_register(intelhaddata, AUD_HDMI_STATUS, 0);
284 }
285
286 /*
287  * initialize audio channel status registers
288  * This function is called in the prepare callback
289  */
290 static int had_prog_status_reg(struct snd_pcm_substream *substream,
291                         struct snd_intelhad *intelhaddata)
292 {
293         union aud_cfg cfg_val = {.regval = 0};
294         union aud_ch_status_0 ch_stat0 = {.regval = 0};
295         union aud_ch_status_1 ch_stat1 = {.regval = 0};
296
297         ch_stat0.regx.lpcm_id = (intelhaddata->aes_bits &
298                                           IEC958_AES0_NONAUDIO) >> 1;
299         ch_stat0.regx.clk_acc = (intelhaddata->aes_bits &
300                                           IEC958_AES3_CON_CLOCK) >> 4;
301         cfg_val.regx.val_bit = ch_stat0.regx.lpcm_id;
302
303         switch (substream->runtime->rate) {
304         case AUD_SAMPLE_RATE_32:
305                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_32KHZ;
306                 break;
307
308         case AUD_SAMPLE_RATE_44_1:
309                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_44KHZ;
310                 break;
311         case AUD_SAMPLE_RATE_48:
312                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_48KHZ;
313                 break;
314         case AUD_SAMPLE_RATE_88_2:
315                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_88KHZ;
316                 break;
317         case AUD_SAMPLE_RATE_96:
318                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_96KHZ;
319                 break;
320         case AUD_SAMPLE_RATE_176_4:
321                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_176KHZ;
322                 break;
323         case AUD_SAMPLE_RATE_192:
324                 ch_stat0.regx.samp_freq = CH_STATUS_MAP_192KHZ;
325                 break;
326
327         default:
328                 /* control should never come here */
329                 return -EINVAL;
330         }
331
332         had_write_register(intelhaddata,
333                            AUD_CH_STATUS_0, ch_stat0.regval);
334
335         switch (substream->runtime->format) {
336         case SNDRV_PCM_FORMAT_S16_LE:
337                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_20;
338                 ch_stat1.regx.wrd_len = SMPL_WIDTH_16BITS;
339                 break;
340         case SNDRV_PCM_FORMAT_S24_LE:
341         case SNDRV_PCM_FORMAT_S32_LE:
342                 ch_stat1.regx.max_wrd_len = MAX_SMPL_WIDTH_24;
343                 ch_stat1.regx.wrd_len = SMPL_WIDTH_24BITS;
344                 break;
345         default:
346                 return -EINVAL;
347         }
348
349         had_write_register(intelhaddata,
350                            AUD_CH_STATUS_1, ch_stat1.regval);
351         return 0;
352 }
353
354 /*
355  * function to initialize audio
356  * registers and buffer confgiuration registers
357  * This function is called in the prepare callback
358  */
359 static int had_init_audio_ctrl(struct snd_pcm_substream *substream,
360                                struct snd_intelhad *intelhaddata)
361 {
362         union aud_cfg cfg_val = {.regval = 0};
363         union aud_buf_config buf_cfg = {.regval = 0};
364         u8 channels;
365
366         had_prog_status_reg(substream, intelhaddata);
367
368         buf_cfg.regx.audio_fifo_watermark = FIFO_THRESHOLD;
369         buf_cfg.regx.dma_fifo_watermark = DMA_FIFO_THRESHOLD;
370         buf_cfg.regx.aud_delay = 0;
371         had_write_register(intelhaddata, AUD_BUF_CONFIG, buf_cfg.regval);
372
373         channels = substream->runtime->channels;
374         cfg_val.regx.num_ch = channels - 2;
375         if (channels <= 2)
376                 cfg_val.regx.layout = LAYOUT0;
377         else
378                 cfg_val.regx.layout = LAYOUT1;
379
380         if (substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE)
381                 cfg_val.regx.packet_mode = 1;
382
383         if (substream->runtime->format == SNDRV_PCM_FORMAT_S32_LE)
384                 cfg_val.regx.left_align = 1;
385
386         cfg_val.regx.val_bit = 1;
387
388         /* fix up the DP bits */
389         if (intelhaddata->dp_output) {
390                 cfg_val.regx.dp_modei = 1;
391                 cfg_val.regx.set = 1;
392         }
393
394         had_write_register(intelhaddata, AUD_CONFIG, cfg_val.regval);
395         intelhaddata->aud_config = cfg_val;
396         return 0;
397 }
398
399 /*
400  * Compute derived values in channel_allocations[].
401  */
402 static void init_channel_allocations(void)
403 {
404         int i, j;
405         struct cea_channel_speaker_allocation *p;
406
407         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
408                 p = channel_allocations + i;
409                 p->channels = 0;
410                 p->spk_mask = 0;
411                 for (j = 0; j < ARRAY_SIZE(p->speakers); j++)
412                         if (p->speakers[j]) {
413                                 p->channels++;
414                                 p->spk_mask |= p->speakers[j];
415                         }
416         }
417 }
418
419 /*
420  * The transformation takes two steps:
421  *
422  *      eld->spk_alloc => (eld_speaker_allocation_bits[]) => spk_mask
423  *            spk_mask => (channel_allocations[])         => ai->CA
424  *
425  * TODO: it could select the wrong CA from multiple candidates.
426  */
427 static int had_channel_allocation(struct snd_intelhad *intelhaddata,
428                                   int channels)
429 {
430         int i;
431         int ca = 0;
432         int spk_mask = 0;
433
434         /*
435          * CA defaults to 0 for basic stereo audio
436          */
437         if (channels <= 2)
438                 return 0;
439
440         /*
441          * expand ELD's speaker allocation mask
442          *
443          * ELD tells the speaker mask in a compact(paired) form,
444          * expand ELD's notions to match the ones used by Audio InfoFrame.
445          */
446
447         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
448                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
449                         spk_mask |= eld_speaker_allocation_bits[i];
450         }
451
452         /* search for the first working match in the CA table */
453         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
454                 if (channels == channel_allocations[i].channels &&
455                 (spk_mask & channel_allocations[i].spk_mask) ==
456                                 channel_allocations[i].spk_mask) {
457                         ca = channel_allocations[i].ca_index;
458                         break;
459                 }
460         }
461
462         dev_dbg(intelhaddata->dev, "select CA 0x%x for %d\n", ca, channels);
463
464         return ca;
465 }
466
467 /* from speaker bit mask to ALSA API channel position */
468 static int spk_to_chmap(int spk)
469 {
470         const struct channel_map_table *t = map_tables;
471
472         for (; t->map; t++) {
473                 if (t->spk_mask == spk)
474                         return t->map;
475         }
476         return 0;
477 }
478
479 static void had_build_channel_allocation_map(struct snd_intelhad *intelhaddata)
480 {
481         int i, c;
482         int spk_mask = 0;
483         struct snd_pcm_chmap_elem *chmap;
484         u8 eld_high, eld_high_mask = 0xF0;
485         u8 high_msb;
486
487         kfree(intelhaddata->chmap->chmap);
488         intelhaddata->chmap->chmap = NULL;
489
490         chmap = kzalloc(sizeof(*chmap), GFP_KERNEL);
491         if (!chmap)
492                 return;
493
494         dev_dbg(intelhaddata->dev, "eld speaker = %x\n",
495                 intelhaddata->eld[DRM_ELD_SPEAKER]);
496
497         /* WA: Fix the max channel supported to 8 */
498
499         /*
500          * Sink may support more than 8 channels, if eld_high has more than
501          * one bit set. SOC supports max 8 channels.
502          * Refer eld_speaker_allocation_bits, for sink speaker allocation
503          */
504
505         /* if 0x2F < eld < 0x4F fall back to 0x2f, else fall back to 0x4F */
506         eld_high = intelhaddata->eld[DRM_ELD_SPEAKER] & eld_high_mask;
507         if ((eld_high & (eld_high-1)) && (eld_high > 0x1F)) {
508                 /* eld_high & (eld_high-1): if more than 1 bit set */
509                 /* 0x1F: 7 channels */
510                 for (i = 1; i < 4; i++) {
511                         high_msb = eld_high & (0x80 >> i);
512                         if (high_msb) {
513                                 intelhaddata->eld[DRM_ELD_SPEAKER] &=
514                                         high_msb | 0xF;
515                                 break;
516                         }
517                 }
518         }
519
520         for (i = 0; i < ARRAY_SIZE(eld_speaker_allocation_bits); i++) {
521                 if (intelhaddata->eld[DRM_ELD_SPEAKER] & (1 << i))
522                         spk_mask |= eld_speaker_allocation_bits[i];
523         }
524
525         for (i = 0; i < ARRAY_SIZE(channel_allocations); i++) {
526                 if (spk_mask == channel_allocations[i].spk_mask) {
527                         for (c = 0; c < channel_allocations[i].channels; c++) {
528                                 chmap->map[c] = spk_to_chmap(
529                                         channel_allocations[i].speakers[
530                                                 (MAX_SPEAKERS - 1) - c]);
531                         }
532                         chmap->channels = channel_allocations[i].channels;
533                         intelhaddata->chmap->chmap = chmap;
534                         break;
535                 }
536         }
537         if (i >= ARRAY_SIZE(channel_allocations))
538                 kfree(chmap);
539 }
540
541 /*
542  * ALSA API channel-map control callbacks
543  */
544 static int had_chmap_ctl_info(struct snd_kcontrol *kcontrol,
545                                 struct snd_ctl_elem_info *uinfo)
546 {
547         uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
548         uinfo->count = HAD_MAX_CHANNEL;
549         uinfo->value.integer.min = 0;
550         uinfo->value.integer.max = SNDRV_CHMAP_LAST;
551         return 0;
552 }
553
554 static int had_chmap_ctl_get(struct snd_kcontrol *kcontrol,
555                                 struct snd_ctl_elem_value *ucontrol)
556 {
557         struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
558         struct snd_intelhad *intelhaddata = info->private_data;
559         int i;
560         const struct snd_pcm_chmap_elem *chmap;
561
562         memset(ucontrol->value.integer.value, 0,
563                sizeof(long) * HAD_MAX_CHANNEL);
564         mutex_lock(&intelhaddata->mutex);
565         if (!intelhaddata->chmap->chmap) {
566                 mutex_unlock(&intelhaddata->mutex);
567                 return 0;
568         }
569
570         chmap = intelhaddata->chmap->chmap;
571         for (i = 0; i < chmap->channels; i++)
572                 ucontrol->value.integer.value[i] = chmap->map[i];
573         mutex_unlock(&intelhaddata->mutex);
574
575         return 0;
576 }
577
578 static int had_register_chmap_ctls(struct snd_intelhad *intelhaddata,
579                                                 struct snd_pcm *pcm)
580 {
581         int err;
582
583         err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
584                         NULL, 0, (unsigned long)intelhaddata,
585                         &intelhaddata->chmap);
586         if (err < 0)
587                 return err;
588
589         intelhaddata->chmap->private_data = intelhaddata;
590         intelhaddata->chmap->kctl->info = had_chmap_ctl_info;
591         intelhaddata->chmap->kctl->get = had_chmap_ctl_get;
592         intelhaddata->chmap->chmap = NULL;
593         return 0;
594 }
595
596 /*
597  * Initialize Data Island Packets registers
598  * This function is called in the prepare callback
599  */
600 static void had_prog_dip(struct snd_pcm_substream *substream,
601                          struct snd_intelhad *intelhaddata)
602 {
603         int i;
604         union aud_ctrl_st ctrl_state = {.regval = 0};
605         union aud_info_frame2 frame2 = {.regval = 0};
606         union aud_info_frame3 frame3 = {.regval = 0};
607         u8 checksum = 0;
608         u32 info_frame;
609         int channels;
610         int ca;
611
612         channels = substream->runtime->channels;
613
614         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
615
616         ca = had_channel_allocation(intelhaddata, channels);
617         if (intelhaddata->dp_output) {
618                 info_frame = DP_INFO_FRAME_WORD1;
619                 frame2.regval = (substream->runtime->channels - 1) | (ca << 24);
620         } else {
621                 info_frame = HDMI_INFO_FRAME_WORD1;
622                 frame2.regx.chnl_cnt = substream->runtime->channels - 1;
623                 frame3.regx.chnl_alloc = ca;
624
625                 /* Calculte the byte wide checksum for all valid DIP words */
626                 for (i = 0; i < BYTES_PER_WORD; i++)
627                         checksum += (info_frame >> (i * 8)) & 0xff;
628                 for (i = 0; i < BYTES_PER_WORD; i++)
629                         checksum += (frame2.regval >> (i * 8)) & 0xff;
630                 for (i = 0; i < BYTES_PER_WORD; i++)
631                         checksum += (frame3.regval >> (i * 8)) & 0xff;
632
633                 frame2.regx.chksum = -(checksum);
634         }
635
636         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, info_frame);
637         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame2.regval);
638         had_write_register(intelhaddata, AUD_HDMIW_INFOFR, frame3.regval);
639
640         /* program remaining DIP words with zero */
641         for (i = 0; i < HAD_MAX_DIP_WORDS-VALID_DIP_WORDS; i++)
642                 had_write_register(intelhaddata, AUD_HDMIW_INFOFR, 0x0);
643
644         ctrl_state.regx.dip_freq = 1;
645         ctrl_state.regx.dip_en_sta = 1;
646         had_write_register(intelhaddata, AUD_CNTL_ST, ctrl_state.regval);
647 }
648
649 static int had_calculate_maud_value(u32 aud_samp_freq, u32 link_rate)
650 {
651         u32 maud_val;
652
653         /* Select maud according to DP 1.2 spec */
654         if (link_rate == DP_2_7_GHZ) {
655                 switch (aud_samp_freq) {
656                 case AUD_SAMPLE_RATE_32:
657                         maud_val = AUD_SAMPLE_RATE_32_DP_2_7_MAUD_VAL;
658                         break;
659
660                 case AUD_SAMPLE_RATE_44_1:
661                         maud_val = AUD_SAMPLE_RATE_44_1_DP_2_7_MAUD_VAL;
662                         break;
663
664                 case AUD_SAMPLE_RATE_48:
665                         maud_val = AUD_SAMPLE_RATE_48_DP_2_7_MAUD_VAL;
666                         break;
667
668                 case AUD_SAMPLE_RATE_88_2:
669                         maud_val = AUD_SAMPLE_RATE_88_2_DP_2_7_MAUD_VAL;
670                         break;
671
672                 case AUD_SAMPLE_RATE_96:
673                         maud_val = AUD_SAMPLE_RATE_96_DP_2_7_MAUD_VAL;
674                         break;
675
676                 case AUD_SAMPLE_RATE_176_4:
677                         maud_val = AUD_SAMPLE_RATE_176_4_DP_2_7_MAUD_VAL;
678                         break;
679
680                 case HAD_MAX_RATE:
681                         maud_val = HAD_MAX_RATE_DP_2_7_MAUD_VAL;
682                         break;
683
684                 default:
685                         maud_val = -EINVAL;
686                         break;
687                 }
688         } else if (link_rate == DP_1_62_GHZ) {
689                 switch (aud_samp_freq) {
690                 case AUD_SAMPLE_RATE_32:
691                         maud_val = AUD_SAMPLE_RATE_32_DP_1_62_MAUD_VAL;
692                         break;
693
694                 case AUD_SAMPLE_RATE_44_1:
695                         maud_val = AUD_SAMPLE_RATE_44_1_DP_1_62_MAUD_VAL;
696                         break;
697
698                 case AUD_SAMPLE_RATE_48:
699                         maud_val = AUD_SAMPLE_RATE_48_DP_1_62_MAUD_VAL;
700                         break;
701
702                 case AUD_SAMPLE_RATE_88_2:
703                         maud_val = AUD_SAMPLE_RATE_88_2_DP_1_62_MAUD_VAL;
704                         break;
705
706                 case AUD_SAMPLE_RATE_96:
707                         maud_val = AUD_SAMPLE_RATE_96_DP_1_62_MAUD_VAL;
708                         break;
709
710                 case AUD_SAMPLE_RATE_176_4:
711                         maud_val = AUD_SAMPLE_RATE_176_4_DP_1_62_MAUD_VAL;
712                         break;
713
714                 case HAD_MAX_RATE:
715                         maud_val = HAD_MAX_RATE_DP_1_62_MAUD_VAL;
716                         break;
717
718                 default:
719                         maud_val = -EINVAL;
720                         break;
721                 }
722         } else
723                 maud_val = -EINVAL;
724
725         return maud_val;
726 }
727
728 /*
729  * Program HDMI audio CTS value
730  *
731  * @aud_samp_freq: sampling frequency of audio data
732  * @tmds: sampling frequency of the display data
733  * @link_rate: DP link rate
734  * @n_param: N value, depends on aud_samp_freq
735  * @intelhaddata: substream private data
736  *
737  * Program CTS register based on the audio and display sampling frequency
738  */
739 static void had_prog_cts(u32 aud_samp_freq, u32 tmds, u32 link_rate,
740                          u32 n_param, struct snd_intelhad *intelhaddata)
741 {
742         u32 cts_val;
743         u64 dividend, divisor;
744
745         if (intelhaddata->dp_output) {
746                 /* Substitute cts_val with Maud according to DP 1.2 spec*/
747                 cts_val = had_calculate_maud_value(aud_samp_freq, link_rate);
748         } else {
749                 /* Calculate CTS according to HDMI 1.3a spec*/
750                 dividend = (u64)tmds * n_param*1000;
751                 divisor = 128 * aud_samp_freq;
752                 cts_val = div64_u64(dividend, divisor);
753         }
754         dev_dbg(intelhaddata->dev, "TMDS value=%d, N value=%d, CTS Value=%d\n",
755                  tmds, n_param, cts_val);
756         had_write_register(intelhaddata, AUD_HDMI_CTS, (BIT(24) | cts_val));
757 }
758
759 static int had_calculate_n_value(u32 aud_samp_freq)
760 {
761         int n_val;
762
763         /* Select N according to HDMI 1.3a spec*/
764         switch (aud_samp_freq) {
765         case AUD_SAMPLE_RATE_32:
766                 n_val = 4096;
767                 break;
768
769         case AUD_SAMPLE_RATE_44_1:
770                 n_val = 6272;
771                 break;
772
773         case AUD_SAMPLE_RATE_48:
774                 n_val = 6144;
775                 break;
776
777         case AUD_SAMPLE_RATE_88_2:
778                 n_val = 12544;
779                 break;
780
781         case AUD_SAMPLE_RATE_96:
782                 n_val = 12288;
783                 break;
784
785         case AUD_SAMPLE_RATE_176_4:
786                 n_val = 25088;
787                 break;
788
789         case HAD_MAX_RATE:
790                 n_val = 24576;
791                 break;
792
793         default:
794                 n_val = -EINVAL;
795                 break;
796         }
797         return n_val;
798 }
799
800 /*
801  * Program HDMI audio N value
802  *
803  * @aud_samp_freq: sampling frequency of audio data
804  * @n_param: N value, depends on aud_samp_freq
805  * @intelhaddata: substream private data
806  *
807  * This function is called in the prepare callback.
808  * It programs based on the audio and display sampling frequency
809  */
810 static int had_prog_n(u32 aud_samp_freq, u32 *n_param,
811                       struct snd_intelhad *intelhaddata)
812 {
813         int n_val;
814
815         if (intelhaddata->dp_output) {
816                 /*
817                  * According to DP specs, Maud and Naud values hold
818                  * a relationship, which is stated as:
819                  * Maud/Naud = 512 * fs / f_LS_Clk
820                  * where, fs is the sampling frequency of the audio stream
821                  * and Naud is 32768 for Async clock.
822                  */
823
824                 n_val = DP_NAUD_VAL;
825         } else
826                 n_val = had_calculate_n_value(aud_samp_freq);
827
828         if (n_val < 0)
829                 return n_val;
830
831         had_write_register(intelhaddata, AUD_N_ENABLE, (BIT(24) | n_val));
832         *n_param = n_val;
833         return 0;
834 }
835
836 /*
837  * PCM ring buffer handling
838  *
839  * The hardware provides a ring buffer with the fixed 4 buffer descriptors
840  * (BDs).  The driver maps these 4 BDs onto the PCM ring buffer.  The mapping
841  * moves at each period elapsed.  The below illustrates how it works:
842  *
843  * At time=0
844  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
845  *  BD  | 0 | 1 | 2 | 3 |
846  *
847  * At time=1 (period elapsed)
848  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
849  *  BD      | 1 | 2 | 3 | 0 |
850  *
851  * At time=2 (second period elapsed)
852  *  PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
853  *  BD          | 2 | 3 | 0 | 1 |
854  *
855  * The bd_head field points to the index of the BD to be read.  It's also the
856  * position to be filled at next.  The pcm_head and the pcm_filled fields
857  * point to the indices of the current position and of the next position to
858  * be filled, respectively.  For PCM buffer there are both _head and _filled
859  * because they may be difference when nperiods > 4.  For example, in the
860  * example above at t=1, bd_head=1 and pcm_head=1 while pcm_filled=5:
861  *
862  * pcm_head (=1) --v               v-- pcm_filled (=5)
863  *       PCM | 0 | 1 | 2 | 3 | 4 | 5 | .... |n-1|
864  *       BD      | 1 | 2 | 3 | 0 |
865  *  bd_head (=1) --^               ^-- next to fill (= bd_head)
866  *
867  * For nperiods < 4, the remaining BDs out of 4 are marked as invalid, so that
868  * the hardware skips those BDs in the loop.
869  *
870  * An exceptional setup is the case with nperiods=1.  Since we have to update
871  * BDs after finishing one BD processing, we'd need at least two BDs, where
872  * both BDs point to the same content, the same address, the same size of the
873  * whole PCM buffer.
874  */
875
876 #define AUD_BUF_ADDR(x)         (AUD_BUF_A_ADDR + (x) * HAD_REG_WIDTH)
877 #define AUD_BUF_LEN(x)          (AUD_BUF_A_LENGTH + (x) * HAD_REG_WIDTH)
878
879 /* Set up a buffer descriptor at the "filled" position */
880 static void had_prog_bd(struct snd_pcm_substream *substream,
881                         struct snd_intelhad *intelhaddata)
882 {
883         int idx = intelhaddata->bd_head;
884         int ofs = intelhaddata->pcmbuf_filled * intelhaddata->period_bytes;
885         u32 addr = substream->runtime->dma_addr + ofs;
886
887         addr |= AUD_BUF_VALID;
888         if (!substream->runtime->no_period_wakeup)
889                 addr |= AUD_BUF_INTR_EN;
890         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), addr);
891         had_write_register(intelhaddata, AUD_BUF_LEN(idx),
892                            intelhaddata->period_bytes);
893
894         /* advance the indices to the next */
895         intelhaddata->bd_head++;
896         intelhaddata->bd_head %= intelhaddata->num_bds;
897         intelhaddata->pcmbuf_filled++;
898         intelhaddata->pcmbuf_filled %= substream->runtime->periods;
899 }
900
901 /* invalidate a buffer descriptor with the given index */
902 static void had_invalidate_bd(struct snd_intelhad *intelhaddata,
903                               int idx)
904 {
905         had_write_register(intelhaddata, AUD_BUF_ADDR(idx), 0);
906         had_write_register(intelhaddata, AUD_BUF_LEN(idx), 0);
907 }
908
909 /* Initial programming of ring buffer */
910 static void had_init_ringbuf(struct snd_pcm_substream *substream,
911                              struct snd_intelhad *intelhaddata)
912 {
913         struct snd_pcm_runtime *runtime = substream->runtime;
914         int i, num_periods;
915
916         num_periods = runtime->periods;
917         intelhaddata->num_bds = min(num_periods, HAD_NUM_OF_RING_BUFS);
918         /* set the minimum 2 BDs for num_periods=1 */
919         intelhaddata->num_bds = max(intelhaddata->num_bds, 2U);
920         intelhaddata->period_bytes =
921                 frames_to_bytes(runtime, runtime->period_size);
922         WARN_ON(intelhaddata->period_bytes & 0x3f);
923
924         intelhaddata->bd_head = 0;
925         intelhaddata->pcmbuf_head = 0;
926         intelhaddata->pcmbuf_filled = 0;
927
928         for (i = 0; i < HAD_NUM_OF_RING_BUFS; i++) {
929                 if (i < intelhaddata->num_bds)
930                         had_prog_bd(substream, intelhaddata);
931                 else /* invalidate the rest */
932                         had_invalidate_bd(intelhaddata, i);
933         }
934
935         intelhaddata->bd_head = 0; /* reset at head again before starting */
936 }
937
938 /* process a bd, advance to the next */
939 static void had_advance_ringbuf(struct snd_pcm_substream *substream,
940                                 struct snd_intelhad *intelhaddata)
941 {
942         int num_periods = substream->runtime->periods;
943
944         /* reprogram the next buffer */
945         had_prog_bd(substream, intelhaddata);
946
947         /* proceed to next */
948         intelhaddata->pcmbuf_head++;
949         intelhaddata->pcmbuf_head %= num_periods;
950 }
951
952 /* process the current BD(s);
953  * returns the current PCM buffer byte position, or -EPIPE for underrun.
954  */
955 static int had_process_ringbuf(struct snd_pcm_substream *substream,
956                                struct snd_intelhad *intelhaddata)
957 {
958         int len, processed;
959         unsigned long flags;
960
961         processed = 0;
962         spin_lock_irqsave(&intelhaddata->had_spinlock, flags);
963         for (;;) {
964                 /* get the remaining bytes on the buffer */
965                 had_read_register(intelhaddata,
966                                   AUD_BUF_LEN(intelhaddata->bd_head),
967                                   &len);
968                 if (len < 0 || len > intelhaddata->period_bytes) {
969                         dev_dbg(intelhaddata->dev, "Invalid buf length %d\n",
970                                 len);
971                         len = -EPIPE;
972                         goto out;
973                 }
974
975                 if (len > 0) /* OK, this is the current buffer */
976                         break;
977
978                 /* len=0 => already empty, check the next buffer */
979                 if (++processed >= intelhaddata->num_bds) {
980                         len = -EPIPE; /* all empty? - report underrun */
981                         goto out;
982                 }
983                 had_advance_ringbuf(substream, intelhaddata);
984         }
985
986         len = intelhaddata->period_bytes - len;
987         len += intelhaddata->period_bytes * intelhaddata->pcmbuf_head;
988  out:
989         spin_unlock_irqrestore(&intelhaddata->had_spinlock, flags);
990         return len;
991 }
992
993 /* called from irq handler */
994 static void had_process_buffer_done(struct snd_intelhad *intelhaddata)
995 {
996         struct snd_pcm_substream *substream;
997
998         substream = had_substream_get(intelhaddata);
999         if (!substream)
1000                 return; /* no stream? - bail out */
1001
1002         if (!intelhaddata->connected) {
1003                 snd_pcm_stop_xrun(substream);
1004                 goto out; /* disconnected? - bail out */
1005         }
1006
1007         /* process or stop the stream */
1008         if (had_process_ringbuf(substream, intelhaddata) < 0)
1009                 snd_pcm_stop_xrun(substream);
1010         else
1011                 snd_pcm_period_elapsed(substream);
1012
1013  out:
1014         had_substream_put(intelhaddata);
1015 }
1016
1017 /*
1018  * The interrupt status 'sticky' bits might not be cleared by
1019  * setting '1' to that bit once...
1020  */
1021 static void wait_clear_underrun_bit(struct snd_intelhad *intelhaddata)
1022 {
1023         int i;
1024         u32 val;
1025
1026         for (i = 0; i < 100; i++) {
1027                 /* clear bit30, 31 AUD_HDMI_STATUS */
1028                 had_read_register(intelhaddata, AUD_HDMI_STATUS, &val);
1029                 if (!(val & AUD_HDMI_STATUS_MASK_UNDERRUN))
1030                         return;
1031                 udelay(100);
1032                 cond_resched();
1033                 had_write_register(intelhaddata, AUD_HDMI_STATUS, val);
1034         }
1035         dev_err(intelhaddata->dev, "Unable to clear UNDERRUN bits\n");
1036 }
1037
1038 /* Perform some reset procedure but only when need_reset is set;
1039  * this is called from prepare or hw_free callbacks once after trigger STOP
1040  * or underrun has been processed in order to settle down the h/w state.
1041  */
1042 static void had_do_reset(struct snd_intelhad *intelhaddata)
1043 {
1044         if (!intelhaddata->need_reset || !intelhaddata->connected)
1045                 return;
1046
1047         /* Reset buffer pointers */
1048         had_reset_audio(intelhaddata);
1049         wait_clear_underrun_bit(intelhaddata);
1050         intelhaddata->need_reset = false;
1051 }
1052
1053 /* called from irq handler */
1054 static void had_process_buffer_underrun(struct snd_intelhad *intelhaddata)
1055 {
1056         struct snd_pcm_substream *substream;
1057
1058         /* Report UNDERRUN error to above layers */
1059         substream = had_substream_get(intelhaddata);
1060         if (substream) {
1061                 snd_pcm_stop_xrun(substream);
1062                 had_substream_put(intelhaddata);
1063         }
1064         intelhaddata->need_reset = true;
1065 }
1066
1067 /*
1068  * ALSA PCM open callback
1069  */
1070 static int had_pcm_open(struct snd_pcm_substream *substream)
1071 {
1072         struct snd_intelhad *intelhaddata;
1073         struct snd_pcm_runtime *runtime;
1074         int retval;
1075
1076         intelhaddata = snd_pcm_substream_chip(substream);
1077         runtime = substream->runtime;
1078
1079         pm_runtime_get_sync(intelhaddata->dev);
1080
1081         /* set the runtime hw parameter with local snd_pcm_hardware struct */
1082         runtime->hw = had_pcm_hardware;
1083
1084         retval = snd_pcm_hw_constraint_integer(runtime,
1085                          SNDRV_PCM_HW_PARAM_PERIODS);
1086         if (retval < 0)
1087                 goto error;
1088
1089         /* Make sure, that the period size is always aligned
1090          * 64byte boundary
1091          */
1092         retval = snd_pcm_hw_constraint_step(substream->runtime, 0,
1093                         SNDRV_PCM_HW_PARAM_PERIOD_BYTES, 64);
1094         if (retval < 0)
1095                 goto error;
1096
1097         retval = snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1098         if (retval < 0)
1099                 goto error;
1100
1101         /* expose PCM substream */
1102         spin_lock_irq(&intelhaddata->had_spinlock);
1103         intelhaddata->stream_info.substream = substream;
1104         intelhaddata->stream_info.substream_refcount++;
1105         spin_unlock_irq(&intelhaddata->had_spinlock);
1106
1107         return retval;
1108  error:
1109         pm_runtime_mark_last_busy(intelhaddata->dev);
1110         pm_runtime_put_autosuspend(intelhaddata->dev);
1111         return retval;
1112 }
1113
1114 /*
1115  * ALSA PCM close callback
1116  */
1117 static int had_pcm_close(struct snd_pcm_substream *substream)
1118 {
1119         struct snd_intelhad *intelhaddata;
1120
1121         intelhaddata = snd_pcm_substream_chip(substream);
1122
1123         /* unreference and sync with the pending PCM accesses */
1124         spin_lock_irq(&intelhaddata->had_spinlock);
1125         intelhaddata->stream_info.substream = NULL;
1126         intelhaddata->stream_info.substream_refcount--;
1127         while (intelhaddata->stream_info.substream_refcount > 0) {
1128                 spin_unlock_irq(&intelhaddata->had_spinlock);
1129                 cpu_relax();
1130                 spin_lock_irq(&intelhaddata->had_spinlock);
1131         }
1132         spin_unlock_irq(&intelhaddata->had_spinlock);
1133
1134         pm_runtime_mark_last_busy(intelhaddata->dev);
1135         pm_runtime_put_autosuspend(intelhaddata->dev);
1136         return 0;
1137 }
1138
1139 /*
1140  * ALSA PCM hw_params callback
1141  */
1142 static int had_pcm_hw_params(struct snd_pcm_substream *substream,
1143                              struct snd_pcm_hw_params *hw_params)
1144 {
1145         struct snd_intelhad *intelhaddata;
1146         unsigned long addr;
1147         int pages, buf_size, retval;
1148
1149         intelhaddata = snd_pcm_substream_chip(substream);
1150         buf_size = params_buffer_bytes(hw_params);
1151         retval = snd_pcm_lib_malloc_pages(substream, buf_size);
1152         if (retval < 0)
1153                 return retval;
1154         dev_dbg(intelhaddata->dev, "%s:allocated memory = %d\n",
1155                 __func__, buf_size);
1156         /* mark the pages as uncached region */
1157         addr = (unsigned long) substream->runtime->dma_area;
1158         pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1159         retval = set_memory_uc(addr, pages);
1160         if (retval) {
1161                 dev_err(intelhaddata->dev, "set_memory_uc failed.Error:%d\n",
1162                         retval);
1163                 return retval;
1164         }
1165         memset(substream->runtime->dma_area, 0, buf_size);
1166
1167         return retval;
1168 }
1169
1170 /*
1171  * ALSA PCM hw_free callback
1172  */
1173 static int had_pcm_hw_free(struct snd_pcm_substream *substream)
1174 {
1175         struct snd_intelhad *intelhaddata;
1176         unsigned long addr;
1177         u32 pages;
1178
1179         intelhaddata = snd_pcm_substream_chip(substream);
1180         had_do_reset(intelhaddata);
1181
1182         /* mark back the pages as cached/writeback region before the free */
1183         if (substream->runtime->dma_area != NULL) {
1184                 addr = (unsigned long) substream->runtime->dma_area;
1185                 pages = (substream->runtime->dma_bytes + PAGE_SIZE - 1) /
1186                                                                 PAGE_SIZE;
1187                 set_memory_wb(addr, pages);
1188                 return snd_pcm_lib_free_pages(substream);
1189         }
1190         return 0;
1191 }
1192
1193 /*
1194  * ALSA PCM trigger callback
1195  */
1196 static int had_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
1197 {
1198         int retval = 0;
1199         struct snd_intelhad *intelhaddata;
1200
1201         intelhaddata = snd_pcm_substream_chip(substream);
1202
1203         spin_lock(&intelhaddata->had_spinlock);
1204         switch (cmd) {
1205         case SNDRV_PCM_TRIGGER_START:
1206         case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1207         case SNDRV_PCM_TRIGGER_RESUME:
1208                 /* Enable Audio */
1209                 had_ack_irqs(intelhaddata); /* FIXME: do we need this? */
1210                 had_enable_audio(intelhaddata, true);
1211                 break;
1212
1213         case SNDRV_PCM_TRIGGER_STOP:
1214         case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1215                 /* Disable Audio */
1216                 had_enable_audio(intelhaddata, false);
1217                 intelhaddata->need_reset = true;
1218                 break;
1219
1220         default:
1221                 retval = -EINVAL;
1222         }
1223         spin_unlock(&intelhaddata->had_spinlock);
1224         return retval;
1225 }
1226
1227 /*
1228  * ALSA PCM prepare callback
1229  */
1230 static int had_pcm_prepare(struct snd_pcm_substream *substream)
1231 {
1232         int retval;
1233         u32 disp_samp_freq, n_param;
1234         u32 link_rate = 0;
1235         struct snd_intelhad *intelhaddata;
1236         struct snd_pcm_runtime *runtime;
1237
1238         intelhaddata = snd_pcm_substream_chip(substream);
1239         runtime = substream->runtime;
1240
1241         dev_dbg(intelhaddata->dev, "period_size=%d\n",
1242                 (int)frames_to_bytes(runtime, runtime->period_size));
1243         dev_dbg(intelhaddata->dev, "periods=%d\n", runtime->periods);
1244         dev_dbg(intelhaddata->dev, "buffer_size=%d\n",
1245                 (int)snd_pcm_lib_buffer_bytes(substream));
1246         dev_dbg(intelhaddata->dev, "rate=%d\n", runtime->rate);
1247         dev_dbg(intelhaddata->dev, "channels=%d\n", runtime->channels);
1248
1249         had_do_reset(intelhaddata);
1250
1251         /* Get N value in KHz */
1252         disp_samp_freq = intelhaddata->tmds_clock_speed;
1253
1254         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1255         if (retval) {
1256                 dev_err(intelhaddata->dev,
1257                         "programming N value failed %#x\n", retval);
1258                 goto prep_end;
1259         }
1260
1261         if (intelhaddata->dp_output)
1262                 link_rate = intelhaddata->link_rate;
1263
1264         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1265                      n_param, intelhaddata);
1266
1267         had_prog_dip(substream, intelhaddata);
1268
1269         retval = had_init_audio_ctrl(substream, intelhaddata);
1270
1271         /* Prog buffer address */
1272         had_init_ringbuf(substream, intelhaddata);
1273
1274         /*
1275          * Program channel mapping in following order:
1276          * FL, FR, C, LFE, RL, RR
1277          */
1278
1279         had_write_register(intelhaddata, AUD_BUF_CH_SWAP, SWAP_LFE_CENTER);
1280
1281 prep_end:
1282         return retval;
1283 }
1284
1285 /*
1286  * ALSA PCM pointer callback
1287  */
1288 static snd_pcm_uframes_t had_pcm_pointer(struct snd_pcm_substream *substream)
1289 {
1290         struct snd_intelhad *intelhaddata;
1291         int len;
1292
1293         intelhaddata = snd_pcm_substream_chip(substream);
1294
1295         if (!intelhaddata->connected)
1296                 return SNDRV_PCM_POS_XRUN;
1297
1298         len = had_process_ringbuf(substream, intelhaddata);
1299         if (len < 0)
1300                 return SNDRV_PCM_POS_XRUN;
1301         len = bytes_to_frames(substream->runtime, len);
1302         /* wrapping may happen when periods=1 */
1303         len %= substream->runtime->buffer_size;
1304         return len;
1305 }
1306
1307 /*
1308  * ALSA PCM mmap callback
1309  */
1310 static int had_pcm_mmap(struct snd_pcm_substream *substream,
1311                         struct vm_area_struct *vma)
1312 {
1313         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1314         return remap_pfn_range(vma, vma->vm_start,
1315                         substream->dma_buffer.addr >> PAGE_SHIFT,
1316                         vma->vm_end - vma->vm_start, vma->vm_page_prot);
1317 }
1318
1319 /*
1320  * ALSA PCM ops
1321  */
1322 static const struct snd_pcm_ops had_pcm_ops = {
1323         .open =         had_pcm_open,
1324         .close =        had_pcm_close,
1325         .ioctl =        snd_pcm_lib_ioctl,
1326         .hw_params =    had_pcm_hw_params,
1327         .hw_free =      had_pcm_hw_free,
1328         .prepare =      had_pcm_prepare,
1329         .trigger =      had_pcm_trigger,
1330         .pointer =      had_pcm_pointer,
1331         .mmap =         had_pcm_mmap,
1332 };
1333
1334 /* process mode change of the running stream; called in mutex */
1335 static int had_process_mode_change(struct snd_intelhad *intelhaddata)
1336 {
1337         struct snd_pcm_substream *substream;
1338         int retval = 0;
1339         u32 disp_samp_freq, n_param;
1340         u32 link_rate = 0;
1341
1342         substream = had_substream_get(intelhaddata);
1343         if (!substream)
1344                 return 0;
1345
1346         /* Disable Audio */
1347         had_enable_audio(intelhaddata, false);
1348
1349         /* Update CTS value */
1350         disp_samp_freq = intelhaddata->tmds_clock_speed;
1351
1352         retval = had_prog_n(substream->runtime->rate, &n_param, intelhaddata);
1353         if (retval) {
1354                 dev_err(intelhaddata->dev,
1355                         "programming N value failed %#x\n", retval);
1356                 goto out;
1357         }
1358
1359         if (intelhaddata->dp_output)
1360                 link_rate = intelhaddata->link_rate;
1361
1362         had_prog_cts(substream->runtime->rate, disp_samp_freq, link_rate,
1363                      n_param, intelhaddata);
1364
1365         /* Enable Audio */
1366         had_enable_audio(intelhaddata, true);
1367
1368 out:
1369         had_substream_put(intelhaddata);
1370         return retval;
1371 }
1372
1373 /* process hot plug, called from wq with mutex locked */
1374 static void had_process_hot_plug(struct snd_intelhad *intelhaddata)
1375 {
1376         struct snd_pcm_substream *substream;
1377
1378         spin_lock_irq(&intelhaddata->had_spinlock);
1379         if (intelhaddata->connected) {
1380                 dev_dbg(intelhaddata->dev, "Device already connected\n");
1381                 spin_unlock_irq(&intelhaddata->had_spinlock);
1382                 return;
1383         }
1384
1385         /* Disable Audio */
1386         had_enable_audio(intelhaddata, false);
1387
1388         intelhaddata->connected = true;
1389         dev_dbg(intelhaddata->dev,
1390                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_CONNECTED\n",
1391                         __func__, __LINE__);
1392         spin_unlock_irq(&intelhaddata->had_spinlock);
1393
1394         had_build_channel_allocation_map(intelhaddata);
1395
1396         /* Report to above ALSA layer */
1397         substream = had_substream_get(intelhaddata);
1398         if (substream) {
1399                 snd_pcm_stop_xrun(substream);
1400                 had_substream_put(intelhaddata);
1401         }
1402
1403         snd_jack_report(intelhaddata->jack, SND_JACK_AVOUT);
1404 }
1405
1406 /* process hot unplug, called from wq with mutex locked */
1407 static void had_process_hot_unplug(struct snd_intelhad *intelhaddata)
1408 {
1409         struct snd_pcm_substream *substream;
1410
1411         spin_lock_irq(&intelhaddata->had_spinlock);
1412         if (!intelhaddata->connected) {
1413                 dev_dbg(intelhaddata->dev, "Device already disconnected\n");
1414                 spin_unlock_irq(&intelhaddata->had_spinlock);
1415                 return;
1416
1417         }
1418
1419         /* Disable Audio */
1420         had_enable_audio(intelhaddata, false);
1421
1422         intelhaddata->connected = false;
1423         dev_dbg(intelhaddata->dev,
1424                 "%s @ %d:DEBUG PLUG/UNPLUG : HAD_DRV_DISCONNECTED\n",
1425                         __func__, __LINE__);
1426         spin_unlock_irq(&intelhaddata->had_spinlock);
1427
1428         kfree(intelhaddata->chmap->chmap);
1429         intelhaddata->chmap->chmap = NULL;
1430
1431         /* Report to above ALSA layer */
1432         substream = had_substream_get(intelhaddata);
1433         if (substream) {
1434                 snd_pcm_stop_xrun(substream);
1435                 had_substream_put(intelhaddata);
1436         }
1437
1438         snd_jack_report(intelhaddata->jack, 0);
1439 }
1440
1441 /*
1442  * ALSA iec958 and ELD controls
1443  */
1444
1445 static int had_iec958_info(struct snd_kcontrol *kcontrol,
1446                                 struct snd_ctl_elem_info *uinfo)
1447 {
1448         uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1449         uinfo->count = 1;
1450         return 0;
1451 }
1452
1453 static int had_iec958_get(struct snd_kcontrol *kcontrol,
1454                                 struct snd_ctl_elem_value *ucontrol)
1455 {
1456         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1457
1458         mutex_lock(&intelhaddata->mutex);
1459         ucontrol->value.iec958.status[0] = (intelhaddata->aes_bits >> 0) & 0xff;
1460         ucontrol->value.iec958.status[1] = (intelhaddata->aes_bits >> 8) & 0xff;
1461         ucontrol->value.iec958.status[2] =
1462                                         (intelhaddata->aes_bits >> 16) & 0xff;
1463         ucontrol->value.iec958.status[3] =
1464                                         (intelhaddata->aes_bits >> 24) & 0xff;
1465         mutex_unlock(&intelhaddata->mutex);
1466         return 0;
1467 }
1468
1469 static int had_iec958_mask_get(struct snd_kcontrol *kcontrol,
1470                                 struct snd_ctl_elem_value *ucontrol)
1471 {
1472         ucontrol->value.iec958.status[0] = 0xff;
1473         ucontrol->value.iec958.status[1] = 0xff;
1474         ucontrol->value.iec958.status[2] = 0xff;
1475         ucontrol->value.iec958.status[3] = 0xff;
1476         return 0;
1477 }
1478
1479 static int had_iec958_put(struct snd_kcontrol *kcontrol,
1480                                 struct snd_ctl_elem_value *ucontrol)
1481 {
1482         unsigned int val;
1483         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1484         int changed = 0;
1485
1486         val = (ucontrol->value.iec958.status[0] << 0) |
1487                 (ucontrol->value.iec958.status[1] << 8) |
1488                 (ucontrol->value.iec958.status[2] << 16) |
1489                 (ucontrol->value.iec958.status[3] << 24);
1490         mutex_lock(&intelhaddata->mutex);
1491         if (intelhaddata->aes_bits != val) {
1492                 intelhaddata->aes_bits = val;
1493                 changed = 1;
1494         }
1495         mutex_unlock(&intelhaddata->mutex);
1496         return changed;
1497 }
1498
1499 static int had_ctl_eld_info(struct snd_kcontrol *kcontrol,
1500                             struct snd_ctl_elem_info *uinfo)
1501 {
1502         uinfo->type = SNDRV_CTL_ELEM_TYPE_BYTES;
1503         uinfo->count = HDMI_MAX_ELD_BYTES;
1504         return 0;
1505 }
1506
1507 static int had_ctl_eld_get(struct snd_kcontrol *kcontrol,
1508                            struct snd_ctl_elem_value *ucontrol)
1509 {
1510         struct snd_intelhad *intelhaddata = snd_kcontrol_chip(kcontrol);
1511
1512         mutex_lock(&intelhaddata->mutex);
1513         memcpy(ucontrol->value.bytes.data, intelhaddata->eld,
1514                HDMI_MAX_ELD_BYTES);
1515         mutex_unlock(&intelhaddata->mutex);
1516         return 0;
1517 }
1518
1519 static const struct snd_kcontrol_new had_controls[] = {
1520         {
1521                 .access = SNDRV_CTL_ELEM_ACCESS_READ,
1522                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1523                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, MASK),
1524                 .info = had_iec958_info, /* shared */
1525                 .get = had_iec958_mask_get,
1526         },
1527         {
1528                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1529                 .name = SNDRV_CTL_NAME_IEC958("", PLAYBACK, DEFAULT),
1530                 .info = had_iec958_info,
1531                 .get = had_iec958_get,
1532                 .put = had_iec958_put,
1533         },
1534         {
1535                 .access = (SNDRV_CTL_ELEM_ACCESS_READ |
1536                            SNDRV_CTL_ELEM_ACCESS_VOLATILE),
1537                 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
1538                 .name = "ELD",
1539                 .info = had_ctl_eld_info,
1540                 .get = had_ctl_eld_get,
1541         },
1542 };
1543
1544 /*
1545  * audio interrupt handler
1546  */
1547 static irqreturn_t display_pipe_interrupt_handler(int irq, void *dev_id)
1548 {
1549         struct snd_intelhad_card *card_ctx = dev_id;
1550         u32 audio_stat[3] = {};
1551         int pipe, port;
1552
1553         for_each_pipe(card_ctx, pipe) {
1554                 /* use raw register access to ack IRQs even while disconnected */
1555                 audio_stat[pipe] = had_read_register_raw(card_ctx, pipe,
1556                                                          AUD_HDMI_STATUS) &
1557                         (HDMI_AUDIO_UNDERRUN | HDMI_AUDIO_BUFFER_DONE);
1558
1559                 if (audio_stat[pipe])
1560                         had_write_register_raw(card_ctx, pipe,
1561                                                AUD_HDMI_STATUS, audio_stat[pipe]);
1562         }
1563
1564         for_each_port(card_ctx, port) {
1565                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1566                 int pipe = ctx->pipe;
1567
1568                 if (pipe < 0)
1569                         continue;
1570
1571                 if (audio_stat[pipe] & HDMI_AUDIO_BUFFER_DONE)
1572                         had_process_buffer_done(ctx);
1573                 if (audio_stat[pipe] & HDMI_AUDIO_UNDERRUN)
1574                         had_process_buffer_underrun(ctx);
1575         }
1576
1577         return IRQ_HANDLED;
1578 }
1579
1580 /*
1581  * monitor plug/unplug notification from i915; just kick off the work
1582  */
1583 static void notify_audio_lpe(struct platform_device *pdev, int port)
1584 {
1585         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1586         struct snd_intelhad *ctx;
1587
1588         ctx = &card_ctx->pcm_ctx[single_port ? 0 : port];
1589         if (single_port)
1590                 ctx->port = port;
1591
1592         schedule_work(&ctx->hdmi_audio_wq);
1593 }
1594
1595 /* the work to handle monitor hot plug/unplug */
1596 static void had_audio_wq(struct work_struct *work)
1597 {
1598         struct snd_intelhad *ctx =
1599                 container_of(work, struct snd_intelhad, hdmi_audio_wq);
1600         struct intel_hdmi_lpe_audio_pdata *pdata = ctx->dev->platform_data;
1601         struct intel_hdmi_lpe_audio_port_pdata *ppdata = &pdata->port[ctx->port];
1602
1603         pm_runtime_get_sync(ctx->dev);
1604         mutex_lock(&ctx->mutex);
1605         if (ppdata->pipe < 0) {
1606                 dev_dbg(ctx->dev, "%s: Event: HAD_NOTIFY_HOT_UNPLUG : port = %d\n",
1607                         __func__, ctx->port);
1608
1609                 memset(ctx->eld, 0, sizeof(ctx->eld)); /* clear the old ELD */
1610
1611                 ctx->dp_output = false;
1612                 ctx->tmds_clock_speed = 0;
1613                 ctx->link_rate = 0;
1614
1615                 /* Shut down the stream */
1616                 had_process_hot_unplug(ctx);
1617
1618                 ctx->pipe = -1;
1619         } else {
1620                 dev_dbg(ctx->dev, "%s: HAD_NOTIFY_ELD : port = %d, tmds = %d\n",
1621                         __func__, ctx->port, ppdata->ls_clock);
1622
1623                 memcpy(ctx->eld, ppdata->eld, sizeof(ctx->eld));
1624
1625                 ctx->dp_output = ppdata->dp_output;
1626                 if (ctx->dp_output) {
1627                         ctx->tmds_clock_speed = 0;
1628                         ctx->link_rate = ppdata->ls_clock;
1629                 } else {
1630                         ctx->tmds_clock_speed = ppdata->ls_clock;
1631                         ctx->link_rate = 0;
1632                 }
1633
1634                 /*
1635                  * Shut down the stream before we change
1636                  * the pipe assignment for this pcm device
1637                  */
1638                 had_process_hot_plug(ctx);
1639
1640                 ctx->pipe = ppdata->pipe;
1641
1642                 /* Restart the stream if necessary */
1643                 had_process_mode_change(ctx);
1644         }
1645
1646         mutex_unlock(&ctx->mutex);
1647         pm_runtime_mark_last_busy(ctx->dev);
1648         pm_runtime_put_autosuspend(ctx->dev);
1649 }
1650
1651 /*
1652  * Jack interface
1653  */
1654 static int had_create_jack(struct snd_intelhad *ctx,
1655                            struct snd_pcm *pcm)
1656 {
1657         char hdmi_str[32];
1658         int err;
1659
1660         snprintf(hdmi_str, sizeof(hdmi_str),
1661                  "HDMI/DP,pcm=%d", pcm->device);
1662
1663         err = snd_jack_new(ctx->card_ctx->card, hdmi_str,
1664                            SND_JACK_AVOUT, &ctx->jack,
1665                            true, false);
1666         if (err < 0)
1667                 return err;
1668         ctx->jack->private_data = ctx;
1669         return 0;
1670 }
1671
1672 /*
1673  * PM callbacks
1674  */
1675
1676 static int hdmi_lpe_audio_runtime_suspend(struct device *dev)
1677 {
1678         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1679         int port;
1680
1681         for_each_port(card_ctx, port) {
1682                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1683                 struct snd_pcm_substream *substream;
1684
1685                 substream = had_substream_get(ctx);
1686                 if (substream) {
1687                         snd_pcm_suspend(substream);
1688                         had_substream_put(ctx);
1689                 }
1690         }
1691
1692         return 0;
1693 }
1694
1695 static int __maybe_unused hdmi_lpe_audio_suspend(struct device *dev)
1696 {
1697         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1698         int err;
1699
1700         err = hdmi_lpe_audio_runtime_suspend(dev);
1701         if (!err)
1702                 snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D3hot);
1703         return err;
1704 }
1705
1706 static int hdmi_lpe_audio_runtime_resume(struct device *dev)
1707 {
1708         pm_runtime_mark_last_busy(dev);
1709         return 0;
1710 }
1711
1712 static int __maybe_unused hdmi_lpe_audio_resume(struct device *dev)
1713 {
1714         struct snd_intelhad_card *card_ctx = dev_get_drvdata(dev);
1715
1716         hdmi_lpe_audio_runtime_resume(dev);
1717         snd_power_change_state(card_ctx->card, SNDRV_CTL_POWER_D0);
1718         return 0;
1719 }
1720
1721 /* release resources */
1722 static void hdmi_lpe_audio_free(struct snd_card *card)
1723 {
1724         struct snd_intelhad_card *card_ctx = card->private_data;
1725         struct intel_hdmi_lpe_audio_pdata *pdata = card_ctx->dev->platform_data;
1726         int port;
1727
1728         spin_lock_irq(&pdata->lpe_audio_slock);
1729         pdata->notify_audio_lpe = NULL;
1730         spin_unlock_irq(&pdata->lpe_audio_slock);
1731
1732         for_each_port(card_ctx, port) {
1733                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1734
1735                 cancel_work_sync(&ctx->hdmi_audio_wq);
1736         }
1737
1738         if (card_ctx->mmio_start)
1739                 iounmap(card_ctx->mmio_start);
1740         if (card_ctx->irq >= 0)
1741                 free_irq(card_ctx->irq, card_ctx);
1742 }
1743
1744 /*
1745  * hdmi_lpe_audio_probe - start bridge with i915
1746  *
1747  * This function is called when the i915 driver creates the
1748  * hdmi-lpe-audio platform device.
1749  */
1750 static int hdmi_lpe_audio_probe(struct platform_device *pdev)
1751 {
1752         struct snd_card *card;
1753         struct snd_intelhad_card *card_ctx;
1754         struct snd_intelhad *ctx;
1755         struct snd_pcm *pcm;
1756         struct intel_hdmi_lpe_audio_pdata *pdata;
1757         int irq;
1758         struct resource *res_mmio;
1759         int port, ret;
1760
1761         pdata = pdev->dev.platform_data;
1762         if (!pdata) {
1763                 dev_err(&pdev->dev, "%s: quit: pdata not allocated by i915!!\n", __func__);
1764                 return -EINVAL;
1765         }
1766
1767         /* get resources */
1768         irq = platform_get_irq(pdev, 0);
1769         if (irq < 0) {
1770                 dev_err(&pdev->dev, "Could not get irq resource: %d\n", irq);
1771                 return irq;
1772         }
1773
1774         res_mmio = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1775         if (!res_mmio) {
1776                 dev_err(&pdev->dev, "Could not get IO_MEM resources\n");
1777                 return -ENXIO;
1778         }
1779
1780         /* create a card instance with ALSA framework */
1781         ret = snd_card_new(&pdev->dev, hdmi_card_index, hdmi_card_id,
1782                            THIS_MODULE, sizeof(*card_ctx), &card);
1783         if (ret)
1784                 return ret;
1785
1786         card_ctx = card->private_data;
1787         card_ctx->dev = &pdev->dev;
1788         card_ctx->card = card;
1789         strcpy(card->driver, INTEL_HAD);
1790         strcpy(card->shortname, "Intel HDMI/DP LPE Audio");
1791         strcpy(card->longname, "Intel HDMI/DP LPE Audio");
1792
1793         card_ctx->irq = -1;
1794
1795         card->private_free = hdmi_lpe_audio_free;
1796
1797         platform_set_drvdata(pdev, card_ctx);
1798
1799         card_ctx->num_pipes = pdata->num_pipes;
1800         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1801
1802         for_each_port(card_ctx, port) {
1803                 ctx = &card_ctx->pcm_ctx[port];
1804                 ctx->card_ctx = card_ctx;
1805                 ctx->dev = card_ctx->dev;
1806                 ctx->port = single_port ? -1 : port;
1807                 ctx->pipe = -1;
1808
1809                 spin_lock_init(&ctx->had_spinlock);
1810                 mutex_init(&ctx->mutex);
1811                 INIT_WORK(&ctx->hdmi_audio_wq, had_audio_wq);
1812         }
1813
1814         dev_dbg(&pdev->dev, "%s: mmio_start = 0x%x, mmio_end = 0x%x\n",
1815                 __func__, (unsigned int)res_mmio->start,
1816                 (unsigned int)res_mmio->end);
1817
1818         card_ctx->mmio_start = ioremap_nocache(res_mmio->start,
1819                                                (size_t)(resource_size(res_mmio)));
1820         if (!card_ctx->mmio_start) {
1821                 dev_err(&pdev->dev, "Could not get ioremap\n");
1822                 ret = -EACCES;
1823                 goto err;
1824         }
1825
1826         /* setup interrupt handler */
1827         ret = request_irq(irq, display_pipe_interrupt_handler, 0,
1828                           pdev->name, card_ctx);
1829         if (ret < 0) {
1830                 dev_err(&pdev->dev, "request_irq failed\n");
1831                 goto err;
1832         }
1833
1834         card_ctx->irq = irq;
1835
1836         /* only 32bit addressable */
1837         dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
1838         dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1839
1840         init_channel_allocations();
1841
1842         card_ctx->num_pipes = pdata->num_pipes;
1843         card_ctx->num_ports = single_port ? 1 : pdata->num_ports;
1844
1845         for_each_port(card_ctx, port) {
1846                 int i;
1847
1848                 ctx = &card_ctx->pcm_ctx[port];
1849                 ret = snd_pcm_new(card, INTEL_HAD, port, MAX_PB_STREAMS,
1850                                   MAX_CAP_STREAMS, &pcm);
1851                 if (ret)
1852                         goto err;
1853
1854                 /* setup private data which can be retrieved when required */
1855                 pcm->private_data = ctx;
1856                 pcm->info_flags = 0;
1857                 strncpy(pcm->name, card->shortname, strlen(card->shortname));
1858                 /* setup the ops for playabck */
1859                 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &had_pcm_ops);
1860
1861                 /* allocate dma pages;
1862                  * try to allocate 600k buffer as default which is large enough
1863                  */
1864                 snd_pcm_lib_preallocate_pages_for_all(pcm,
1865                                                       SNDRV_DMA_TYPE_DEV, NULL,
1866                                                       HAD_DEFAULT_BUFFER, HAD_MAX_BUFFER);
1867
1868                 /* create controls */
1869                 for (i = 0; i < ARRAY_SIZE(had_controls); i++) {
1870                         struct snd_kcontrol *kctl;
1871
1872                         kctl = snd_ctl_new1(&had_controls[i], ctx);
1873                         if (!kctl) {
1874                                 ret = -ENOMEM;
1875                                 goto err;
1876                         }
1877
1878                         kctl->id.device = pcm->device;
1879
1880                         ret = snd_ctl_add(card, kctl);
1881                         if (ret < 0)
1882                                 goto err;
1883                 }
1884
1885                 /* Register channel map controls */
1886                 ret = had_register_chmap_ctls(ctx, pcm);
1887                 if (ret < 0)
1888                         goto err;
1889
1890                 ret = had_create_jack(ctx, pcm);
1891                 if (ret < 0)
1892                         goto err;
1893         }
1894
1895         ret = snd_card_register(card);
1896         if (ret)
1897                 goto err;
1898
1899         spin_lock_irq(&pdata->lpe_audio_slock);
1900         pdata->notify_audio_lpe = notify_audio_lpe;
1901         spin_unlock_irq(&pdata->lpe_audio_slock);
1902
1903         pm_runtime_use_autosuspend(&pdev->dev);
1904         pm_runtime_mark_last_busy(&pdev->dev);
1905         pm_runtime_set_active(&pdev->dev);
1906
1907         dev_dbg(&pdev->dev, "%s: handle pending notification\n", __func__);
1908         for_each_port(card_ctx, port) {
1909                 struct snd_intelhad *ctx = &card_ctx->pcm_ctx[port];
1910
1911                 schedule_work(&ctx->hdmi_audio_wq);
1912         }
1913
1914         return 0;
1915
1916 err:
1917         snd_card_free(card);
1918         return ret;
1919 }
1920
1921 /*
1922  * hdmi_lpe_audio_remove - stop bridge with i915
1923  *
1924  * This function is called when the platform device is destroyed.
1925  */
1926 static int hdmi_lpe_audio_remove(struct platform_device *pdev)
1927 {
1928         struct snd_intelhad_card *card_ctx = platform_get_drvdata(pdev);
1929
1930         snd_card_free(card_ctx->card);
1931         return 0;
1932 }
1933
1934 static const struct dev_pm_ops hdmi_lpe_audio_pm = {
1935         SET_SYSTEM_SLEEP_PM_OPS(hdmi_lpe_audio_suspend, hdmi_lpe_audio_resume)
1936         SET_RUNTIME_PM_OPS(hdmi_lpe_audio_runtime_suspend,
1937                            hdmi_lpe_audio_runtime_resume, NULL)
1938 };
1939
1940 static struct platform_driver hdmi_lpe_audio_driver = {
1941         .driver         = {
1942                 .name  = "hdmi-lpe-audio",
1943                 .pm = &hdmi_lpe_audio_pm,
1944         },
1945         .probe          = hdmi_lpe_audio_probe,
1946         .remove         = hdmi_lpe_audio_remove,
1947 };
1948
1949 module_platform_driver(hdmi_lpe_audio_driver);
1950 MODULE_ALIAS("platform:hdmi_lpe_audio");
1951
1952 MODULE_AUTHOR("Sailaja Bandarupalli <sailaja.bandarupalli@intel.com>");
1953 MODULE_AUTHOR("Ramesh Babu K V <ramesh.babu@intel.com>");
1954 MODULE_AUTHOR("Vaibhav Agarwal <vaibhav.agarwal@intel.com>");
1955 MODULE_AUTHOR("Jerome Anand <jerome.anand@intel.com>");
1956 MODULE_DESCRIPTION("Intel HDMI Audio driver");
1957 MODULE_LICENSE("GPL v2");
1958 MODULE_SUPPORTED_DEVICE("{Intel,Intel_HAD}");