]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/memory-model/Documentation/explanation.txt
867e0ea69b6d2c2961edb13a0f61185566dfeacf
[linux.git] / tools / memory-model / Documentation / explanation.txt
1 Explanation of the Linux-Kernel Memory Model
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3
4 :Author: Alan Stern <stern@rowland.harvard.edu>
5 :Created: October 2017
6
7 .. Contents
8
9   1. INTRODUCTION
10   2. BACKGROUND
11   3. A SIMPLE EXAMPLE
12   4. A SELECTION OF MEMORY MODELS
13   5. ORDERING AND CYCLES
14   6. EVENTS
15   7. THE PROGRAM ORDER RELATION: po AND po-loc
16   8. A WARNING
17   9. DEPENDENCY RELATIONS: data, addr, and ctrl
18   10. THE READS-FROM RELATION: rf, rfi, and rfe
19   11. CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
20   12. THE FROM-READS RELATION: fr, fri, and fre
21   13. AN OPERATIONAL MODEL
22   14. PROPAGATION ORDER RELATION: cumul-fence
23   15. DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
24   16. SEQUENTIAL CONSISTENCY PER VARIABLE
25   17. ATOMIC UPDATES: rmw
26   18. THE PRESERVED PROGRAM ORDER RELATION: ppo
27   19. AND THEN THERE WAS ALPHA
28   20. THE HAPPENS-BEFORE RELATION: hb
29   21. THE PROPAGATES-BEFORE RELATION: pb
30   22. RCU RELATIONS: link, gp-link, rscs-link, and rcu-path
31   23. ODDS AND ENDS
32
33
34
35 INTRODUCTION
36 ------------
37
38 The Linux-kernel memory model (LKMM) is rather complex and obscure.
39 This is particularly evident if you read through the linux-kernel.bell
40 and linux-kernel.cat files that make up the formal version of the
41 memory model; they are extremely terse and their meanings are far from
42 clear.
43
44 This document describes the ideas underlying the LKMM.  It is meant
45 for people who want to understand how the memory model was designed.
46 It does not go into the details of the code in the .bell and .cat
47 files; rather, it explains in English what the code expresses
48 symbolically.
49
50 Sections 2 (BACKGROUND) through 5 (ORDERING AND CYCLES) are aimed
51 toward beginners; they explain what memory models are and the basic
52 notions shared by all such models.  People already familiar with these
53 concepts can skim or skip over them.  Sections 6 (EVENTS) through 12
54 (THE FROM_READS RELATION) describe the fundamental relations used in
55 many memory models.  Starting in Section 13 (AN OPERATIONAL MODEL),
56 the workings of the LKMM itself are covered.
57
58 Warning: The code examples in this document are not written in the
59 proper format for litmus tests.  They don't include a header line, the
60 initializations are not enclosed in braces, the global variables are
61 not passed by pointers, and they don't have an "exists" clause at the
62 end.  Converting them to the right format is left as an exercise for
63 the reader.
64
65
66 BACKGROUND
67 ----------
68
69 A memory consistency model (or just memory model, for short) is
70 something which predicts, given a piece of computer code running on a
71 particular kind of system, what values may be obtained by the code's
72 load instructions.  The LKMM makes these predictions for code running
73 as part of the Linux kernel.
74
75 In practice, people tend to use memory models the other way around.
76 That is, given a piece of code and a collection of values specified
77 for the loads, the model will predict whether it is possible for the
78 code to run in such a way that the loads will indeed obtain the
79 specified values.  Of course, this is just another way of expressing
80 the same idea.
81
82 For code running on a uniprocessor system, the predictions are easy:
83 Each load instruction must obtain the value written by the most recent
84 store instruction accessing the same location (we ignore complicating
85 factors such as DMA and mixed-size accesses.)  But on multiprocessor
86 systems, with multiple CPUs making concurrent accesses to shared
87 memory locations, things aren't so simple.
88
89 Different architectures have differing memory models, and the Linux
90 kernel supports a variety of architectures.  The LKMM has to be fairly
91 permissive, in the sense that any behavior allowed by one of these
92 architectures also has to be allowed by the LKMM.
93
94
95 A SIMPLE EXAMPLE
96 ----------------
97
98 Here is a simple example to illustrate the basic concepts.  Consider
99 some code running as part of a device driver for an input device.  The
100 driver might contain an interrupt handler which collects data from the
101 device, stores it in a buffer, and sets a flag to indicate the buffer
102 is full.  Running concurrently on a different CPU might be a part of
103 the driver code being executed by a process in the midst of a read(2)
104 system call.  This code tests the flag to see whether the buffer is
105 ready, and if it is, copies the data back to userspace.  The buffer
106 and the flag are memory locations shared between the two CPUs.
107
108 We can abstract out the important pieces of the driver code as follows
109 (the reason for using WRITE_ONCE() and READ_ONCE() instead of simple
110 assignment statements is discussed later):
111
112         int buf = 0, flag = 0;
113
114         P0()
115         {
116                 WRITE_ONCE(buf, 1);
117                 WRITE_ONCE(flag, 1);
118         }
119
120         P1()
121         {
122                 int r1;
123                 int r2 = 0;
124
125                 r1 = READ_ONCE(flag);
126                 if (r1)
127                         r2 = READ_ONCE(buf);
128         }
129
130 Here the P0() function represents the interrupt handler running on one
131 CPU and P1() represents the read() routine running on another.  The
132 value 1 stored in buf represents input data collected from the device.
133 Thus, P0 stores the data in buf and then sets flag.  Meanwhile, P1
134 reads flag into the private variable r1, and if it is set, reads the
135 data from buf into a second private variable r2 for copying to
136 userspace.  (Presumably if flag is not set then the driver will wait a
137 while and try again.)
138
139 This pattern of memory accesses, where one CPU stores values to two
140 shared memory locations and another CPU loads from those locations in
141 the opposite order, is widely known as the "Message Passing" or MP
142 pattern.  It is typical of memory access patterns in the kernel.
143
144 Please note that this example code is a simplified abstraction.  Real
145 buffers are usually larger than a single integer, real device drivers
146 usually use sleep and wakeup mechanisms rather than polling for I/O
147 completion, and real code generally doesn't bother to copy values into
148 private variables before using them.  All that is beside the point;
149 the idea here is simply to illustrate the overall pattern of memory
150 accesses by the CPUs.
151
152 A memory model will predict what values P1 might obtain for its loads
153 from flag and buf, or equivalently, what values r1 and r2 might end up
154 with after the code has finished running.
155
156 Some predictions are trivial.  For instance, no sane memory model would
157 predict that r1 = 42 or r2 = -7, because neither of those values ever
158 gets stored in flag or buf.
159
160 Some nontrivial predictions are nonetheless quite simple.  For
161 instance, P1 might run entirely before P0 begins, in which case r1 and
162 r2 will both be 0 at the end.  Or P0 might run entirely before P1
163 begins, in which case r1 and r2 will both be 1.
164
165 The interesting predictions concern what might happen when the two
166 routines run concurrently.  One possibility is that P1 runs after P0's
167 store to buf but before the store to flag.  In this case, r1 and r2
168 will again both be 0.  (If P1 had been designed to read buf
169 unconditionally then we would instead have r1 = 0 and r2 = 1.)
170
171 However, the most interesting possibility is where r1 = 1 and r2 = 0.
172 If this were to occur it would mean the driver contains a bug, because
173 incorrect data would get sent to the user: 0 instead of 1.  As it
174 happens, the LKMM does predict this outcome can occur, and the example
175 driver code shown above is indeed buggy.
176
177
178 A SELECTION OF MEMORY MODELS
179 ----------------------------
180
181 The first widely cited memory model, and the simplest to understand,
182 is Sequential Consistency.  According to this model, systems behave as
183 if each CPU executed its instructions in order but with unspecified
184 timing.  In other words, the instructions from the various CPUs get
185 interleaved in a nondeterministic way, always according to some single
186 global order that agrees with the order of the instructions in the
187 program source for each CPU.  The model says that the value obtained
188 by each load is simply the value written by the most recently executed
189 store to the same memory location, from any CPU.
190
191 For the MP example code shown above, Sequential Consistency predicts
192 that the undesired result r1 = 1, r2 = 0 cannot occur.  The reasoning
193 goes like this:
194
195         Since r1 = 1, P0 must store 1 to flag before P1 loads 1 from
196         it, as loads can obtain values only from earlier stores.
197
198         P1 loads from flag before loading from buf, since CPUs execute
199         their instructions in order.
200
201         P1 must load 0 from buf before P0 stores 1 to it; otherwise r2
202         would be 1 since a load obtains its value from the most recent
203         store to the same address.
204
205         P0 stores 1 to buf before storing 1 to flag, since it executes
206         its instructions in order.
207
208         Since an instruction (in this case, P1's store to flag) cannot
209         execute before itself, the specified outcome is impossible.
210
211 However, real computer hardware almost never follows the Sequential
212 Consistency memory model; doing so would rule out too many valuable
213 performance optimizations.  On ARM and PowerPC architectures, for
214 instance, the MP example code really does sometimes yield r1 = 1 and
215 r2 = 0.
216
217 x86 and SPARC follow yet a different memory model: TSO (Total Store
218 Ordering).  This model predicts that the undesired outcome for the MP
219 pattern cannot occur, but in other respects it differs from Sequential
220 Consistency.  One example is the Store Buffer (SB) pattern, in which
221 each CPU stores to its own shared location and then loads from the
222 other CPU's location:
223
224         int x = 0, y = 0;
225
226         P0()
227         {
228                 int r0;
229
230                 WRITE_ONCE(x, 1);
231                 r0 = READ_ONCE(y);
232         }
233
234         P1()
235         {
236                 int r1;
237
238                 WRITE_ONCE(y, 1);
239                 r1 = READ_ONCE(x);
240         }
241
242 Sequential Consistency predicts that the outcome r0 = 0, r1 = 0 is
243 impossible.  (Exercise: Figure out the reasoning.)  But TSO allows
244 this outcome to occur, and in fact it does sometimes occur on x86 and
245 SPARC systems.
246
247 The LKMM was inspired by the memory models followed by PowerPC, ARM,
248 x86, Alpha, and other architectures.  However, it is different in
249 detail from each of them.
250
251
252 ORDERING AND CYCLES
253 -------------------
254
255 Memory models are all about ordering.  Often this is temporal ordering
256 (i.e., the order in which certain events occur) but it doesn't have to
257 be; consider for example the order of instructions in a program's
258 source code.  We saw above that Sequential Consistency makes an
259 important assumption that CPUs execute instructions in the same order
260 as those instructions occur in the code, and there are many other
261 instances of ordering playing central roles in memory models.
262
263 The counterpart to ordering is a cycle.  Ordering rules out cycles:
264 It's not possible to have X ordered before Y, Y ordered before Z, and
265 Z ordered before X, because this would mean that X is ordered before
266 itself.  The analysis of the MP example under Sequential Consistency
267 involved just such an impossible cycle:
268
269         W: P0 stores 1 to flag   executes before
270         X: P1 loads 1 from flag  executes before
271         Y: P1 loads 0 from buf   executes before
272         Z: P0 stores 1 to buf    executes before
273         W: P0 stores 1 to flag.
274
275 In short, if a memory model requires certain accesses to be ordered,
276 and a certain outcome for the loads in a piece of code can happen only
277 if those accesses would form a cycle, then the memory model predicts
278 that outcome cannot occur.
279
280 The LKMM is defined largely in terms of cycles, as we will see.
281
282
283 EVENTS
284 ------
285
286 The LKMM does not work directly with the C statements that make up
287 kernel source code.  Instead it considers the effects of those
288 statements in a more abstract form, namely, events.  The model
289 includes three types of events:
290
291         Read events correspond to loads from shared memory, such as
292         calls to READ_ONCE(), smp_load_acquire(), or
293         rcu_dereference().
294
295         Write events correspond to stores to shared memory, such as
296         calls to WRITE_ONCE(), smp_store_release(), or atomic_set().
297
298         Fence events correspond to memory barriers (also known as
299         fences), such as calls to smp_rmb() or rcu_read_lock().
300
301 These categories are not exclusive; a read or write event can also be
302 a fence.  This happens with functions like smp_load_acquire() or
303 spin_lock().  However, no single event can be both a read and a write.
304 Atomic read-modify-write accesses, such as atomic_inc() or xchg(),
305 correspond to a pair of events: a read followed by a write.  (The
306 write event is omitted for executions where it doesn't occur, such as
307 a cmpxchg() where the comparison fails.)
308
309 Other parts of the code, those which do not involve interaction with
310 shared memory, do not give rise to events.  Thus, arithmetic and
311 logical computations, control-flow instructions, or accesses to
312 private memory or CPU registers are not of central interest to the
313 memory model.  They only affect the model's predictions indirectly.
314 For example, an arithmetic computation might determine the value that
315 gets stored to a shared memory location (or in the case of an array
316 index, the address where the value gets stored), but the memory model
317 is concerned only with the store itself -- its value and its address
318 -- not the computation leading up to it.
319
320 Events in the LKMM can be linked by various relations, which we will
321 describe in the following sections.  The memory model requires certain
322 of these relations to be orderings, that is, it requires them not to
323 have any cycles.
324
325
326 THE PROGRAM ORDER RELATION: po AND po-loc
327 -----------------------------------------
328
329 The most important relation between events is program order (po).  You
330 can think of it as the order in which statements occur in the source
331 code after branches are taken into account and loops have been
332 unrolled.  A better description might be the order in which
333 instructions are presented to a CPU's execution unit.  Thus, we say
334 that X is po-before Y (written as "X ->po Y" in formulas) if X occurs
335 before Y in the instruction stream.
336
337 This is inherently a single-CPU relation; two instructions executing
338 on different CPUs are never linked by po.  Also, it is by definition
339 an ordering so it cannot have any cycles.
340
341 po-loc is a sub-relation of po.  It links two memory accesses when the
342 first comes before the second in program order and they access the
343 same memory location (the "-loc" suffix).
344
345 Although this may seem straightforward, there is one subtle aspect to
346 program order we need to explain.  The LKMM was inspired by low-level
347 architectural memory models which describe the behavior of machine
348 code, and it retains their outlook to a considerable extent.  The
349 read, write, and fence events used by the model are close in spirit to
350 individual machine instructions.  Nevertheless, the LKMM describes
351 kernel code written in C, and the mapping from C to machine code can
352 be extremely complex.
353
354 Optimizing compilers have great freedom in the way they translate
355 source code to object code.  They are allowed to apply transformations
356 that add memory accesses, eliminate accesses, combine them, split them
357 into pieces, or move them around.  Faced with all these possibilities,
358 the LKMM basically gives up.  It insists that the code it analyzes
359 must contain no ordinary accesses to shared memory; all accesses must
360 be performed using READ_ONCE(), WRITE_ONCE(), or one of the other
361 atomic or synchronization primitives.  These primitives prevent a
362 large number of compiler optimizations.  In particular, it is
363 guaranteed that the compiler will not remove such accesses from the
364 generated code (unless it can prove the accesses will never be
365 executed), it will not change the order in which they occur in the
366 code (within limits imposed by the C standard), and it will not
367 introduce extraneous accesses.
368
369 This explains why the MP and SB examples above used READ_ONCE() and
370 WRITE_ONCE() rather than ordinary memory accesses.  Thanks to this
371 usage, we can be certain that in the MP example, P0's write event to
372 buf really is po-before its write event to flag, and similarly for the
373 other shared memory accesses in the examples.
374
375 Private variables are not subject to this restriction.  Since they are
376 not shared between CPUs, they can be accessed normally without
377 READ_ONCE() or WRITE_ONCE(), and there will be no ill effects.  In
378 fact, they need not even be stored in normal memory at all -- in
379 principle a private variable could be stored in a CPU register (hence
380 the convention that these variables have names starting with the
381 letter 'r').
382
383
384 A WARNING
385 ---------
386
387 The protections provided by READ_ONCE(), WRITE_ONCE(), and others are
388 not perfect; and under some circumstances it is possible for the
389 compiler to undermine the memory model.  Here is an example.  Suppose
390 both branches of an "if" statement store the same value to the same
391 location:
392
393         r1 = READ_ONCE(x);
394         if (r1) {
395                 WRITE_ONCE(y, 2);
396                 ...  /* do something */
397         } else {
398                 WRITE_ONCE(y, 2);
399                 ...  /* do something else */
400         }
401
402 For this code, the LKMM predicts that the load from x will always be
403 executed before either of the stores to y.  However, a compiler could
404 lift the stores out of the conditional, transforming the code into
405 something resembling:
406
407         r1 = READ_ONCE(x);
408         WRITE_ONCE(y, 2);
409         if (r1) {
410                 ...  /* do something */
411         } else {
412                 ...  /* do something else */
413         }
414
415 Given this version of the code, the LKMM would predict that the load
416 from x could be executed after the store to y.  Thus, the memory
417 model's original prediction could be invalidated by the compiler.
418
419 Another issue arises from the fact that in C, arguments to many
420 operators and function calls can be evaluated in any order.  For
421 example:
422
423         r1 = f(5) + g(6);
424
425 The object code might call f(5) either before or after g(6); the
426 memory model cannot assume there is a fixed program order relation
427 between them.  (In fact, if the functions are inlined then the
428 compiler might even interleave their object code.)
429
430
431 DEPENDENCY RELATIONS: data, addr, and ctrl
432 ------------------------------------------
433
434 We say that two events are linked by a dependency relation when the
435 execution of the second event depends in some way on a value obtained
436 from memory by the first.  The first event must be a read, and the
437 value it obtains must somehow affect what the second event does.
438 There are three kinds of dependencies: data, address (addr), and
439 control (ctrl).
440
441 A read and a write event are linked by a data dependency if the value
442 obtained by the read affects the value stored by the write.  As a very
443 simple example:
444
445         int x, y;
446
447         r1 = READ_ONCE(x);
448         WRITE_ONCE(y, r1 + 5);
449
450 The value stored by the WRITE_ONCE obviously depends on the value
451 loaded by the READ_ONCE.  Such dependencies can wind through
452 arbitrarily complicated computations, and a write can depend on the
453 values of multiple reads.
454
455 A read event and another memory access event are linked by an address
456 dependency if the value obtained by the read affects the location
457 accessed by the other event.  The second event can be either a read or
458 a write.  Here's another simple example:
459
460         int a[20];
461         int i;
462
463         r1 = READ_ONCE(i);
464         r2 = READ_ONCE(a[r1]);
465
466 Here the location accessed by the second READ_ONCE() depends on the
467 index value loaded by the first.  Pointer indirection also gives rise
468 to address dependencies, since the address of a location accessed
469 through a pointer will depend on the value read earlier from that
470 pointer.
471
472 Finally, a read event and another memory access event are linked by a
473 control dependency if the value obtained by the read affects whether
474 the second event is executed at all.  Simple example:
475
476         int x, y;
477
478         r1 = READ_ONCE(x);
479         if (r1)
480                 WRITE_ONCE(y, 1984);
481
482 Execution of the WRITE_ONCE() is controlled by a conditional expression
483 which depends on the value obtained by the READ_ONCE(); hence there is
484 a control dependency from the load to the store.
485
486 It should be pretty obvious that events can only depend on reads that
487 come earlier in program order.  Symbolically, if we have R ->data X,
488 R ->addr X, or R ->ctrl X (where R is a read event), then we must also
489 have R ->po X.  It wouldn't make sense for a computation to depend
490 somehow on a value that doesn't get loaded from shared memory until
491 later in the code!
492
493
494 THE READS-FROM RELATION: rf, rfi, and rfe
495 -----------------------------------------
496
497 The reads-from relation (rf) links a write event to a read event when
498 the value loaded by the read is the value that was stored by the
499 write.  In colloquial terms, the load "reads from" the store.  We
500 write W ->rf R to indicate that the load R reads from the store W.  We
501 further distinguish the cases where the load and the store occur on
502 the same CPU (internal reads-from, or rfi) and where they occur on
503 different CPUs (external reads-from, or rfe).
504
505 For our purposes, a memory location's initial value is treated as
506 though it had been written there by an imaginary initial store that
507 executes on a separate CPU before the program runs.
508
509 Usage of the rf relation implicitly assumes that loads will always
510 read from a single store.  It doesn't apply properly in the presence
511 of load-tearing, where a load obtains some of its bits from one store
512 and some of them from another store.  Fortunately, use of READ_ONCE()
513 and WRITE_ONCE() will prevent load-tearing; it's not possible to have:
514
515         int x = 0;
516
517         P0()
518         {
519                 WRITE_ONCE(x, 0x1234);
520         }
521
522         P1()
523         {
524                 int r1;
525
526                 r1 = READ_ONCE(x);
527         }
528
529 and end up with r1 = 0x1200 (partly from x's initial value and partly
530 from the value stored by P0).
531
532 On the other hand, load-tearing is unavoidable when mixed-size
533 accesses are used.  Consider this example:
534
535         union {
536                 u32     w;
537                 u16     h[2];
538         } x;
539
540         P0()
541         {
542                 WRITE_ONCE(x.h[0], 0x1234);
543                 WRITE_ONCE(x.h[1], 0x5678);
544         }
545
546         P1()
547         {
548                 int r1;
549
550                 r1 = READ_ONCE(x.w);
551         }
552
553 If r1 = 0x56781234 (little-endian!) at the end, then P1 must have read
554 from both of P0's stores.  It is possible to handle mixed-size and
555 unaligned accesses in a memory model, but the LKMM currently does not
556 attempt to do so.  It requires all accesses to be properly aligned and
557 of the location's actual size.
558
559
560 CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
561 ------------------------------------------------------------------
562
563 Cache coherence is a general principle requiring that in a
564 multi-processor system, the CPUs must share a consistent view of the
565 memory contents.  Specifically, it requires that for each location in
566 shared memory, the stores to that location must form a single global
567 ordering which all the CPUs agree on (the coherence order), and this
568 ordering must be consistent with the program order for accesses to
569 that location.
570
571 To put it another way, for any variable x, the coherence order (co) of
572 the stores to x is simply the order in which the stores overwrite one
573 another.  The imaginary store which establishes x's initial value
574 comes first in the coherence order; the store which directly
575 overwrites the initial value comes second; the store which overwrites
576 that value comes third, and so on.
577
578 You can think of the coherence order as being the order in which the
579 stores reach x's location in memory (or if you prefer a more
580 hardware-centric view, the order in which the stores get written to
581 x's cache line).  We write W ->co W' if W comes before W' in the
582 coherence order, that is, if the value stored by W gets overwritten,
583 directly or indirectly, by the value stored by W'.
584
585 Coherence order is required to be consistent with program order.  This
586 requirement takes the form of four coherency rules:
587
588         Write-write coherence: If W ->po-loc W' (i.e., W comes before
589         W' in program order and they access the same location), where W
590         and W' are two stores, then W ->co W'.
591
592         Write-read coherence: If W ->po-loc R, where W is a store and R
593         is a load, then R must read from W or from some other store
594         which comes after W in the coherence order.
595
596         Read-write coherence: If R ->po-loc W, where R is a load and W
597         is a store, then the store which R reads from must come before
598         W in the coherence order.
599
600         Read-read coherence: If R ->po-loc R', where R and R' are two
601         loads, then either they read from the same store or else the
602         store read by R comes before the store read by R' in the
603         coherence order.
604
605 This is sometimes referred to as sequential consistency per variable,
606 because it means that the accesses to any single memory location obey
607 the rules of the Sequential Consistency memory model.  (According to
608 Wikipedia, sequential consistency per variable and cache coherence
609 mean the same thing except that cache coherence includes an extra
610 requirement that every store eventually becomes visible to every CPU.)
611
612 Any reasonable memory model will include cache coherence.  Indeed, our
613 expectation of cache coherence is so deeply ingrained that violations
614 of its requirements look more like hardware bugs than programming
615 errors:
616
617         int x;
618
619         P0()
620         {
621                 WRITE_ONCE(x, 17);
622                 WRITE_ONCE(x, 23);
623         }
624
625 If the final value stored in x after this code ran was 17, you would
626 think your computer was broken.  It would be a violation of the
627 write-write coherence rule: Since the store of 23 comes later in
628 program order, it must also come later in x's coherence order and
629 thus must overwrite the store of 17.
630
631         int x = 0;
632
633         P0()
634         {
635                 int r1;
636
637                 r1 = READ_ONCE(x);
638                 WRITE_ONCE(x, 666);
639         }
640
641 If r1 = 666 at the end, this would violate the read-write coherence
642 rule: The READ_ONCE() load comes before the WRITE_ONCE() store in
643 program order, so it must not read from that store but rather from one
644 coming earlier in the coherence order (in this case, x's initial
645 value).
646
647         int x = 0;
648
649         P0()
650         {
651                 WRITE_ONCE(x, 5);
652         }
653
654         P1()
655         {
656                 int r1, r2;
657
658                 r1 = READ_ONCE(x);
659                 r2 = READ_ONCE(x);
660         }
661
662 If r1 = 5 (reading from P0's store) and r2 = 0 (reading from the
663 imaginary store which establishes x's initial value) at the end, this
664 would violate the read-read coherence rule: The r1 load comes before
665 the r2 load in program order, so it must not read from a store that
666 comes later in the coherence order.
667
668 (As a minor curiosity, if this code had used normal loads instead of
669 READ_ONCE() in P1, on Itanium it sometimes could end up with r1 = 5
670 and r2 = 0!  This results from parallel execution of the operations
671 encoded in Itanium's Very-Long-Instruction-Word format, and it is yet
672 another motivation for using READ_ONCE() when accessing shared memory
673 locations.)
674
675 Just like the po relation, co is inherently an ordering -- it is not
676 possible for a store to directly or indirectly overwrite itself!  And
677 just like with the rf relation, we distinguish between stores that
678 occur on the same CPU (internal coherence order, or coi) and stores
679 that occur on different CPUs (external coherence order, or coe).
680
681 On the other hand, stores to different memory locations are never
682 related by co, just as instructions on different CPUs are never
683 related by po.  Coherence order is strictly per-location, or if you
684 prefer, each location has its own independent coherence order.
685
686
687 THE FROM-READS RELATION: fr, fri, and fre
688 -----------------------------------------
689
690 The from-reads relation (fr) can be a little difficult for people to
691 grok.  It describes the situation where a load reads a value that gets
692 overwritten by a store.  In other words, we have R ->fr W when the
693 value that R reads is overwritten (directly or indirectly) by W, or
694 equivalently, when R reads from a store which comes earlier than W in
695 the coherence order.
696
697 For example:
698
699         int x = 0;
700
701         P0()
702         {
703                 int r1;
704
705                 r1 = READ_ONCE(x);
706                 WRITE_ONCE(x, 2);
707         }
708
709 The value loaded from x will be 0 (assuming cache coherence!), and it
710 gets overwritten by the value 2.  Thus there is an fr link from the
711 READ_ONCE() to the WRITE_ONCE().  If the code contained any later
712 stores to x, there would also be fr links from the READ_ONCE() to
713 them.
714
715 As with rf, rfi, and rfe, we subdivide the fr relation into fri (when
716 the load and the store are on the same CPU) and fre (when they are on
717 different CPUs).
718
719 Note that the fr relation is determined entirely by the rf and co
720 relations; it is not independent.  Given a read event R and a write
721 event W for the same location, we will have R ->fr W if and only if
722 the write which R reads from is co-before W.  In symbols,
723
724         (R ->fr W) := (there exists W' with W' ->rf R and W' ->co W).
725
726
727 AN OPERATIONAL MODEL
728 --------------------
729
730 The LKMM is based on various operational memory models, meaning that
731 the models arise from an abstract view of how a computer system
732 operates.  Here are the main ideas, as incorporated into the LKMM.
733
734 The system as a whole is divided into the CPUs and a memory subsystem.
735 The CPUs are responsible for executing instructions (not necessarily
736 in program order), and they communicate with the memory subsystem.
737 For the most part, executing an instruction requires a CPU to perform
738 only internal operations.  However, loads, stores, and fences involve
739 more.
740
741 When CPU C executes a store instruction, it tells the memory subsystem
742 to store a certain value at a certain location.  The memory subsystem
743 propagates the store to all the other CPUs as well as to RAM.  (As a
744 special case, we say that the store propagates to its own CPU at the
745 time it is executed.)  The memory subsystem also determines where the
746 store falls in the location's coherence order.  In particular, it must
747 arrange for the store to be co-later than (i.e., to overwrite) any
748 other store to the same location which has already propagated to CPU C.
749
750 When a CPU executes a load instruction R, it first checks to see
751 whether there are any as-yet unexecuted store instructions, for the
752 same location, that come before R in program order.  If there are, it
753 uses the value of the po-latest such store as the value obtained by R,
754 and we say that the store's value is forwarded to R.  Otherwise, the
755 CPU asks the memory subsystem for the value to load and we say that R
756 is satisfied from memory.  The memory subsystem hands back the value
757 of the co-latest store to the location in question which has already
758 propagated to that CPU.
759
760 (In fact, the picture needs to be a little more complicated than this.
761 CPUs have local caches, and propagating a store to a CPU really means
762 propagating it to the CPU's local cache.  A local cache can take some
763 time to process the stores that it receives, and a store can't be used
764 to satisfy one of the CPU's loads until it has been processed.  On
765 most architectures, the local caches process stores in
766 First-In-First-Out order, and consequently the processing delay
767 doesn't matter for the memory model.  But on Alpha, the local caches
768 have a partitioned design that results in non-FIFO behavior.  We will
769 discuss this in more detail later.)
770
771 Note that load instructions may be executed speculatively and may be
772 restarted under certain circumstances.  The memory model ignores these
773 premature executions; we simply say that the load executes at the
774 final time it is forwarded or satisfied.
775
776 Executing a fence (or memory barrier) instruction doesn't require a
777 CPU to do anything special other than informing the memory subsystem
778 about the fence.  However, fences do constrain the way CPUs and the
779 memory subsystem handle other instructions, in two respects.
780
781 First, a fence forces the CPU to execute various instructions in
782 program order.  Exactly which instructions are ordered depends on the
783 type of fence:
784
785         Strong fences, including smp_mb() and synchronize_rcu(), force
786         the CPU to execute all po-earlier instructions before any
787         po-later instructions;
788
789         smp_rmb() forces the CPU to execute all po-earlier loads
790         before any po-later loads;
791
792         smp_wmb() forces the CPU to execute all po-earlier stores
793         before any po-later stores;
794
795         Acquire fences, such as smp_load_acquire(), force the CPU to
796         execute the load associated with the fence (e.g., the load
797         part of an smp_load_acquire()) before any po-later
798         instructions;
799
800         Release fences, such as smp_store_release(), force the CPU to
801         execute all po-earlier instructions before the store
802         associated with the fence (e.g., the store part of an
803         smp_store_release()).
804
805 Second, some types of fence affect the way the memory subsystem
806 propagates stores.  When a fence instruction is executed on CPU C:
807
808         For each other CPU C', smb_wmb() forces all po-earlier stores
809         on C to propagate to C' before any po-later stores do.
810
811         For each other CPU C', any store which propagates to C before
812         a release fence is executed (including all po-earlier
813         stores executed on C) is forced to propagate to C' before the
814         store associated with the release fence does.
815
816         Any store which propagates to C before a strong fence is
817         executed (including all po-earlier stores on C) is forced to
818         propagate to all other CPUs before any instructions po-after
819         the strong fence are executed on C.
820
821 The propagation ordering enforced by release fences and strong fences
822 affects stores from other CPUs that propagate to CPU C before the
823 fence is executed, as well as stores that are executed on C before the
824 fence.  We describe this property by saying that release fences and
825 strong fences are A-cumulative.  By contrast, smp_wmb() fences are not
826 A-cumulative; they only affect the propagation of stores that are
827 executed on C before the fence (i.e., those which precede the fence in
828 program order).
829
830 smp_read_barrier_depends(), rcu_read_lock(), rcu_read_unlock(), and
831 synchronize_rcu() fences have other properties which we discuss later.
832
833
834 PROPAGATION ORDER RELATION: cumul-fence
835 ---------------------------------------
836
837 The fences which affect propagation order (i.e., strong, release, and
838 smp_wmb() fences) are collectively referred to as cumul-fences, even
839 though smp_wmb() isn't A-cumulative.  The cumul-fence relation is
840 defined to link memory access events E and F whenever:
841
842         E and F are both stores on the same CPU and an smp_wmb() fence
843         event occurs between them in program order; or
844
845         F is a release fence and some X comes before F in program order,
846         where either X = E or else E ->rf X; or
847
848         A strong fence event occurs between some X and F in program
849         order, where either X = E or else E ->rf X.
850
851 The operational model requires that whenever W and W' are both stores
852 and W ->cumul-fence W', then W must propagate to any given CPU
853 before W' does.  However, for different CPUs C and C', it does not
854 require W to propagate to C before W' propagates to C'.
855
856
857 DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
858 -------------------------------------------------
859
860 The LKMM is derived from the restrictions imposed by the design
861 outlined above.  These restrictions involve the necessity of
862 maintaining cache coherence and the fact that a CPU can't operate on a
863 value before it knows what that value is, among other things.
864
865 The formal version of the LKMM is defined by five requirements, or
866 axioms:
867
868         Sequential consistency per variable: This requires that the
869         system obey the four coherency rules.
870
871         Atomicity: This requires that atomic read-modify-write
872         operations really are atomic, that is, no other stores can
873         sneak into the middle of such an update.
874
875         Happens-before: This requires that certain instructions are
876         executed in a specific order.
877
878         Propagation: This requires that certain stores propagate to
879         CPUs and to RAM in a specific order.
880
881         Rcu: This requires that RCU read-side critical sections and
882         grace periods obey the rules of RCU, in particular, the
883         Grace-Period Guarantee.
884
885 The first and second are quite common; they can be found in many
886 memory models (such as those for C11/C++11).  The "happens-before" and
887 "propagation" axioms have analogs in other memory models as well.  The
888 "rcu" axiom is specific to the LKMM.
889
890 Each of these axioms is discussed below.
891
892
893 SEQUENTIAL CONSISTENCY PER VARIABLE
894 -----------------------------------
895
896 According to the principle of cache coherence, the stores to any fixed
897 shared location in memory form a global ordering.  We can imagine
898 inserting the loads from that location into this ordering, by placing
899 each load between the store that it reads from and the following
900 store.  This leaves the relative positions of loads that read from the
901 same store unspecified; let's say they are inserted in program order,
902 first for CPU 0, then CPU 1, etc.
903
904 You can check that the four coherency rules imply that the rf, co, fr,
905 and po-loc relations agree with this global ordering; in other words,
906 whenever we have X ->rf Y or X ->co Y or X ->fr Y or X ->po-loc Y, the
907 X event comes before the Y event in the global ordering.  The LKMM's
908 "coherence" axiom expresses this by requiring the union of these
909 relations not to have any cycles.  This means it must not be possible
910 to find events
911
912         X0 -> X1 -> X2 -> ... -> Xn -> X0,
913
914 where each of the links is either rf, co, fr, or po-loc.  This has to
915 hold if the accesses to the fixed memory location can be ordered as
916 cache coherence demands.
917
918 Although it is not obvious, it can be shown that the converse is also
919 true: This LKMM axiom implies that the four coherency rules are
920 obeyed.
921
922
923 ATOMIC UPDATES: rmw
924 -------------------
925
926 What does it mean to say that a read-modify-write (rmw) update, such
927 as atomic_inc(&x), is atomic?  It means that the memory location (x in
928 this case) does not get altered between the read and the write events
929 making up the atomic operation.  In particular, if two CPUs perform
930 atomic_inc(&x) concurrently, it must be guaranteed that the final
931 value of x will be the initial value plus two.  We should never have
932 the following sequence of events:
933
934         CPU 0 loads x obtaining 13;
935                                         CPU 1 loads x obtaining 13;
936         CPU 0 stores 14 to x;
937                                         CPU 1 stores 14 to x;
938
939 where the final value of x is wrong (14 rather than 15).
940
941 In this example, CPU 0's increment effectively gets lost because it
942 occurs in between CPU 1's load and store.  To put it another way, the
943 problem is that the position of CPU 0's store in x's coherence order
944 is between the store that CPU 1 reads from and the store that CPU 1
945 performs.
946
947 The same analysis applies to all atomic update operations.  Therefore,
948 to enforce atomicity the LKMM requires that atomic updates follow this
949 rule: Whenever R and W are the read and write events composing an
950 atomic read-modify-write and W' is the write event which R reads from,
951 there must not be any stores coming between W' and W in the coherence
952 order.  Equivalently,
953
954         (R ->rmw W) implies (there is no X with R ->fr X and X ->co W),
955
956 where the rmw relation links the read and write events making up each
957 atomic update.  This is what the LKMM's "atomic" axiom says.
958
959
960 THE PRESERVED PROGRAM ORDER RELATION: ppo
961 -----------------------------------------
962
963 There are many situations where a CPU is obligated to execute two
964 instructions in program order.  We amalgamate them into the ppo (for
965 "preserved program order") relation, which links the po-earlier
966 instruction to the po-later instruction and is thus a sub-relation of
967 po.
968
969 The operational model already includes a description of one such
970 situation: Fences are a source of ppo links.  Suppose X and Y are
971 memory accesses with X ->po Y; then the CPU must execute X before Y if
972 any of the following hold:
973
974         A strong (smp_mb() or synchronize_rcu()) fence occurs between
975         X and Y;
976
977         X and Y are both stores and an smp_wmb() fence occurs between
978         them;
979
980         X and Y are both loads and an smp_rmb() fence occurs between
981         them;
982
983         X is also an acquire fence, such as smp_load_acquire();
984
985         Y is also a release fence, such as smp_store_release().
986
987 Another possibility, not mentioned earlier but discussed in the next
988 section, is:
989
990         X and Y are both loads, X ->addr Y (i.e., there is an address
991         dependency from X to Y), and an smp_read_barrier_depends()
992         fence occurs between them.
993
994 Dependencies can also cause instructions to be executed in program
995 order.  This is uncontroversial when the second instruction is a
996 store; either a data, address, or control dependency from a load R to
997 a store W will force the CPU to execute R before W.  This is very
998 simply because the CPU cannot tell the memory subsystem about W's
999 store before it knows what value should be stored (in the case of a
1000 data dependency), what location it should be stored into (in the case
1001 of an address dependency), or whether the store should actually take
1002 place (in the case of a control dependency).
1003
1004 Dependencies to load instructions are more problematic.  To begin with,
1005 there is no such thing as a data dependency to a load.  Next, a CPU
1006 has no reason to respect a control dependency to a load, because it
1007 can always satisfy the second load speculatively before the first, and
1008 then ignore the result if it turns out that the second load shouldn't
1009 be executed after all.  And lastly, the real difficulties begin when
1010 we consider address dependencies to loads.
1011
1012 To be fair about it, all Linux-supported architectures do execute
1013 loads in program order if there is an address dependency between them.
1014 After all, a CPU cannot ask the memory subsystem to load a value from
1015 a particular location before it knows what that location is.  However,
1016 the split-cache design used by Alpha can cause it to behave in a way
1017 that looks as if the loads were executed out of order (see the next
1018 section for more details).  For this reason, the LKMM does not include
1019 address dependencies between read events in the ppo relation unless an
1020 smp_read_barrier_depends() fence is present.
1021
1022 On the other hand, dependencies can indirectly affect the ordering of
1023 two loads.  This happens when there is a dependency from a load to a
1024 store and a second, po-later load reads from that store:
1025
1026         R ->dep W ->rfi R',
1027
1028 where the dep link can be either an address or a data dependency.  In
1029 this situation we know it is possible for the CPU to execute R' before
1030 W, because it can forward the value that W will store to R'.  But it
1031 cannot execute R' before R, because it cannot forward the value before
1032 it knows what that value is, or that W and R' do access the same
1033 location.  However, if there is merely a control dependency between R
1034 and W then the CPU can speculatively forward W to R' before executing
1035 R; if the speculation turns out to be wrong then the CPU merely has to
1036 restart or abandon R'.
1037
1038 (In theory, a CPU might forward a store to a load when it runs across
1039 an address dependency like this:
1040
1041         r1 = READ_ONCE(ptr);
1042         WRITE_ONCE(*r1, 17);
1043         r2 = READ_ONCE(*r1);
1044
1045 because it could tell that the store and the second load access the
1046 same location even before it knows what the location's address is.
1047 However, none of the architectures supported by the Linux kernel do
1048 this.)
1049
1050 Two memory accesses of the same location must always be executed in
1051 program order if the second access is a store.  Thus, if we have
1052
1053         R ->po-loc W
1054
1055 (the po-loc link says that R comes before W in program order and they
1056 access the same location), the CPU is obliged to execute W after R.
1057 If it executed W first then the memory subsystem would respond to R's
1058 read request with the value stored by W (or an even later store), in
1059 violation of the read-write coherence rule.  Similarly, if we had
1060
1061         W ->po-loc W'
1062
1063 and the CPU executed W' before W, then the memory subsystem would put
1064 W' before W in the coherence order.  It would effectively cause W to
1065 overwrite W', in violation of the write-write coherence rule.
1066 (Interestingly, an early ARMv8 memory model, now obsolete, proposed
1067 allowing out-of-order writes like this to occur.  The model avoided
1068 violating the write-write coherence rule by requiring the CPU not to
1069 send the W write to the memory subsystem at all!)
1070
1071 There is one last example of preserved program order in the LKMM: when
1072 a load-acquire reads from an earlier store-release.  For example:
1073
1074         smp_store_release(&x, 123);
1075         r1 = smp_load_acquire(&x);
1076
1077 If the smp_load_acquire() ends up obtaining the 123 value that was
1078 stored by the smp_store_release(), the LKMM says that the load must be
1079 executed after the store; the store cannot be forwarded to the load.
1080 This requirement does not arise from the operational model, but it
1081 yields correct predictions on all architectures supported by the Linux
1082 kernel, although for differing reasons.
1083
1084 On some architectures, including x86 and ARMv8, it is true that the
1085 store cannot be forwarded to the load.  On others, including PowerPC
1086 and ARMv7, smp_store_release() generates object code that starts with
1087 a fence and smp_load_acquire() generates object code that ends with a
1088 fence.  The upshot is that even though the store may be forwarded to
1089 the load, it is still true that any instruction preceding the store
1090 will be executed before the load or any following instructions, and
1091 the store will be executed before any instruction following the load.
1092
1093
1094 AND THEN THERE WAS ALPHA
1095 ------------------------
1096
1097 As mentioned above, the Alpha architecture is unique in that it does
1098 not appear to respect address dependencies to loads.  This means that
1099 code such as the following:
1100
1101         int x = 0;
1102         int y = -1;
1103         int *ptr = &y;
1104
1105         P0()
1106         {
1107                 WRITE_ONCE(x, 1);
1108                 smp_wmb();
1109                 WRITE_ONCE(ptr, &x);
1110         }
1111
1112         P1()
1113         {
1114                 int *r1;
1115                 int r2;
1116
1117                 r1 = READ_ONCE(ptr);
1118                 r2 = READ_ONCE(*r1);
1119         }
1120
1121 can malfunction on Alpha systems.  It is quite possible that r1 = &x
1122 and r2 = 0 at the end, in spite of the address dependency.
1123
1124 At first glance this doesn't seem to make sense.  We know that the
1125 smp_wmb() forces P0's store to x to propagate to P1 before the store
1126 to ptr does.  And since P1 can't execute its second load
1127 until it knows what location to load from, i.e., after executing its
1128 first load, the value x = 1 must have propagated to P1 before the
1129 second load executed.  So why doesn't r2 end up equal to 1?
1130
1131 The answer lies in the Alpha's split local caches.  Although the two
1132 stores do reach P1's local cache in the proper order, it can happen
1133 that the first store is processed by a busy part of the cache while
1134 the second store is processed by an idle part.  As a result, the x = 1
1135 value may not become available for P1's CPU to read until after the
1136 ptr = &x value does, leading to the undesirable result above.  The
1137 final effect is that even though the two loads really are executed in
1138 program order, it appears that they aren't.
1139
1140 This could not have happened if the local cache had processed the
1141 incoming stores in FIFO order.  In constrast, other architectures
1142 maintain at least the appearance of FIFO order.
1143
1144 In practice, this difficulty is solved by inserting an
1145 smp_read_barrier_depends() fence between P1's two loads.  The effect
1146 of this fence is to cause the CPU not to execute any po-later
1147 instructions until after the local cache has finished processing all
1148 the stores it has already received.  Thus, if the code was changed to:
1149
1150         P1()
1151         {
1152                 int *r1;
1153                 int r2;
1154
1155                 r1 = READ_ONCE(ptr);
1156                 smp_read_barrier_depends();
1157                 r2 = READ_ONCE(*r1);
1158         }
1159
1160 then we would never get r1 = &x and r2 = 0.  By the time P1 executed
1161 its second load, the x = 1 store would already be fully processed by
1162 the local cache and available for satisfying the read request.
1163
1164 The LKMM requires that smp_rmb(), acquire fences, and strong fences
1165 share this property with smp_read_barrier_depends(): They do not allow
1166 the CPU to execute any po-later instructions (or po-later loads in the
1167 case of smp_rmb()) until all outstanding stores have been processed by
1168 the local cache.  In the case of a strong fence, the CPU first has to
1169 wait for all of its po-earlier stores to propagate to every other CPU
1170 in the system; then it has to wait for the local cache to process all
1171 the stores received as of that time -- not just the stores received
1172 when the strong fence began.
1173
1174 And of course, none of this matters for any architecture other than
1175 Alpha.
1176
1177
1178 THE HAPPENS-BEFORE RELATION: hb
1179 -------------------------------
1180
1181 The happens-before relation (hb) links memory accesses that have to
1182 execute in a certain order.  hb includes the ppo relation and two
1183 others, one of which is rfe.
1184
1185 W ->rfe R implies that W and R are on different CPUs.  It also means
1186 that W's store must have propagated to R's CPU before R executed;
1187 otherwise R could not have read the value stored by W.  Therefore W
1188 must have executed before R, and so we have W ->hb R.
1189
1190 The equivalent fact need not hold if W ->rfi R (i.e., W and R are on
1191 the same CPU).  As we have already seen, the operational model allows
1192 W's value to be forwarded to R in such cases, meaning that R may well
1193 execute before W does.
1194
1195 It's important to understand that neither coe nor fre is included in
1196 hb, despite their similarities to rfe.  For example, suppose we have
1197 W ->coe W'.  This means that W and W' are stores to the same location,
1198 they execute on different CPUs, and W comes before W' in the coherence
1199 order (i.e., W' overwrites W).  Nevertheless, it is possible for W' to
1200 execute before W, because the decision as to which store overwrites
1201 the other is made later by the memory subsystem.  When the stores are
1202 nearly simultaneous, either one can come out on top.  Similarly,
1203 R ->fre W means that W overwrites the value which R reads, but it
1204 doesn't mean that W has to execute after R.  All that's necessary is
1205 for the memory subsystem not to propagate W to R's CPU until after R
1206 has executed, which is possible if W executes shortly before R.
1207
1208 The third relation included in hb is like ppo, in that it only links
1209 events that are on the same CPU.  However it is more difficult to
1210 explain, because it arises only indirectly from the requirement of
1211 cache coherence.  The relation is called prop, and it links two events
1212 on CPU C in situations where a store from some other CPU comes after
1213 the first event in the coherence order and propagates to C before the
1214 second event executes.
1215
1216 This is best explained with some examples.  The simplest case looks
1217 like this:
1218
1219         int x;
1220
1221         P0()
1222         {
1223                 int r1;
1224
1225                 WRITE_ONCE(x, 1);
1226                 r1 = READ_ONCE(x);
1227         }
1228
1229         P1()
1230         {
1231                 WRITE_ONCE(x, 8);
1232         }
1233
1234 If r1 = 8 at the end then P0's accesses must have executed in program
1235 order.  We can deduce this from the operational model; if P0's load
1236 had executed before its store then the value of the store would have
1237 been forwarded to the load, so r1 would have ended up equal to 1, not
1238 8.  In this case there is a prop link from P0's write event to its read
1239 event, because P1's store came after P0's store in x's coherence
1240 order, and P1's store propagated to P0 before P0's load executed.
1241
1242 An equally simple case involves two loads of the same location that
1243 read from different stores:
1244
1245         int x = 0;
1246
1247         P0()
1248         {
1249                 int r1, r2;
1250
1251                 r1 = READ_ONCE(x);
1252                 r2 = READ_ONCE(x);
1253         }
1254
1255         P1()
1256         {
1257                 WRITE_ONCE(x, 9);
1258         }
1259
1260 If r1 = 0 and r2 = 9 at the end then P0's accesses must have executed
1261 in program order.  If the second load had executed before the first
1262 then the x = 9 store must have been propagated to P0 before the first
1263 load executed, and so r1 would have been 9 rather than 0.  In this
1264 case there is a prop link from P0's first read event to its second,
1265 because P1's store overwrote the value read by P0's first load, and
1266 P1's store propagated to P0 before P0's second load executed.
1267
1268 Less trivial examples of prop all involve fences.  Unlike the simple
1269 examples above, they can require that some instructions are executed
1270 out of program order.  This next one should look familiar:
1271
1272         int buf = 0, flag = 0;
1273
1274         P0()
1275         {
1276                 WRITE_ONCE(buf, 1);
1277                 smp_wmb();
1278                 WRITE_ONCE(flag, 1);
1279         }
1280
1281         P1()
1282         {
1283                 int r1;
1284                 int r2;
1285
1286                 r1 = READ_ONCE(flag);
1287                 r2 = READ_ONCE(buf);
1288         }
1289
1290 This is the MP pattern again, with an smp_wmb() fence between the two
1291 stores.  If r1 = 1 and r2 = 0 at the end then there is a prop link
1292 from P1's second load to its first (backwards!).  The reason is
1293 similar to the previous examples: The value P1 loads from buf gets
1294 overwritten by P0's store to buf, the fence guarantees that the store
1295 to buf will propagate to P1 before the store to flag does, and the
1296 store to flag propagates to P1 before P1 reads flag.
1297
1298 The prop link says that in order to obtain the r1 = 1, r2 = 0 result,
1299 P1 must execute its second load before the first.  Indeed, if the load
1300 from flag were executed first, then the buf = 1 store would already
1301 have propagated to P1 by the time P1's load from buf executed, so r2
1302 would have been 1 at the end, not 0.  (The reasoning holds even for
1303 Alpha, although the details are more complicated and we will not go
1304 into them.)
1305
1306 But what if we put an smp_rmb() fence between P1's loads?  The fence
1307 would force the two loads to be executed in program order, and it
1308 would generate a cycle in the hb relation: The fence would create a ppo
1309 link (hence an hb link) from the first load to the second, and the
1310 prop relation would give an hb link from the second load to the first.
1311 Since an instruction can't execute before itself, we are forced to
1312 conclude that if an smp_rmb() fence is added, the r1 = 1, r2 = 0
1313 outcome is impossible -- as it should be.
1314
1315 The formal definition of the prop relation involves a coe or fre link,
1316 followed by an arbitrary number of cumul-fence links, ending with an
1317 rfe link.  You can concoct more exotic examples, containing more than
1318 one fence, although this quickly leads to diminishing returns in terms
1319 of complexity.  For instance, here's an example containing a coe link
1320 followed by two fences and an rfe link, utilizing the fact that
1321 release fences are A-cumulative:
1322
1323         int x, y, z;
1324
1325         P0()
1326         {
1327                 int r0;
1328
1329                 WRITE_ONCE(x, 1);
1330                 r0 = READ_ONCE(z);
1331         }
1332
1333         P1()
1334         {
1335                 WRITE_ONCE(x, 2);
1336                 smp_wmb();
1337                 WRITE_ONCE(y, 1);
1338         }
1339
1340         P2()
1341         {
1342                 int r2;
1343
1344                 r2 = READ_ONCE(y);
1345                 smp_store_release(&z, 1);
1346         }
1347
1348 If x = 2, r0 = 1, and r2 = 1 after this code runs then there is a prop
1349 link from P0's store to its load.  This is because P0's store gets
1350 overwritten by P1's store since x = 2 at the end (a coe link), the
1351 smp_wmb() ensures that P1's store to x propagates to P2 before the
1352 store to y does (the first fence), the store to y propagates to P2
1353 before P2's load and store execute, P2's smp_store_release()
1354 guarantees that the stores to x and y both propagate to P0 before the
1355 store to z does (the second fence), and P0's load executes after the
1356 store to z has propagated to P0 (an rfe link).
1357
1358 In summary, the fact that the hb relation links memory access events
1359 in the order they execute means that it must not have cycles.  This
1360 requirement is the content of the LKMM's "happens-before" axiom.
1361
1362 The LKMM defines yet another relation connected to times of
1363 instruction execution, but it is not included in hb.  It relies on the
1364 particular properties of strong fences, which we cover in the next
1365 section.
1366
1367
1368 THE PROPAGATES-BEFORE RELATION: pb
1369 ----------------------------------
1370
1371 The propagates-before (pb) relation capitalizes on the special
1372 features of strong fences.  It links two events E and F whenever some
1373 store is coherence-later than E and propagates to every CPU and to RAM
1374 before F executes.  The formal definition requires that E be linked to
1375 F via a coe or fre link, an arbitrary number of cumul-fences, an
1376 optional rfe link, a strong fence, and an arbitrary number of hb
1377 links.  Let's see how this definition works out.
1378
1379 Consider first the case where E is a store (implying that the sequence
1380 of links begins with coe).  Then there are events W, X, Y, and Z such
1381 that:
1382
1383         E ->coe W ->cumul-fence* X ->rfe? Y ->strong-fence Z ->hb* F,
1384
1385 where the * suffix indicates an arbitrary number of links of the
1386 specified type, and the ? suffix indicates the link is optional (Y may
1387 be equal to X).  Because of the cumul-fence links, we know that W will
1388 propagate to Y's CPU before X does, hence before Y executes and hence
1389 before the strong fence executes.  Because this fence is strong, we
1390 know that W will propagate to every CPU and to RAM before Z executes.
1391 And because of the hb links, we know that Z will execute before F.
1392 Thus W, which comes later than E in the coherence order, will
1393 propagate to every CPU and to RAM before F executes.
1394
1395 The case where E is a load is exactly the same, except that the first
1396 link in the sequence is fre instead of coe.
1397
1398 The existence of a pb link from E to F implies that E must execute
1399 before F.  To see why, suppose that F executed first.  Then W would
1400 have propagated to E's CPU before E executed.  If E was a store, the
1401 memory subsystem would then be forced to make E come after W in the
1402 coherence order, contradicting the fact that E ->coe W.  If E was a
1403 load, the memory subsystem would then be forced to satisfy E's read
1404 request with the value stored by W or an even later store,
1405 contradicting the fact that E ->fre W.
1406
1407 A good example illustrating how pb works is the SB pattern with strong
1408 fences:
1409
1410         int x = 0, y = 0;
1411
1412         P0()
1413         {
1414                 int r0;
1415
1416                 WRITE_ONCE(x, 1);
1417                 smp_mb();
1418                 r0 = READ_ONCE(y);
1419         }
1420
1421         P1()
1422         {
1423                 int r1;
1424
1425                 WRITE_ONCE(y, 1);
1426                 smp_mb();
1427                 r1 = READ_ONCE(x);
1428         }
1429
1430 If r0 = 0 at the end then there is a pb link from P0's load to P1's
1431 load: an fre link from P0's load to P1's store (which overwrites the
1432 value read by P0), and a strong fence between P1's store and its load.
1433 In this example, the sequences of cumul-fence and hb links are empty.
1434 Note that this pb link is not included in hb as an instance of prop,
1435 because it does not start and end on the same CPU.
1436
1437 Similarly, if r1 = 0 at the end then there is a pb link from P1's load
1438 to P0's.  This means that if both r1 and r2 were 0 there would be a
1439 cycle in pb, which is not possible since an instruction cannot execute
1440 before itself.  Thus, adding smp_mb() fences to the SB pattern
1441 prevents the r0 = 0, r1 = 0 outcome.
1442
1443 In summary, the fact that the pb relation links events in the order
1444 they execute means that it cannot have cycles.  This requirement is
1445 the content of the LKMM's "propagation" axiom.
1446
1447
1448 RCU RELATIONS: link, gp-link, rscs-link, and rcu-path
1449 -----------------------------------------------------
1450
1451 RCU (Read-Copy-Update) is a powerful synchronization mechanism.  It
1452 rests on two concepts: grace periods and read-side critical sections.
1453
1454 A grace period is the span of time occupied by a call to
1455 synchronize_rcu().  A read-side critical section (or just critical
1456 section, for short) is a region of code delimited by rcu_read_lock()
1457 at the start and rcu_read_unlock() at the end.  Critical sections can
1458 be nested, although we won't make use of this fact.
1459
1460 As far as memory models are concerned, RCU's main feature is its
1461 Grace-Period Guarantee, which states that a critical section can never
1462 span a full grace period.  In more detail, the Guarantee says:
1463
1464         If a critical section starts before a grace period then it
1465         must end before the grace period does.  In addition, every
1466         store that propagates to the critical section's CPU before the
1467         end of the critical section must propagate to every CPU before
1468         the end of the grace period.
1469
1470         If a critical section ends after a grace period ends then it
1471         must start after the grace period does.  In addition, every
1472         store that propagates to the grace period's CPU before the
1473         start of the grace period must propagate to every CPU before
1474         the start of the critical section.
1475
1476 Here is a simple example of RCU in action:
1477
1478         int x, y;
1479
1480         P0()
1481         {
1482                 rcu_read_lock();
1483                 WRITE_ONCE(x, 1);
1484                 WRITE_ONCE(y, 1);
1485                 rcu_read_unlock();
1486         }
1487
1488         P1()
1489         {
1490                 int r1, r2;
1491
1492                 r1 = READ_ONCE(x);
1493                 synchronize_rcu();
1494                 r2 = READ_ONCE(y);
1495         }
1496
1497 The Grace Period Guarantee tells us that when this code runs, it will
1498 never end with r1 = 1 and r2 = 0.  The reasoning is as follows.  r1 = 1
1499 means that P0's store to x propagated to P1 before P1 called
1500 synchronize_rcu(), so P0's critical section must have started before
1501 P1's grace period.  On the other hand, r2 = 0 means that P0's store to
1502 y, which occurs before the end of the critical section, did not
1503 propagate to P1 before the end of the grace period, violating the
1504 Guarantee.
1505
1506 In the kernel's implementations of RCU, the business about stores
1507 propagating to every CPU is realized by placing strong fences at
1508 suitable places in the RCU-related code.  Thus, if a critical section
1509 starts before a grace period does then the critical section's CPU will
1510 execute an smp_mb() fence after the end of the critical section and
1511 some time before the grace period's synchronize_rcu() call returns.
1512 And if a critical section ends after a grace period does then the
1513 synchronize_rcu() routine will execute an smp_mb() fence at its start
1514 and some time before the critical section's opening rcu_read_lock()
1515 executes.
1516
1517 What exactly do we mean by saying that a critical section "starts
1518 before" or "ends after" a grace period?  Some aspects of the meaning
1519 are pretty obvious, as in the example above, but the details aren't
1520 entirely clear.  The LKMM formalizes this notion by means of a
1521 relation with the unfortunately generic name "link".  It is a very
1522 general relation; among other things, X ->link Z includes cases where
1523 X happens-before or is equal to some event Y which is equal to or
1524 comes before Z in the coherence order.  Taking Y = Z, this says that
1525 X ->rfe Z implies X ->link Z, and taking Y = X, it says that X ->fr Z
1526 and X ->co Z each imply X ->link Z.
1527
1528 The formal definition of the link relation is more than a little
1529 obscure, and we won't give it here.  It is closely related to the pb
1530 relation, and the details don't matter unless you want to comb through
1531 a somewhat lengthy formal proof.  Pretty much all you need to know
1532 about link is the information in the preceding paragraph.
1533
1534 The LKMM goes on to define the gp-link and rscs-link relations.  They
1535 bring grace periods and read-side critical sections into the picture,
1536 in the following way:
1537
1538         E ->gp-link F means there is a synchronize_rcu() fence event S
1539         and an event X such that E ->po S, either S ->po X or S = X,
1540         and X ->link F.  In other words, E and F are connected by a
1541         grace period followed by an instance of link.
1542
1543         E ->rscs-link F means there is a critical section delimited by
1544         an rcu_read_lock() fence L and an rcu_read_unlock() fence U,
1545         and an event X such that E ->po U, either L ->po X or L = X,
1546         and X ->link F.  Roughly speaking, this says that some event
1547         in the same critical section as E is connected by link to F.
1548
1549 If we think of the link relation as standing for an extended "before",
1550 then E ->gp-link F says that E executes before a grace period which
1551 ends before F executes.  (In fact it says more than this, because it
1552 includes cases where E executes before a grace period and some store
1553 propagates to F's CPU before F executes and doesn't propagate to some
1554 other CPU until after the grace period ends.)  Similarly,
1555 E ->rscs-link F says that E is part of (or before the start of) a
1556 critical section which starts before F executes.
1557
1558 Putting this all together, the LKMM expresses the Grace Period
1559 Guarantee by requiring that there are no cycles consisting of gp-link
1560 and rscs-link connections in which the number of gp-link instances is
1561 >= the number of rscs-link instances.  It does this by defining the
1562 rcu-path relation to link events E and F whenever it is possible to
1563 pass from E to F by a sequence of gp-link and rscs-link connections
1564 with at least as many of the former as the latter.  The LKMM's "rcu"
1565 axiom then says that there are no events E such that E ->rcu-path E.
1566
1567 Justifying this axiom takes some intellectual effort, but it is in
1568 fact a valid formalization of the Grace Period Guarantee.  We won't
1569 attempt to go through the detailed argument, but the following
1570 analysis gives a taste of what is involved.  Suppose we have a
1571 violation of the first part of the Guarantee: A critical section
1572 starts before a grace period, and some store propagates to the
1573 critical section's CPU before the end of the critical section but
1574 doesn't propagate to some other CPU until after the end of the grace
1575 period.
1576
1577 Putting symbols to these ideas, let L and U be the rcu_read_lock() and
1578 rcu_read_unlock() fence events delimiting the critical section in
1579 question, and let S be the synchronize_rcu() fence event for the grace
1580 period.  Saying that the critical section starts before S means there
1581 are events E and F where E is po-after L (which marks the start of the
1582 critical section), E is "before" F in the sense of the link relation,
1583 and F is po-before the grace period S:
1584
1585         L ->po E ->link F ->po S.
1586
1587 Let W be the store mentioned above, let Z come before the end of the
1588 critical section and witness that W propagates to the critical
1589 section's CPU by reading from W, and let Y on some arbitrary CPU be a
1590 witness that W has not propagated to that CPU, where Y happens after
1591 some event X which is po-after S.  Symbolically, this amounts to:
1592
1593         S ->po X ->hb* Y ->fr W ->rf Z ->po U.
1594
1595 The fr link from Y to W indicates that W has not propagated to Y's CPU
1596 at the time that Y executes.  From this, it can be shown (see the
1597 discussion of the link relation earlier) that X and Z are connected by
1598 link, yielding:
1599
1600         S ->po X ->link Z ->po U.
1601
1602 These formulas say that S is po-between F and X, hence F ->gp-link Z
1603 via X.  They also say that Z comes before the end of the critical
1604 section and E comes after its start, hence Z ->rscs-link F via E.  But
1605 now we have a forbidden cycle: F ->gp-link Z ->rscs-link F.  Thus the
1606 "rcu" axiom rules out this violation of the Grace Period Guarantee.
1607
1608 For something a little more down-to-earth, let's see how the axiom
1609 works out in practice.  Consider the RCU code example from above, this
1610 time with statement labels added to the memory access instructions:
1611
1612         int x, y;
1613
1614         P0()
1615         {
1616                 rcu_read_lock();
1617                 W: WRITE_ONCE(x, 1);
1618                 X: WRITE_ONCE(y, 1);
1619                 rcu_read_unlock();
1620         }
1621
1622         P1()
1623         {
1624                 int r1, r2;
1625
1626                 Y: r1 = READ_ONCE(x);
1627                 synchronize_rcu();
1628                 Z: r2 = READ_ONCE(y);
1629         }
1630
1631
1632 If r2 = 0 at the end then P0's store at X overwrites the value
1633 that P1's load at Z reads from, so we have Z ->fre X and thus
1634 Z ->link X.  In addition, there is a synchronize_rcu() between Y and
1635 Z, so therefore we have Y ->gp-link X.
1636
1637 If r1 = 1 at the end then P1's load at Y reads from P0's store at W,
1638 so we have W ->link Y.  In addition, W and X are in the same critical
1639 section, so therefore we have X ->rscs-link Y.
1640
1641 This gives us a cycle, Y ->gp-link X ->rscs-link Y, with one gp-link
1642 and one rscs-link, violating the "rcu" axiom.  Hence the outcome is
1643 not allowed by the LKMM, as we would expect.
1644
1645 For contrast, let's see what can happen in a more complicated example:
1646
1647         int x, y, z;
1648
1649         P0()
1650         {
1651                 int r0;
1652
1653                 rcu_read_lock();
1654                 W: r0 = READ_ONCE(x);
1655                 X: WRITE_ONCE(y, 1);
1656                 rcu_read_unlock();
1657         }
1658
1659         P1()
1660         {
1661                 int r1;
1662
1663                 Y: r1 = READ_ONCE(y);
1664                 synchronize_rcu();
1665                 Z: WRITE_ONCE(z, 1);
1666         }
1667
1668         P2()
1669         {
1670                 int r2;
1671
1672                 rcu_read_lock();
1673                 U: r2 = READ_ONCE(z);
1674                 V: WRITE_ONCE(x, 1);
1675                 rcu_read_unlock();
1676         }
1677
1678 If r0 = r1 = r2 = 1 at the end, then similar reasoning to before shows
1679 that W ->rscs-link Y via X, Y ->gp-link U via Z, and U ->rscs-link W
1680 via V.  And just as before, this gives a cycle:
1681
1682         W ->rscs-link Y ->gp-link U ->rscs-link W.
1683
1684 However, this cycle has fewer gp-link instances than rscs-link
1685 instances, and consequently the outcome is not forbidden by the LKMM.
1686 The following instruction timing diagram shows how it might actually
1687 occur:
1688
1689 P0                      P1                      P2
1690 --------------------    --------------------    --------------------
1691 rcu_read_lock()
1692 X: WRITE_ONCE(y, 1)
1693                         Y: r1 = READ_ONCE(y)
1694                         synchronize_rcu() starts
1695                         .                       rcu_read_lock()
1696                         .                       V: WRITE_ONCE(x, 1)
1697 W: r0 = READ_ONCE(x)    .
1698 rcu_read_unlock()       .
1699                         synchronize_rcu() ends
1700                         Z: WRITE_ONCE(z, 1)
1701                                                 U: r2 = READ_ONCE(z)
1702                                                 rcu_read_unlock()
1703
1704 This requires P0 and P2 to execute their loads and stores out of
1705 program order, but of course they are allowed to do so.  And as you
1706 can see, the Grace Period Guarantee is not violated: The critical
1707 section in P0 both starts before P1's grace period does and ends
1708 before it does, and the critical section in P2 both starts after P1's
1709 grace period does and ends after it does.
1710
1711
1712 ODDS AND ENDS
1713 -------------
1714
1715 This section covers material that didn't quite fit anywhere in the
1716 earlier sections.
1717
1718 The descriptions in this document don't always match the formal
1719 version of the LKMM exactly.  For example, the actual formal
1720 definition of the prop relation makes the initial coe or fre part
1721 optional, and it doesn't require the events linked by the relation to
1722 be on the same CPU.  These differences are very unimportant; indeed,
1723 instances where the coe/fre part of prop is missing are of no interest
1724 because all the other parts (fences and rfe) are already included in
1725 hb anyway, and where the formal model adds prop into hb, it includes
1726 an explicit requirement that the events being linked are on the same
1727 CPU.
1728
1729 Another minor difference has to do with events that are both memory
1730 accesses and fences, such as those corresponding to smp_load_acquire()
1731 calls.  In the formal model, these events aren't actually both reads
1732 and fences; rather, they are read events with an annotation marking
1733 them as acquires.  (Or write events annotated as releases, in the case
1734 smp_store_release().)  The final effect is the same.
1735
1736 Although we didn't mention it above, the instruction execution
1737 ordering provided by the smp_rmb() fence doesn't apply to read events
1738 that are part of a non-value-returning atomic update.  For instance,
1739 given:
1740
1741         atomic_inc(&x);
1742         smp_rmb();
1743         r1 = READ_ONCE(y);
1744
1745 it is not guaranteed that the load from y will execute after the
1746 update to x.  This is because the ARMv8 architecture allows
1747 non-value-returning atomic operations effectively to be executed off
1748 the CPU.  Basically, the CPU tells the memory subsystem to increment
1749 x, and then the increment is carried out by the memory hardware with
1750 no further involvement from the CPU.  Since the CPU doesn't ever read
1751 the value of x, there is nothing for the smp_rmb() fence to act on.
1752
1753 The LKMM defines a few extra synchronization operations in terms of
1754 things we have already covered.  In particular, rcu_dereference() and
1755 lockless_dereference() are both treated as a READ_ONCE() followed by
1756 smp_read_barrier_depends() -- which also happens to be how they are
1757 defined in include/linux/rcupdate.h and include/linux/compiler.h,
1758 respectively.
1759
1760 There are a few oddball fences which need special treatment:
1761 smp_mb__before_atomic(), smp_mb__after_atomic(), and
1762 smp_mb__after_spinlock().  The LKMM uses fence events with special
1763 annotations for them; they act as strong fences just like smp_mb()
1764 except for the sets of events that they order.  Instead of ordering
1765 all po-earlier events against all po-later events, as smp_mb() does,
1766 they behave as follows:
1767
1768         smp_mb__before_atomic() orders all po-earlier events against
1769         po-later atomic updates and the events following them;
1770
1771         smp_mb__after_atomic() orders po-earlier atomic updates and
1772         the events preceding them against all po-later events;
1773
1774         smp_mb_after_spinlock() orders po-earlier lock acquisition
1775         events and the events preceding them against all po-later
1776         events.
1777
1778 The LKMM includes locking.  In fact, there is special code for locking
1779 in the formal model, added in order to make tools run faster.
1780 However, this special code is intended to be exactly equivalent to
1781 concepts we have already covered.  A spinlock_t variable is treated
1782 the same as an int, and spin_lock(&s) is treated the same as:
1783
1784         while (cmpxchg_acquire(&s, 0, 1) != 0)
1785                 cpu_relax();
1786
1787 which waits until s is equal to 0 and then atomically sets it to 1,
1788 and where the read part of the atomic update is also an acquire fence.
1789 An alternate way to express the same thing would be:
1790
1791         r = xchg_acquire(&s, 1);
1792
1793 along with a requirement that at the end, r = 0.  spin_unlock(&s) is
1794 treated the same as:
1795
1796         smp_store_release(&s, 0);
1797
1798 Interestingly, RCU and locking each introduce the possibility of
1799 deadlock.  When faced with code sequences such as:
1800
1801         spin_lock(&s);
1802         spin_lock(&s);
1803         spin_unlock(&s);
1804         spin_unlock(&s);
1805
1806 or:
1807
1808         rcu_read_lock();
1809         synchronize_rcu();
1810         rcu_read_unlock();
1811
1812 what does the LKMM have to say?  Answer: It says there are no allowed
1813 executions at all, which makes sense.  But this can also lead to
1814 misleading results, because if a piece of code has multiple possible
1815 executions, some of which deadlock, the model will report only on the
1816 non-deadlocking executions.  For example:
1817
1818         int x, y;
1819
1820         P0()
1821         {
1822                 int r0;
1823
1824                 WRITE_ONCE(x, 1);
1825                 r0 = READ_ONCE(y);
1826         }
1827
1828         P1()
1829         {
1830                 rcu_read_lock();
1831                 if (READ_ONCE(x) > 0) {
1832                         WRITE_ONCE(y, 36);
1833                         synchronize_rcu();
1834                 }
1835                 rcu_read_unlock();
1836         }
1837
1838 Is it possible to end up with r0 = 36 at the end?  The LKMM will tell
1839 you it is not, but the model won't mention that this is because P1
1840 will self-deadlock in the executions where it stores 36 in y.