]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/memory-model/Documentation/explanation.txt
Merge tag 'usb-5.5-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
[linux.git] / tools / memory-model / Documentation / explanation.txt
1 Explanation of the Linux-Kernel Memory Consistency Model
2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
3
4 :Author: Alan Stern <stern@rowland.harvard.edu>
5 :Created: October 2017
6
7 .. Contents
8
9   1. INTRODUCTION
10   2. BACKGROUND
11   3. A SIMPLE EXAMPLE
12   4. A SELECTION OF MEMORY MODELS
13   5. ORDERING AND CYCLES
14   6. EVENTS
15   7. THE PROGRAM ORDER RELATION: po AND po-loc
16   8. A WARNING
17   9. DEPENDENCY RELATIONS: data, addr, and ctrl
18   10. THE READS-FROM RELATION: rf, rfi, and rfe
19   11. CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
20   12. THE FROM-READS RELATION: fr, fri, and fre
21   13. AN OPERATIONAL MODEL
22   14. PROPAGATION ORDER RELATION: cumul-fence
23   15. DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
24   16. SEQUENTIAL CONSISTENCY PER VARIABLE
25   17. ATOMIC UPDATES: rmw
26   18. THE PRESERVED PROGRAM ORDER RELATION: ppo
27   19. AND THEN THERE WAS ALPHA
28   20. THE HAPPENS-BEFORE RELATION: hb
29   21. THE PROPAGATES-BEFORE RELATION: pb
30   22. RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-order, rcu-fence, and rb
31   23. LOCKING
32   24. PLAIN ACCESSES AND DATA RACES
33   25. ODDS AND ENDS
34
35
36
37 INTRODUCTION
38 ------------
39
40 The Linux-kernel memory consistency model (LKMM) is rather complex and
41 obscure.  This is particularly evident if you read through the
42 linux-kernel.bell and linux-kernel.cat files that make up the formal
43 version of the model; they are extremely terse and their meanings are
44 far from clear.
45
46 This document describes the ideas underlying the LKMM.  It is meant
47 for people who want to understand how the model was designed.  It does
48 not go into the details of the code in the .bell and .cat files;
49 rather, it explains in English what the code expresses symbolically.
50
51 Sections 2 (BACKGROUND) through 5 (ORDERING AND CYCLES) are aimed
52 toward beginners; they explain what memory consistency models are and
53 the basic notions shared by all such models.  People already familiar
54 with these concepts can skim or skip over them.  Sections 6 (EVENTS)
55 through 12 (THE FROM_READS RELATION) describe the fundamental
56 relations used in many models.  Starting in Section 13 (AN OPERATIONAL
57 MODEL), the workings of the LKMM itself are covered.
58
59 Warning: The code examples in this document are not written in the
60 proper format for litmus tests.  They don't include a header line, the
61 initializations are not enclosed in braces, the global variables are
62 not passed by pointers, and they don't have an "exists" clause at the
63 end.  Converting them to the right format is left as an exercise for
64 the reader.
65
66
67 BACKGROUND
68 ----------
69
70 A memory consistency model (or just memory model, for short) is
71 something which predicts, given a piece of computer code running on a
72 particular kind of system, what values may be obtained by the code's
73 load instructions.  The LKMM makes these predictions for code running
74 as part of the Linux kernel.
75
76 In practice, people tend to use memory models the other way around.
77 That is, given a piece of code and a collection of values specified
78 for the loads, the model will predict whether it is possible for the
79 code to run in such a way that the loads will indeed obtain the
80 specified values.  Of course, this is just another way of expressing
81 the same idea.
82
83 For code running on a uniprocessor system, the predictions are easy:
84 Each load instruction must obtain the value written by the most recent
85 store instruction accessing the same location (we ignore complicating
86 factors such as DMA and mixed-size accesses.)  But on multiprocessor
87 systems, with multiple CPUs making concurrent accesses to shared
88 memory locations, things aren't so simple.
89
90 Different architectures have differing memory models, and the Linux
91 kernel supports a variety of architectures.  The LKMM has to be fairly
92 permissive, in the sense that any behavior allowed by one of these
93 architectures also has to be allowed by the LKMM.
94
95
96 A SIMPLE EXAMPLE
97 ----------------
98
99 Here is a simple example to illustrate the basic concepts.  Consider
100 some code running as part of a device driver for an input device.  The
101 driver might contain an interrupt handler which collects data from the
102 device, stores it in a buffer, and sets a flag to indicate the buffer
103 is full.  Running concurrently on a different CPU might be a part of
104 the driver code being executed by a process in the midst of a read(2)
105 system call.  This code tests the flag to see whether the buffer is
106 ready, and if it is, copies the data back to userspace.  The buffer
107 and the flag are memory locations shared between the two CPUs.
108
109 We can abstract out the important pieces of the driver code as follows
110 (the reason for using WRITE_ONCE() and READ_ONCE() instead of simple
111 assignment statements is discussed later):
112
113         int buf = 0, flag = 0;
114
115         P0()
116         {
117                 WRITE_ONCE(buf, 1);
118                 WRITE_ONCE(flag, 1);
119         }
120
121         P1()
122         {
123                 int r1;
124                 int r2 = 0;
125
126                 r1 = READ_ONCE(flag);
127                 if (r1)
128                         r2 = READ_ONCE(buf);
129         }
130
131 Here the P0() function represents the interrupt handler running on one
132 CPU and P1() represents the read() routine running on another.  The
133 value 1 stored in buf represents input data collected from the device.
134 Thus, P0 stores the data in buf and then sets flag.  Meanwhile, P1
135 reads flag into the private variable r1, and if it is set, reads the
136 data from buf into a second private variable r2 for copying to
137 userspace.  (Presumably if flag is not set then the driver will wait a
138 while and try again.)
139
140 This pattern of memory accesses, where one CPU stores values to two
141 shared memory locations and another CPU loads from those locations in
142 the opposite order, is widely known as the "Message Passing" or MP
143 pattern.  It is typical of memory access patterns in the kernel.
144
145 Please note that this example code is a simplified abstraction.  Real
146 buffers are usually larger than a single integer, real device drivers
147 usually use sleep and wakeup mechanisms rather than polling for I/O
148 completion, and real code generally doesn't bother to copy values into
149 private variables before using them.  All that is beside the point;
150 the idea here is simply to illustrate the overall pattern of memory
151 accesses by the CPUs.
152
153 A memory model will predict what values P1 might obtain for its loads
154 from flag and buf, or equivalently, what values r1 and r2 might end up
155 with after the code has finished running.
156
157 Some predictions are trivial.  For instance, no sane memory model would
158 predict that r1 = 42 or r2 = -7, because neither of those values ever
159 gets stored in flag or buf.
160
161 Some nontrivial predictions are nonetheless quite simple.  For
162 instance, P1 might run entirely before P0 begins, in which case r1 and
163 r2 will both be 0 at the end.  Or P0 might run entirely before P1
164 begins, in which case r1 and r2 will both be 1.
165
166 The interesting predictions concern what might happen when the two
167 routines run concurrently.  One possibility is that P1 runs after P0's
168 store to buf but before the store to flag.  In this case, r1 and r2
169 will again both be 0.  (If P1 had been designed to read buf
170 unconditionally then we would instead have r1 = 0 and r2 = 1.)
171
172 However, the most interesting possibility is where r1 = 1 and r2 = 0.
173 If this were to occur it would mean the driver contains a bug, because
174 incorrect data would get sent to the user: 0 instead of 1.  As it
175 happens, the LKMM does predict this outcome can occur, and the example
176 driver code shown above is indeed buggy.
177
178
179 A SELECTION OF MEMORY MODELS
180 ----------------------------
181
182 The first widely cited memory model, and the simplest to understand,
183 is Sequential Consistency.  According to this model, systems behave as
184 if each CPU executed its instructions in order but with unspecified
185 timing.  In other words, the instructions from the various CPUs get
186 interleaved in a nondeterministic way, always according to some single
187 global order that agrees with the order of the instructions in the
188 program source for each CPU.  The model says that the value obtained
189 by each load is simply the value written by the most recently executed
190 store to the same memory location, from any CPU.
191
192 For the MP example code shown above, Sequential Consistency predicts
193 that the undesired result r1 = 1, r2 = 0 cannot occur.  The reasoning
194 goes like this:
195
196         Since r1 = 1, P0 must store 1 to flag before P1 loads 1 from
197         it, as loads can obtain values only from earlier stores.
198
199         P1 loads from flag before loading from buf, since CPUs execute
200         their instructions in order.
201
202         P1 must load 0 from buf before P0 stores 1 to it; otherwise r2
203         would be 1 since a load obtains its value from the most recent
204         store to the same address.
205
206         P0 stores 1 to buf before storing 1 to flag, since it executes
207         its instructions in order.
208
209         Since an instruction (in this case, P0's store to flag) cannot
210         execute before itself, the specified outcome is impossible.
211
212 However, real computer hardware almost never follows the Sequential
213 Consistency memory model; doing so would rule out too many valuable
214 performance optimizations.  On ARM and PowerPC architectures, for
215 instance, the MP example code really does sometimes yield r1 = 1 and
216 r2 = 0.
217
218 x86 and SPARC follow yet a different memory model: TSO (Total Store
219 Ordering).  This model predicts that the undesired outcome for the MP
220 pattern cannot occur, but in other respects it differs from Sequential
221 Consistency.  One example is the Store Buffer (SB) pattern, in which
222 each CPU stores to its own shared location and then loads from the
223 other CPU's location:
224
225         int x = 0, y = 0;
226
227         P0()
228         {
229                 int r0;
230
231                 WRITE_ONCE(x, 1);
232                 r0 = READ_ONCE(y);
233         }
234
235         P1()
236         {
237                 int r1;
238
239                 WRITE_ONCE(y, 1);
240                 r1 = READ_ONCE(x);
241         }
242
243 Sequential Consistency predicts that the outcome r0 = 0, r1 = 0 is
244 impossible.  (Exercise: Figure out the reasoning.)  But TSO allows
245 this outcome to occur, and in fact it does sometimes occur on x86 and
246 SPARC systems.
247
248 The LKMM was inspired by the memory models followed by PowerPC, ARM,
249 x86, Alpha, and other architectures.  However, it is different in
250 detail from each of them.
251
252
253 ORDERING AND CYCLES
254 -------------------
255
256 Memory models are all about ordering.  Often this is temporal ordering
257 (i.e., the order in which certain events occur) but it doesn't have to
258 be; consider for example the order of instructions in a program's
259 source code.  We saw above that Sequential Consistency makes an
260 important assumption that CPUs execute instructions in the same order
261 as those instructions occur in the code, and there are many other
262 instances of ordering playing central roles in memory models.
263
264 The counterpart to ordering is a cycle.  Ordering rules out cycles:
265 It's not possible to have X ordered before Y, Y ordered before Z, and
266 Z ordered before X, because this would mean that X is ordered before
267 itself.  The analysis of the MP example under Sequential Consistency
268 involved just such an impossible cycle:
269
270         W: P0 stores 1 to flag   executes before
271         X: P1 loads 1 from flag  executes before
272         Y: P1 loads 0 from buf   executes before
273         Z: P0 stores 1 to buf    executes before
274         W: P0 stores 1 to flag.
275
276 In short, if a memory model requires certain accesses to be ordered,
277 and a certain outcome for the loads in a piece of code can happen only
278 if those accesses would form a cycle, then the memory model predicts
279 that outcome cannot occur.
280
281 The LKMM is defined largely in terms of cycles, as we will see.
282
283
284 EVENTS
285 ------
286
287 The LKMM does not work directly with the C statements that make up
288 kernel source code.  Instead it considers the effects of those
289 statements in a more abstract form, namely, events.  The model
290 includes three types of events:
291
292         Read events correspond to loads from shared memory, such as
293         calls to READ_ONCE(), smp_load_acquire(), or
294         rcu_dereference().
295
296         Write events correspond to stores to shared memory, such as
297         calls to WRITE_ONCE(), smp_store_release(), or atomic_set().
298
299         Fence events correspond to memory barriers (also known as
300         fences), such as calls to smp_rmb() or rcu_read_lock().
301
302 These categories are not exclusive; a read or write event can also be
303 a fence.  This happens with functions like smp_load_acquire() or
304 spin_lock().  However, no single event can be both a read and a write.
305 Atomic read-modify-write accesses, such as atomic_inc() or xchg(),
306 correspond to a pair of events: a read followed by a write.  (The
307 write event is omitted for executions where it doesn't occur, such as
308 a cmpxchg() where the comparison fails.)
309
310 Other parts of the code, those which do not involve interaction with
311 shared memory, do not give rise to events.  Thus, arithmetic and
312 logical computations, control-flow instructions, or accesses to
313 private memory or CPU registers are not of central interest to the
314 memory model.  They only affect the model's predictions indirectly.
315 For example, an arithmetic computation might determine the value that
316 gets stored to a shared memory location (or in the case of an array
317 index, the address where the value gets stored), but the memory model
318 is concerned only with the store itself -- its value and its address
319 -- not the computation leading up to it.
320
321 Events in the LKMM can be linked by various relations, which we will
322 describe in the following sections.  The memory model requires certain
323 of these relations to be orderings, that is, it requires them not to
324 have any cycles.
325
326
327 THE PROGRAM ORDER RELATION: po AND po-loc
328 -----------------------------------------
329
330 The most important relation between events is program order (po).  You
331 can think of it as the order in which statements occur in the source
332 code after branches are taken into account and loops have been
333 unrolled.  A better description might be the order in which
334 instructions are presented to a CPU's execution unit.  Thus, we say
335 that X is po-before Y (written as "X ->po Y" in formulas) if X occurs
336 before Y in the instruction stream.
337
338 This is inherently a single-CPU relation; two instructions executing
339 on different CPUs are never linked by po.  Also, it is by definition
340 an ordering so it cannot have any cycles.
341
342 po-loc is a sub-relation of po.  It links two memory accesses when the
343 first comes before the second in program order and they access the
344 same memory location (the "-loc" suffix).
345
346 Although this may seem straightforward, there is one subtle aspect to
347 program order we need to explain.  The LKMM was inspired by low-level
348 architectural memory models which describe the behavior of machine
349 code, and it retains their outlook to a considerable extent.  The
350 read, write, and fence events used by the model are close in spirit to
351 individual machine instructions.  Nevertheless, the LKMM describes
352 kernel code written in C, and the mapping from C to machine code can
353 be extremely complex.
354
355 Optimizing compilers have great freedom in the way they translate
356 source code to object code.  They are allowed to apply transformations
357 that add memory accesses, eliminate accesses, combine them, split them
358 into pieces, or move them around.  The use of READ_ONCE(), WRITE_ONCE(),
359 or one of the other atomic or synchronization primitives prevents a
360 large number of compiler optimizations.  In particular, it is guaranteed
361 that the compiler will not remove such accesses from the generated code
362 (unless it can prove the accesses will never be executed), it will not
363 change the order in which they occur in the code (within limits imposed
364 by the C standard), and it will not introduce extraneous accesses.
365
366 The MP and SB examples above used READ_ONCE() and WRITE_ONCE() rather
367 than ordinary memory accesses.  Thanks to this usage, we can be certain
368 that in the MP example, the compiler won't reorder P0's write event to
369 buf and P0's write event to flag, and similarly for the other shared
370 memory accesses in the examples.
371
372 Since private variables are not shared between CPUs, they can be
373 accessed normally without READ_ONCE() or WRITE_ONCE().  In fact, they
374 need not even be stored in normal memory at all -- in principle a
375 private variable could be stored in a CPU register (hence the convention
376 that these variables have names starting with the letter 'r').
377
378
379 A WARNING
380 ---------
381
382 The protections provided by READ_ONCE(), WRITE_ONCE(), and others are
383 not perfect; and under some circumstances it is possible for the
384 compiler to undermine the memory model.  Here is an example.  Suppose
385 both branches of an "if" statement store the same value to the same
386 location:
387
388         r1 = READ_ONCE(x);
389         if (r1) {
390                 WRITE_ONCE(y, 2);
391                 ...  /* do something */
392         } else {
393                 WRITE_ONCE(y, 2);
394                 ...  /* do something else */
395         }
396
397 For this code, the LKMM predicts that the load from x will always be
398 executed before either of the stores to y.  However, a compiler could
399 lift the stores out of the conditional, transforming the code into
400 something resembling:
401
402         r1 = READ_ONCE(x);
403         WRITE_ONCE(y, 2);
404         if (r1) {
405                 ...  /* do something */
406         } else {
407                 ...  /* do something else */
408         }
409
410 Given this version of the code, the LKMM would predict that the load
411 from x could be executed after the store to y.  Thus, the memory
412 model's original prediction could be invalidated by the compiler.
413
414 Another issue arises from the fact that in C, arguments to many
415 operators and function calls can be evaluated in any order.  For
416 example:
417
418         r1 = f(5) + g(6);
419
420 The object code might call f(5) either before or after g(6); the
421 memory model cannot assume there is a fixed program order relation
422 between them.  (In fact, if the function calls are inlined then the
423 compiler might even interleave their object code.)
424
425
426 DEPENDENCY RELATIONS: data, addr, and ctrl
427 ------------------------------------------
428
429 We say that two events are linked by a dependency relation when the
430 execution of the second event depends in some way on a value obtained
431 from memory by the first.  The first event must be a read, and the
432 value it obtains must somehow affect what the second event does.
433 There are three kinds of dependencies: data, address (addr), and
434 control (ctrl).
435
436 A read and a write event are linked by a data dependency if the value
437 obtained by the read affects the value stored by the write.  As a very
438 simple example:
439
440         int x, y;
441
442         r1 = READ_ONCE(x);
443         WRITE_ONCE(y, r1 + 5);
444
445 The value stored by the WRITE_ONCE obviously depends on the value
446 loaded by the READ_ONCE.  Such dependencies can wind through
447 arbitrarily complicated computations, and a write can depend on the
448 values of multiple reads.
449
450 A read event and another memory access event are linked by an address
451 dependency if the value obtained by the read affects the location
452 accessed by the other event.  The second event can be either a read or
453 a write.  Here's another simple example:
454
455         int a[20];
456         int i;
457
458         r1 = READ_ONCE(i);
459         r2 = READ_ONCE(a[r1]);
460
461 Here the location accessed by the second READ_ONCE() depends on the
462 index value loaded by the first.  Pointer indirection also gives rise
463 to address dependencies, since the address of a location accessed
464 through a pointer will depend on the value read earlier from that
465 pointer.
466
467 Finally, a read event and another memory access event are linked by a
468 control dependency if the value obtained by the read affects whether
469 the second event is executed at all.  Simple example:
470
471         int x, y;
472
473         r1 = READ_ONCE(x);
474         if (r1)
475                 WRITE_ONCE(y, 1984);
476
477 Execution of the WRITE_ONCE() is controlled by a conditional expression
478 which depends on the value obtained by the READ_ONCE(); hence there is
479 a control dependency from the load to the store.
480
481 It should be pretty obvious that events can only depend on reads that
482 come earlier in program order.  Symbolically, if we have R ->data X,
483 R ->addr X, or R ->ctrl X (where R is a read event), then we must also
484 have R ->po X.  It wouldn't make sense for a computation to depend
485 somehow on a value that doesn't get loaded from shared memory until
486 later in the code!
487
488
489 THE READS-FROM RELATION: rf, rfi, and rfe
490 -----------------------------------------
491
492 The reads-from relation (rf) links a write event to a read event when
493 the value loaded by the read is the value that was stored by the
494 write.  In colloquial terms, the load "reads from" the store.  We
495 write W ->rf R to indicate that the load R reads from the store W.  We
496 further distinguish the cases where the load and the store occur on
497 the same CPU (internal reads-from, or rfi) and where they occur on
498 different CPUs (external reads-from, or rfe).
499
500 For our purposes, a memory location's initial value is treated as
501 though it had been written there by an imaginary initial store that
502 executes on a separate CPU before the main program runs.
503
504 Usage of the rf relation implicitly assumes that loads will always
505 read from a single store.  It doesn't apply properly in the presence
506 of load-tearing, where a load obtains some of its bits from one store
507 and some of them from another store.  Fortunately, use of READ_ONCE()
508 and WRITE_ONCE() will prevent load-tearing; it's not possible to have:
509
510         int x = 0;
511
512         P0()
513         {
514                 WRITE_ONCE(x, 0x1234);
515         }
516
517         P1()
518         {
519                 int r1;
520
521                 r1 = READ_ONCE(x);
522         }
523
524 and end up with r1 = 0x1200 (partly from x's initial value and partly
525 from the value stored by P0).
526
527 On the other hand, load-tearing is unavoidable when mixed-size
528 accesses are used.  Consider this example:
529
530         union {
531                 u32     w;
532                 u16     h[2];
533         } x;
534
535         P0()
536         {
537                 WRITE_ONCE(x.h[0], 0x1234);
538                 WRITE_ONCE(x.h[1], 0x5678);
539         }
540
541         P1()
542         {
543                 int r1;
544
545                 r1 = READ_ONCE(x.w);
546         }
547
548 If r1 = 0x56781234 (little-endian!) at the end, then P1 must have read
549 from both of P0's stores.  It is possible to handle mixed-size and
550 unaligned accesses in a memory model, but the LKMM currently does not
551 attempt to do so.  It requires all accesses to be properly aligned and
552 of the location's actual size.
553
554
555 CACHE COHERENCE AND THE COHERENCE ORDER RELATION: co, coi, and coe
556 ------------------------------------------------------------------
557
558 Cache coherence is a general principle requiring that in a
559 multi-processor system, the CPUs must share a consistent view of the
560 memory contents.  Specifically, it requires that for each location in
561 shared memory, the stores to that location must form a single global
562 ordering which all the CPUs agree on (the coherence order), and this
563 ordering must be consistent with the program order for accesses to
564 that location.
565
566 To put it another way, for any variable x, the coherence order (co) of
567 the stores to x is simply the order in which the stores overwrite one
568 another.  The imaginary store which establishes x's initial value
569 comes first in the coherence order; the store which directly
570 overwrites the initial value comes second; the store which overwrites
571 that value comes third, and so on.
572
573 You can think of the coherence order as being the order in which the
574 stores reach x's location in memory (or if you prefer a more
575 hardware-centric view, the order in which the stores get written to
576 x's cache line).  We write W ->co W' if W comes before W' in the
577 coherence order, that is, if the value stored by W gets overwritten,
578 directly or indirectly, by the value stored by W'.
579
580 Coherence order is required to be consistent with program order.  This
581 requirement takes the form of four coherency rules:
582
583         Write-write coherence: If W ->po-loc W' (i.e., W comes before
584         W' in program order and they access the same location), where W
585         and W' are two stores, then W ->co W'.
586
587         Write-read coherence: If W ->po-loc R, where W is a store and R
588         is a load, then R must read from W or from some other store
589         which comes after W in the coherence order.
590
591         Read-write coherence: If R ->po-loc W, where R is a load and W
592         is a store, then the store which R reads from must come before
593         W in the coherence order.
594
595         Read-read coherence: If R ->po-loc R', where R and R' are two
596         loads, then either they read from the same store or else the
597         store read by R comes before the store read by R' in the
598         coherence order.
599
600 This is sometimes referred to as sequential consistency per variable,
601 because it means that the accesses to any single memory location obey
602 the rules of the Sequential Consistency memory model.  (According to
603 Wikipedia, sequential consistency per variable and cache coherence
604 mean the same thing except that cache coherence includes an extra
605 requirement that every store eventually becomes visible to every CPU.)
606
607 Any reasonable memory model will include cache coherence.  Indeed, our
608 expectation of cache coherence is so deeply ingrained that violations
609 of its requirements look more like hardware bugs than programming
610 errors:
611
612         int x;
613
614         P0()
615         {
616                 WRITE_ONCE(x, 17);
617                 WRITE_ONCE(x, 23);
618         }
619
620 If the final value stored in x after this code ran was 17, you would
621 think your computer was broken.  It would be a violation of the
622 write-write coherence rule: Since the store of 23 comes later in
623 program order, it must also come later in x's coherence order and
624 thus must overwrite the store of 17.
625
626         int x = 0;
627
628         P0()
629         {
630                 int r1;
631
632                 r1 = READ_ONCE(x);
633                 WRITE_ONCE(x, 666);
634         }
635
636 If r1 = 666 at the end, this would violate the read-write coherence
637 rule: The READ_ONCE() load comes before the WRITE_ONCE() store in
638 program order, so it must not read from that store but rather from one
639 coming earlier in the coherence order (in this case, x's initial
640 value).
641
642         int x = 0;
643
644         P0()
645         {
646                 WRITE_ONCE(x, 5);
647         }
648
649         P1()
650         {
651                 int r1, r2;
652
653                 r1 = READ_ONCE(x);
654                 r2 = READ_ONCE(x);
655         }
656
657 If r1 = 5 (reading from P0's store) and r2 = 0 (reading from the
658 imaginary store which establishes x's initial value) at the end, this
659 would violate the read-read coherence rule: The r1 load comes before
660 the r2 load in program order, so it must not read from a store that
661 comes later in the coherence order.
662
663 (As a minor curiosity, if this code had used normal loads instead of
664 READ_ONCE() in P1, on Itanium it sometimes could end up with r1 = 5
665 and r2 = 0!  This results from parallel execution of the operations
666 encoded in Itanium's Very-Long-Instruction-Word format, and it is yet
667 another motivation for using READ_ONCE() when accessing shared memory
668 locations.)
669
670 Just like the po relation, co is inherently an ordering -- it is not
671 possible for a store to directly or indirectly overwrite itself!  And
672 just like with the rf relation, we distinguish between stores that
673 occur on the same CPU (internal coherence order, or coi) and stores
674 that occur on different CPUs (external coherence order, or coe).
675
676 On the other hand, stores to different memory locations are never
677 related by co, just as instructions on different CPUs are never
678 related by po.  Coherence order is strictly per-location, or if you
679 prefer, each location has its own independent coherence order.
680
681
682 THE FROM-READS RELATION: fr, fri, and fre
683 -----------------------------------------
684
685 The from-reads relation (fr) can be a little difficult for people to
686 grok.  It describes the situation where a load reads a value that gets
687 overwritten by a store.  In other words, we have R ->fr W when the
688 value that R reads is overwritten (directly or indirectly) by W, or
689 equivalently, when R reads from a store which comes earlier than W in
690 the coherence order.
691
692 For example:
693
694         int x = 0;
695
696         P0()
697         {
698                 int r1;
699
700                 r1 = READ_ONCE(x);
701                 WRITE_ONCE(x, 2);
702         }
703
704 The value loaded from x will be 0 (assuming cache coherence!), and it
705 gets overwritten by the value 2.  Thus there is an fr link from the
706 READ_ONCE() to the WRITE_ONCE().  If the code contained any later
707 stores to x, there would also be fr links from the READ_ONCE() to
708 them.
709
710 As with rf, rfi, and rfe, we subdivide the fr relation into fri (when
711 the load and the store are on the same CPU) and fre (when they are on
712 different CPUs).
713
714 Note that the fr relation is determined entirely by the rf and co
715 relations; it is not independent.  Given a read event R and a write
716 event W for the same location, we will have R ->fr W if and only if
717 the write which R reads from is co-before W.  In symbols,
718
719         (R ->fr W) := (there exists W' with W' ->rf R and W' ->co W).
720
721
722 AN OPERATIONAL MODEL
723 --------------------
724
725 The LKMM is based on various operational memory models, meaning that
726 the models arise from an abstract view of how a computer system
727 operates.  Here are the main ideas, as incorporated into the LKMM.
728
729 The system as a whole is divided into the CPUs and a memory subsystem.
730 The CPUs are responsible for executing instructions (not necessarily
731 in program order), and they communicate with the memory subsystem.
732 For the most part, executing an instruction requires a CPU to perform
733 only internal operations.  However, loads, stores, and fences involve
734 more.
735
736 When CPU C executes a store instruction, it tells the memory subsystem
737 to store a certain value at a certain location.  The memory subsystem
738 propagates the store to all the other CPUs as well as to RAM.  (As a
739 special case, we say that the store propagates to its own CPU at the
740 time it is executed.)  The memory subsystem also determines where the
741 store falls in the location's coherence order.  In particular, it must
742 arrange for the store to be co-later than (i.e., to overwrite) any
743 other store to the same location which has already propagated to CPU C.
744
745 When a CPU executes a load instruction R, it first checks to see
746 whether there are any as-yet unexecuted store instructions, for the
747 same location, that come before R in program order.  If there are, it
748 uses the value of the po-latest such store as the value obtained by R,
749 and we say that the store's value is forwarded to R.  Otherwise, the
750 CPU asks the memory subsystem for the value to load and we say that R
751 is satisfied from memory.  The memory subsystem hands back the value
752 of the co-latest store to the location in question which has already
753 propagated to that CPU.
754
755 (In fact, the picture needs to be a little more complicated than this.
756 CPUs have local caches, and propagating a store to a CPU really means
757 propagating it to the CPU's local cache.  A local cache can take some
758 time to process the stores that it receives, and a store can't be used
759 to satisfy one of the CPU's loads until it has been processed.  On
760 most architectures, the local caches process stores in
761 First-In-First-Out order, and consequently the processing delay
762 doesn't matter for the memory model.  But on Alpha, the local caches
763 have a partitioned design that results in non-FIFO behavior.  We will
764 discuss this in more detail later.)
765
766 Note that load instructions may be executed speculatively and may be
767 restarted under certain circumstances.  The memory model ignores these
768 premature executions; we simply say that the load executes at the
769 final time it is forwarded or satisfied.
770
771 Executing a fence (or memory barrier) instruction doesn't require a
772 CPU to do anything special other than informing the memory subsystem
773 about the fence.  However, fences do constrain the way CPUs and the
774 memory subsystem handle other instructions, in two respects.
775
776 First, a fence forces the CPU to execute various instructions in
777 program order.  Exactly which instructions are ordered depends on the
778 type of fence:
779
780         Strong fences, including smp_mb() and synchronize_rcu(), force
781         the CPU to execute all po-earlier instructions before any
782         po-later instructions;
783
784         smp_rmb() forces the CPU to execute all po-earlier loads
785         before any po-later loads;
786
787         smp_wmb() forces the CPU to execute all po-earlier stores
788         before any po-later stores;
789
790         Acquire fences, such as smp_load_acquire(), force the CPU to
791         execute the load associated with the fence (e.g., the load
792         part of an smp_load_acquire()) before any po-later
793         instructions;
794
795         Release fences, such as smp_store_release(), force the CPU to
796         execute all po-earlier instructions before the store
797         associated with the fence (e.g., the store part of an
798         smp_store_release()).
799
800 Second, some types of fence affect the way the memory subsystem
801 propagates stores.  When a fence instruction is executed on CPU C:
802
803         For each other CPU C', smp_wmb() forces all po-earlier stores
804         on C to propagate to C' before any po-later stores do.
805
806         For each other CPU C', any store which propagates to C before
807         a release fence is executed (including all po-earlier
808         stores executed on C) is forced to propagate to C' before the
809         store associated with the release fence does.
810
811         Any store which propagates to C before a strong fence is
812         executed (including all po-earlier stores on C) is forced to
813         propagate to all other CPUs before any instructions po-after
814         the strong fence are executed on C.
815
816 The propagation ordering enforced by release fences and strong fences
817 affects stores from other CPUs that propagate to CPU C before the
818 fence is executed, as well as stores that are executed on C before the
819 fence.  We describe this property by saying that release fences and
820 strong fences are A-cumulative.  By contrast, smp_wmb() fences are not
821 A-cumulative; they only affect the propagation of stores that are
822 executed on C before the fence (i.e., those which precede the fence in
823 program order).
824
825 rcu_read_lock(), rcu_read_unlock(), and synchronize_rcu() fences have
826 other properties which we discuss later.
827
828
829 PROPAGATION ORDER RELATION: cumul-fence
830 ---------------------------------------
831
832 The fences which affect propagation order (i.e., strong, release, and
833 smp_wmb() fences) are collectively referred to as cumul-fences, even
834 though smp_wmb() isn't A-cumulative.  The cumul-fence relation is
835 defined to link memory access events E and F whenever:
836
837         E and F are both stores on the same CPU and an smp_wmb() fence
838         event occurs between them in program order; or
839
840         F is a release fence and some X comes before F in program order,
841         where either X = E or else E ->rf X; or
842
843         A strong fence event occurs between some X and F in program
844         order, where either X = E or else E ->rf X.
845
846 The operational model requires that whenever W and W' are both stores
847 and W ->cumul-fence W', then W must propagate to any given CPU
848 before W' does.  However, for different CPUs C and C', it does not
849 require W to propagate to C before W' propagates to C'.
850
851
852 DERIVATION OF THE LKMM FROM THE OPERATIONAL MODEL
853 -------------------------------------------------
854
855 The LKMM is derived from the restrictions imposed by the design
856 outlined above.  These restrictions involve the necessity of
857 maintaining cache coherence and the fact that a CPU can't operate on a
858 value before it knows what that value is, among other things.
859
860 The formal version of the LKMM is defined by six requirements, or
861 axioms:
862
863         Sequential consistency per variable: This requires that the
864         system obey the four coherency rules.
865
866         Atomicity: This requires that atomic read-modify-write
867         operations really are atomic, that is, no other stores can
868         sneak into the middle of such an update.
869
870         Happens-before: This requires that certain instructions are
871         executed in a specific order.
872
873         Propagation: This requires that certain stores propagate to
874         CPUs and to RAM in a specific order.
875
876         Rcu: This requires that RCU read-side critical sections and
877         grace periods obey the rules of RCU, in particular, the
878         Grace-Period Guarantee.
879
880         Plain-coherence: This requires that plain memory accesses
881         (those not using READ_ONCE(), WRITE_ONCE(), etc.) must obey
882         the operational model's rules regarding cache coherence.
883
884 The first and second are quite common; they can be found in many
885 memory models (such as those for C11/C++11).  The "happens-before" and
886 "propagation" axioms have analogs in other memory models as well.  The
887 "rcu" and "plain-coherence" axioms are specific to the LKMM.
888
889 Each of these axioms is discussed below.
890
891
892 SEQUENTIAL CONSISTENCY PER VARIABLE
893 -----------------------------------
894
895 According to the principle of cache coherence, the stores to any fixed
896 shared location in memory form a global ordering.  We can imagine
897 inserting the loads from that location into this ordering, by placing
898 each load between the store that it reads from and the following
899 store.  This leaves the relative positions of loads that read from the
900 same store unspecified; let's say they are inserted in program order,
901 first for CPU 0, then CPU 1, etc.
902
903 You can check that the four coherency rules imply that the rf, co, fr,
904 and po-loc relations agree with this global ordering; in other words,
905 whenever we have X ->rf Y or X ->co Y or X ->fr Y or X ->po-loc Y, the
906 X event comes before the Y event in the global ordering.  The LKMM's
907 "coherence" axiom expresses this by requiring the union of these
908 relations not to have any cycles.  This means it must not be possible
909 to find events
910
911         X0 -> X1 -> X2 -> ... -> Xn -> X0,
912
913 where each of the links is either rf, co, fr, or po-loc.  This has to
914 hold if the accesses to the fixed memory location can be ordered as
915 cache coherence demands.
916
917 Although it is not obvious, it can be shown that the converse is also
918 true: This LKMM axiom implies that the four coherency rules are
919 obeyed.
920
921
922 ATOMIC UPDATES: rmw
923 -------------------
924
925 What does it mean to say that a read-modify-write (rmw) update, such
926 as atomic_inc(&x), is atomic?  It means that the memory location (x in
927 this case) does not get altered between the read and the write events
928 making up the atomic operation.  In particular, if two CPUs perform
929 atomic_inc(&x) concurrently, it must be guaranteed that the final
930 value of x will be the initial value plus two.  We should never have
931 the following sequence of events:
932
933         CPU 0 loads x obtaining 13;
934                                         CPU 1 loads x obtaining 13;
935         CPU 0 stores 14 to x;
936                                         CPU 1 stores 14 to x;
937
938 where the final value of x is wrong (14 rather than 15).
939
940 In this example, CPU 0's increment effectively gets lost because it
941 occurs in between CPU 1's load and store.  To put it another way, the
942 problem is that the position of CPU 0's store in x's coherence order
943 is between the store that CPU 1 reads from and the store that CPU 1
944 performs.
945
946 The same analysis applies to all atomic update operations.  Therefore,
947 to enforce atomicity the LKMM requires that atomic updates follow this
948 rule: Whenever R and W are the read and write events composing an
949 atomic read-modify-write and W' is the write event which R reads from,
950 there must not be any stores coming between W' and W in the coherence
951 order.  Equivalently,
952
953         (R ->rmw W) implies (there is no X with R ->fr X and X ->co W),
954
955 where the rmw relation links the read and write events making up each
956 atomic update.  This is what the LKMM's "atomic" axiom says.
957
958
959 THE PRESERVED PROGRAM ORDER RELATION: ppo
960 -----------------------------------------
961
962 There are many situations where a CPU is obliged to execute two
963 instructions in program order.  We amalgamate them into the ppo (for
964 "preserved program order") relation, which links the po-earlier
965 instruction to the po-later instruction and is thus a sub-relation of
966 po.
967
968 The operational model already includes a description of one such
969 situation: Fences are a source of ppo links.  Suppose X and Y are
970 memory accesses with X ->po Y; then the CPU must execute X before Y if
971 any of the following hold:
972
973         A strong (smp_mb() or synchronize_rcu()) fence occurs between
974         X and Y;
975
976         X and Y are both stores and an smp_wmb() fence occurs between
977         them;
978
979         X and Y are both loads and an smp_rmb() fence occurs between
980         them;
981
982         X is also an acquire fence, such as smp_load_acquire();
983
984         Y is also a release fence, such as smp_store_release().
985
986 Another possibility, not mentioned earlier but discussed in the next
987 section, is:
988
989         X and Y are both loads, X ->addr Y (i.e., there is an address
990         dependency from X to Y), and X is a READ_ONCE() or an atomic
991         access.
992
993 Dependencies can also cause instructions to be executed in program
994 order.  This is uncontroversial when the second instruction is a
995 store; either a data, address, or control dependency from a load R to
996 a store W will force the CPU to execute R before W.  This is very
997 simply because the CPU cannot tell the memory subsystem about W's
998 store before it knows what value should be stored (in the case of a
999 data dependency), what location it should be stored into (in the case
1000 of an address dependency), or whether the store should actually take
1001 place (in the case of a control dependency).
1002
1003 Dependencies to load instructions are more problematic.  To begin with,
1004 there is no such thing as a data dependency to a load.  Next, a CPU
1005 has no reason to respect a control dependency to a load, because it
1006 can always satisfy the second load speculatively before the first, and
1007 then ignore the result if it turns out that the second load shouldn't
1008 be executed after all.  And lastly, the real difficulties begin when
1009 we consider address dependencies to loads.
1010
1011 To be fair about it, all Linux-supported architectures do execute
1012 loads in program order if there is an address dependency between them.
1013 After all, a CPU cannot ask the memory subsystem to load a value from
1014 a particular location before it knows what that location is.  However,
1015 the split-cache design used by Alpha can cause it to behave in a way
1016 that looks as if the loads were executed out of order (see the next
1017 section for more details).  The kernel includes a workaround for this
1018 problem when the loads come from READ_ONCE(), and therefore the LKMM
1019 includes address dependencies to loads in the ppo relation.
1020
1021 On the other hand, dependencies can indirectly affect the ordering of
1022 two loads.  This happens when there is a dependency from a load to a
1023 store and a second, po-later load reads from that store:
1024
1025         R ->dep W ->rfi R',
1026
1027 where the dep link can be either an address or a data dependency.  In
1028 this situation we know it is possible for the CPU to execute R' before
1029 W, because it can forward the value that W will store to R'.  But it
1030 cannot execute R' before R, because it cannot forward the value before
1031 it knows what that value is, or that W and R' do access the same
1032 location.  However, if there is merely a control dependency between R
1033 and W then the CPU can speculatively forward W to R' before executing
1034 R; if the speculation turns out to be wrong then the CPU merely has to
1035 restart or abandon R'.
1036
1037 (In theory, a CPU might forward a store to a load when it runs across
1038 an address dependency like this:
1039
1040         r1 = READ_ONCE(ptr);
1041         WRITE_ONCE(*r1, 17);
1042         r2 = READ_ONCE(*r1);
1043
1044 because it could tell that the store and the second load access the
1045 same location even before it knows what the location's address is.
1046 However, none of the architectures supported by the Linux kernel do
1047 this.)
1048
1049 Two memory accesses of the same location must always be executed in
1050 program order if the second access is a store.  Thus, if we have
1051
1052         R ->po-loc W
1053
1054 (the po-loc link says that R comes before W in program order and they
1055 access the same location), the CPU is obliged to execute W after R.
1056 If it executed W first then the memory subsystem would respond to R's
1057 read request with the value stored by W (or an even later store), in
1058 violation of the read-write coherence rule.  Similarly, if we had
1059
1060         W ->po-loc W'
1061
1062 and the CPU executed W' before W, then the memory subsystem would put
1063 W' before W in the coherence order.  It would effectively cause W to
1064 overwrite W', in violation of the write-write coherence rule.
1065 (Interestingly, an early ARMv8 memory model, now obsolete, proposed
1066 allowing out-of-order writes like this to occur.  The model avoided
1067 violating the write-write coherence rule by requiring the CPU not to
1068 send the W write to the memory subsystem at all!)
1069
1070
1071 AND THEN THERE WAS ALPHA
1072 ------------------------
1073
1074 As mentioned above, the Alpha architecture is unique in that it does
1075 not appear to respect address dependencies to loads.  This means that
1076 code such as the following:
1077
1078         int x = 0;
1079         int y = -1;
1080         int *ptr = &y;
1081
1082         P0()
1083         {
1084                 WRITE_ONCE(x, 1);
1085                 smp_wmb();
1086                 WRITE_ONCE(ptr, &x);
1087         }
1088
1089         P1()
1090         {
1091                 int *r1;
1092                 int r2;
1093
1094                 r1 = ptr;
1095                 r2 = READ_ONCE(*r1);
1096         }
1097
1098 can malfunction on Alpha systems (notice that P1 uses an ordinary load
1099 to read ptr instead of READ_ONCE()).  It is quite possible that r1 = &x
1100 and r2 = 0 at the end, in spite of the address dependency.
1101
1102 At first glance this doesn't seem to make sense.  We know that the
1103 smp_wmb() forces P0's store to x to propagate to P1 before the store
1104 to ptr does.  And since P1 can't execute its second load
1105 until it knows what location to load from, i.e., after executing its
1106 first load, the value x = 1 must have propagated to P1 before the
1107 second load executed.  So why doesn't r2 end up equal to 1?
1108
1109 The answer lies in the Alpha's split local caches.  Although the two
1110 stores do reach P1's local cache in the proper order, it can happen
1111 that the first store is processed by a busy part of the cache while
1112 the second store is processed by an idle part.  As a result, the x = 1
1113 value may not become available for P1's CPU to read until after the
1114 ptr = &x value does, leading to the undesirable result above.  The
1115 final effect is that even though the two loads really are executed in
1116 program order, it appears that they aren't.
1117
1118 This could not have happened if the local cache had processed the
1119 incoming stores in FIFO order.  By contrast, other architectures
1120 maintain at least the appearance of FIFO order.
1121
1122 In practice, this difficulty is solved by inserting a special fence
1123 between P1's two loads when the kernel is compiled for the Alpha
1124 architecture.  In fact, as of version 4.15, the kernel automatically
1125 adds this fence (called smp_read_barrier_depends() and defined as
1126 nothing at all on non-Alpha builds) after every READ_ONCE() and atomic
1127 load.  The effect of the fence is to cause the CPU not to execute any
1128 po-later instructions until after the local cache has finished
1129 processing all the stores it has already received.  Thus, if the code
1130 was changed to:
1131
1132         P1()
1133         {
1134                 int *r1;
1135                 int r2;
1136
1137                 r1 = READ_ONCE(ptr);
1138                 r2 = READ_ONCE(*r1);
1139         }
1140
1141 then we would never get r1 = &x and r2 = 0.  By the time P1 executed
1142 its second load, the x = 1 store would already be fully processed by
1143 the local cache and available for satisfying the read request.  Thus
1144 we have yet another reason why shared data should always be read with
1145 READ_ONCE() or another synchronization primitive rather than accessed
1146 directly.
1147
1148 The LKMM requires that smp_rmb(), acquire fences, and strong fences
1149 share this property with smp_read_barrier_depends(): They do not allow
1150 the CPU to execute any po-later instructions (or po-later loads in the
1151 case of smp_rmb()) until all outstanding stores have been processed by
1152 the local cache.  In the case of a strong fence, the CPU first has to
1153 wait for all of its po-earlier stores to propagate to every other CPU
1154 in the system; then it has to wait for the local cache to process all
1155 the stores received as of that time -- not just the stores received
1156 when the strong fence began.
1157
1158 And of course, none of this matters for any architecture other than
1159 Alpha.
1160
1161
1162 THE HAPPENS-BEFORE RELATION: hb
1163 -------------------------------
1164
1165 The happens-before relation (hb) links memory accesses that have to
1166 execute in a certain order.  hb includes the ppo relation and two
1167 others, one of which is rfe.
1168
1169 W ->rfe R implies that W and R are on different CPUs.  It also means
1170 that W's store must have propagated to R's CPU before R executed;
1171 otherwise R could not have read the value stored by W.  Therefore W
1172 must have executed before R, and so we have W ->hb R.
1173
1174 The equivalent fact need not hold if W ->rfi R (i.e., W and R are on
1175 the same CPU).  As we have already seen, the operational model allows
1176 W's value to be forwarded to R in such cases, meaning that R may well
1177 execute before W does.
1178
1179 It's important to understand that neither coe nor fre is included in
1180 hb, despite their similarities to rfe.  For example, suppose we have
1181 W ->coe W'.  This means that W and W' are stores to the same location,
1182 they execute on different CPUs, and W comes before W' in the coherence
1183 order (i.e., W' overwrites W).  Nevertheless, it is possible for W' to
1184 execute before W, because the decision as to which store overwrites
1185 the other is made later by the memory subsystem.  When the stores are
1186 nearly simultaneous, either one can come out on top.  Similarly,
1187 R ->fre W means that W overwrites the value which R reads, but it
1188 doesn't mean that W has to execute after R.  All that's necessary is
1189 for the memory subsystem not to propagate W to R's CPU until after R
1190 has executed, which is possible if W executes shortly before R.
1191
1192 The third relation included in hb is like ppo, in that it only links
1193 events that are on the same CPU.  However it is more difficult to
1194 explain, because it arises only indirectly from the requirement of
1195 cache coherence.  The relation is called prop, and it links two events
1196 on CPU C in situations where a store from some other CPU comes after
1197 the first event in the coherence order and propagates to C before the
1198 second event executes.
1199
1200 This is best explained with some examples.  The simplest case looks
1201 like this:
1202
1203         int x;
1204
1205         P0()
1206         {
1207                 int r1;
1208
1209                 WRITE_ONCE(x, 1);
1210                 r1 = READ_ONCE(x);
1211         }
1212
1213         P1()
1214         {
1215                 WRITE_ONCE(x, 8);
1216         }
1217
1218 If r1 = 8 at the end then P0's accesses must have executed in program
1219 order.  We can deduce this from the operational model; if P0's load
1220 had executed before its store then the value of the store would have
1221 been forwarded to the load, so r1 would have ended up equal to 1, not
1222 8.  In this case there is a prop link from P0's write event to its read
1223 event, because P1's store came after P0's store in x's coherence
1224 order, and P1's store propagated to P0 before P0's load executed.
1225
1226 An equally simple case involves two loads of the same location that
1227 read from different stores:
1228
1229         int x = 0;
1230
1231         P0()
1232         {
1233                 int r1, r2;
1234
1235                 r1 = READ_ONCE(x);
1236                 r2 = READ_ONCE(x);
1237         }
1238
1239         P1()
1240         {
1241                 WRITE_ONCE(x, 9);
1242         }
1243
1244 If r1 = 0 and r2 = 9 at the end then P0's accesses must have executed
1245 in program order.  If the second load had executed before the first
1246 then the x = 9 store must have been propagated to P0 before the first
1247 load executed, and so r1 would have been 9 rather than 0.  In this
1248 case there is a prop link from P0's first read event to its second,
1249 because P1's store overwrote the value read by P0's first load, and
1250 P1's store propagated to P0 before P0's second load executed.
1251
1252 Less trivial examples of prop all involve fences.  Unlike the simple
1253 examples above, they can require that some instructions are executed
1254 out of program order.  This next one should look familiar:
1255
1256         int buf = 0, flag = 0;
1257
1258         P0()
1259         {
1260                 WRITE_ONCE(buf, 1);
1261                 smp_wmb();
1262                 WRITE_ONCE(flag, 1);
1263         }
1264
1265         P1()
1266         {
1267                 int r1;
1268                 int r2;
1269
1270                 r1 = READ_ONCE(flag);
1271                 r2 = READ_ONCE(buf);
1272         }
1273
1274 This is the MP pattern again, with an smp_wmb() fence between the two
1275 stores.  If r1 = 1 and r2 = 0 at the end then there is a prop link
1276 from P1's second load to its first (backwards!).  The reason is
1277 similar to the previous examples: The value P1 loads from buf gets
1278 overwritten by P0's store to buf, the fence guarantees that the store
1279 to buf will propagate to P1 before the store to flag does, and the
1280 store to flag propagates to P1 before P1 reads flag.
1281
1282 The prop link says that in order to obtain the r1 = 1, r2 = 0 result,
1283 P1 must execute its second load before the first.  Indeed, if the load
1284 from flag were executed first, then the buf = 1 store would already
1285 have propagated to P1 by the time P1's load from buf executed, so r2
1286 would have been 1 at the end, not 0.  (The reasoning holds even for
1287 Alpha, although the details are more complicated and we will not go
1288 into them.)
1289
1290 But what if we put an smp_rmb() fence between P1's loads?  The fence
1291 would force the two loads to be executed in program order, and it
1292 would generate a cycle in the hb relation: The fence would create a ppo
1293 link (hence an hb link) from the first load to the second, and the
1294 prop relation would give an hb link from the second load to the first.
1295 Since an instruction can't execute before itself, we are forced to
1296 conclude that if an smp_rmb() fence is added, the r1 = 1, r2 = 0
1297 outcome is impossible -- as it should be.
1298
1299 The formal definition of the prop relation involves a coe or fre link,
1300 followed by an arbitrary number of cumul-fence links, ending with an
1301 rfe link.  You can concoct more exotic examples, containing more than
1302 one fence, although this quickly leads to diminishing returns in terms
1303 of complexity.  For instance, here's an example containing a coe link
1304 followed by two cumul-fences and an rfe link, utilizing the fact that
1305 release fences are A-cumulative:
1306
1307         int x, y, z;
1308
1309         P0()
1310         {
1311                 int r0;
1312
1313                 WRITE_ONCE(x, 1);
1314                 r0 = READ_ONCE(z);
1315         }
1316
1317         P1()
1318         {
1319                 WRITE_ONCE(x, 2);
1320                 smp_wmb();
1321                 WRITE_ONCE(y, 1);
1322         }
1323
1324         P2()
1325         {
1326                 int r2;
1327
1328                 r2 = READ_ONCE(y);
1329                 smp_store_release(&z, 1);
1330         }
1331
1332 If x = 2, r0 = 1, and r2 = 1 after this code runs then there is a prop
1333 link from P0's store to its load.  This is because P0's store gets
1334 overwritten by P1's store since x = 2 at the end (a coe link), the
1335 smp_wmb() ensures that P1's store to x propagates to P2 before the
1336 store to y does (the first cumul-fence), the store to y propagates to P2
1337 before P2's load and store execute, P2's smp_store_release()
1338 guarantees that the stores to x and y both propagate to P0 before the
1339 store to z does (the second cumul-fence), and P0's load executes after the
1340 store to z has propagated to P0 (an rfe link).
1341
1342 In summary, the fact that the hb relation links memory access events
1343 in the order they execute means that it must not have cycles.  This
1344 requirement is the content of the LKMM's "happens-before" axiom.
1345
1346 The LKMM defines yet another relation connected to times of
1347 instruction execution, but it is not included in hb.  It relies on the
1348 particular properties of strong fences, which we cover in the next
1349 section.
1350
1351
1352 THE PROPAGATES-BEFORE RELATION: pb
1353 ----------------------------------
1354
1355 The propagates-before (pb) relation capitalizes on the special
1356 features of strong fences.  It links two events E and F whenever some
1357 store is coherence-later than E and propagates to every CPU and to RAM
1358 before F executes.  The formal definition requires that E be linked to
1359 F via a coe or fre link, an arbitrary number of cumul-fences, an
1360 optional rfe link, a strong fence, and an arbitrary number of hb
1361 links.  Let's see how this definition works out.
1362
1363 Consider first the case where E is a store (implying that the sequence
1364 of links begins with coe).  Then there are events W, X, Y, and Z such
1365 that:
1366
1367         E ->coe W ->cumul-fence* X ->rfe? Y ->strong-fence Z ->hb* F,
1368
1369 where the * suffix indicates an arbitrary number of links of the
1370 specified type, and the ? suffix indicates the link is optional (Y may
1371 be equal to X).  Because of the cumul-fence links, we know that W will
1372 propagate to Y's CPU before X does, hence before Y executes and hence
1373 before the strong fence executes.  Because this fence is strong, we
1374 know that W will propagate to every CPU and to RAM before Z executes.
1375 And because of the hb links, we know that Z will execute before F.
1376 Thus W, which comes later than E in the coherence order, will
1377 propagate to every CPU and to RAM before F executes.
1378
1379 The case where E is a load is exactly the same, except that the first
1380 link in the sequence is fre instead of coe.
1381
1382 The existence of a pb link from E to F implies that E must execute
1383 before F.  To see why, suppose that F executed first.  Then W would
1384 have propagated to E's CPU before E executed.  If E was a store, the
1385 memory subsystem would then be forced to make E come after W in the
1386 coherence order, contradicting the fact that E ->coe W.  If E was a
1387 load, the memory subsystem would then be forced to satisfy E's read
1388 request with the value stored by W or an even later store,
1389 contradicting the fact that E ->fre W.
1390
1391 A good example illustrating how pb works is the SB pattern with strong
1392 fences:
1393
1394         int x = 0, y = 0;
1395
1396         P0()
1397         {
1398                 int r0;
1399
1400                 WRITE_ONCE(x, 1);
1401                 smp_mb();
1402                 r0 = READ_ONCE(y);
1403         }
1404
1405         P1()
1406         {
1407                 int r1;
1408
1409                 WRITE_ONCE(y, 1);
1410                 smp_mb();
1411                 r1 = READ_ONCE(x);
1412         }
1413
1414 If r0 = 0 at the end then there is a pb link from P0's load to P1's
1415 load: an fre link from P0's load to P1's store (which overwrites the
1416 value read by P0), and a strong fence between P1's store and its load.
1417 In this example, the sequences of cumul-fence and hb links are empty.
1418 Note that this pb link is not included in hb as an instance of prop,
1419 because it does not start and end on the same CPU.
1420
1421 Similarly, if r1 = 0 at the end then there is a pb link from P1's load
1422 to P0's.  This means that if both r1 and r2 were 0 there would be a
1423 cycle in pb, which is not possible since an instruction cannot execute
1424 before itself.  Thus, adding smp_mb() fences to the SB pattern
1425 prevents the r0 = 0, r1 = 0 outcome.
1426
1427 In summary, the fact that the pb relation links events in the order
1428 they execute means that it cannot have cycles.  This requirement is
1429 the content of the LKMM's "propagation" axiom.
1430
1431
1432 RCU RELATIONS: rcu-link, rcu-gp, rcu-rscsi, rcu-order, rcu-fence, and rb
1433 ------------------------------------------------------------------------
1434
1435 RCU (Read-Copy-Update) is a powerful synchronization mechanism.  It
1436 rests on two concepts: grace periods and read-side critical sections.
1437
1438 A grace period is the span of time occupied by a call to
1439 synchronize_rcu().  A read-side critical section (or just critical
1440 section, for short) is a region of code delimited by rcu_read_lock()
1441 at the start and rcu_read_unlock() at the end.  Critical sections can
1442 be nested, although we won't make use of this fact.
1443
1444 As far as memory models are concerned, RCU's main feature is its
1445 Grace-Period Guarantee, which states that a critical section can never
1446 span a full grace period.  In more detail, the Guarantee says:
1447
1448         For any critical section C and any grace period G, at least
1449         one of the following statements must hold:
1450
1451 (1)     C ends before G does, and in addition, every store that
1452         propagates to C's CPU before the end of C must propagate to
1453         every CPU before G ends.
1454
1455 (2)     G starts before C does, and in addition, every store that
1456         propagates to G's CPU before the start of G must propagate
1457         to every CPU before C starts.
1458
1459 In particular, it is not possible for a critical section to both start
1460 before and end after a grace period.
1461
1462 Here is a simple example of RCU in action:
1463
1464         int x, y;
1465
1466         P0()
1467         {
1468                 rcu_read_lock();
1469                 WRITE_ONCE(x, 1);
1470                 WRITE_ONCE(y, 1);
1471                 rcu_read_unlock();
1472         }
1473
1474         P1()
1475         {
1476                 int r1, r2;
1477
1478                 r1 = READ_ONCE(x);
1479                 synchronize_rcu();
1480                 r2 = READ_ONCE(y);
1481         }
1482
1483 The Grace Period Guarantee tells us that when this code runs, it will
1484 never end with r1 = 1 and r2 = 0.  The reasoning is as follows.  r1 = 1
1485 means that P0's store to x propagated to P1 before P1 called
1486 synchronize_rcu(), so P0's critical section must have started before
1487 P1's grace period, contrary to part (2) of the Guarantee.  On the
1488 other hand, r2 = 0 means that P0's store to y, which occurs before the
1489 end of the critical section, did not propagate to P1 before the end of
1490 the grace period, contrary to part (1).  Together the results violate
1491 the Guarantee.
1492
1493 In the kernel's implementations of RCU, the requirements for stores
1494 to propagate to every CPU are fulfilled by placing strong fences at
1495 suitable places in the RCU-related code.  Thus, if a critical section
1496 starts before a grace period does then the critical section's CPU will
1497 execute an smp_mb() fence after the end of the critical section and
1498 some time before the grace period's synchronize_rcu() call returns.
1499 And if a critical section ends after a grace period does then the
1500 synchronize_rcu() routine will execute an smp_mb() fence at its start
1501 and some time before the critical section's opening rcu_read_lock()
1502 executes.
1503
1504 What exactly do we mean by saying that a critical section "starts
1505 before" or "ends after" a grace period?  Some aspects of the meaning
1506 are pretty obvious, as in the example above, but the details aren't
1507 entirely clear.  The LKMM formalizes this notion by means of the
1508 rcu-link relation.  rcu-link encompasses a very general notion of
1509 "before": If E and F are RCU fence events (i.e., rcu_read_lock(),
1510 rcu_read_unlock(), or synchronize_rcu()) then among other things,
1511 E ->rcu-link F includes cases where E is po-before some memory-access
1512 event X, F is po-after some memory-access event Y, and we have any of
1513 X ->rfe Y, X ->co Y, or X ->fr Y.
1514
1515 The formal definition of the rcu-link relation is more than a little
1516 obscure, and we won't give it here.  It is closely related to the pb
1517 relation, and the details don't matter unless you want to comb through
1518 a somewhat lengthy formal proof.  Pretty much all you need to know
1519 about rcu-link is the information in the preceding paragraph.
1520
1521 The LKMM also defines the rcu-gp and rcu-rscsi relations.  They bring
1522 grace periods and read-side critical sections into the picture, in the
1523 following way:
1524
1525         E ->rcu-gp F means that E and F are in fact the same event,
1526         and that event is a synchronize_rcu() fence (i.e., a grace
1527         period).
1528
1529         E ->rcu-rscsi F means that E and F are the rcu_read_unlock()
1530         and rcu_read_lock() fence events delimiting some read-side
1531         critical section.  (The 'i' at the end of the name emphasizes
1532         that this relation is "inverted": It links the end of the
1533         critical section to the start.)
1534
1535 If we think of the rcu-link relation as standing for an extended
1536 "before", then X ->rcu-gp Y ->rcu-link Z roughly says that X is a
1537 grace period which ends before Z begins.  (In fact it covers more than
1538 this, because it also includes cases where some store propagates to
1539 Z's CPU before Z begins but doesn't propagate to some other CPU until
1540 after X ends.)  Similarly, X ->rcu-rscsi Y ->rcu-link Z says that X is
1541 the end of a critical section which starts before Z begins.
1542
1543 The LKMM goes on to define the rcu-order relation as a sequence of
1544 rcu-gp and rcu-rscsi links separated by rcu-link links, in which the
1545 number of rcu-gp links is >= the number of rcu-rscsi links.  For
1546 example:
1547
1548         X ->rcu-gp Y ->rcu-link Z ->rcu-rscsi T ->rcu-link U ->rcu-gp V
1549
1550 would imply that X ->rcu-order V, because this sequence contains two
1551 rcu-gp links and one rcu-rscsi link.  (It also implies that
1552 X ->rcu-order T and Z ->rcu-order V.)  On the other hand:
1553
1554         X ->rcu-rscsi Y ->rcu-link Z ->rcu-rscsi T ->rcu-link U ->rcu-gp V
1555
1556 does not imply X ->rcu-order V, because the sequence contains only
1557 one rcu-gp link but two rcu-rscsi links.
1558
1559 The rcu-order relation is important because the Grace Period Guarantee
1560 means that rcu-order links act kind of like strong fences.  In
1561 particular, E ->rcu-order F implies not only that E begins before F
1562 ends, but also that any write po-before E will propagate to every CPU
1563 before any instruction po-after F can execute.  (However, it does not
1564 imply that E must execute before F; in fact, each synchronize_rcu()
1565 fence event is linked to itself by rcu-order as a degenerate case.)
1566
1567 To prove this in full generality requires some intellectual effort.
1568 We'll consider just a very simple case:
1569
1570         G ->rcu-gp W ->rcu-link Z ->rcu-rscsi F.
1571
1572 This formula means that G and W are the same event (a grace period),
1573 and there are events X, Y and a read-side critical section C such that:
1574
1575         1. G = W is po-before or equal to X;
1576
1577         2. X comes "before" Y in some sense (including rfe, co and fr);
1578
1579         3. Y is po-before Z;
1580
1581         4. Z is the rcu_read_unlock() event marking the end of C;
1582
1583         5. F is the rcu_read_lock() event marking the start of C.
1584
1585 From 1 - 4 we deduce that the grace period G ends before the critical
1586 section C.  Then part (2) of the Grace Period Guarantee says not only
1587 that G starts before C does, but also that any write which executes on
1588 G's CPU before G starts must propagate to every CPU before C starts.
1589 In particular, the write propagates to every CPU before F finishes
1590 executing and hence before any instruction po-after F can execute.
1591 This sort of reasoning can be extended to handle all the situations
1592 covered by rcu-order.
1593
1594 The rcu-fence relation is a simple extension of rcu-order.  While
1595 rcu-order only links certain fence events (calls to synchronize_rcu(),
1596 rcu_read_lock(), or rcu_read_unlock()), rcu-fence links any events
1597 that are separated by an rcu-order link.  This is analogous to the way
1598 the strong-fence relation links events that are separated by an
1599 smp_mb() fence event (as mentioned above, rcu-order links act kind of
1600 like strong fences).  Written symbolically, X ->rcu-fence Y means
1601 there are fence events E and F such that:
1602
1603         X ->po E ->rcu-order F ->po Y.
1604
1605 From the discussion above, we see this implies not only that X
1606 executes before Y, but also (if X is a store) that X propagates to
1607 every CPU before Y executes.  Thus rcu-fence is sort of a
1608 "super-strong" fence: Unlike the original strong fences (smp_mb() and
1609 synchronize_rcu()), rcu-fence is able to link events on different
1610 CPUs.  (Perhaps this fact should lead us to say that rcu-fence isn't
1611 really a fence at all!)
1612
1613 Finally, the LKMM defines the RCU-before (rb) relation in terms of
1614 rcu-fence.  This is done in essentially the same way as the pb
1615 relation was defined in terms of strong-fence.  We will omit the
1616 details; the end result is that E ->rb F implies E must execute
1617 before F, just as E ->pb F does (and for much the same reasons).
1618
1619 Putting this all together, the LKMM expresses the Grace Period
1620 Guarantee by requiring that the rb relation does not contain a cycle.
1621 Equivalently, this "rcu" axiom requires that there are no events E
1622 and F with E ->rcu-link F ->rcu-order E.  Or to put it a third way,
1623 the axiom requires that there are no cycles consisting of rcu-gp and
1624 rcu-rscsi alternating with rcu-link, where the number of rcu-gp links
1625 is >= the number of rcu-rscsi links.
1626
1627 Justifying the axiom isn't easy, but it is in fact a valid
1628 formalization of the Grace Period Guarantee.  We won't attempt to go
1629 through the detailed argument, but the following analysis gives a
1630 taste of what is involved.  Suppose both parts of the Guarantee are
1631 violated: A critical section starts before a grace period, and some
1632 store propagates to the critical section's CPU before the end of the
1633 critical section but doesn't propagate to some other CPU until after
1634 the end of the grace period.
1635
1636 Putting symbols to these ideas, let L and U be the rcu_read_lock() and
1637 rcu_read_unlock() fence events delimiting the critical section in
1638 question, and let S be the synchronize_rcu() fence event for the grace
1639 period.  Saying that the critical section starts before S means there
1640 are events Q and R where Q is po-after L (which marks the start of the
1641 critical section), Q is "before" R in the sense used by the rcu-link
1642 relation, and R is po-before the grace period S.  Thus we have:
1643
1644         L ->rcu-link S.
1645
1646 Let W be the store mentioned above, let Y come before the end of the
1647 critical section and witness that W propagates to the critical
1648 section's CPU by reading from W, and let Z on some arbitrary CPU be a
1649 witness that W has not propagated to that CPU, where Z happens after
1650 some event X which is po-after S.  Symbolically, this amounts to:
1651
1652         S ->po X ->hb* Z ->fr W ->rf Y ->po U.
1653
1654 The fr link from Z to W indicates that W has not propagated to Z's CPU
1655 at the time that Z executes.  From this, it can be shown (see the
1656 discussion of the rcu-link relation earlier) that S and U are related
1657 by rcu-link:
1658
1659         S ->rcu-link U.
1660
1661 Since S is a grace period we have S ->rcu-gp S, and since L and U are
1662 the start and end of the critical section C we have U ->rcu-rscsi L.
1663 From this we obtain:
1664
1665         S ->rcu-gp S ->rcu-link U ->rcu-rscsi L ->rcu-link S,
1666
1667 a forbidden cycle.  Thus the "rcu" axiom rules out this violation of
1668 the Grace Period Guarantee.
1669
1670 For something a little more down-to-earth, let's see how the axiom
1671 works out in practice.  Consider the RCU code example from above, this
1672 time with statement labels added:
1673
1674         int x, y;
1675
1676         P0()
1677         {
1678                 L: rcu_read_lock();
1679                 X: WRITE_ONCE(x, 1);
1680                 Y: WRITE_ONCE(y, 1);
1681                 U: rcu_read_unlock();
1682         }
1683
1684         P1()
1685         {
1686                 int r1, r2;
1687
1688                 Z: r1 = READ_ONCE(x);
1689                 S: synchronize_rcu();
1690                 W: r2 = READ_ONCE(y);
1691         }
1692
1693
1694 If r2 = 0 at the end then P0's store at Y overwrites the value that
1695 P1's load at W reads from, so we have W ->fre Y.  Since S ->po W and
1696 also Y ->po U, we get S ->rcu-link U.  In addition, S ->rcu-gp S
1697 because S is a grace period.
1698
1699 If r1 = 1 at the end then P1's load at Z reads from P0's store at X,
1700 so we have X ->rfe Z.  Together with L ->po X and Z ->po S, this
1701 yields L ->rcu-link S.  And since L and U are the start and end of a
1702 critical section, we have U ->rcu-rscsi L.
1703
1704 Then U ->rcu-rscsi L ->rcu-link S ->rcu-gp S ->rcu-link U is a
1705 forbidden cycle, violating the "rcu" axiom.  Hence the outcome is not
1706 allowed by the LKMM, as we would expect.
1707
1708 For contrast, let's see what can happen in a more complicated example:
1709
1710         int x, y, z;
1711
1712         P0()
1713         {
1714                 int r0;
1715
1716                 L0: rcu_read_lock();
1717                     r0 = READ_ONCE(x);
1718                     WRITE_ONCE(y, 1);
1719                 U0: rcu_read_unlock();
1720         }
1721
1722         P1()
1723         {
1724                 int r1;
1725
1726                     r1 = READ_ONCE(y);
1727                 S1: synchronize_rcu();
1728                     WRITE_ONCE(z, 1);
1729         }
1730
1731         P2()
1732         {
1733                 int r2;
1734
1735                 L2: rcu_read_lock();
1736                     r2 = READ_ONCE(z);
1737                     WRITE_ONCE(x, 1);
1738                 U2: rcu_read_unlock();
1739         }
1740
1741 If r0 = r1 = r2 = 1 at the end, then similar reasoning to before shows
1742 that U0 ->rcu-rscsi L0 ->rcu-link S1 ->rcu-gp S1 ->rcu-link U2 ->rcu-rscsi
1743 L2 ->rcu-link U0.  However this cycle is not forbidden, because the
1744 sequence of relations contains fewer instances of rcu-gp (one) than of
1745 rcu-rscsi (two).  Consequently the outcome is allowed by the LKMM.
1746 The following instruction timing diagram shows how it might actually
1747 occur:
1748
1749 P0                      P1                      P2
1750 --------------------    --------------------    --------------------
1751 rcu_read_lock()
1752 WRITE_ONCE(y, 1)
1753                         r1 = READ_ONCE(y)
1754                         synchronize_rcu() starts
1755                         .                       rcu_read_lock()
1756                         .                       WRITE_ONCE(x, 1)
1757 r0 = READ_ONCE(x)       .
1758 rcu_read_unlock()       .
1759                         synchronize_rcu() ends
1760                         WRITE_ONCE(z, 1)
1761                                                 r2 = READ_ONCE(z)
1762                                                 rcu_read_unlock()
1763
1764 This requires P0 and P2 to execute their loads and stores out of
1765 program order, but of course they are allowed to do so.  And as you
1766 can see, the Grace Period Guarantee is not violated: The critical
1767 section in P0 both starts before P1's grace period does and ends
1768 before it does, and the critical section in P2 both starts after P1's
1769 grace period does and ends after it does.
1770
1771 Addendum: The LKMM now supports SRCU (Sleepable Read-Copy-Update) in
1772 addition to normal RCU.  The ideas involved are much the same as
1773 above, with new relations srcu-gp and srcu-rscsi added to represent
1774 SRCU grace periods and read-side critical sections.  There is a
1775 restriction on the srcu-gp and srcu-rscsi links that can appear in an
1776 rcu-order sequence (the srcu-rscsi links must be paired with srcu-gp
1777 links having the same SRCU domain with proper nesting); the details
1778 are relatively unimportant.
1779
1780
1781 LOCKING
1782 -------
1783
1784 The LKMM includes locking.  In fact, there is special code for locking
1785 in the formal model, added in order to make tools run faster.
1786 However, this special code is intended to be more or less equivalent
1787 to concepts we have already covered.  A spinlock_t variable is treated
1788 the same as an int, and spin_lock(&s) is treated almost the same as:
1789
1790         while (cmpxchg_acquire(&s, 0, 1) != 0)
1791                 cpu_relax();
1792
1793 This waits until s is equal to 0 and then atomically sets it to 1,
1794 and the read part of the cmpxchg operation acts as an acquire fence.
1795 An alternate way to express the same thing would be:
1796
1797         r = xchg_acquire(&s, 1);
1798
1799 along with a requirement that at the end, r = 0.  Similarly,
1800 spin_trylock(&s) is treated almost the same as:
1801
1802         return !cmpxchg_acquire(&s, 0, 1);
1803
1804 which atomically sets s to 1 if it is currently equal to 0 and returns
1805 true if it succeeds (the read part of the cmpxchg operation acts as an
1806 acquire fence only if the operation is successful).  spin_unlock(&s)
1807 is treated almost the same as:
1808
1809         smp_store_release(&s, 0);
1810
1811 The "almost" qualifiers above need some explanation.  In the LKMM, the
1812 store-release in a spin_unlock() and the load-acquire which forms the
1813 first half of the atomic rmw update in a spin_lock() or a successful
1814 spin_trylock() -- we can call these things lock-releases and
1815 lock-acquires -- have two properties beyond those of ordinary releases
1816 and acquires.
1817
1818 First, when a lock-acquire reads from a lock-release, the LKMM
1819 requires that every instruction po-before the lock-release must
1820 execute before any instruction po-after the lock-acquire.  This would
1821 naturally hold if the release and acquire operations were on different
1822 CPUs, but the LKMM says it holds even when they are on the same CPU.
1823 For example:
1824
1825         int x, y;
1826         spinlock_t s;
1827
1828         P0()
1829         {
1830                 int r1, r2;
1831
1832                 spin_lock(&s);
1833                 r1 = READ_ONCE(x);
1834                 spin_unlock(&s);
1835                 spin_lock(&s);
1836                 r2 = READ_ONCE(y);
1837                 spin_unlock(&s);
1838         }
1839
1840         P1()
1841         {
1842                 WRITE_ONCE(y, 1);
1843                 smp_wmb();
1844                 WRITE_ONCE(x, 1);
1845         }
1846
1847 Here the second spin_lock() reads from the first spin_unlock(), and
1848 therefore the load of x must execute before the load of y.  Thus we
1849 cannot have r1 = 1 and r2 = 0 at the end (this is an instance of the
1850 MP pattern).
1851
1852 This requirement does not apply to ordinary release and acquire
1853 fences, only to lock-related operations.  For instance, suppose P0()
1854 in the example had been written as:
1855
1856         P0()
1857         {
1858                 int r1, r2, r3;
1859
1860                 r1 = READ_ONCE(x);
1861                 smp_store_release(&s, 1);
1862                 r3 = smp_load_acquire(&s);
1863                 r2 = READ_ONCE(y);
1864         }
1865
1866 Then the CPU would be allowed to forward the s = 1 value from the
1867 smp_store_release() to the smp_load_acquire(), executing the
1868 instructions in the following order:
1869
1870                 r3 = smp_load_acquire(&s);      // Obtains r3 = 1
1871                 r2 = READ_ONCE(y);
1872                 r1 = READ_ONCE(x);
1873                 smp_store_release(&s, 1);       // Value is forwarded
1874
1875 and thus it could load y before x, obtaining r2 = 0 and r1 = 1.
1876
1877 Second, when a lock-acquire reads from a lock-release, and some other
1878 stores W and W' occur po-before the lock-release and po-after the
1879 lock-acquire respectively, the LKMM requires that W must propagate to
1880 each CPU before W' does.  For example, consider:
1881
1882         int x, y;
1883         spinlock_t x;
1884
1885         P0()
1886         {
1887                 spin_lock(&s);
1888                 WRITE_ONCE(x, 1);
1889                 spin_unlock(&s);
1890         }
1891
1892         P1()
1893         {
1894                 int r1;
1895
1896                 spin_lock(&s);
1897                 r1 = READ_ONCE(x);
1898                 WRITE_ONCE(y, 1);
1899                 spin_unlock(&s);
1900         }
1901
1902         P2()
1903         {
1904                 int r2, r3;
1905
1906                 r2 = READ_ONCE(y);
1907                 smp_rmb();
1908                 r3 = READ_ONCE(x);
1909         }
1910
1911 If r1 = 1 at the end then the spin_lock() in P1 must have read from
1912 the spin_unlock() in P0.  Hence the store to x must propagate to P2
1913 before the store to y does, so we cannot have r2 = 1 and r3 = 0.
1914
1915 These two special requirements for lock-release and lock-acquire do
1916 not arise from the operational model.  Nevertheless, kernel developers
1917 have come to expect and rely on them because they do hold on all
1918 architectures supported by the Linux kernel, albeit for various
1919 differing reasons.
1920
1921
1922 PLAIN ACCESSES AND DATA RACES
1923 -----------------------------
1924
1925 In the LKMM, memory accesses such as READ_ONCE(x), atomic_inc(&y),
1926 smp_load_acquire(&z), and so on are collectively referred to as
1927 "marked" accesses, because they are all annotated with special
1928 operations of one kind or another.  Ordinary C-language memory
1929 accesses such as x or y = 0 are simply called "plain" accesses.
1930
1931 Early versions of the LKMM had nothing to say about plain accesses.
1932 The C standard allows compilers to assume that the variables affected
1933 by plain accesses are not concurrently read or written by any other
1934 threads or CPUs.  This leaves compilers free to implement all manner
1935 of transformations or optimizations of code containing plain accesses,
1936 making such code very difficult for a memory model to handle.
1937
1938 Here is just one example of a possible pitfall:
1939
1940         int a = 6;
1941         int *x = &a;
1942
1943         P0()
1944         {
1945                 int *r1;
1946                 int r2 = 0;
1947
1948                 r1 = x;
1949                 if (r1 != NULL)
1950                         r2 = READ_ONCE(*r1);
1951         }
1952
1953         P1()
1954         {
1955                 WRITE_ONCE(x, NULL);
1956         }
1957
1958 On the face of it, one would expect that when this code runs, the only
1959 possible final values for r2 are 6 and 0, depending on whether or not
1960 P1's store to x propagates to P0 before P0's load from x executes.
1961 But since P0's load from x is a plain access, the compiler may decide
1962 to carry out the load twice (for the comparison against NULL, then again
1963 for the READ_ONCE()) and eliminate the temporary variable r1.  The
1964 object code generated for P0 could therefore end up looking rather
1965 like this:
1966
1967         P0()
1968         {
1969                 int r2 = 0;
1970
1971                 if (x != NULL)
1972                         r2 = READ_ONCE(*x);
1973         }
1974
1975 And now it is obvious that this code runs the risk of dereferencing a
1976 NULL pointer, because P1's store to x might propagate to P0 after the
1977 test against NULL has been made but before the READ_ONCE() executes.
1978 If the original code had said "r1 = READ_ONCE(x)" instead of "r1 = x",
1979 the compiler would not have performed this optimization and there
1980 would be no possibility of a NULL-pointer dereference.
1981
1982 Given the possibility of transformations like this one, the LKMM
1983 doesn't try to predict all possible outcomes of code containing plain
1984 accesses.  It is instead content to determine whether the code
1985 violates the compiler's assumptions, which would render the ultimate
1986 outcome undefined.
1987
1988 In technical terms, the compiler is allowed to assume that when the
1989 program executes, there will not be any data races.  A "data race"
1990 occurs when two conflicting memory accesses execute concurrently;
1991 two memory accesses "conflict" if:
1992
1993         they access the same location,
1994
1995         they occur on different CPUs (or in different threads on the
1996         same CPU),
1997
1998         at least one of them is a plain access,
1999
2000         and at least one of them is a store.
2001
2002 The LKMM tries to determine whether a program contains two conflicting
2003 accesses which may execute concurrently; if it does then the LKMM says
2004 there is a potential data race and makes no predictions about the
2005 program's outcome.
2006
2007 Determining whether two accesses conflict is easy; you can see that
2008 all the concepts involved in the definition above are already part of
2009 the memory model.  The hard part is telling whether they may execute
2010 concurrently.  The LKMM takes a conservative attitude, assuming that
2011 accesses may be concurrent unless it can prove they cannot.
2012
2013 If two memory accesses aren't concurrent then one must execute before
2014 the other.  Therefore the LKMM decides two accesses aren't concurrent
2015 if they can be connected by a sequence of hb, pb, and rb links
2016 (together referred to as xb, for "executes before").  However, there
2017 are two complicating factors.
2018
2019 If X is a load and X executes before a store Y, then indeed there is
2020 no danger of X and Y being concurrent.  After all, Y can't have any
2021 effect on the value obtained by X until the memory subsystem has
2022 propagated Y from its own CPU to X's CPU, which won't happen until
2023 some time after Y executes and thus after X executes.  But if X is a
2024 store, then even if X executes before Y it is still possible that X
2025 will propagate to Y's CPU just as Y is executing.  In such a case X
2026 could very well interfere somehow with Y, and we would have to
2027 consider X and Y to be concurrent.
2028
2029 Therefore when X is a store, for X and Y to be non-concurrent the LKMM
2030 requires not only that X must execute before Y but also that X must
2031 propagate to Y's CPU before Y executes.  (Or vice versa, of course, if
2032 Y executes before X -- then Y must propagate to X's CPU before X
2033 executes if Y is a store.)  This is expressed by the visibility
2034 relation (vis), where X ->vis Y is defined to hold if there is an
2035 intermediate event Z such that:
2036
2037         X is connected to Z by a possibly empty sequence of
2038         cumul-fence links followed by an optional rfe link (if none of
2039         these links are present, X and Z are the same event),
2040
2041 and either:
2042
2043         Z is connected to Y by a strong-fence link followed by a
2044         possibly empty sequence of xb links,
2045
2046 or:
2047
2048         Z is on the same CPU as Y and is connected to Y by a possibly
2049         empty sequence of xb links (again, if the sequence is empty it
2050         means Z and Y are the same event).
2051
2052 The motivations behind this definition are straightforward:
2053
2054         cumul-fence memory barriers force stores that are po-before
2055         the barrier to propagate to other CPUs before stores that are
2056         po-after the barrier.
2057
2058         An rfe link from an event W to an event R says that R reads
2059         from W, which certainly means that W must have propagated to
2060         R's CPU before R executed.
2061
2062         strong-fence memory barriers force stores that are po-before
2063         the barrier, or that propagate to the barrier's CPU before the
2064         barrier executes, to propagate to all CPUs before any events
2065         po-after the barrier can execute.
2066
2067 To see how this works out in practice, consider our old friend, the MP
2068 pattern (with fences and statement labels, but without the conditional
2069 test):
2070
2071         int buf = 0, flag = 0;
2072
2073         P0()
2074         {
2075                 X: WRITE_ONCE(buf, 1);
2076                    smp_wmb();
2077                 W: WRITE_ONCE(flag, 1);
2078         }
2079
2080         P1()
2081         {
2082                 int r1;
2083                 int r2 = 0;
2084
2085                 Z: r1 = READ_ONCE(flag);
2086                    smp_rmb();
2087                 Y: r2 = READ_ONCE(buf);
2088         }
2089
2090 The smp_wmb() memory barrier gives a cumul-fence link from X to W, and
2091 assuming r1 = 1 at the end, there is an rfe link from W to Z.  This
2092 means that the store to buf must propagate from P0 to P1 before Z
2093 executes.  Next, Z and Y are on the same CPU and the smp_rmb() fence
2094 provides an xb link from Z to Y (i.e., it forces Z to execute before
2095 Y).  Therefore we have X ->vis Y: X must propagate to Y's CPU before Y
2096 executes.
2097
2098 The second complicating factor mentioned above arises from the fact
2099 that when we are considering data races, some of the memory accesses
2100 are plain.  Now, although we have not said so explicitly, up to this
2101 point most of the relations defined by the LKMM (ppo, hb, prop,
2102 cumul-fence, pb, and so on -- including vis) apply only to marked
2103 accesses.
2104
2105 There are good reasons for this restriction.  The compiler is not
2106 allowed to apply fancy transformations to marked accesses, and
2107 consequently each such access in the source code corresponds more or
2108 less directly to a single machine instruction in the object code.  But
2109 plain accesses are a different story; the compiler may combine them,
2110 split them up, duplicate them, eliminate them, invent new ones, and
2111 who knows what else.  Seeing a plain access in the source code tells
2112 you almost nothing about what machine instructions will end up in the
2113 object code.
2114
2115 Fortunately, the compiler isn't completely free; it is subject to some
2116 limitations.  For one, it is not allowed to introduce a data race into
2117 the object code if the source code does not already contain a data
2118 race (if it could, memory models would be useless and no multithreaded
2119 code would be safe!).  For another, it cannot move a plain access past
2120 a compiler barrier.
2121
2122 A compiler barrier is a kind of fence, but as the name implies, it
2123 only affects the compiler; it does not necessarily have any effect on
2124 how instructions are executed by the CPU.  In Linux kernel source
2125 code, the barrier() function is a compiler barrier.  It doesn't give
2126 rise directly to any machine instructions in the object code; rather,
2127 it affects how the compiler generates the rest of the object code.
2128 Given source code like this:
2129
2130         ... some memory accesses ...
2131         barrier();
2132         ... some other memory accesses ...
2133
2134 the barrier() function ensures that the machine instructions
2135 corresponding to the first group of accesses will all end po-before
2136 any machine instructions corresponding to the second group of accesses
2137 -- even if some of the accesses are plain.  (Of course, the CPU may
2138 then execute some of those accesses out of program order, but we
2139 already know how to deal with such issues.)  Without the barrier()
2140 there would be no such guarantee; the two groups of accesses could be
2141 intermingled or even reversed in the object code.
2142
2143 The LKMM doesn't say much about the barrier() function, but it does
2144 require that all fences are also compiler barriers.  In addition, it
2145 requires that the ordering properties of memory barriers such as
2146 smp_rmb() or smp_store_release() apply to plain accesses as well as to
2147 marked accesses.
2148
2149 This is the key to analyzing data races.  Consider the MP pattern
2150 again, now using plain accesses for buf:
2151
2152         int buf = 0, flag = 0;
2153
2154         P0()
2155         {
2156                 U: buf = 1;
2157                    smp_wmb();
2158                 X: WRITE_ONCE(flag, 1);
2159         }
2160
2161         P1()
2162         {
2163                 int r1;
2164                 int r2 = 0;
2165
2166                 Y: r1 = READ_ONCE(flag);
2167                    if (r1) {
2168                            smp_rmb();
2169                         V: r2 = buf;
2170                    }
2171         }
2172
2173 This program does not contain a data race.  Although the U and V
2174 accesses conflict, the LKMM can prove they are not concurrent as
2175 follows:
2176
2177         The smp_wmb() fence in P0 is both a compiler barrier and a
2178         cumul-fence.  It guarantees that no matter what hash of
2179         machine instructions the compiler generates for the plain
2180         access U, all those instructions will be po-before the fence.
2181         Consequently U's store to buf, no matter how it is carried out
2182         at the machine level, must propagate to P1 before X's store to
2183         flag does.
2184
2185         X and Y are both marked accesses.  Hence an rfe link from X to
2186         Y is a valid indicator that X propagated to P1 before Y
2187         executed, i.e., X ->vis Y.  (And if there is no rfe link then
2188         r1 will be 0, so V will not be executed and ipso facto won't
2189         race with U.)
2190
2191         The smp_rmb() fence in P1 is a compiler barrier as well as a
2192         fence.  It guarantees that all the machine-level instructions
2193         corresponding to the access V will be po-after the fence, and
2194         therefore any loads among those instructions will execute
2195         after the fence does and hence after Y does.
2196
2197 Thus U's store to buf is forced to propagate to P1 before V's load
2198 executes (assuming V does execute), ruling out the possibility of a
2199 data race between them.
2200
2201 This analysis illustrates how the LKMM deals with plain accesses in
2202 general.  Suppose R is a plain load and we want to show that R
2203 executes before some marked access E.  We can do this by finding a
2204 marked access X such that R and X are ordered by a suitable fence and
2205 X ->xb* E.  If E was also a plain access, we would also look for a
2206 marked access Y such that X ->xb* Y, and Y and E are ordered by a
2207 fence.  We describe this arrangement by saying that R is
2208 "post-bounded" by X and E is "pre-bounded" by Y.
2209
2210 In fact, we go one step further: Since R is a read, we say that R is
2211 "r-post-bounded" by X.  Similarly, E would be "r-pre-bounded" or
2212 "w-pre-bounded" by Y, depending on whether E was a store or a load.
2213 This distinction is needed because some fences affect only loads
2214 (i.e., smp_rmb()) and some affect only stores (smp_wmb()); otherwise
2215 the two types of bounds are the same.  And as a degenerate case, we
2216 say that a marked access pre-bounds and post-bounds itself (e.g., if R
2217 above were a marked load then X could simply be taken to be R itself.)
2218
2219 The need to distinguish between r- and w-bounding raises yet another
2220 issue.  When the source code contains a plain store, the compiler is
2221 allowed to put plain loads of the same location into the object code.
2222 For example, given the source code:
2223
2224         x = 1;
2225
2226 the compiler is theoretically allowed to generate object code that
2227 looks like:
2228
2229         if (x != 1)
2230                 x = 1;
2231
2232 thereby adding a load (and possibly replacing the store entirely).
2233 For this reason, whenever the LKMM requires a plain store to be
2234 w-pre-bounded or w-post-bounded by a marked access, it also requires
2235 the store to be r-pre-bounded or r-post-bounded, so as to handle cases
2236 where the compiler adds a load.
2237
2238 (This may be overly cautious.  We don't know of any examples where a
2239 compiler has augmented a store with a load in this fashion, and the
2240 Linux kernel developers would probably fight pretty hard to change a
2241 compiler if it ever did this.  Still, better safe than sorry.)
2242
2243 Incidentally, the other tranformation -- augmenting a plain load by
2244 adding in a store to the same location -- is not allowed.  This is
2245 because the compiler cannot know whether any other CPUs might perform
2246 a concurrent load from that location.  Two concurrent loads don't
2247 constitute a race (they can't interfere with each other), but a store
2248 does race with a concurrent load.  Thus adding a store might create a
2249 data race where one was not already present in the source code,
2250 something the compiler is forbidden to do.  Augmenting a store with a
2251 load, on the other hand, is acceptable because doing so won't create a
2252 data race unless one already existed.
2253
2254 The LKMM includes a second way to pre-bound plain accesses, in
2255 addition to fences: an address dependency from a marked load.  That
2256 is, in the sequence:
2257
2258         p = READ_ONCE(ptr);
2259         r = *p;
2260
2261 the LKMM says that the marked load of ptr pre-bounds the plain load of
2262 *p; the marked load must execute before any of the machine
2263 instructions corresponding to the plain load.  This is a reasonable
2264 stipulation, since after all, the CPU can't perform the load of *p
2265 until it knows what value p will hold.  Furthermore, without some
2266 assumption like this one, some usages typical of RCU would count as
2267 data races.  For example:
2268
2269         int a = 1, b;
2270         int *ptr = &a;
2271
2272         P0()
2273         {
2274                 b = 2;
2275                 rcu_assign_pointer(ptr, &b);
2276         }
2277
2278         P1()
2279         {
2280                 int *p;
2281                 int r;
2282
2283                 rcu_read_lock();
2284                 p = rcu_dereference(ptr);
2285                 r = *p;
2286                 rcu_read_unlock();
2287         }
2288
2289 (In this example the rcu_read_lock() and rcu_read_unlock() calls don't
2290 really do anything, because there aren't any grace periods.  They are
2291 included merely for the sake of good form; typically P0 would call
2292 synchronize_rcu() somewhere after the rcu_assign_pointer().)
2293
2294 rcu_assign_pointer() performs a store-release, so the plain store to b
2295 is definitely w-post-bounded before the store to ptr, and the two
2296 stores will propagate to P1 in that order.  However, rcu_dereference()
2297 is only equivalent to READ_ONCE().  While it is a marked access, it is
2298 not a fence or compiler barrier.  Hence the only guarantee we have
2299 that the load of ptr in P1 is r-pre-bounded before the load of *p
2300 (thus avoiding a race) is the assumption about address dependencies.
2301
2302 This is a situation where the compiler can undermine the memory model,
2303 and a certain amount of care is required when programming constructs
2304 like this one.  In particular, comparisons between the pointer and
2305 other known addresses can cause trouble.  If you have something like:
2306
2307         p = rcu_dereference(ptr);
2308         if (p == &x)
2309                 r = *p;
2310
2311 then the compiler just might generate object code resembling:
2312
2313         p = rcu_dereference(ptr);
2314         if (p == &x)
2315                 r = x;
2316
2317 or even:
2318
2319         rtemp = x;
2320         p = rcu_dereference(ptr);
2321         if (p == &x)
2322                 r = rtemp;
2323
2324 which would invalidate the memory model's assumption, since the CPU
2325 could now perform the load of x before the load of ptr (there might be
2326 a control dependency but no address dependency at the machine level).
2327
2328 Finally, it turns out there is a situation in which a plain write does
2329 not need to be w-post-bounded: when it is separated from the
2330 conflicting access by a fence.  At first glance this may seem
2331 impossible.  After all, to be conflicting the second access has to be
2332 on a different CPU from the first, and fences don't link events on
2333 different CPUs.  Well, normal fences don't -- but rcu-fence can!
2334 Here's an example:
2335
2336         int x, y;
2337
2338         P0()
2339         {
2340                 WRITE_ONCE(x, 1);
2341                 synchronize_rcu();
2342                 y = 3;
2343         }
2344
2345         P1()
2346         {
2347                 rcu_read_lock();
2348                 if (READ_ONCE(x) == 0)
2349                         y = 2;
2350                 rcu_read_unlock();
2351         }
2352
2353 Do the plain stores to y race?  Clearly not if P1 reads a non-zero
2354 value for x, so let's assume the READ_ONCE(x) does obtain 0.  This
2355 means that the read-side critical section in P1 must finish executing
2356 before the grace period in P0 does, because RCU's Grace-Period
2357 Guarantee says that otherwise P0's store to x would have propagated to
2358 P1 before the critical section started and so would have been visible
2359 to the READ_ONCE().  (Another way of putting it is that the fre link
2360 from the READ_ONCE() to the WRITE_ONCE() gives rise to an rcu-link
2361 between those two events.)
2362
2363 This means there is an rcu-fence link from P1's "y = 2" store to P0's
2364 "y = 3" store, and consequently the first must propagate from P1 to P0
2365 before the second can execute.  Therefore the two stores cannot be
2366 concurrent and there is no race, even though P1's plain store to y
2367 isn't w-post-bounded by any marked accesses.
2368
2369 Putting all this material together yields the following picture.  For
2370 two conflicting stores W and W', where W ->co W', the LKMM says the
2371 stores don't race if W can be linked to W' by a
2372
2373         w-post-bounded ; vis ; w-pre-bounded
2374
2375 sequence.  If W is plain then they also have to be linked by an
2376
2377         r-post-bounded ; xb* ; w-pre-bounded
2378
2379 sequence, and if W' is plain then they also have to be linked by a
2380
2381         w-post-bounded ; vis ; r-pre-bounded
2382
2383 sequence.  For a conflicting load R and store W, the LKMM says the two
2384 accesses don't race if R can be linked to W by an
2385
2386         r-post-bounded ; xb* ; w-pre-bounded
2387
2388 sequence or if W can be linked to R by a
2389
2390         w-post-bounded ; vis ; r-pre-bounded
2391
2392 sequence.  For the cases involving a vis link, the LKMM also accepts
2393 sequences in which W is linked to W' or R by a
2394
2395         strong-fence ; xb* ; {w and/or r}-pre-bounded
2396
2397 sequence with no post-bounding, and in every case the LKMM also allows
2398 the link simply to be a fence with no bounding at all.  If no sequence
2399 of the appropriate sort exists, the LKMM says that the accesses race.
2400
2401 There is one more part of the LKMM related to plain accesses (although
2402 not to data races) we should discuss.  Recall that many relations such
2403 as hb are limited to marked accesses only.  As a result, the
2404 happens-before, propagates-before, and rcu axioms (which state that
2405 various relation must not contain a cycle) doesn't apply to plain
2406 accesses.  Nevertheless, we do want to rule out such cycles, because
2407 they don't make sense even for plain accesses.
2408
2409 To this end, the LKMM imposes three extra restrictions, together
2410 called the "plain-coherence" axiom because of their resemblance to the
2411 rules used by the operational model to ensure cache coherence (that
2412 is, the rules governing the memory subsystem's choice of a store to
2413 satisfy a load request and its determination of where a store will
2414 fall in the coherence order):
2415
2416         If R and W conflict and it is possible to link R to W by one
2417         of the xb* sequences listed above, then W ->rfe R is not
2418         allowed (i.e., a load cannot read from a store that it
2419         executes before, even if one or both is plain).
2420
2421         If W and R conflict and it is possible to link W to R by one
2422         of the vis sequences listed above, then R ->fre W is not
2423         allowed (i.e., if a store is visible to a load then the load
2424         must read from that store or one coherence-after it).
2425
2426         If W and W' conflict and it is possible to link W to W' by one
2427         of the vis sequences listed above, then W' ->co W is not
2428         allowed (i.e., if one store is visible to a second then the
2429         second must come after the first in the coherence order).
2430
2431 This is the extent to which the LKMM deals with plain accesses.
2432 Perhaps it could say more (for example, plain accesses might
2433 contribute to the ppo relation), but at the moment it seems that this
2434 minimal, conservative approach is good enough.
2435
2436
2437 ODDS AND ENDS
2438 -------------
2439
2440 This section covers material that didn't quite fit anywhere in the
2441 earlier sections.
2442
2443 The descriptions in this document don't always match the formal
2444 version of the LKMM exactly.  For example, the actual formal
2445 definition of the prop relation makes the initial coe or fre part
2446 optional, and it doesn't require the events linked by the relation to
2447 be on the same CPU.  These differences are very unimportant; indeed,
2448 instances where the coe/fre part of prop is missing are of no interest
2449 because all the other parts (fences and rfe) are already included in
2450 hb anyway, and where the formal model adds prop into hb, it includes
2451 an explicit requirement that the events being linked are on the same
2452 CPU.
2453
2454 Another minor difference has to do with events that are both memory
2455 accesses and fences, such as those corresponding to smp_load_acquire()
2456 calls.  In the formal model, these events aren't actually both reads
2457 and fences; rather, they are read events with an annotation marking
2458 them as acquires.  (Or write events annotated as releases, in the case
2459 smp_store_release().)  The final effect is the same.
2460
2461 Although we didn't mention it above, the instruction execution
2462 ordering provided by the smp_rmb() fence doesn't apply to read events
2463 that are part of a non-value-returning atomic update.  For instance,
2464 given:
2465
2466         atomic_inc(&x);
2467         smp_rmb();
2468         r1 = READ_ONCE(y);
2469
2470 it is not guaranteed that the load from y will execute after the
2471 update to x.  This is because the ARMv8 architecture allows
2472 non-value-returning atomic operations effectively to be executed off
2473 the CPU.  Basically, the CPU tells the memory subsystem to increment
2474 x, and then the increment is carried out by the memory hardware with
2475 no further involvement from the CPU.  Since the CPU doesn't ever read
2476 the value of x, there is nothing for the smp_rmb() fence to act on.
2477
2478 The LKMM defines a few extra synchronization operations in terms of
2479 things we have already covered.  In particular, rcu_dereference() is
2480 treated as READ_ONCE() and rcu_assign_pointer() is treated as
2481 smp_store_release() -- which is basically how the Linux kernel treats
2482 them.
2483
2484 Although we said that plain accesses are not linked by the ppo
2485 relation, they do contribute to it indirectly.  Namely, when there is
2486 an address dependency from a marked load R to a plain store W,
2487 followed by smp_wmb() and then a marked store W', the LKMM creates a
2488 ppo link from R to W'.  The reasoning behind this is perhaps a little
2489 shaky, but essentially it says there is no way to generate object code
2490 for this source code in which W' could execute before R.  Just as with
2491 pre-bounding by address dependencies, it is possible for the compiler
2492 to undermine this relation if sufficient care is not taken.
2493
2494 There are a few oddball fences which need special treatment:
2495 smp_mb__before_atomic(), smp_mb__after_atomic(), and
2496 smp_mb__after_spinlock().  The LKMM uses fence events with special
2497 annotations for them; they act as strong fences just like smp_mb()
2498 except for the sets of events that they order.  Instead of ordering
2499 all po-earlier events against all po-later events, as smp_mb() does,
2500 they behave as follows:
2501
2502         smp_mb__before_atomic() orders all po-earlier events against
2503         po-later atomic updates and the events following them;
2504
2505         smp_mb__after_atomic() orders po-earlier atomic updates and
2506         the events preceding them against all po-later events;
2507
2508         smp_mb_after_spinlock() orders po-earlier lock acquisition
2509         events and the events preceding them against all po-later
2510         events.
2511
2512 Interestingly, RCU and locking each introduce the possibility of
2513 deadlock.  When faced with code sequences such as:
2514
2515         spin_lock(&s);
2516         spin_lock(&s);
2517         spin_unlock(&s);
2518         spin_unlock(&s);
2519
2520 or:
2521
2522         rcu_read_lock();
2523         synchronize_rcu();
2524         rcu_read_unlock();
2525
2526 what does the LKMM have to say?  Answer: It says there are no allowed
2527 executions at all, which makes sense.  But this can also lead to
2528 misleading results, because if a piece of code has multiple possible
2529 executions, some of which deadlock, the model will report only on the
2530 non-deadlocking executions.  For example:
2531
2532         int x, y;
2533
2534         P0()
2535         {
2536                 int r0;
2537
2538                 WRITE_ONCE(x, 1);
2539                 r0 = READ_ONCE(y);
2540         }
2541
2542         P1()
2543         {
2544                 rcu_read_lock();
2545                 if (READ_ONCE(x) > 0) {
2546                         WRITE_ONCE(y, 36);
2547                         synchronize_rcu();
2548                 }
2549                 rcu_read_unlock();
2550         }
2551
2552 Is it possible to end up with r0 = 36 at the end?  The LKMM will tell
2553 you it is not, but the model won't mention that this is because P1
2554 will self-deadlock in the executions where it stores 36 in y.