]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/evsel.c
PM / QoS: Remove global notifiers
[linux.git] / tools / perf / util / evsel.c
1 /*
2  * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
3  *
4  * Parts came from builtin-{top,stat,record}.c, see those files for further
5  * copyright notes.
6  *
7  * Released under the GPL v2. (and only v2, not any later version)
8  */
9
10 #include <byteswap.h>
11 #include <linux/bitops.h>
12 #include <api/fs/tracing_path.h>
13 #include <traceevent/event-parse.h>
14 #include <linux/hw_breakpoint.h>
15 #include <linux/perf_event.h>
16 #include <linux/err.h>
17 #include <sys/resource.h>
18 #include "asm/bug.h"
19 #include "callchain.h"
20 #include "cgroup.h"
21 #include "evsel.h"
22 #include "evlist.h"
23 #include "util.h"
24 #include "cpumap.h"
25 #include "thread_map.h"
26 #include "target.h"
27 #include "perf_regs.h"
28 #include "debug.h"
29 #include "trace-event.h"
30 #include "stat.h"
31 #include "util/parse-branch-options.h"
32
33 static struct {
34         bool sample_id_all;
35         bool exclude_guest;
36         bool mmap2;
37         bool cloexec;
38         bool clockid;
39         bool clockid_wrong;
40         bool lbr_flags;
41         bool write_backward;
42 } perf_missing_features;
43
44 static clockid_t clockid;
45
46 static int perf_evsel__no_extra_init(struct perf_evsel *evsel __maybe_unused)
47 {
48         return 0;
49 }
50
51 static void perf_evsel__no_extra_fini(struct perf_evsel *evsel __maybe_unused)
52 {
53 }
54
55 static struct {
56         size_t  size;
57         int     (*init)(struct perf_evsel *evsel);
58         void    (*fini)(struct perf_evsel *evsel);
59 } perf_evsel__object = {
60         .size = sizeof(struct perf_evsel),
61         .init = perf_evsel__no_extra_init,
62         .fini = perf_evsel__no_extra_fini,
63 };
64
65 int perf_evsel__object_config(size_t object_size,
66                               int (*init)(struct perf_evsel *evsel),
67                               void (*fini)(struct perf_evsel *evsel))
68 {
69
70         if (object_size == 0)
71                 goto set_methods;
72
73         if (perf_evsel__object.size > object_size)
74                 return -EINVAL;
75
76         perf_evsel__object.size = object_size;
77
78 set_methods:
79         if (init != NULL)
80                 perf_evsel__object.init = init;
81
82         if (fini != NULL)
83                 perf_evsel__object.fini = fini;
84
85         return 0;
86 }
87
88 #define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
89
90 int __perf_evsel__sample_size(u64 sample_type)
91 {
92         u64 mask = sample_type & PERF_SAMPLE_MASK;
93         int size = 0;
94         int i;
95
96         for (i = 0; i < 64; i++) {
97                 if (mask & (1ULL << i))
98                         size++;
99         }
100
101         size *= sizeof(u64);
102
103         return size;
104 }
105
106 /**
107  * __perf_evsel__calc_id_pos - calculate id_pos.
108  * @sample_type: sample type
109  *
110  * This function returns the position of the event id (PERF_SAMPLE_ID or
111  * PERF_SAMPLE_IDENTIFIER) in a sample event i.e. in the array of struct
112  * sample_event.
113  */
114 static int __perf_evsel__calc_id_pos(u64 sample_type)
115 {
116         int idx = 0;
117
118         if (sample_type & PERF_SAMPLE_IDENTIFIER)
119                 return 0;
120
121         if (!(sample_type & PERF_SAMPLE_ID))
122                 return -1;
123
124         if (sample_type & PERF_SAMPLE_IP)
125                 idx += 1;
126
127         if (sample_type & PERF_SAMPLE_TID)
128                 idx += 1;
129
130         if (sample_type & PERF_SAMPLE_TIME)
131                 idx += 1;
132
133         if (sample_type & PERF_SAMPLE_ADDR)
134                 idx += 1;
135
136         return idx;
137 }
138
139 /**
140  * __perf_evsel__calc_is_pos - calculate is_pos.
141  * @sample_type: sample type
142  *
143  * This function returns the position (counting backwards) of the event id
144  * (PERF_SAMPLE_ID or PERF_SAMPLE_IDENTIFIER) in a non-sample event i.e. if
145  * sample_id_all is used there is an id sample appended to non-sample events.
146  */
147 static int __perf_evsel__calc_is_pos(u64 sample_type)
148 {
149         int idx = 1;
150
151         if (sample_type & PERF_SAMPLE_IDENTIFIER)
152                 return 1;
153
154         if (!(sample_type & PERF_SAMPLE_ID))
155                 return -1;
156
157         if (sample_type & PERF_SAMPLE_CPU)
158                 idx += 1;
159
160         if (sample_type & PERF_SAMPLE_STREAM_ID)
161                 idx += 1;
162
163         return idx;
164 }
165
166 void perf_evsel__calc_id_pos(struct perf_evsel *evsel)
167 {
168         evsel->id_pos = __perf_evsel__calc_id_pos(evsel->attr.sample_type);
169         evsel->is_pos = __perf_evsel__calc_is_pos(evsel->attr.sample_type);
170 }
171
172 void __perf_evsel__set_sample_bit(struct perf_evsel *evsel,
173                                   enum perf_event_sample_format bit)
174 {
175         if (!(evsel->attr.sample_type & bit)) {
176                 evsel->attr.sample_type |= bit;
177                 evsel->sample_size += sizeof(u64);
178                 perf_evsel__calc_id_pos(evsel);
179         }
180 }
181
182 void __perf_evsel__reset_sample_bit(struct perf_evsel *evsel,
183                                     enum perf_event_sample_format bit)
184 {
185         if (evsel->attr.sample_type & bit) {
186                 evsel->attr.sample_type &= ~bit;
187                 evsel->sample_size -= sizeof(u64);
188                 perf_evsel__calc_id_pos(evsel);
189         }
190 }
191
192 void perf_evsel__set_sample_id(struct perf_evsel *evsel,
193                                bool can_sample_identifier)
194 {
195         if (can_sample_identifier) {
196                 perf_evsel__reset_sample_bit(evsel, ID);
197                 perf_evsel__set_sample_bit(evsel, IDENTIFIER);
198         } else {
199                 perf_evsel__set_sample_bit(evsel, ID);
200         }
201         evsel->attr.read_format |= PERF_FORMAT_ID;
202 }
203
204 /**
205  * perf_evsel__is_function_event - Return whether given evsel is a function
206  * trace event
207  *
208  * @evsel - evsel selector to be tested
209  *
210  * Return %true if event is function trace event
211  */
212 bool perf_evsel__is_function_event(struct perf_evsel *evsel)
213 {
214 #define FUNCTION_EVENT "ftrace:function"
215
216         return evsel->name &&
217                !strncmp(FUNCTION_EVENT, evsel->name, sizeof(FUNCTION_EVENT));
218
219 #undef FUNCTION_EVENT
220 }
221
222 void perf_evsel__init(struct perf_evsel *evsel,
223                       struct perf_event_attr *attr, int idx)
224 {
225         evsel->idx         = idx;
226         evsel->tracking    = !idx;
227         evsel->attr        = *attr;
228         evsel->leader      = evsel;
229         evsel->unit        = "";
230         evsel->scale       = 1.0;
231         evsel->evlist      = NULL;
232         evsel->bpf_fd      = -1;
233         INIT_LIST_HEAD(&evsel->node);
234         INIT_LIST_HEAD(&evsel->config_terms);
235         perf_evsel__object.init(evsel);
236         evsel->sample_size = __perf_evsel__sample_size(attr->sample_type);
237         perf_evsel__calc_id_pos(evsel);
238         evsel->cmdline_group_boundary = false;
239 }
240
241 struct perf_evsel *perf_evsel__new_idx(struct perf_event_attr *attr, int idx)
242 {
243         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
244
245         if (evsel != NULL)
246                 perf_evsel__init(evsel, attr, idx);
247
248         if (perf_evsel__is_bpf_output(evsel)) {
249                 evsel->attr.sample_type |= (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
250                                             PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
251                 evsel->attr.sample_period = 1;
252         }
253
254         return evsel;
255 }
256
257 struct perf_evsel *perf_evsel__new_cycles(void)
258 {
259         struct perf_event_attr attr = {
260                 .type   = PERF_TYPE_HARDWARE,
261                 .config = PERF_COUNT_HW_CPU_CYCLES,
262         };
263         struct perf_evsel *evsel;
264
265         event_attr_init(&attr);
266
267         perf_event_attr__set_max_precise_ip(&attr);
268
269         evsel = perf_evsel__new(&attr);
270         if (evsel == NULL)
271                 goto out;
272
273         /* use asprintf() because free(evsel) assumes name is allocated */
274         if (asprintf(&evsel->name, "cycles%.*s",
275                      attr.precise_ip ? attr.precise_ip + 1 : 0, ":ppp") < 0)
276                 goto error_free;
277 out:
278         return evsel;
279 error_free:
280         perf_evsel__delete(evsel);
281         evsel = NULL;
282         goto out;
283 }
284
285 /*
286  * Returns pointer with encoded error via <linux/err.h> interface.
287  */
288 struct perf_evsel *perf_evsel__newtp_idx(const char *sys, const char *name, int idx)
289 {
290         struct perf_evsel *evsel = zalloc(perf_evsel__object.size);
291         int err = -ENOMEM;
292
293         if (evsel == NULL) {
294                 goto out_err;
295         } else {
296                 struct perf_event_attr attr = {
297                         .type          = PERF_TYPE_TRACEPOINT,
298                         .sample_type   = (PERF_SAMPLE_RAW | PERF_SAMPLE_TIME |
299                                           PERF_SAMPLE_CPU | PERF_SAMPLE_PERIOD),
300                 };
301
302                 if (asprintf(&evsel->name, "%s:%s", sys, name) < 0)
303                         goto out_free;
304
305                 evsel->tp_format = trace_event__tp_format(sys, name);
306                 if (IS_ERR(evsel->tp_format)) {
307                         err = PTR_ERR(evsel->tp_format);
308                         goto out_free;
309                 }
310
311                 event_attr_init(&attr);
312                 attr.config = evsel->tp_format->id;
313                 attr.sample_period = 1;
314                 perf_evsel__init(evsel, &attr, idx);
315         }
316
317         return evsel;
318
319 out_free:
320         zfree(&evsel->name);
321         free(evsel);
322 out_err:
323         return ERR_PTR(err);
324 }
325
326 const char *perf_evsel__hw_names[PERF_COUNT_HW_MAX] = {
327         "cycles",
328         "instructions",
329         "cache-references",
330         "cache-misses",
331         "branches",
332         "branch-misses",
333         "bus-cycles",
334         "stalled-cycles-frontend",
335         "stalled-cycles-backend",
336         "ref-cycles",
337 };
338
339 static const char *__perf_evsel__hw_name(u64 config)
340 {
341         if (config < PERF_COUNT_HW_MAX && perf_evsel__hw_names[config])
342                 return perf_evsel__hw_names[config];
343
344         return "unknown-hardware";
345 }
346
347 static int perf_evsel__add_modifiers(struct perf_evsel *evsel, char *bf, size_t size)
348 {
349         int colon = 0, r = 0;
350         struct perf_event_attr *attr = &evsel->attr;
351         bool exclude_guest_default = false;
352
353 #define MOD_PRINT(context, mod) do {                                    \
354                 if (!attr->exclude_##context) {                         \
355                         if (!colon) colon = ++r;                        \
356                         r += scnprintf(bf + r, size - r, "%c", mod);    \
357                 } } while(0)
358
359         if (attr->exclude_kernel || attr->exclude_user || attr->exclude_hv) {
360                 MOD_PRINT(kernel, 'k');
361                 MOD_PRINT(user, 'u');
362                 MOD_PRINT(hv, 'h');
363                 exclude_guest_default = true;
364         }
365
366         if (attr->precise_ip) {
367                 if (!colon)
368                         colon = ++r;
369                 r += scnprintf(bf + r, size - r, "%.*s", attr->precise_ip, "ppp");
370                 exclude_guest_default = true;
371         }
372
373         if (attr->exclude_host || attr->exclude_guest == exclude_guest_default) {
374                 MOD_PRINT(host, 'H');
375                 MOD_PRINT(guest, 'G');
376         }
377 #undef MOD_PRINT
378         if (colon)
379                 bf[colon - 1] = ':';
380         return r;
381 }
382
383 static int perf_evsel__hw_name(struct perf_evsel *evsel, char *bf, size_t size)
384 {
385         int r = scnprintf(bf, size, "%s", __perf_evsel__hw_name(evsel->attr.config));
386         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
387 }
388
389 const char *perf_evsel__sw_names[PERF_COUNT_SW_MAX] = {
390         "cpu-clock",
391         "task-clock",
392         "page-faults",
393         "context-switches",
394         "cpu-migrations",
395         "minor-faults",
396         "major-faults",
397         "alignment-faults",
398         "emulation-faults",
399         "dummy",
400 };
401
402 static const char *__perf_evsel__sw_name(u64 config)
403 {
404         if (config < PERF_COUNT_SW_MAX && perf_evsel__sw_names[config])
405                 return perf_evsel__sw_names[config];
406         return "unknown-software";
407 }
408
409 static int perf_evsel__sw_name(struct perf_evsel *evsel, char *bf, size_t size)
410 {
411         int r = scnprintf(bf, size, "%s", __perf_evsel__sw_name(evsel->attr.config));
412         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
413 }
414
415 static int __perf_evsel__bp_name(char *bf, size_t size, u64 addr, u64 type)
416 {
417         int r;
418
419         r = scnprintf(bf, size, "mem:0x%" PRIx64 ":", addr);
420
421         if (type & HW_BREAKPOINT_R)
422                 r += scnprintf(bf + r, size - r, "r");
423
424         if (type & HW_BREAKPOINT_W)
425                 r += scnprintf(bf + r, size - r, "w");
426
427         if (type & HW_BREAKPOINT_X)
428                 r += scnprintf(bf + r, size - r, "x");
429
430         return r;
431 }
432
433 static int perf_evsel__bp_name(struct perf_evsel *evsel, char *bf, size_t size)
434 {
435         struct perf_event_attr *attr = &evsel->attr;
436         int r = __perf_evsel__bp_name(bf, size, attr->bp_addr, attr->bp_type);
437         return r + perf_evsel__add_modifiers(evsel, bf + r, size - r);
438 }
439
440 const char *perf_evsel__hw_cache[PERF_COUNT_HW_CACHE_MAX]
441                                 [PERF_EVSEL__MAX_ALIASES] = {
442  { "L1-dcache", "l1-d",         "l1d",          "L1-data",              },
443  { "L1-icache", "l1-i",         "l1i",          "L1-instruction",       },
444  { "LLC",       "L2",                                                   },
445  { "dTLB",      "d-tlb",        "Data-TLB",                             },
446  { "iTLB",      "i-tlb",        "Instruction-TLB",                      },
447  { "branch",    "branches",     "bpu",          "btb",          "bpc",  },
448  { "node",                                                              },
449 };
450
451 const char *perf_evsel__hw_cache_op[PERF_COUNT_HW_CACHE_OP_MAX]
452                                    [PERF_EVSEL__MAX_ALIASES] = {
453  { "load",      "loads",        "read",                                 },
454  { "store",     "stores",       "write",                                },
455  { "prefetch",  "prefetches",   "speculative-read", "speculative-load", },
456 };
457
458 const char *perf_evsel__hw_cache_result[PERF_COUNT_HW_CACHE_RESULT_MAX]
459                                        [PERF_EVSEL__MAX_ALIASES] = {
460  { "refs",      "Reference",    "ops",          "access",               },
461  { "misses",    "miss",                                                 },
462 };
463
464 #define C(x)            PERF_COUNT_HW_CACHE_##x
465 #define CACHE_READ      (1 << C(OP_READ))
466 #define CACHE_WRITE     (1 << C(OP_WRITE))
467 #define CACHE_PREFETCH  (1 << C(OP_PREFETCH))
468 #define COP(x)          (1 << x)
469
470 /*
471  * cache operartion stat
472  * L1I : Read and prefetch only
473  * ITLB and BPU : Read-only
474  */
475 static unsigned long perf_evsel__hw_cache_stat[C(MAX)] = {
476  [C(L1D)]       = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
477  [C(L1I)]       = (CACHE_READ | CACHE_PREFETCH),
478  [C(LL)]        = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
479  [C(DTLB)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
480  [C(ITLB)]      = (CACHE_READ),
481  [C(BPU)]       = (CACHE_READ),
482  [C(NODE)]      = (CACHE_READ | CACHE_WRITE | CACHE_PREFETCH),
483 };
484
485 bool perf_evsel__is_cache_op_valid(u8 type, u8 op)
486 {
487         if (perf_evsel__hw_cache_stat[type] & COP(op))
488                 return true;    /* valid */
489         else
490                 return false;   /* invalid */
491 }
492
493 int __perf_evsel__hw_cache_type_op_res_name(u8 type, u8 op, u8 result,
494                                             char *bf, size_t size)
495 {
496         if (result) {
497                 return scnprintf(bf, size, "%s-%s-%s", perf_evsel__hw_cache[type][0],
498                                  perf_evsel__hw_cache_op[op][0],
499                                  perf_evsel__hw_cache_result[result][0]);
500         }
501
502         return scnprintf(bf, size, "%s-%s", perf_evsel__hw_cache[type][0],
503                          perf_evsel__hw_cache_op[op][1]);
504 }
505
506 static int __perf_evsel__hw_cache_name(u64 config, char *bf, size_t size)
507 {
508         u8 op, result, type = (config >>  0) & 0xff;
509         const char *err = "unknown-ext-hardware-cache-type";
510
511         if (type >= PERF_COUNT_HW_CACHE_MAX)
512                 goto out_err;
513
514         op = (config >>  8) & 0xff;
515         err = "unknown-ext-hardware-cache-op";
516         if (op >= PERF_COUNT_HW_CACHE_OP_MAX)
517                 goto out_err;
518
519         result = (config >> 16) & 0xff;
520         err = "unknown-ext-hardware-cache-result";
521         if (result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
522                 goto out_err;
523
524         err = "invalid-cache";
525         if (!perf_evsel__is_cache_op_valid(type, op))
526                 goto out_err;
527
528         return __perf_evsel__hw_cache_type_op_res_name(type, op, result, bf, size);
529 out_err:
530         return scnprintf(bf, size, "%s", err);
531 }
532
533 static int perf_evsel__hw_cache_name(struct perf_evsel *evsel, char *bf, size_t size)
534 {
535         int ret = __perf_evsel__hw_cache_name(evsel->attr.config, bf, size);
536         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
537 }
538
539 static int perf_evsel__raw_name(struct perf_evsel *evsel, char *bf, size_t size)
540 {
541         int ret = scnprintf(bf, size, "raw 0x%" PRIx64, evsel->attr.config);
542         return ret + perf_evsel__add_modifiers(evsel, bf + ret, size - ret);
543 }
544
545 const char *perf_evsel__name(struct perf_evsel *evsel)
546 {
547         char bf[128];
548
549         if (evsel->name)
550                 return evsel->name;
551
552         switch (evsel->attr.type) {
553         case PERF_TYPE_RAW:
554                 perf_evsel__raw_name(evsel, bf, sizeof(bf));
555                 break;
556
557         case PERF_TYPE_HARDWARE:
558                 perf_evsel__hw_name(evsel, bf, sizeof(bf));
559                 break;
560
561         case PERF_TYPE_HW_CACHE:
562                 perf_evsel__hw_cache_name(evsel, bf, sizeof(bf));
563                 break;
564
565         case PERF_TYPE_SOFTWARE:
566                 perf_evsel__sw_name(evsel, bf, sizeof(bf));
567                 break;
568
569         case PERF_TYPE_TRACEPOINT:
570                 scnprintf(bf, sizeof(bf), "%s", "unknown tracepoint");
571                 break;
572
573         case PERF_TYPE_BREAKPOINT:
574                 perf_evsel__bp_name(evsel, bf, sizeof(bf));
575                 break;
576
577         default:
578                 scnprintf(bf, sizeof(bf), "unknown attr type: %d",
579                           evsel->attr.type);
580                 break;
581         }
582
583         evsel->name = strdup(bf);
584
585         return evsel->name ?: "unknown";
586 }
587
588 const char *perf_evsel__group_name(struct perf_evsel *evsel)
589 {
590         return evsel->group_name ?: "anon group";
591 }
592
593 int perf_evsel__group_desc(struct perf_evsel *evsel, char *buf, size_t size)
594 {
595         int ret;
596         struct perf_evsel *pos;
597         const char *group_name = perf_evsel__group_name(evsel);
598
599         ret = scnprintf(buf, size, "%s", group_name);
600
601         ret += scnprintf(buf + ret, size - ret, " { %s",
602                          perf_evsel__name(evsel));
603
604         for_each_group_member(pos, evsel)
605                 ret += scnprintf(buf + ret, size - ret, ", %s",
606                                  perf_evsel__name(pos));
607
608         ret += scnprintf(buf + ret, size - ret, " }");
609
610         return ret;
611 }
612
613 void perf_evsel__config_callchain(struct perf_evsel *evsel,
614                                   struct record_opts *opts,
615                                   struct callchain_param *param)
616 {
617         bool function = perf_evsel__is_function_event(evsel);
618         struct perf_event_attr *attr = &evsel->attr;
619
620         perf_evsel__set_sample_bit(evsel, CALLCHAIN);
621
622         attr->sample_max_stack = param->max_stack;
623
624         if (param->record_mode == CALLCHAIN_LBR) {
625                 if (!opts->branch_stack) {
626                         if (attr->exclude_user) {
627                                 pr_warning("LBR callstack option is only available "
628                                            "to get user callchain information. "
629                                            "Falling back to framepointers.\n");
630                         } else {
631                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
632                                 attr->branch_sample_type = PERF_SAMPLE_BRANCH_USER |
633                                                         PERF_SAMPLE_BRANCH_CALL_STACK |
634                                                         PERF_SAMPLE_BRANCH_NO_CYCLES |
635                                                         PERF_SAMPLE_BRANCH_NO_FLAGS;
636                         }
637                 } else
638                          pr_warning("Cannot use LBR callstack with branch stack. "
639                                     "Falling back to framepointers.\n");
640         }
641
642         if (param->record_mode == CALLCHAIN_DWARF) {
643                 if (!function) {
644                         perf_evsel__set_sample_bit(evsel, REGS_USER);
645                         perf_evsel__set_sample_bit(evsel, STACK_USER);
646                         attr->sample_regs_user = PERF_REGS_MASK;
647                         attr->sample_stack_user = param->dump_size;
648                         attr->exclude_callchain_user = 1;
649                 } else {
650                         pr_info("Cannot use DWARF unwind for function trace event,"
651                                 " falling back to framepointers.\n");
652                 }
653         }
654
655         if (function) {
656                 pr_info("Disabling user space callchains for function trace event.\n");
657                 attr->exclude_callchain_user = 1;
658         }
659 }
660
661 static void
662 perf_evsel__reset_callgraph(struct perf_evsel *evsel,
663                             struct callchain_param *param)
664 {
665         struct perf_event_attr *attr = &evsel->attr;
666
667         perf_evsel__reset_sample_bit(evsel, CALLCHAIN);
668         if (param->record_mode == CALLCHAIN_LBR) {
669                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
670                 attr->branch_sample_type &= ~(PERF_SAMPLE_BRANCH_USER |
671                                               PERF_SAMPLE_BRANCH_CALL_STACK);
672         }
673         if (param->record_mode == CALLCHAIN_DWARF) {
674                 perf_evsel__reset_sample_bit(evsel, REGS_USER);
675                 perf_evsel__reset_sample_bit(evsel, STACK_USER);
676         }
677 }
678
679 static void apply_config_terms(struct perf_evsel *evsel,
680                                struct record_opts *opts)
681 {
682         struct perf_evsel_config_term *term;
683         struct list_head *config_terms = &evsel->config_terms;
684         struct perf_event_attr *attr = &evsel->attr;
685         struct callchain_param param;
686         u32 dump_size = 0;
687         int max_stack = 0;
688         const char *callgraph_buf = NULL;
689
690         /* callgraph default */
691         param.record_mode = callchain_param.record_mode;
692
693         list_for_each_entry(term, config_terms, list) {
694                 switch (term->type) {
695                 case PERF_EVSEL__CONFIG_TERM_PERIOD:
696                         attr->sample_period = term->val.period;
697                         attr->freq = 0;
698                         break;
699                 case PERF_EVSEL__CONFIG_TERM_FREQ:
700                         attr->sample_freq = term->val.freq;
701                         attr->freq = 1;
702                         break;
703                 case PERF_EVSEL__CONFIG_TERM_TIME:
704                         if (term->val.time)
705                                 perf_evsel__set_sample_bit(evsel, TIME);
706                         else
707                                 perf_evsel__reset_sample_bit(evsel, TIME);
708                         break;
709                 case PERF_EVSEL__CONFIG_TERM_CALLGRAPH:
710                         callgraph_buf = term->val.callgraph;
711                         break;
712                 case PERF_EVSEL__CONFIG_TERM_BRANCH:
713                         if (term->val.branch && strcmp(term->val.branch, "no")) {
714                                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
715                                 parse_branch_str(term->val.branch,
716                                                  &attr->branch_sample_type);
717                         } else
718                                 perf_evsel__reset_sample_bit(evsel, BRANCH_STACK);
719                         break;
720                 case PERF_EVSEL__CONFIG_TERM_STACK_USER:
721                         dump_size = term->val.stack_user;
722                         break;
723                 case PERF_EVSEL__CONFIG_TERM_MAX_STACK:
724                         max_stack = term->val.max_stack;
725                         break;
726                 case PERF_EVSEL__CONFIG_TERM_INHERIT:
727                         /*
728                          * attr->inherit should has already been set by
729                          * perf_evsel__config. If user explicitly set
730                          * inherit using config terms, override global
731                          * opt->no_inherit setting.
732                          */
733                         attr->inherit = term->val.inherit ? 1 : 0;
734                         break;
735                 case PERF_EVSEL__CONFIG_TERM_OVERWRITE:
736                         attr->write_backward = term->val.overwrite ? 1 : 0;
737                         break;
738                 default:
739                         break;
740                 }
741         }
742
743         /* User explicitly set per-event callgraph, clear the old setting and reset. */
744         if ((callgraph_buf != NULL) || (dump_size > 0) || max_stack) {
745                 if (max_stack) {
746                         param.max_stack = max_stack;
747                         if (callgraph_buf == NULL)
748                                 callgraph_buf = "fp";
749                 }
750
751                 /* parse callgraph parameters */
752                 if (callgraph_buf != NULL) {
753                         if (!strcmp(callgraph_buf, "no")) {
754                                 param.enabled = false;
755                                 param.record_mode = CALLCHAIN_NONE;
756                         } else {
757                                 param.enabled = true;
758                                 if (parse_callchain_record(callgraph_buf, &param)) {
759                                         pr_err("per-event callgraph setting for %s failed. "
760                                                "Apply callgraph global setting for it\n",
761                                                evsel->name);
762                                         return;
763                                 }
764                         }
765                 }
766                 if (dump_size > 0) {
767                         dump_size = round_up(dump_size, sizeof(u64));
768                         param.dump_size = dump_size;
769                 }
770
771                 /* If global callgraph set, clear it */
772                 if (callchain_param.enabled)
773                         perf_evsel__reset_callgraph(evsel, &callchain_param);
774
775                 /* set perf-event callgraph */
776                 if (param.enabled)
777                         perf_evsel__config_callchain(evsel, opts, &param);
778         }
779 }
780
781 /*
782  * The enable_on_exec/disabled value strategy:
783  *
784  *  1) For any type of traced program:
785  *    - all independent events and group leaders are disabled
786  *    - all group members are enabled
787  *
788  *     Group members are ruled by group leaders. They need to
789  *     be enabled, because the group scheduling relies on that.
790  *
791  *  2) For traced programs executed by perf:
792  *     - all independent events and group leaders have
793  *       enable_on_exec set
794  *     - we don't specifically enable or disable any event during
795  *       the record command
796  *
797  *     Independent events and group leaders are initially disabled
798  *     and get enabled by exec. Group members are ruled by group
799  *     leaders as stated in 1).
800  *
801  *  3) For traced programs attached by perf (pid/tid):
802  *     - we specifically enable or disable all events during
803  *       the record command
804  *
805  *     When attaching events to already running traced we
806  *     enable/disable events specifically, as there's no
807  *     initial traced exec call.
808  */
809 void perf_evsel__config(struct perf_evsel *evsel, struct record_opts *opts,
810                         struct callchain_param *callchain)
811 {
812         struct perf_evsel *leader = evsel->leader;
813         struct perf_event_attr *attr = &evsel->attr;
814         int track = evsel->tracking;
815         bool per_cpu = opts->target.default_per_cpu && !opts->target.per_thread;
816
817         attr->sample_id_all = perf_missing_features.sample_id_all ? 0 : 1;
818         attr->inherit       = !opts->no_inherit;
819         attr->write_backward = opts->overwrite ? 1 : 0;
820
821         perf_evsel__set_sample_bit(evsel, IP);
822         perf_evsel__set_sample_bit(evsel, TID);
823
824         if (evsel->sample_read) {
825                 perf_evsel__set_sample_bit(evsel, READ);
826
827                 /*
828                  * We need ID even in case of single event, because
829                  * PERF_SAMPLE_READ process ID specific data.
830                  */
831                 perf_evsel__set_sample_id(evsel, false);
832
833                 /*
834                  * Apply group format only if we belong to group
835                  * with more than one members.
836                  */
837                 if (leader->nr_members > 1) {
838                         attr->read_format |= PERF_FORMAT_GROUP;
839                         attr->inherit = 0;
840                 }
841         }
842
843         /*
844          * We default some events to have a default interval. But keep
845          * it a weak assumption overridable by the user.
846          */
847         if (!attr->sample_period || (opts->user_freq != UINT_MAX ||
848                                      opts->user_interval != ULLONG_MAX)) {
849                 if (opts->freq) {
850                         perf_evsel__set_sample_bit(evsel, PERIOD);
851                         attr->freq              = 1;
852                         attr->sample_freq       = opts->freq;
853                 } else {
854                         attr->sample_period = opts->default_interval;
855                 }
856         }
857
858         /*
859          * Disable sampling for all group members other
860          * than leader in case leader 'leads' the sampling.
861          */
862         if ((leader != evsel) && leader->sample_read) {
863                 attr->sample_freq   = 0;
864                 attr->sample_period = 0;
865         }
866
867         if (opts->no_samples)
868                 attr->sample_freq = 0;
869
870         if (opts->inherit_stat)
871                 attr->inherit_stat = 1;
872
873         if (opts->sample_address) {
874                 perf_evsel__set_sample_bit(evsel, ADDR);
875                 attr->mmap_data = track;
876         }
877
878         /*
879          * We don't allow user space callchains for  function trace
880          * event, due to issues with page faults while tracing page
881          * fault handler and its overall trickiness nature.
882          */
883         if (perf_evsel__is_function_event(evsel))
884                 evsel->attr.exclude_callchain_user = 1;
885
886         if (callchain && callchain->enabled && !evsel->no_aux_samples)
887                 perf_evsel__config_callchain(evsel, opts, callchain);
888
889         if (opts->sample_intr_regs) {
890                 attr->sample_regs_intr = opts->sample_intr_regs;
891                 perf_evsel__set_sample_bit(evsel, REGS_INTR);
892         }
893
894         if (target__has_cpu(&opts->target) || opts->sample_cpu)
895                 perf_evsel__set_sample_bit(evsel, CPU);
896
897         if (opts->period)
898                 perf_evsel__set_sample_bit(evsel, PERIOD);
899
900         /*
901          * When the user explicitly disabled time don't force it here.
902          */
903         if (opts->sample_time &&
904             (!perf_missing_features.sample_id_all &&
905             (!opts->no_inherit || target__has_cpu(&opts->target) || per_cpu ||
906              opts->sample_time_set)))
907                 perf_evsel__set_sample_bit(evsel, TIME);
908
909         if (opts->raw_samples && !evsel->no_aux_samples) {
910                 perf_evsel__set_sample_bit(evsel, TIME);
911                 perf_evsel__set_sample_bit(evsel, RAW);
912                 perf_evsel__set_sample_bit(evsel, CPU);
913         }
914
915         if (opts->sample_address)
916                 perf_evsel__set_sample_bit(evsel, DATA_SRC);
917
918         if (opts->no_buffering) {
919                 attr->watermark = 0;
920                 attr->wakeup_events = 1;
921         }
922         if (opts->branch_stack && !evsel->no_aux_samples) {
923                 perf_evsel__set_sample_bit(evsel, BRANCH_STACK);
924                 attr->branch_sample_type = opts->branch_stack;
925         }
926
927         if (opts->sample_weight)
928                 perf_evsel__set_sample_bit(evsel, WEIGHT);
929
930         attr->task  = track;
931         attr->mmap  = track;
932         attr->mmap2 = track && !perf_missing_features.mmap2;
933         attr->comm  = track;
934
935         if (opts->record_switch_events)
936                 attr->context_switch = track;
937
938         if (opts->sample_transaction)
939                 perf_evsel__set_sample_bit(evsel, TRANSACTION);
940
941         if (opts->running_time) {
942                 evsel->attr.read_format |=
943                         PERF_FORMAT_TOTAL_TIME_ENABLED |
944                         PERF_FORMAT_TOTAL_TIME_RUNNING;
945         }
946
947         /*
948          * XXX see the function comment above
949          *
950          * Disabling only independent events or group leaders,
951          * keeping group members enabled.
952          */
953         if (perf_evsel__is_group_leader(evsel))
954                 attr->disabled = 1;
955
956         /*
957          * Setting enable_on_exec for independent events and
958          * group leaders for traced executed by perf.
959          */
960         if (target__none(&opts->target) && perf_evsel__is_group_leader(evsel) &&
961                 !opts->initial_delay)
962                 attr->enable_on_exec = 1;
963
964         if (evsel->immediate) {
965                 attr->disabled = 0;
966                 attr->enable_on_exec = 0;
967         }
968
969         clockid = opts->clockid;
970         if (opts->use_clockid) {
971                 attr->use_clockid = 1;
972                 attr->clockid = opts->clockid;
973         }
974
975         if (evsel->precise_max)
976                 perf_event_attr__set_max_precise_ip(attr);
977
978         if (opts->all_user) {
979                 attr->exclude_kernel = 1;
980                 attr->exclude_user   = 0;
981         }
982
983         if (opts->all_kernel) {
984                 attr->exclude_kernel = 0;
985                 attr->exclude_user   = 1;
986         }
987
988         /*
989          * Apply event specific term settings,
990          * it overloads any global configuration.
991          */
992         apply_config_terms(evsel, opts);
993
994         evsel->ignore_missing_thread = opts->ignore_missing_thread;
995 }
996
997 static int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
998 {
999         if (evsel->system_wide)
1000                 nthreads = 1;
1001
1002         evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
1003
1004         if (evsel->fd) {
1005                 int cpu, thread;
1006                 for (cpu = 0; cpu < ncpus; cpu++) {
1007                         for (thread = 0; thread < nthreads; thread++) {
1008                                 FD(evsel, cpu, thread) = -1;
1009                         }
1010                 }
1011         }
1012
1013         return evsel->fd != NULL ? 0 : -ENOMEM;
1014 }
1015
1016 static int perf_evsel__run_ioctl(struct perf_evsel *evsel, int ncpus, int nthreads,
1017                           int ioc,  void *arg)
1018 {
1019         int cpu, thread;
1020
1021         if (evsel->system_wide)
1022                 nthreads = 1;
1023
1024         for (cpu = 0; cpu < ncpus; cpu++) {
1025                 for (thread = 0; thread < nthreads; thread++) {
1026                         int fd = FD(evsel, cpu, thread),
1027                             err = ioctl(fd, ioc, arg);
1028
1029                         if (err)
1030                                 return err;
1031                 }
1032         }
1033
1034         return 0;
1035 }
1036
1037 int perf_evsel__apply_filter(struct perf_evsel *evsel, int ncpus, int nthreads,
1038                              const char *filter)
1039 {
1040         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1041                                      PERF_EVENT_IOC_SET_FILTER,
1042                                      (void *)filter);
1043 }
1044
1045 int perf_evsel__set_filter(struct perf_evsel *evsel, const char *filter)
1046 {
1047         char *new_filter = strdup(filter);
1048
1049         if (new_filter != NULL) {
1050                 free(evsel->filter);
1051                 evsel->filter = new_filter;
1052                 return 0;
1053         }
1054
1055         return -1;
1056 }
1057
1058 static int perf_evsel__append_filter(struct perf_evsel *evsel,
1059                                      const char *fmt, const char *filter)
1060 {
1061         char *new_filter;
1062
1063         if (evsel->filter == NULL)
1064                 return perf_evsel__set_filter(evsel, filter);
1065
1066         if (asprintf(&new_filter, fmt, evsel->filter, filter) > 0) {
1067                 free(evsel->filter);
1068                 evsel->filter = new_filter;
1069                 return 0;
1070         }
1071
1072         return -1;
1073 }
1074
1075 int perf_evsel__append_tp_filter(struct perf_evsel *evsel, const char *filter)
1076 {
1077         return perf_evsel__append_filter(evsel, "(%s) && (%s)", filter);
1078 }
1079
1080 int perf_evsel__append_addr_filter(struct perf_evsel *evsel, const char *filter)
1081 {
1082         return perf_evsel__append_filter(evsel, "%s,%s", filter);
1083 }
1084
1085 int perf_evsel__enable(struct perf_evsel *evsel)
1086 {
1087         int nthreads = thread_map__nr(evsel->threads);
1088         int ncpus = cpu_map__nr(evsel->cpus);
1089
1090         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1091                                      PERF_EVENT_IOC_ENABLE,
1092                                      0);
1093 }
1094
1095 int perf_evsel__disable(struct perf_evsel *evsel)
1096 {
1097         int nthreads = thread_map__nr(evsel->threads);
1098         int ncpus = cpu_map__nr(evsel->cpus);
1099
1100         return perf_evsel__run_ioctl(evsel, ncpus, nthreads,
1101                                      PERF_EVENT_IOC_DISABLE,
1102                                      0);
1103 }
1104
1105 int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
1106 {
1107         if (ncpus == 0 || nthreads == 0)
1108                 return 0;
1109
1110         if (evsel->system_wide)
1111                 nthreads = 1;
1112
1113         evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
1114         if (evsel->sample_id == NULL)
1115                 return -ENOMEM;
1116
1117         evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
1118         if (evsel->id == NULL) {
1119                 xyarray__delete(evsel->sample_id);
1120                 evsel->sample_id = NULL;
1121                 return -ENOMEM;
1122         }
1123
1124         return 0;
1125 }
1126
1127 static void perf_evsel__free_fd(struct perf_evsel *evsel)
1128 {
1129         xyarray__delete(evsel->fd);
1130         evsel->fd = NULL;
1131 }
1132
1133 static void perf_evsel__free_id(struct perf_evsel *evsel)
1134 {
1135         xyarray__delete(evsel->sample_id);
1136         evsel->sample_id = NULL;
1137         zfree(&evsel->id);
1138 }
1139
1140 static void perf_evsel__free_config_terms(struct perf_evsel *evsel)
1141 {
1142         struct perf_evsel_config_term *term, *h;
1143
1144         list_for_each_entry_safe(term, h, &evsel->config_terms, list) {
1145                 list_del(&term->list);
1146                 free(term);
1147         }
1148 }
1149
1150 void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
1151 {
1152         int cpu, thread;
1153
1154         if (evsel->system_wide)
1155                 nthreads = 1;
1156
1157         for (cpu = 0; cpu < ncpus; cpu++)
1158                 for (thread = 0; thread < nthreads; ++thread) {
1159                         close(FD(evsel, cpu, thread));
1160                         FD(evsel, cpu, thread) = -1;
1161                 }
1162 }
1163
1164 void perf_evsel__exit(struct perf_evsel *evsel)
1165 {
1166         assert(list_empty(&evsel->node));
1167         assert(evsel->evlist == NULL);
1168         perf_evsel__free_fd(evsel);
1169         perf_evsel__free_id(evsel);
1170         perf_evsel__free_config_terms(evsel);
1171         close_cgroup(evsel->cgrp);
1172         cpu_map__put(evsel->cpus);
1173         cpu_map__put(evsel->own_cpus);
1174         thread_map__put(evsel->threads);
1175         zfree(&evsel->group_name);
1176         zfree(&evsel->name);
1177         perf_evsel__object.fini(evsel);
1178 }
1179
1180 void perf_evsel__delete(struct perf_evsel *evsel)
1181 {
1182         perf_evsel__exit(evsel);
1183         free(evsel);
1184 }
1185
1186 void perf_evsel__compute_deltas(struct perf_evsel *evsel, int cpu, int thread,
1187                                 struct perf_counts_values *count)
1188 {
1189         struct perf_counts_values tmp;
1190
1191         if (!evsel->prev_raw_counts)
1192                 return;
1193
1194         if (cpu == -1) {
1195                 tmp = evsel->prev_raw_counts->aggr;
1196                 evsel->prev_raw_counts->aggr = *count;
1197         } else {
1198                 tmp = *perf_counts(evsel->prev_raw_counts, cpu, thread);
1199                 *perf_counts(evsel->prev_raw_counts, cpu, thread) = *count;
1200         }
1201
1202         count->val = count->val - tmp.val;
1203         count->ena = count->ena - tmp.ena;
1204         count->run = count->run - tmp.run;
1205 }
1206
1207 void perf_counts_values__scale(struct perf_counts_values *count,
1208                                bool scale, s8 *pscaled)
1209 {
1210         s8 scaled = 0;
1211
1212         if (scale) {
1213                 if (count->run == 0) {
1214                         scaled = -1;
1215                         count->val = 0;
1216                 } else if (count->run < count->ena) {
1217                         scaled = 1;
1218                         count->val = (u64)((double) count->val * count->ena / count->run + 0.5);
1219                 }
1220         } else
1221                 count->ena = count->run = 0;
1222
1223         if (pscaled)
1224                 *pscaled = scaled;
1225 }
1226
1227 int perf_evsel__read(struct perf_evsel *evsel, int cpu, int thread,
1228                      struct perf_counts_values *count)
1229 {
1230         memset(count, 0, sizeof(*count));
1231
1232         if (FD(evsel, cpu, thread) < 0)
1233                 return -EINVAL;
1234
1235         if (readn(FD(evsel, cpu, thread), count, sizeof(*count)) < 0)
1236                 return -errno;
1237
1238         return 0;
1239 }
1240
1241 int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
1242                               int cpu, int thread, bool scale)
1243 {
1244         struct perf_counts_values count;
1245         size_t nv = scale ? 3 : 1;
1246
1247         if (FD(evsel, cpu, thread) < 0)
1248                 return -EINVAL;
1249
1250         if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1, thread + 1) < 0)
1251                 return -ENOMEM;
1252
1253         if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
1254                 return -errno;
1255
1256         perf_evsel__compute_deltas(evsel, cpu, thread, &count);
1257         perf_counts_values__scale(&count, scale, NULL);
1258         *perf_counts(evsel->counts, cpu, thread) = count;
1259         return 0;
1260 }
1261
1262 static int get_group_fd(struct perf_evsel *evsel, int cpu, int thread)
1263 {
1264         struct perf_evsel *leader = evsel->leader;
1265         int fd;
1266
1267         if (perf_evsel__is_group_leader(evsel))
1268                 return -1;
1269
1270         /*
1271          * Leader must be already processed/open,
1272          * if not it's a bug.
1273          */
1274         BUG_ON(!leader->fd);
1275
1276         fd = FD(leader, cpu, thread);
1277         BUG_ON(fd == -1);
1278
1279         return fd;
1280 }
1281
1282 struct bit_names {
1283         int bit;
1284         const char *name;
1285 };
1286
1287 static void __p_bits(char *buf, size_t size, u64 value, struct bit_names *bits)
1288 {
1289         bool first_bit = true;
1290         int i = 0;
1291
1292         do {
1293                 if (value & bits[i].bit) {
1294                         buf += scnprintf(buf, size, "%s%s", first_bit ? "" : "|", bits[i].name);
1295                         first_bit = false;
1296                 }
1297         } while (bits[++i].name != NULL);
1298 }
1299
1300 static void __p_sample_type(char *buf, size_t size, u64 value)
1301 {
1302 #define bit_name(n) { PERF_SAMPLE_##n, #n }
1303         struct bit_names bits[] = {
1304                 bit_name(IP), bit_name(TID), bit_name(TIME), bit_name(ADDR),
1305                 bit_name(READ), bit_name(CALLCHAIN), bit_name(ID), bit_name(CPU),
1306                 bit_name(PERIOD), bit_name(STREAM_ID), bit_name(RAW),
1307                 bit_name(BRANCH_STACK), bit_name(REGS_USER), bit_name(STACK_USER),
1308                 bit_name(IDENTIFIER), bit_name(REGS_INTR), bit_name(DATA_SRC),
1309                 bit_name(WEIGHT),
1310                 { .name = NULL, }
1311         };
1312 #undef bit_name
1313         __p_bits(buf, size, value, bits);
1314 }
1315
1316 static void __p_branch_sample_type(char *buf, size_t size, u64 value)
1317 {
1318 #define bit_name(n) { PERF_SAMPLE_BRANCH_##n, #n }
1319         struct bit_names bits[] = {
1320                 bit_name(USER), bit_name(KERNEL), bit_name(HV), bit_name(ANY),
1321                 bit_name(ANY_CALL), bit_name(ANY_RETURN), bit_name(IND_CALL),
1322                 bit_name(ABORT_TX), bit_name(IN_TX), bit_name(NO_TX),
1323                 bit_name(COND), bit_name(CALL_STACK), bit_name(IND_JUMP),
1324                 bit_name(CALL), bit_name(NO_FLAGS), bit_name(NO_CYCLES),
1325                 { .name = NULL, }
1326         };
1327 #undef bit_name
1328         __p_bits(buf, size, value, bits);
1329 }
1330
1331 static void __p_read_format(char *buf, size_t size, u64 value)
1332 {
1333 #define bit_name(n) { PERF_FORMAT_##n, #n }
1334         struct bit_names bits[] = {
1335                 bit_name(TOTAL_TIME_ENABLED), bit_name(TOTAL_TIME_RUNNING),
1336                 bit_name(ID), bit_name(GROUP),
1337                 { .name = NULL, }
1338         };
1339 #undef bit_name
1340         __p_bits(buf, size, value, bits);
1341 }
1342
1343 #define BUF_SIZE                1024
1344
1345 #define p_hex(val)              snprintf(buf, BUF_SIZE, "%#"PRIx64, (uint64_t)(val))
1346 #define p_unsigned(val)         snprintf(buf, BUF_SIZE, "%"PRIu64, (uint64_t)(val))
1347 #define p_signed(val)           snprintf(buf, BUF_SIZE, "%"PRId64, (int64_t)(val))
1348 #define p_sample_type(val)      __p_sample_type(buf, BUF_SIZE, val)
1349 #define p_branch_sample_type(val) __p_branch_sample_type(buf, BUF_SIZE, val)
1350 #define p_read_format(val)      __p_read_format(buf, BUF_SIZE, val)
1351
1352 #define PRINT_ATTRn(_n, _f, _p)                         \
1353 do {                                                    \
1354         if (attr->_f) {                                 \
1355                 _p(attr->_f);                           \
1356                 ret += attr__fprintf(fp, _n, buf, priv);\
1357         }                                               \
1358 } while (0)
1359
1360 #define PRINT_ATTRf(_f, _p)     PRINT_ATTRn(#_f, _f, _p)
1361
1362 int perf_event_attr__fprintf(FILE *fp, struct perf_event_attr *attr,
1363                              attr__fprintf_f attr__fprintf, void *priv)
1364 {
1365         char buf[BUF_SIZE];
1366         int ret = 0;
1367
1368         PRINT_ATTRf(type, p_unsigned);
1369         PRINT_ATTRf(size, p_unsigned);
1370         PRINT_ATTRf(config, p_hex);
1371         PRINT_ATTRn("{ sample_period, sample_freq }", sample_period, p_unsigned);
1372         PRINT_ATTRf(sample_type, p_sample_type);
1373         PRINT_ATTRf(read_format, p_read_format);
1374
1375         PRINT_ATTRf(disabled, p_unsigned);
1376         PRINT_ATTRf(inherit, p_unsigned);
1377         PRINT_ATTRf(pinned, p_unsigned);
1378         PRINT_ATTRf(exclusive, p_unsigned);
1379         PRINT_ATTRf(exclude_user, p_unsigned);
1380         PRINT_ATTRf(exclude_kernel, p_unsigned);
1381         PRINT_ATTRf(exclude_hv, p_unsigned);
1382         PRINT_ATTRf(exclude_idle, p_unsigned);
1383         PRINT_ATTRf(mmap, p_unsigned);
1384         PRINT_ATTRf(comm, p_unsigned);
1385         PRINT_ATTRf(freq, p_unsigned);
1386         PRINT_ATTRf(inherit_stat, p_unsigned);
1387         PRINT_ATTRf(enable_on_exec, p_unsigned);
1388         PRINT_ATTRf(task, p_unsigned);
1389         PRINT_ATTRf(watermark, p_unsigned);
1390         PRINT_ATTRf(precise_ip, p_unsigned);
1391         PRINT_ATTRf(mmap_data, p_unsigned);
1392         PRINT_ATTRf(sample_id_all, p_unsigned);
1393         PRINT_ATTRf(exclude_host, p_unsigned);
1394         PRINT_ATTRf(exclude_guest, p_unsigned);
1395         PRINT_ATTRf(exclude_callchain_kernel, p_unsigned);
1396         PRINT_ATTRf(exclude_callchain_user, p_unsigned);
1397         PRINT_ATTRf(mmap2, p_unsigned);
1398         PRINT_ATTRf(comm_exec, p_unsigned);
1399         PRINT_ATTRf(use_clockid, p_unsigned);
1400         PRINT_ATTRf(context_switch, p_unsigned);
1401         PRINT_ATTRf(write_backward, p_unsigned);
1402
1403         PRINT_ATTRn("{ wakeup_events, wakeup_watermark }", wakeup_events, p_unsigned);
1404         PRINT_ATTRf(bp_type, p_unsigned);
1405         PRINT_ATTRn("{ bp_addr, config1 }", bp_addr, p_hex);
1406         PRINT_ATTRn("{ bp_len, config2 }", bp_len, p_hex);
1407         PRINT_ATTRf(branch_sample_type, p_branch_sample_type);
1408         PRINT_ATTRf(sample_regs_user, p_hex);
1409         PRINT_ATTRf(sample_stack_user, p_unsigned);
1410         PRINT_ATTRf(clockid, p_signed);
1411         PRINT_ATTRf(sample_regs_intr, p_hex);
1412         PRINT_ATTRf(aux_watermark, p_unsigned);
1413         PRINT_ATTRf(sample_max_stack, p_unsigned);
1414
1415         return ret;
1416 }
1417
1418 static int __open_attr__fprintf(FILE *fp, const char *name, const char *val,
1419                                 void *priv __attribute__((unused)))
1420 {
1421         return fprintf(fp, "  %-32s %s\n", name, val);
1422 }
1423
1424 static bool ignore_missing_thread(struct perf_evsel *evsel,
1425                                   struct thread_map *threads,
1426                                   int thread, int err)
1427 {
1428         if (!evsel->ignore_missing_thread)
1429                 return false;
1430
1431         /* The system wide setup does not work with threads. */
1432         if (evsel->system_wide)
1433                 return false;
1434
1435         /* The -ESRCH is perf event syscall errno for pid's not found. */
1436         if (err != -ESRCH)
1437                 return false;
1438
1439         /* If there's only one thread, let it fail. */
1440         if (threads->nr == 1)
1441                 return false;
1442
1443         if (thread_map__remove(threads, thread))
1444                 return false;
1445
1446         pr_warning("WARNING: Ignored open failure for pid %d\n",
1447                    thread_map__pid(threads, thread));
1448         return true;
1449 }
1450
1451 static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1452                               struct thread_map *threads)
1453 {
1454         int cpu, thread, nthreads;
1455         unsigned long flags = PERF_FLAG_FD_CLOEXEC;
1456         int pid = -1, err;
1457         enum { NO_CHANGE, SET_TO_MAX, INCREASED_MAX } set_rlimit = NO_CHANGE;
1458
1459         if (perf_missing_features.write_backward && evsel->attr.write_backward)
1460                 return -EINVAL;
1461
1462         if (evsel->system_wide)
1463                 nthreads = 1;
1464         else
1465                 nthreads = threads->nr;
1466
1467         if (evsel->fd == NULL &&
1468             perf_evsel__alloc_fd(evsel, cpus->nr, nthreads) < 0)
1469                 return -ENOMEM;
1470
1471         if (evsel->cgrp) {
1472                 flags |= PERF_FLAG_PID_CGROUP;
1473                 pid = evsel->cgrp->fd;
1474         }
1475
1476 fallback_missing_features:
1477         if (perf_missing_features.clockid_wrong)
1478                 evsel->attr.clockid = CLOCK_MONOTONIC; /* should always work */
1479         if (perf_missing_features.clockid) {
1480                 evsel->attr.use_clockid = 0;
1481                 evsel->attr.clockid = 0;
1482         }
1483         if (perf_missing_features.cloexec)
1484                 flags &= ~(unsigned long)PERF_FLAG_FD_CLOEXEC;
1485         if (perf_missing_features.mmap2)
1486                 evsel->attr.mmap2 = 0;
1487         if (perf_missing_features.exclude_guest)
1488                 evsel->attr.exclude_guest = evsel->attr.exclude_host = 0;
1489         if (perf_missing_features.lbr_flags)
1490                 evsel->attr.branch_sample_type &= ~(PERF_SAMPLE_BRANCH_NO_FLAGS |
1491                                      PERF_SAMPLE_BRANCH_NO_CYCLES);
1492 retry_sample_id:
1493         if (perf_missing_features.sample_id_all)
1494                 evsel->attr.sample_id_all = 0;
1495
1496         if (verbose >= 2) {
1497                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1498                 fprintf(stderr, "perf_event_attr:\n");
1499                 perf_event_attr__fprintf(stderr, &evsel->attr, __open_attr__fprintf, NULL);
1500                 fprintf(stderr, "%.60s\n", graph_dotted_line);
1501         }
1502
1503         for (cpu = 0; cpu < cpus->nr; cpu++) {
1504
1505                 for (thread = 0; thread < nthreads; thread++) {
1506                         int fd, group_fd;
1507
1508                         if (!evsel->cgrp && !evsel->system_wide)
1509                                 pid = thread_map__pid(threads, thread);
1510
1511                         group_fd = get_group_fd(evsel, cpu, thread);
1512 retry_open:
1513                         pr_debug2("sys_perf_event_open: pid %d  cpu %d  group_fd %d  flags %#lx",
1514                                   pid, cpus->map[cpu], group_fd, flags);
1515
1516                         fd = sys_perf_event_open(&evsel->attr, pid, cpus->map[cpu],
1517                                                  group_fd, flags);
1518
1519                         FD(evsel, cpu, thread) = fd;
1520
1521                         if (fd < 0) {
1522                                 err = -errno;
1523
1524                                 if (ignore_missing_thread(evsel, threads, thread, err)) {
1525                                         /*
1526                                          * We just removed 1 thread, so take a step
1527                                          * back on thread index and lower the upper
1528                                          * nthreads limit.
1529                                          */
1530                                         nthreads--;
1531                                         thread--;
1532
1533                                         /* ... and pretend like nothing have happened. */
1534                                         err = 0;
1535                                         continue;
1536                                 }
1537
1538                                 pr_debug2("\nsys_perf_event_open failed, error %d\n",
1539                                           err);
1540                                 goto try_fallback;
1541                         }
1542
1543                         pr_debug2(" = %d\n", fd);
1544
1545                         if (evsel->bpf_fd >= 0) {
1546                                 int evt_fd = fd;
1547                                 int bpf_fd = evsel->bpf_fd;
1548
1549                                 err = ioctl(evt_fd,
1550                                             PERF_EVENT_IOC_SET_BPF,
1551                                             bpf_fd);
1552                                 if (err && errno != EEXIST) {
1553                                         pr_err("failed to attach bpf fd %d: %s\n",
1554                                                bpf_fd, strerror(errno));
1555                                         err = -EINVAL;
1556                                         goto out_close;
1557                                 }
1558                         }
1559
1560                         set_rlimit = NO_CHANGE;
1561
1562                         /*
1563                          * If we succeeded but had to kill clockid, fail and
1564                          * have perf_evsel__open_strerror() print us a nice
1565                          * error.
1566                          */
1567                         if (perf_missing_features.clockid ||
1568                             perf_missing_features.clockid_wrong) {
1569                                 err = -EINVAL;
1570                                 goto out_close;
1571                         }
1572                 }
1573         }
1574
1575         return 0;
1576
1577 try_fallback:
1578         /*
1579          * perf stat needs between 5 and 22 fds per CPU. When we run out
1580          * of them try to increase the limits.
1581          */
1582         if (err == -EMFILE && set_rlimit < INCREASED_MAX) {
1583                 struct rlimit l;
1584                 int old_errno = errno;
1585
1586                 if (getrlimit(RLIMIT_NOFILE, &l) == 0) {
1587                         if (set_rlimit == NO_CHANGE)
1588                                 l.rlim_cur = l.rlim_max;
1589                         else {
1590                                 l.rlim_cur = l.rlim_max + 1000;
1591                                 l.rlim_max = l.rlim_cur;
1592                         }
1593                         if (setrlimit(RLIMIT_NOFILE, &l) == 0) {
1594                                 set_rlimit++;
1595                                 errno = old_errno;
1596                                 goto retry_open;
1597                         }
1598                 }
1599                 errno = old_errno;
1600         }
1601
1602         if (err != -EINVAL || cpu > 0 || thread > 0)
1603                 goto out_close;
1604
1605         /*
1606          * Must probe features in the order they were added to the
1607          * perf_event_attr interface.
1608          */
1609         if (!perf_missing_features.write_backward && evsel->attr.write_backward) {
1610                 perf_missing_features.write_backward = true;
1611                 goto out_close;
1612         } else if (!perf_missing_features.clockid_wrong && evsel->attr.use_clockid) {
1613                 perf_missing_features.clockid_wrong = true;
1614                 goto fallback_missing_features;
1615         } else if (!perf_missing_features.clockid && evsel->attr.use_clockid) {
1616                 perf_missing_features.clockid = true;
1617                 goto fallback_missing_features;
1618         } else if (!perf_missing_features.cloexec && (flags & PERF_FLAG_FD_CLOEXEC)) {
1619                 perf_missing_features.cloexec = true;
1620                 goto fallback_missing_features;
1621         } else if (!perf_missing_features.mmap2 && evsel->attr.mmap2) {
1622                 perf_missing_features.mmap2 = true;
1623                 goto fallback_missing_features;
1624         } else if (!perf_missing_features.exclude_guest &&
1625                    (evsel->attr.exclude_guest || evsel->attr.exclude_host)) {
1626                 perf_missing_features.exclude_guest = true;
1627                 goto fallback_missing_features;
1628         } else if (!perf_missing_features.sample_id_all) {
1629                 perf_missing_features.sample_id_all = true;
1630                 goto retry_sample_id;
1631         } else if (!perf_missing_features.lbr_flags &&
1632                         (evsel->attr.branch_sample_type &
1633                          (PERF_SAMPLE_BRANCH_NO_CYCLES |
1634                           PERF_SAMPLE_BRANCH_NO_FLAGS))) {
1635                 perf_missing_features.lbr_flags = true;
1636                 goto fallback_missing_features;
1637         }
1638 out_close:
1639         do {
1640                 while (--thread >= 0) {
1641                         close(FD(evsel, cpu, thread));
1642                         FD(evsel, cpu, thread) = -1;
1643                 }
1644                 thread = nthreads;
1645         } while (--cpu >= 0);
1646         return err;
1647 }
1648
1649 void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
1650 {
1651         if (evsel->fd == NULL)
1652                 return;
1653
1654         perf_evsel__close_fd(evsel, ncpus, nthreads);
1655         perf_evsel__free_fd(evsel);
1656 }
1657
1658 static struct {
1659         struct cpu_map map;
1660         int cpus[1];
1661 } empty_cpu_map = {
1662         .map.nr = 1,
1663         .cpus   = { -1, },
1664 };
1665
1666 static struct {
1667         struct thread_map map;
1668         int threads[1];
1669 } empty_thread_map = {
1670         .map.nr  = 1,
1671         .threads = { -1, },
1672 };
1673
1674 int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
1675                      struct thread_map *threads)
1676 {
1677         if (cpus == NULL) {
1678                 /* Work around old compiler warnings about strict aliasing */
1679                 cpus = &empty_cpu_map.map;
1680         }
1681
1682         if (threads == NULL)
1683                 threads = &empty_thread_map.map;
1684
1685         return __perf_evsel__open(evsel, cpus, threads);
1686 }
1687
1688 int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
1689                              struct cpu_map *cpus)
1690 {
1691         return __perf_evsel__open(evsel, cpus, &empty_thread_map.map);
1692 }
1693
1694 int perf_evsel__open_per_thread(struct perf_evsel *evsel,
1695                                 struct thread_map *threads)
1696 {
1697         return __perf_evsel__open(evsel, &empty_cpu_map.map, threads);
1698 }
1699
1700 static int perf_evsel__parse_id_sample(const struct perf_evsel *evsel,
1701                                        const union perf_event *event,
1702                                        struct perf_sample *sample)
1703 {
1704         u64 type = evsel->attr.sample_type;
1705         const u64 *array = event->sample.array;
1706         bool swapped = evsel->needs_swap;
1707         union u64_swap u;
1708
1709         array += ((event->header.size -
1710                    sizeof(event->header)) / sizeof(u64)) - 1;
1711
1712         if (type & PERF_SAMPLE_IDENTIFIER) {
1713                 sample->id = *array;
1714                 array--;
1715         }
1716
1717         if (type & PERF_SAMPLE_CPU) {
1718                 u.val64 = *array;
1719                 if (swapped) {
1720                         /* undo swap of u64, then swap on individual u32s */
1721                         u.val64 = bswap_64(u.val64);
1722                         u.val32[0] = bswap_32(u.val32[0]);
1723                 }
1724
1725                 sample->cpu = u.val32[0];
1726                 array--;
1727         }
1728
1729         if (type & PERF_SAMPLE_STREAM_ID) {
1730                 sample->stream_id = *array;
1731                 array--;
1732         }
1733
1734         if (type & PERF_SAMPLE_ID) {
1735                 sample->id = *array;
1736                 array--;
1737         }
1738
1739         if (type & PERF_SAMPLE_TIME) {
1740                 sample->time = *array;
1741                 array--;
1742         }
1743
1744         if (type & PERF_SAMPLE_TID) {
1745                 u.val64 = *array;
1746                 if (swapped) {
1747                         /* undo swap of u64, then swap on individual u32s */
1748                         u.val64 = bswap_64(u.val64);
1749                         u.val32[0] = bswap_32(u.val32[0]);
1750                         u.val32[1] = bswap_32(u.val32[1]);
1751                 }
1752
1753                 sample->pid = u.val32[0];
1754                 sample->tid = u.val32[1];
1755                 array--;
1756         }
1757
1758         return 0;
1759 }
1760
1761 static inline bool overflow(const void *endp, u16 max_size, const void *offset,
1762                             u64 size)
1763 {
1764         return size > max_size || offset + size > endp;
1765 }
1766
1767 #define OVERFLOW_CHECK(offset, size, max_size)                          \
1768         do {                                                            \
1769                 if (overflow(endp, (max_size), (offset), (size)))       \
1770                         return -EFAULT;                                 \
1771         } while (0)
1772
1773 #define OVERFLOW_CHECK_u64(offset) \
1774         OVERFLOW_CHECK(offset, sizeof(u64), sizeof(u64))
1775
1776 int perf_evsel__parse_sample(struct perf_evsel *evsel, union perf_event *event,
1777                              struct perf_sample *data)
1778 {
1779         u64 type = evsel->attr.sample_type;
1780         bool swapped = evsel->needs_swap;
1781         const u64 *array;
1782         u16 max_size = event->header.size;
1783         const void *endp = (void *)event + max_size;
1784         u64 sz;
1785
1786         /*
1787          * used for cross-endian analysis. See git commit 65014ab3
1788          * for why this goofiness is needed.
1789          */
1790         union u64_swap u;
1791
1792         memset(data, 0, sizeof(*data));
1793         data->cpu = data->pid = data->tid = -1;
1794         data->stream_id = data->id = data->time = -1ULL;
1795         data->period = evsel->attr.sample_period;
1796         data->cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1797
1798         if (event->header.type != PERF_RECORD_SAMPLE) {
1799                 if (!evsel->attr.sample_id_all)
1800                         return 0;
1801                 return perf_evsel__parse_id_sample(evsel, event, data);
1802         }
1803
1804         array = event->sample.array;
1805
1806         /*
1807          * The evsel's sample_size is based on PERF_SAMPLE_MASK which includes
1808          * up to PERF_SAMPLE_PERIOD.  After that overflow() must be used to
1809          * check the format does not go past the end of the event.
1810          */
1811         if (evsel->sample_size + sizeof(event->header) > event->header.size)
1812                 return -EFAULT;
1813
1814         data->id = -1ULL;
1815         if (type & PERF_SAMPLE_IDENTIFIER) {
1816                 data->id = *array;
1817                 array++;
1818         }
1819
1820         if (type & PERF_SAMPLE_IP) {
1821                 data->ip = *array;
1822                 array++;
1823         }
1824
1825         if (type & PERF_SAMPLE_TID) {
1826                 u.val64 = *array;
1827                 if (swapped) {
1828                         /* undo swap of u64, then swap on individual u32s */
1829                         u.val64 = bswap_64(u.val64);
1830                         u.val32[0] = bswap_32(u.val32[0]);
1831                         u.val32[1] = bswap_32(u.val32[1]);
1832                 }
1833
1834                 data->pid = u.val32[0];
1835                 data->tid = u.val32[1];
1836                 array++;
1837         }
1838
1839         if (type & PERF_SAMPLE_TIME) {
1840                 data->time = *array;
1841                 array++;
1842         }
1843
1844         data->addr = 0;
1845         if (type & PERF_SAMPLE_ADDR) {
1846                 data->addr = *array;
1847                 array++;
1848         }
1849
1850         if (type & PERF_SAMPLE_ID) {
1851                 data->id = *array;
1852                 array++;
1853         }
1854
1855         if (type & PERF_SAMPLE_STREAM_ID) {
1856                 data->stream_id = *array;
1857                 array++;
1858         }
1859
1860         if (type & PERF_SAMPLE_CPU) {
1861
1862                 u.val64 = *array;
1863                 if (swapped) {
1864                         /* undo swap of u64, then swap on individual u32s */
1865                         u.val64 = bswap_64(u.val64);
1866                         u.val32[0] = bswap_32(u.val32[0]);
1867                 }
1868
1869                 data->cpu = u.val32[0];
1870                 array++;
1871         }
1872
1873         if (type & PERF_SAMPLE_PERIOD) {
1874                 data->period = *array;
1875                 array++;
1876         }
1877
1878         if (type & PERF_SAMPLE_READ) {
1879                 u64 read_format = evsel->attr.read_format;
1880
1881                 OVERFLOW_CHECK_u64(array);
1882                 if (read_format & PERF_FORMAT_GROUP)
1883                         data->read.group.nr = *array;
1884                 else
1885                         data->read.one.value = *array;
1886
1887                 array++;
1888
1889                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
1890                         OVERFLOW_CHECK_u64(array);
1891                         data->read.time_enabled = *array;
1892                         array++;
1893                 }
1894
1895                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
1896                         OVERFLOW_CHECK_u64(array);
1897                         data->read.time_running = *array;
1898                         array++;
1899                 }
1900
1901                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
1902                 if (read_format & PERF_FORMAT_GROUP) {
1903                         const u64 max_group_nr = UINT64_MAX /
1904                                         sizeof(struct sample_read_value);
1905
1906                         if (data->read.group.nr > max_group_nr)
1907                                 return -EFAULT;
1908                         sz = data->read.group.nr *
1909                              sizeof(struct sample_read_value);
1910                         OVERFLOW_CHECK(array, sz, max_size);
1911                         data->read.group.values =
1912                                         (struct sample_read_value *)array;
1913                         array = (void *)array + sz;
1914                 } else {
1915                         OVERFLOW_CHECK_u64(array);
1916                         data->read.one.id = *array;
1917                         array++;
1918                 }
1919         }
1920
1921         if (type & PERF_SAMPLE_CALLCHAIN) {
1922                 const u64 max_callchain_nr = UINT64_MAX / sizeof(u64);
1923
1924                 OVERFLOW_CHECK_u64(array);
1925                 data->callchain = (struct ip_callchain *)array++;
1926                 if (data->callchain->nr > max_callchain_nr)
1927                         return -EFAULT;
1928                 sz = data->callchain->nr * sizeof(u64);
1929                 OVERFLOW_CHECK(array, sz, max_size);
1930                 array = (void *)array + sz;
1931         }
1932
1933         if (type & PERF_SAMPLE_RAW) {
1934                 OVERFLOW_CHECK_u64(array);
1935                 u.val64 = *array;
1936                 if (WARN_ONCE(swapped,
1937                               "Endianness of raw data not corrected!\n")) {
1938                         /* undo swap of u64, then swap on individual u32s */
1939                         u.val64 = bswap_64(u.val64);
1940                         u.val32[0] = bswap_32(u.val32[0]);
1941                         u.val32[1] = bswap_32(u.val32[1]);
1942                 }
1943                 data->raw_size = u.val32[0];
1944                 array = (void *)array + sizeof(u32);
1945
1946                 OVERFLOW_CHECK(array, data->raw_size, max_size);
1947                 data->raw_data = (void *)array;
1948                 array = (void *)array + data->raw_size;
1949         }
1950
1951         if (type & PERF_SAMPLE_BRANCH_STACK) {
1952                 const u64 max_branch_nr = UINT64_MAX /
1953                                           sizeof(struct branch_entry);
1954
1955                 OVERFLOW_CHECK_u64(array);
1956                 data->branch_stack = (struct branch_stack *)array++;
1957
1958                 if (data->branch_stack->nr > max_branch_nr)
1959                         return -EFAULT;
1960                 sz = data->branch_stack->nr * sizeof(struct branch_entry);
1961                 OVERFLOW_CHECK(array, sz, max_size);
1962                 array = (void *)array + sz;
1963         }
1964
1965         if (type & PERF_SAMPLE_REGS_USER) {
1966                 OVERFLOW_CHECK_u64(array);
1967                 data->user_regs.abi = *array;
1968                 array++;
1969
1970                 if (data->user_regs.abi) {
1971                         u64 mask = evsel->attr.sample_regs_user;
1972
1973                         sz = hweight_long(mask) * sizeof(u64);
1974                         OVERFLOW_CHECK(array, sz, max_size);
1975                         data->user_regs.mask = mask;
1976                         data->user_regs.regs = (u64 *)array;
1977                         array = (void *)array + sz;
1978                 }
1979         }
1980
1981         if (type & PERF_SAMPLE_STACK_USER) {
1982                 OVERFLOW_CHECK_u64(array);
1983                 sz = *array++;
1984
1985                 data->user_stack.offset = ((char *)(array - 1)
1986                                           - (char *) event);
1987
1988                 if (!sz) {
1989                         data->user_stack.size = 0;
1990                 } else {
1991                         OVERFLOW_CHECK(array, sz, max_size);
1992                         data->user_stack.data = (char *)array;
1993                         array = (void *)array + sz;
1994                         OVERFLOW_CHECK_u64(array);
1995                         data->user_stack.size = *array++;
1996                         if (WARN_ONCE(data->user_stack.size > sz,
1997                                       "user stack dump failure\n"))
1998                                 return -EFAULT;
1999                 }
2000         }
2001
2002         if (type & PERF_SAMPLE_WEIGHT) {
2003                 OVERFLOW_CHECK_u64(array);
2004                 data->weight = *array;
2005                 array++;
2006         }
2007
2008         data->data_src = PERF_MEM_DATA_SRC_NONE;
2009         if (type & PERF_SAMPLE_DATA_SRC) {
2010                 OVERFLOW_CHECK_u64(array);
2011                 data->data_src = *array;
2012                 array++;
2013         }
2014
2015         data->transaction = 0;
2016         if (type & PERF_SAMPLE_TRANSACTION) {
2017                 OVERFLOW_CHECK_u64(array);
2018                 data->transaction = *array;
2019                 array++;
2020         }
2021
2022         data->intr_regs.abi = PERF_SAMPLE_REGS_ABI_NONE;
2023         if (type & PERF_SAMPLE_REGS_INTR) {
2024                 OVERFLOW_CHECK_u64(array);
2025                 data->intr_regs.abi = *array;
2026                 array++;
2027
2028                 if (data->intr_regs.abi != PERF_SAMPLE_REGS_ABI_NONE) {
2029                         u64 mask = evsel->attr.sample_regs_intr;
2030
2031                         sz = hweight_long(mask) * sizeof(u64);
2032                         OVERFLOW_CHECK(array, sz, max_size);
2033                         data->intr_regs.mask = mask;
2034                         data->intr_regs.regs = (u64 *)array;
2035                         array = (void *)array + sz;
2036                 }
2037         }
2038
2039         return 0;
2040 }
2041
2042 size_t perf_event__sample_event_size(const struct perf_sample *sample, u64 type,
2043                                      u64 read_format)
2044 {
2045         size_t sz, result = sizeof(struct sample_event);
2046
2047         if (type & PERF_SAMPLE_IDENTIFIER)
2048                 result += sizeof(u64);
2049
2050         if (type & PERF_SAMPLE_IP)
2051                 result += sizeof(u64);
2052
2053         if (type & PERF_SAMPLE_TID)
2054                 result += sizeof(u64);
2055
2056         if (type & PERF_SAMPLE_TIME)
2057                 result += sizeof(u64);
2058
2059         if (type & PERF_SAMPLE_ADDR)
2060                 result += sizeof(u64);
2061
2062         if (type & PERF_SAMPLE_ID)
2063                 result += sizeof(u64);
2064
2065         if (type & PERF_SAMPLE_STREAM_ID)
2066                 result += sizeof(u64);
2067
2068         if (type & PERF_SAMPLE_CPU)
2069                 result += sizeof(u64);
2070
2071         if (type & PERF_SAMPLE_PERIOD)
2072                 result += sizeof(u64);
2073
2074         if (type & PERF_SAMPLE_READ) {
2075                 result += sizeof(u64);
2076                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2077                         result += sizeof(u64);
2078                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2079                         result += sizeof(u64);
2080                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2081                 if (read_format & PERF_FORMAT_GROUP) {
2082                         sz = sample->read.group.nr *
2083                              sizeof(struct sample_read_value);
2084                         result += sz;
2085                 } else {
2086                         result += sizeof(u64);
2087                 }
2088         }
2089
2090         if (type & PERF_SAMPLE_CALLCHAIN) {
2091                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2092                 result += sz;
2093         }
2094
2095         if (type & PERF_SAMPLE_RAW) {
2096                 result += sizeof(u32);
2097                 result += sample->raw_size;
2098         }
2099
2100         if (type & PERF_SAMPLE_BRANCH_STACK) {
2101                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2102                 sz += sizeof(u64);
2103                 result += sz;
2104         }
2105
2106         if (type & PERF_SAMPLE_REGS_USER) {
2107                 if (sample->user_regs.abi) {
2108                         result += sizeof(u64);
2109                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2110                         result += sz;
2111                 } else {
2112                         result += sizeof(u64);
2113                 }
2114         }
2115
2116         if (type & PERF_SAMPLE_STACK_USER) {
2117                 sz = sample->user_stack.size;
2118                 result += sizeof(u64);
2119                 if (sz) {
2120                         result += sz;
2121                         result += sizeof(u64);
2122                 }
2123         }
2124
2125         if (type & PERF_SAMPLE_WEIGHT)
2126                 result += sizeof(u64);
2127
2128         if (type & PERF_SAMPLE_DATA_SRC)
2129                 result += sizeof(u64);
2130
2131         if (type & PERF_SAMPLE_TRANSACTION)
2132                 result += sizeof(u64);
2133
2134         if (type & PERF_SAMPLE_REGS_INTR) {
2135                 if (sample->intr_regs.abi) {
2136                         result += sizeof(u64);
2137                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2138                         result += sz;
2139                 } else {
2140                         result += sizeof(u64);
2141                 }
2142         }
2143
2144         return result;
2145 }
2146
2147 int perf_event__synthesize_sample(union perf_event *event, u64 type,
2148                                   u64 read_format,
2149                                   const struct perf_sample *sample,
2150                                   bool swapped)
2151 {
2152         u64 *array;
2153         size_t sz;
2154         /*
2155          * used for cross-endian analysis. See git commit 65014ab3
2156          * for why this goofiness is needed.
2157          */
2158         union u64_swap u;
2159
2160         array = event->sample.array;
2161
2162         if (type & PERF_SAMPLE_IDENTIFIER) {
2163                 *array = sample->id;
2164                 array++;
2165         }
2166
2167         if (type & PERF_SAMPLE_IP) {
2168                 *array = sample->ip;
2169                 array++;
2170         }
2171
2172         if (type & PERF_SAMPLE_TID) {
2173                 u.val32[0] = sample->pid;
2174                 u.val32[1] = sample->tid;
2175                 if (swapped) {
2176                         /*
2177                          * Inverse of what is done in perf_evsel__parse_sample
2178                          */
2179                         u.val32[0] = bswap_32(u.val32[0]);
2180                         u.val32[1] = bswap_32(u.val32[1]);
2181                         u.val64 = bswap_64(u.val64);
2182                 }
2183
2184                 *array = u.val64;
2185                 array++;
2186         }
2187
2188         if (type & PERF_SAMPLE_TIME) {
2189                 *array = sample->time;
2190                 array++;
2191         }
2192
2193         if (type & PERF_SAMPLE_ADDR) {
2194                 *array = sample->addr;
2195                 array++;
2196         }
2197
2198         if (type & PERF_SAMPLE_ID) {
2199                 *array = sample->id;
2200                 array++;
2201         }
2202
2203         if (type & PERF_SAMPLE_STREAM_ID) {
2204                 *array = sample->stream_id;
2205                 array++;
2206         }
2207
2208         if (type & PERF_SAMPLE_CPU) {
2209                 u.val32[0] = sample->cpu;
2210                 if (swapped) {
2211                         /*
2212                          * Inverse of what is done in perf_evsel__parse_sample
2213                          */
2214                         u.val32[0] = bswap_32(u.val32[0]);
2215                         u.val64 = bswap_64(u.val64);
2216                 }
2217                 *array = u.val64;
2218                 array++;
2219         }
2220
2221         if (type & PERF_SAMPLE_PERIOD) {
2222                 *array = sample->period;
2223                 array++;
2224         }
2225
2226         if (type & PERF_SAMPLE_READ) {
2227                 if (read_format & PERF_FORMAT_GROUP)
2228                         *array = sample->read.group.nr;
2229                 else
2230                         *array = sample->read.one.value;
2231                 array++;
2232
2233                 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
2234                         *array = sample->read.time_enabled;
2235                         array++;
2236                 }
2237
2238                 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
2239                         *array = sample->read.time_running;
2240                         array++;
2241                 }
2242
2243                 /* PERF_FORMAT_ID is forced for PERF_SAMPLE_READ */
2244                 if (read_format & PERF_FORMAT_GROUP) {
2245                         sz = sample->read.group.nr *
2246                              sizeof(struct sample_read_value);
2247                         memcpy(array, sample->read.group.values, sz);
2248                         array = (void *)array + sz;
2249                 } else {
2250                         *array = sample->read.one.id;
2251                         array++;
2252                 }
2253         }
2254
2255         if (type & PERF_SAMPLE_CALLCHAIN) {
2256                 sz = (sample->callchain->nr + 1) * sizeof(u64);
2257                 memcpy(array, sample->callchain, sz);
2258                 array = (void *)array + sz;
2259         }
2260
2261         if (type & PERF_SAMPLE_RAW) {
2262                 u.val32[0] = sample->raw_size;
2263                 if (WARN_ONCE(swapped,
2264                               "Endianness of raw data not corrected!\n")) {
2265                         /*
2266                          * Inverse of what is done in perf_evsel__parse_sample
2267                          */
2268                         u.val32[0] = bswap_32(u.val32[0]);
2269                         u.val32[1] = bswap_32(u.val32[1]);
2270                         u.val64 = bswap_64(u.val64);
2271                 }
2272                 *array = u.val64;
2273                 array = (void *)array + sizeof(u32);
2274
2275                 memcpy(array, sample->raw_data, sample->raw_size);
2276                 array = (void *)array + sample->raw_size;
2277         }
2278
2279         if (type & PERF_SAMPLE_BRANCH_STACK) {
2280                 sz = sample->branch_stack->nr * sizeof(struct branch_entry);
2281                 sz += sizeof(u64);
2282                 memcpy(array, sample->branch_stack, sz);
2283                 array = (void *)array + sz;
2284         }
2285
2286         if (type & PERF_SAMPLE_REGS_USER) {
2287                 if (sample->user_regs.abi) {
2288                         *array++ = sample->user_regs.abi;
2289                         sz = hweight_long(sample->user_regs.mask) * sizeof(u64);
2290                         memcpy(array, sample->user_regs.regs, sz);
2291                         array = (void *)array + sz;
2292                 } else {
2293                         *array++ = 0;
2294                 }
2295         }
2296
2297         if (type & PERF_SAMPLE_STACK_USER) {
2298                 sz = sample->user_stack.size;
2299                 *array++ = sz;
2300                 if (sz) {
2301                         memcpy(array, sample->user_stack.data, sz);
2302                         array = (void *)array + sz;
2303                         *array++ = sz;
2304                 }
2305         }
2306
2307         if (type & PERF_SAMPLE_WEIGHT) {
2308                 *array = sample->weight;
2309                 array++;
2310         }
2311
2312         if (type & PERF_SAMPLE_DATA_SRC) {
2313                 *array = sample->data_src;
2314                 array++;
2315         }
2316
2317         if (type & PERF_SAMPLE_TRANSACTION) {
2318                 *array = sample->transaction;
2319                 array++;
2320         }
2321
2322         if (type & PERF_SAMPLE_REGS_INTR) {
2323                 if (sample->intr_regs.abi) {
2324                         *array++ = sample->intr_regs.abi;
2325                         sz = hweight_long(sample->intr_regs.mask) * sizeof(u64);
2326                         memcpy(array, sample->intr_regs.regs, sz);
2327                         array = (void *)array + sz;
2328                 } else {
2329                         *array++ = 0;
2330                 }
2331         }
2332
2333         return 0;
2334 }
2335
2336 struct format_field *perf_evsel__field(struct perf_evsel *evsel, const char *name)
2337 {
2338         return pevent_find_field(evsel->tp_format, name);
2339 }
2340
2341 void *perf_evsel__rawptr(struct perf_evsel *evsel, struct perf_sample *sample,
2342                          const char *name)
2343 {
2344         struct format_field *field = perf_evsel__field(evsel, name);
2345         int offset;
2346
2347         if (!field)
2348                 return NULL;
2349
2350         offset = field->offset;
2351
2352         if (field->flags & FIELD_IS_DYNAMIC) {
2353                 offset = *(int *)(sample->raw_data + field->offset);
2354                 offset &= 0xffff;
2355         }
2356
2357         return sample->raw_data + offset;
2358 }
2359
2360 u64 format_field__intval(struct format_field *field, struct perf_sample *sample,
2361                          bool needs_swap)
2362 {
2363         u64 value;
2364         void *ptr = sample->raw_data + field->offset;
2365
2366         switch (field->size) {
2367         case 1:
2368                 return *(u8 *)ptr;
2369         case 2:
2370                 value = *(u16 *)ptr;
2371                 break;
2372         case 4:
2373                 value = *(u32 *)ptr;
2374                 break;
2375         case 8:
2376                 memcpy(&value, ptr, sizeof(u64));
2377                 break;
2378         default:
2379                 return 0;
2380         }
2381
2382         if (!needs_swap)
2383                 return value;
2384
2385         switch (field->size) {
2386         case 2:
2387                 return bswap_16(value);
2388         case 4:
2389                 return bswap_32(value);
2390         case 8:
2391                 return bswap_64(value);
2392         default:
2393                 return 0;
2394         }
2395
2396         return 0;
2397 }
2398
2399 u64 perf_evsel__intval(struct perf_evsel *evsel, struct perf_sample *sample,
2400                        const char *name)
2401 {
2402         struct format_field *field = perf_evsel__field(evsel, name);
2403
2404         if (!field)
2405                 return 0;
2406
2407         return field ? format_field__intval(field, sample, evsel->needs_swap) : 0;
2408 }
2409
2410 bool perf_evsel__fallback(struct perf_evsel *evsel, int err,
2411                           char *msg, size_t msgsize)
2412 {
2413         int paranoid;
2414
2415         if ((err == ENOENT || err == ENXIO || err == ENODEV) &&
2416             evsel->attr.type   == PERF_TYPE_HARDWARE &&
2417             evsel->attr.config == PERF_COUNT_HW_CPU_CYCLES) {
2418                 /*
2419                  * If it's cycles then fall back to hrtimer based
2420                  * cpu-clock-tick sw counter, which is always available even if
2421                  * no PMU support.
2422                  *
2423                  * PPC returns ENXIO until 2.6.37 (behavior changed with commit
2424                  * b0a873e).
2425                  */
2426                 scnprintf(msg, msgsize, "%s",
2427 "The cycles event is not supported, trying to fall back to cpu-clock-ticks");
2428
2429                 evsel->attr.type   = PERF_TYPE_SOFTWARE;
2430                 evsel->attr.config = PERF_COUNT_SW_CPU_CLOCK;
2431
2432                 zfree(&evsel->name);
2433                 return true;
2434         } else if (err == EACCES && !evsel->attr.exclude_kernel &&
2435                    (paranoid = perf_event_paranoid()) > 1) {
2436                 const char *name = perf_evsel__name(evsel);
2437                 char *new_name;
2438
2439                 if (asprintf(&new_name, "%s%su", name, strchr(name, ':') ? "" : ":") < 0)
2440                         return false;
2441
2442                 if (evsel->name)
2443                         free(evsel->name);
2444                 evsel->name = new_name;
2445                 scnprintf(msg, msgsize,
2446 "kernel.perf_event_paranoid=%d, trying to fall back to excluding kernel samples", paranoid);
2447                 evsel->attr.exclude_kernel = 1;
2448
2449                 return true;
2450         }
2451
2452         return false;
2453 }
2454
2455 int perf_evsel__open_strerror(struct perf_evsel *evsel, struct target *target,
2456                               int err, char *msg, size_t size)
2457 {
2458         char sbuf[STRERR_BUFSIZE];
2459
2460         switch (err) {
2461         case EPERM:
2462         case EACCES:
2463                 return scnprintf(msg, size,
2464                  "You may not have permission to collect %sstats.\n\n"
2465                  "Consider tweaking /proc/sys/kernel/perf_event_paranoid,\n"
2466                  "which controls use of the performance events system by\n"
2467                  "unprivileged users (without CAP_SYS_ADMIN).\n\n"
2468                  "The current value is %d:\n\n"
2469                  "  -1: Allow use of (almost) all events by all users\n"
2470                  ">= 0: Disallow raw tracepoint access by users without CAP_IOC_LOCK\n"
2471                  ">= 1: Disallow CPU event access by users without CAP_SYS_ADMIN\n"
2472                  ">= 2: Disallow kernel profiling by users without CAP_SYS_ADMIN",
2473                                  target->system_wide ? "system-wide " : "",
2474                                  perf_event_paranoid());
2475         case ENOENT:
2476                 return scnprintf(msg, size, "The %s event is not supported.",
2477                                  perf_evsel__name(evsel));
2478         case EMFILE:
2479                 return scnprintf(msg, size, "%s",
2480                          "Too many events are opened.\n"
2481                          "Probably the maximum number of open file descriptors has been reached.\n"
2482                          "Hint: Try again after reducing the number of events.\n"
2483                          "Hint: Try increasing the limit with 'ulimit -n <limit>'");
2484         case ENOMEM:
2485                 if ((evsel->attr.sample_type & PERF_SAMPLE_CALLCHAIN) != 0 &&
2486                     access("/proc/sys/kernel/perf_event_max_stack", F_OK) == 0)
2487                         return scnprintf(msg, size,
2488                                          "Not enough memory to setup event with callchain.\n"
2489                                          "Hint: Try tweaking /proc/sys/kernel/perf_event_max_stack\n"
2490                                          "Hint: Current value: %d", sysctl_perf_event_max_stack);
2491                 break;
2492         case ENODEV:
2493                 if (target->cpu_list)
2494                         return scnprintf(msg, size, "%s",
2495          "No such device - did you specify an out-of-range profile CPU?");
2496                 break;
2497         case EOPNOTSUPP:
2498                 if (evsel->attr.sample_period != 0)
2499                         return scnprintf(msg, size, "%s",
2500         "PMU Hardware doesn't support sampling/overflow-interrupts.");
2501                 if (evsel->attr.precise_ip)
2502                         return scnprintf(msg, size, "%s",
2503         "\'precise\' request may not be supported. Try removing 'p' modifier.");
2504 #if defined(__i386__) || defined(__x86_64__)
2505                 if (evsel->attr.type == PERF_TYPE_HARDWARE)
2506                         return scnprintf(msg, size, "%s",
2507         "No hardware sampling interrupt available.\n"
2508         "No APIC? If so then you can boot the kernel with the \"lapic\" boot parameter to force-enable it.");
2509 #endif
2510                 break;
2511         case EBUSY:
2512                 if (find_process("oprofiled"))
2513                         return scnprintf(msg, size,
2514         "The PMU counters are busy/taken by another profiler.\n"
2515         "We found oprofile daemon running, please stop it and try again.");
2516                 break;
2517         case EINVAL:
2518                 if (evsel->attr.write_backward && perf_missing_features.write_backward)
2519                         return scnprintf(msg, size, "Reading from overwrite event is not supported by this kernel.");
2520                 if (perf_missing_features.clockid)
2521                         return scnprintf(msg, size, "clockid feature not supported.");
2522                 if (perf_missing_features.clockid_wrong)
2523                         return scnprintf(msg, size, "wrong clockid (%d).", clockid);
2524                 break;
2525         default:
2526                 break;
2527         }
2528
2529         return scnprintf(msg, size,
2530         "The sys_perf_event_open() syscall returned with %d (%s) for event (%s).\n"
2531         "/bin/dmesg may provide additional information.\n"
2532         "No CONFIG_PERF_EVENTS=y kernel support configured?",
2533                          err, str_error_r(err, sbuf, sizeof(sbuf)),
2534                          perf_evsel__name(evsel));
2535 }
2536
2537 char *perf_evsel__env_arch(struct perf_evsel *evsel)
2538 {
2539         if (evsel && evsel->evlist && evsel->evlist->env)
2540                 return evsel->evlist->env->arch;
2541         return NULL;
2542 }