]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/header.c
perf header: Get rid of write_it label
[linux.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42
43 #include "sane_ctype.h"
44
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57
58 #define PERF_MAGIC      __perf_magic2
59
60 const char perf_version_string[] = PERF_VERSION;
61
62 struct perf_file_attr {
63         struct perf_event_attr  attr;
64         struct perf_file_section        ids;
65 };
66
67 struct feat_fd {
68         struct perf_header      *ph;
69         int                     fd;
70         void                    *buf;   /* Either buf != NULL or fd >= 0 */
71         ssize_t                 offset;
72         size_t                  size;
73         struct perf_evsel       *events;
74 };
75
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78         set_bit(feat, header->adds_features);
79 }
80
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83         clear_bit(feat, header->adds_features);
84 }
85
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88         return test_bit(feat, header->adds_features);
89 }
90
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93         ssize_t ret = writen(ff->fd, buf, size);
94
95         if (ret != (ssize_t)size)
96                 return ret < 0 ? (int)ret : -1;
97         return 0;
98 }
99
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102         /* struct perf_event_header::size is u16 */
103         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104         size_t new_size = ff->size;
105         void *addr;
106
107         if (size + ff->offset > max_size)
108                 return -E2BIG;
109
110         while (size > (new_size - ff->offset))
111                 new_size <<= 1;
112         new_size = min(max_size, new_size);
113
114         if (ff->size < new_size) {
115                 addr = realloc(ff->buf, new_size);
116                 if (!addr)
117                         return -ENOMEM;
118                 ff->buf = addr;
119                 ff->size = new_size;
120         }
121
122         memcpy(ff->buf + ff->offset, buf, size);
123         ff->offset += size;
124
125         return 0;
126 }
127
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131         if (!ff->buf)
132                 return __do_write_fd(ff, buf, size);
133         return __do_write_buf(ff, buf, size);
134 }
135
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139         u64 *p = (u64 *) set;
140         int i, ret;
141
142         ret = do_write(ff, &size, sizeof(size));
143         if (ret < 0)
144                 return ret;
145
146         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147                 ret = do_write(ff, p + i, sizeof(*p));
148                 if (ret < 0)
149                         return ret;
150         }
151
152         return 0;
153 }
154
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157                  size_t count, size_t count_aligned)
158 {
159         static const char zero_buf[NAME_ALIGN];
160         int err = do_write(ff, bf, count);
161
162         if (!err)
163                 err = do_write(ff, zero_buf, count_aligned - count);
164
165         return err;
166 }
167
168 #define string_size(str)                                                \
169         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174         u32 len, olen;
175         int ret;
176
177         olen = strlen(str) + 1;
178         len = PERF_ALIGN(olen, NAME_ALIGN);
179
180         /* write len, incl. \0 */
181         ret = do_write(ff, &len, sizeof(len));
182         if (ret < 0)
183                 return ret;
184
185         return write_padded(ff, str, olen, len);
186 }
187
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190         ssize_t ret = readn(ff->fd, addr, size);
191
192         if (ret != size)
193                 return ret < 0 ? (int)ret : -1;
194         return 0;
195 }
196
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199         if (size > (ssize_t)ff->size - ff->offset)
200                 return -1;
201
202         memcpy(addr, ff->buf + ff->offset, size);
203         ff->offset += size;
204
205         return 0;
206
207 }
208
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211         if (!ff->buf)
212                 return __do_read_fd(ff, addr, size);
213         return __do_read_buf(ff, addr, size);
214 }
215
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218         int ret;
219
220         ret = __do_read(ff, addr, sizeof(*addr));
221         if (ret)
222                 return ret;
223
224         if (ff->ph->needs_swap)
225                 *addr = bswap_32(*addr);
226         return 0;
227 }
228
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231         int ret;
232
233         ret = __do_read(ff, addr, sizeof(*addr));
234         if (ret)
235                 return ret;
236
237         if (ff->ph->needs_swap)
238                 *addr = bswap_64(*addr);
239         return 0;
240 }
241
242 static char *do_read_string(struct feat_fd *ff)
243 {
244         u32 len;
245         char *buf;
246
247         if (do_read_u32(ff, &len))
248                 return NULL;
249
250         buf = malloc(len);
251         if (!buf)
252                 return NULL;
253
254         if (!__do_read(ff, buf, len)) {
255                 /*
256                  * strings are padded by zeroes
257                  * thus the actual strlen of buf
258                  * may be less than len
259                  */
260                 return buf;
261         }
262
263         free(buf);
264         return NULL;
265 }
266
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270         unsigned long *set;
271         u64 size, *p;
272         int i, ret;
273
274         ret = do_read_u64(ff, &size);
275         if (ret)
276                 return ret;
277
278         set = bitmap_alloc(size);
279         if (!set)
280                 return -ENOMEM;
281
282         p = (u64 *) set;
283
284         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285                 ret = do_read_u64(ff, p + i);
286                 if (ret < 0) {
287                         free(set);
288                         return ret;
289                 }
290         }
291
292         *pset  = set;
293         *psize = size;
294         return 0;
295 }
296
297 static int write_tracing_data(struct feat_fd *ff,
298                               struct perf_evlist *evlist)
299 {
300         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301                 return -1;
302
303         return read_tracing_data(ff->fd, &evlist->entries);
304 }
305
306 static int write_build_id(struct feat_fd *ff,
307                           struct perf_evlist *evlist __maybe_unused)
308 {
309         struct perf_session *session;
310         int err;
311
312         session = container_of(ff->ph, struct perf_session, header);
313
314         if (!perf_session__read_build_ids(session, true))
315                 return -1;
316
317         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318                 return -1;
319
320         err = perf_session__write_buildid_table(session, ff);
321         if (err < 0) {
322                 pr_debug("failed to write buildid table\n");
323                 return err;
324         }
325         perf_session__cache_build_ids(session);
326
327         return 0;
328 }
329
330 static int write_hostname(struct feat_fd *ff,
331                           struct perf_evlist *evlist __maybe_unused)
332 {
333         struct utsname uts;
334         int ret;
335
336         ret = uname(&uts);
337         if (ret < 0)
338                 return -1;
339
340         return do_write_string(ff, uts.nodename);
341 }
342
343 static int write_osrelease(struct feat_fd *ff,
344                            struct perf_evlist *evlist __maybe_unused)
345 {
346         struct utsname uts;
347         int ret;
348
349         ret = uname(&uts);
350         if (ret < 0)
351                 return -1;
352
353         return do_write_string(ff, uts.release);
354 }
355
356 static int write_arch(struct feat_fd *ff,
357                       struct perf_evlist *evlist __maybe_unused)
358 {
359         struct utsname uts;
360         int ret;
361
362         ret = uname(&uts);
363         if (ret < 0)
364                 return -1;
365
366         return do_write_string(ff, uts.machine);
367 }
368
369 static int write_version(struct feat_fd *ff,
370                          struct perf_evlist *evlist __maybe_unused)
371 {
372         return do_write_string(ff, perf_version_string);
373 }
374
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377         FILE *file;
378         char *buf = NULL;
379         char *s, *p;
380         const char *search = cpuinfo_proc;
381         size_t len = 0;
382         int ret = -1;
383
384         if (!search)
385                 return -1;
386
387         file = fopen("/proc/cpuinfo", "r");
388         if (!file)
389                 return -1;
390
391         while (getline(&buf, &len, file) > 0) {
392                 ret = strncmp(buf, search, strlen(search));
393                 if (!ret)
394                         break;
395         }
396
397         if (ret) {
398                 ret = -1;
399                 goto done;
400         }
401
402         s = buf;
403
404         p = strchr(buf, ':');
405         if (p && *(p+1) == ' ' && *(p+2))
406                 s = p + 2;
407         p = strchr(s, '\n');
408         if (p)
409                 *p = '\0';
410
411         /* squash extra space characters (branding string) */
412         p = s;
413         while (*p) {
414                 if (isspace(*p)) {
415                         char *r = p + 1;
416                         char *q = r;
417                         *p = ' ';
418                         while (*q && isspace(*q))
419                                 q++;
420                         if (q != (p+1))
421                                 while ((*r++ = *q++));
422                 }
423                 p++;
424         }
425         ret = do_write_string(ff, s);
426 done:
427         free(buf);
428         fclose(file);
429         return ret;
430 }
431
432 static int write_cpudesc(struct feat_fd *ff,
433                        struct perf_evlist *evlist __maybe_unused)
434 {
435         const char *cpuinfo_procs[] = CPUINFO_PROC;
436         unsigned int i;
437
438         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
439                 int ret;
440                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
441                 if (ret >= 0)
442                         return ret;
443         }
444         return -1;
445 }
446
447
448 static int write_nrcpus(struct feat_fd *ff,
449                         struct perf_evlist *evlist __maybe_unused)
450 {
451         long nr;
452         u32 nrc, nra;
453         int ret;
454
455         nrc = cpu__max_present_cpu();
456
457         nr = sysconf(_SC_NPROCESSORS_ONLN);
458         if (nr < 0)
459                 return -1;
460
461         nra = (u32)(nr & UINT_MAX);
462
463         ret = do_write(ff, &nrc, sizeof(nrc));
464         if (ret < 0)
465                 return ret;
466
467         return do_write(ff, &nra, sizeof(nra));
468 }
469
470 static int write_event_desc(struct feat_fd *ff,
471                             struct perf_evlist *evlist)
472 {
473         struct perf_evsel *evsel;
474         u32 nre, nri, sz;
475         int ret;
476
477         nre = evlist->nr_entries;
478
479         /*
480          * write number of events
481          */
482         ret = do_write(ff, &nre, sizeof(nre));
483         if (ret < 0)
484                 return ret;
485
486         /*
487          * size of perf_event_attr struct
488          */
489         sz = (u32)sizeof(evsel->attr);
490         ret = do_write(ff, &sz, sizeof(sz));
491         if (ret < 0)
492                 return ret;
493
494         evlist__for_each_entry(evlist, evsel) {
495                 ret = do_write(ff, &evsel->attr, sz);
496                 if (ret < 0)
497                         return ret;
498                 /*
499                  * write number of unique id per event
500                  * there is one id per instance of an event
501                  *
502                  * copy into an nri to be independent of the
503                  * type of ids,
504                  */
505                 nri = evsel->ids;
506                 ret = do_write(ff, &nri, sizeof(nri));
507                 if (ret < 0)
508                         return ret;
509
510                 /*
511                  * write event string as passed on cmdline
512                  */
513                 ret = do_write_string(ff, perf_evsel__name(evsel));
514                 if (ret < 0)
515                         return ret;
516                 /*
517                  * write unique ids for this event
518                  */
519                 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
520                 if (ret < 0)
521                         return ret;
522         }
523         return 0;
524 }
525
526 static int write_cmdline(struct feat_fd *ff,
527                          struct perf_evlist *evlist __maybe_unused)
528 {
529         char buf[MAXPATHLEN];
530         u32 n;
531         int i, ret;
532
533         /* actual path to perf binary */
534         ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
535         if (ret <= 0)
536                 return -1;
537
538         /* readlink() does not add null termination */
539         buf[ret] = '\0';
540
541         /* account for binary path */
542         n = perf_env.nr_cmdline + 1;
543
544         ret = do_write(ff, &n, sizeof(n));
545         if (ret < 0)
546                 return ret;
547
548         ret = do_write_string(ff, buf);
549         if (ret < 0)
550                 return ret;
551
552         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
553                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
554                 if (ret < 0)
555                         return ret;
556         }
557         return 0;
558 }
559
560 #define CORE_SIB_FMT \
561         "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
562 #define THRD_SIB_FMT \
563         "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
564
565 struct cpu_topo {
566         u32 cpu_nr;
567         u32 core_sib;
568         u32 thread_sib;
569         char **core_siblings;
570         char **thread_siblings;
571 };
572
573 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
574 {
575         FILE *fp;
576         char filename[MAXPATHLEN];
577         char *buf = NULL, *p;
578         size_t len = 0;
579         ssize_t sret;
580         u32 i = 0;
581         int ret = -1;
582
583         sprintf(filename, CORE_SIB_FMT, cpu);
584         fp = fopen(filename, "r");
585         if (!fp)
586                 goto try_threads;
587
588         sret = getline(&buf, &len, fp);
589         fclose(fp);
590         if (sret <= 0)
591                 goto try_threads;
592
593         p = strchr(buf, '\n');
594         if (p)
595                 *p = '\0';
596
597         for (i = 0; i < tp->core_sib; i++) {
598                 if (!strcmp(buf, tp->core_siblings[i]))
599                         break;
600         }
601         if (i == tp->core_sib) {
602                 tp->core_siblings[i] = buf;
603                 tp->core_sib++;
604                 buf = NULL;
605                 len = 0;
606         }
607         ret = 0;
608
609 try_threads:
610         sprintf(filename, THRD_SIB_FMT, cpu);
611         fp = fopen(filename, "r");
612         if (!fp)
613                 goto done;
614
615         if (getline(&buf, &len, fp) <= 0)
616                 goto done;
617
618         p = strchr(buf, '\n');
619         if (p)
620                 *p = '\0';
621
622         for (i = 0; i < tp->thread_sib; i++) {
623                 if (!strcmp(buf, tp->thread_siblings[i]))
624                         break;
625         }
626         if (i == tp->thread_sib) {
627                 tp->thread_siblings[i] = buf;
628                 tp->thread_sib++;
629                 buf = NULL;
630         }
631         ret = 0;
632 done:
633         if(fp)
634                 fclose(fp);
635         free(buf);
636         return ret;
637 }
638
639 static void free_cpu_topo(struct cpu_topo *tp)
640 {
641         u32 i;
642
643         if (!tp)
644                 return;
645
646         for (i = 0 ; i < tp->core_sib; i++)
647                 zfree(&tp->core_siblings[i]);
648
649         for (i = 0 ; i < tp->thread_sib; i++)
650                 zfree(&tp->thread_siblings[i]);
651
652         free(tp);
653 }
654
655 static struct cpu_topo *build_cpu_topology(void)
656 {
657         struct cpu_topo *tp = NULL;
658         void *addr;
659         u32 nr, i;
660         size_t sz;
661         long ncpus;
662         int ret = -1;
663         struct cpu_map *map;
664
665         ncpus = cpu__max_present_cpu();
666
667         /* build online CPU map */
668         map = cpu_map__new(NULL);
669         if (map == NULL) {
670                 pr_debug("failed to get system cpumap\n");
671                 return NULL;
672         }
673
674         nr = (u32)(ncpus & UINT_MAX);
675
676         sz = nr * sizeof(char *);
677         addr = calloc(1, sizeof(*tp) + 2 * sz);
678         if (!addr)
679                 goto out_free;
680
681         tp = addr;
682         tp->cpu_nr = nr;
683         addr += sizeof(*tp);
684         tp->core_siblings = addr;
685         addr += sz;
686         tp->thread_siblings = addr;
687
688         for (i = 0; i < nr; i++) {
689                 if (!cpu_map__has(map, i))
690                         continue;
691
692                 ret = build_cpu_topo(tp, i);
693                 if (ret < 0)
694                         break;
695         }
696
697 out_free:
698         cpu_map__put(map);
699         if (ret) {
700                 free_cpu_topo(tp);
701                 tp = NULL;
702         }
703         return tp;
704 }
705
706 static int write_cpu_topology(struct feat_fd *ff,
707                               struct perf_evlist *evlist __maybe_unused)
708 {
709         struct cpu_topo *tp;
710         u32 i;
711         int ret, j;
712
713         tp = build_cpu_topology();
714         if (!tp)
715                 return -1;
716
717         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
718         if (ret < 0)
719                 goto done;
720
721         for (i = 0; i < tp->core_sib; i++) {
722                 ret = do_write_string(ff, tp->core_siblings[i]);
723                 if (ret < 0)
724                         goto done;
725         }
726         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
727         if (ret < 0)
728                 goto done;
729
730         for (i = 0; i < tp->thread_sib; i++) {
731                 ret = do_write_string(ff, tp->thread_siblings[i]);
732                 if (ret < 0)
733                         break;
734         }
735
736         ret = perf_env__read_cpu_topology_map(&perf_env);
737         if (ret < 0)
738                 goto done;
739
740         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
741                 ret = do_write(ff, &perf_env.cpu[j].core_id,
742                                sizeof(perf_env.cpu[j].core_id));
743                 if (ret < 0)
744                         return ret;
745                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
746                                sizeof(perf_env.cpu[j].socket_id));
747                 if (ret < 0)
748                         return ret;
749         }
750 done:
751         free_cpu_topo(tp);
752         return ret;
753 }
754
755
756
757 static int write_total_mem(struct feat_fd *ff,
758                            struct perf_evlist *evlist __maybe_unused)
759 {
760         char *buf = NULL;
761         FILE *fp;
762         size_t len = 0;
763         int ret = -1, n;
764         uint64_t mem;
765
766         fp = fopen("/proc/meminfo", "r");
767         if (!fp)
768                 return -1;
769
770         while (getline(&buf, &len, fp) > 0) {
771                 ret = strncmp(buf, "MemTotal:", 9);
772                 if (!ret)
773                         break;
774         }
775         if (!ret) {
776                 n = sscanf(buf, "%*s %"PRIu64, &mem);
777                 if (n == 1)
778                         ret = do_write(ff, &mem, sizeof(mem));
779         } else
780                 ret = -1;
781         free(buf);
782         fclose(fp);
783         return ret;
784 }
785
786 static int write_topo_node(struct feat_fd *ff, int node)
787 {
788         char str[MAXPATHLEN];
789         char field[32];
790         char *buf = NULL, *p;
791         size_t len = 0;
792         FILE *fp;
793         u64 mem_total, mem_free, mem;
794         int ret = -1;
795
796         sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
797         fp = fopen(str, "r");
798         if (!fp)
799                 return -1;
800
801         while (getline(&buf, &len, fp) > 0) {
802                 /* skip over invalid lines */
803                 if (!strchr(buf, ':'))
804                         continue;
805                 if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
806                         goto done;
807                 if (!strcmp(field, "MemTotal:"))
808                         mem_total = mem;
809                 if (!strcmp(field, "MemFree:"))
810                         mem_free = mem;
811         }
812
813         fclose(fp);
814         fp = NULL;
815
816         ret = do_write(ff, &mem_total, sizeof(u64));
817         if (ret)
818                 goto done;
819
820         ret = do_write(ff, &mem_free, sizeof(u64));
821         if (ret)
822                 goto done;
823
824         ret = -1;
825         sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
826
827         fp = fopen(str, "r");
828         if (!fp)
829                 goto done;
830
831         if (getline(&buf, &len, fp) <= 0)
832                 goto done;
833
834         p = strchr(buf, '\n');
835         if (p)
836                 *p = '\0';
837
838         ret = do_write_string(ff, buf);
839 done:
840         free(buf);
841         if (fp)
842                 fclose(fp);
843         return ret;
844 }
845
846 static int write_numa_topology(struct feat_fd *ff,
847                                struct perf_evlist *evlist __maybe_unused)
848 {
849         char *buf = NULL;
850         size_t len = 0;
851         FILE *fp;
852         struct cpu_map *node_map = NULL;
853         char *c;
854         u32 nr, i, j;
855         int ret = -1;
856
857         fp = fopen("/sys/devices/system/node/online", "r");
858         if (!fp)
859                 return -1;
860
861         if (getline(&buf, &len, fp) <= 0)
862                 goto done;
863
864         c = strchr(buf, '\n');
865         if (c)
866                 *c = '\0';
867
868         node_map = cpu_map__new(buf);
869         if (!node_map)
870                 goto done;
871
872         nr = (u32)node_map->nr;
873
874         ret = do_write(ff, &nr, sizeof(nr));
875         if (ret < 0)
876                 goto done;
877
878         for (i = 0; i < nr; i++) {
879                 j = (u32)node_map->map[i];
880                 ret = do_write(ff, &j, sizeof(j));
881                 if (ret < 0)
882                         break;
883
884                 ret = write_topo_node(ff, i);
885                 if (ret < 0)
886                         break;
887         }
888 done:
889         free(buf);
890         fclose(fp);
891         cpu_map__put(node_map);
892         return ret;
893 }
894
895 /*
896  * File format:
897  *
898  * struct pmu_mappings {
899  *      u32     pmu_num;
900  *      struct pmu_map {
901  *              u32     type;
902  *              char    name[];
903  *      }[pmu_num];
904  * };
905  */
906
907 static int write_pmu_mappings(struct feat_fd *ff,
908                               struct perf_evlist *evlist __maybe_unused)
909 {
910         struct perf_pmu *pmu = NULL;
911         u32 pmu_num = 0;
912         int ret;
913
914         /*
915          * Do a first pass to count number of pmu to avoid lseek so this
916          * works in pipe mode as well.
917          */
918         while ((pmu = perf_pmu__scan(pmu))) {
919                 if (!pmu->name)
920                         continue;
921                 pmu_num++;
922         }
923
924         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
925         if (ret < 0)
926                 return ret;
927
928         while ((pmu = perf_pmu__scan(pmu))) {
929                 if (!pmu->name)
930                         continue;
931
932                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
933                 if (ret < 0)
934                         return ret;
935
936                 ret = do_write_string(ff, pmu->name);
937                 if (ret < 0)
938                         return ret;
939         }
940
941         return 0;
942 }
943
944 /*
945  * File format:
946  *
947  * struct group_descs {
948  *      u32     nr_groups;
949  *      struct group_desc {
950  *              char    name[];
951  *              u32     leader_idx;
952  *              u32     nr_members;
953  *      }[nr_groups];
954  * };
955  */
956 static int write_group_desc(struct feat_fd *ff,
957                             struct perf_evlist *evlist)
958 {
959         u32 nr_groups = evlist->nr_groups;
960         struct perf_evsel *evsel;
961         int ret;
962
963         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
964         if (ret < 0)
965                 return ret;
966
967         evlist__for_each_entry(evlist, evsel) {
968                 if (perf_evsel__is_group_leader(evsel) &&
969                     evsel->nr_members > 1) {
970                         const char *name = evsel->group_name ?: "{anon_group}";
971                         u32 leader_idx = evsel->idx;
972                         u32 nr_members = evsel->nr_members;
973
974                         ret = do_write_string(ff, name);
975                         if (ret < 0)
976                                 return ret;
977
978                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
979                         if (ret < 0)
980                                 return ret;
981
982                         ret = do_write(ff, &nr_members, sizeof(nr_members));
983                         if (ret < 0)
984                                 return ret;
985                 }
986         }
987         return 0;
988 }
989
990 /*
991  * Return the CPU id as a raw string.
992  *
993  * Each architecture should provide a more precise id string that
994  * can be use to match the architecture's "mapfile".
995  */
996 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
997 {
998         return NULL;
999 }
1000
1001 /* Return zero when the cpuid from the mapfile.csv matches the
1002  * cpuid string generated on this platform.
1003  * Otherwise return non-zero.
1004  */
1005 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
1006 {
1007         regex_t re;
1008         regmatch_t pmatch[1];
1009         int match;
1010
1011         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
1012                 /* Warn unable to generate match particular string. */
1013                 pr_info("Invalid regular expression %s\n", mapcpuid);
1014                 return 1;
1015         }
1016
1017         match = !regexec(&re, cpuid, 1, pmatch, 0);
1018         regfree(&re);
1019         if (match) {
1020                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
1021
1022                 /* Verify the entire string matched. */
1023                 if (match_len == strlen(cpuid))
1024                         return 0;
1025         }
1026         return 1;
1027 }
1028
1029 /*
1030  * default get_cpuid(): nothing gets recorded
1031  * actual implementation must be in arch/$(SRCARCH)/util/header.c
1032  */
1033 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
1034 {
1035         return -1;
1036 }
1037
1038 static int write_cpuid(struct feat_fd *ff,
1039                        struct perf_evlist *evlist __maybe_unused)
1040 {
1041         char buffer[64];
1042         int ret;
1043
1044         ret = get_cpuid(buffer, sizeof(buffer));
1045         if (ret)
1046                 return -1;
1047
1048         return do_write_string(ff, buffer);
1049 }
1050
1051 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1052                               struct perf_evlist *evlist __maybe_unused)
1053 {
1054         return 0;
1055 }
1056
1057 static int write_auxtrace(struct feat_fd *ff,
1058                           struct perf_evlist *evlist __maybe_unused)
1059 {
1060         struct perf_session *session;
1061         int err;
1062
1063         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1064                 return -1;
1065
1066         session = container_of(ff->ph, struct perf_session, header);
1067
1068         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1069         if (err < 0)
1070                 pr_err("Failed to write auxtrace index\n");
1071         return err;
1072 }
1073
1074 static int write_clockid(struct feat_fd *ff,
1075                          struct perf_evlist *evlist __maybe_unused)
1076 {
1077         return do_write(ff, &ff->ph->env.clockid_res_ns,
1078                         sizeof(ff->ph->env.clockid_res_ns));
1079 }
1080
1081 static int cpu_cache_level__sort(const void *a, const void *b)
1082 {
1083         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1084         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1085
1086         return cache_a->level - cache_b->level;
1087 }
1088
1089 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1090 {
1091         if (a->level != b->level)
1092                 return false;
1093
1094         if (a->line_size != b->line_size)
1095                 return false;
1096
1097         if (a->sets != b->sets)
1098                 return false;
1099
1100         if (a->ways != b->ways)
1101                 return false;
1102
1103         if (strcmp(a->type, b->type))
1104                 return false;
1105
1106         if (strcmp(a->size, b->size))
1107                 return false;
1108
1109         if (strcmp(a->map, b->map))
1110                 return false;
1111
1112         return true;
1113 }
1114
1115 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1116 {
1117         char path[PATH_MAX], file[PATH_MAX];
1118         struct stat st;
1119         size_t len;
1120
1121         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1122         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1123
1124         if (stat(file, &st))
1125                 return 1;
1126
1127         scnprintf(file, PATH_MAX, "%s/level", path);
1128         if (sysfs__read_int(file, (int *) &cache->level))
1129                 return -1;
1130
1131         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1132         if (sysfs__read_int(file, (int *) &cache->line_size))
1133                 return -1;
1134
1135         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1136         if (sysfs__read_int(file, (int *) &cache->sets))
1137                 return -1;
1138
1139         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1140         if (sysfs__read_int(file, (int *) &cache->ways))
1141                 return -1;
1142
1143         scnprintf(file, PATH_MAX, "%s/type", path);
1144         if (sysfs__read_str(file, &cache->type, &len))
1145                 return -1;
1146
1147         cache->type[len] = 0;
1148         cache->type = rtrim(cache->type);
1149
1150         scnprintf(file, PATH_MAX, "%s/size", path);
1151         if (sysfs__read_str(file, &cache->size, &len)) {
1152                 free(cache->type);
1153                 return -1;
1154         }
1155
1156         cache->size[len] = 0;
1157         cache->size = rtrim(cache->size);
1158
1159         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1160         if (sysfs__read_str(file, &cache->map, &len)) {
1161                 free(cache->map);
1162                 free(cache->type);
1163                 return -1;
1164         }
1165
1166         cache->map[len] = 0;
1167         cache->map = rtrim(cache->map);
1168         return 0;
1169 }
1170
1171 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1172 {
1173         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1174 }
1175
1176 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1177 {
1178         u32 i, cnt = 0;
1179         long ncpus;
1180         u32 nr, cpu;
1181         u16 level;
1182
1183         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1184         if (ncpus < 0)
1185                 return -1;
1186
1187         nr = (u32)(ncpus & UINT_MAX);
1188
1189         for (cpu = 0; cpu < nr; cpu++) {
1190                 for (level = 0; level < 10; level++) {
1191                         struct cpu_cache_level c;
1192                         int err;
1193
1194                         err = cpu_cache_level__read(&c, cpu, level);
1195                         if (err < 0)
1196                                 return err;
1197
1198                         if (err == 1)
1199                                 break;
1200
1201                         for (i = 0; i < cnt; i++) {
1202                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1203                                         break;
1204                         }
1205
1206                         if (i == cnt)
1207                                 caches[cnt++] = c;
1208                         else
1209                                 cpu_cache_level__free(&c);
1210
1211                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1212                                 goto out;
1213                 }
1214         }
1215  out:
1216         *cntp = cnt;
1217         return 0;
1218 }
1219
1220 #define MAX_CACHES 2000
1221
1222 static int write_cache(struct feat_fd *ff,
1223                        struct perf_evlist *evlist __maybe_unused)
1224 {
1225         struct cpu_cache_level caches[MAX_CACHES];
1226         u32 cnt = 0, i, version = 1;
1227         int ret;
1228
1229         ret = build_caches(caches, MAX_CACHES, &cnt);
1230         if (ret)
1231                 goto out;
1232
1233         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1234
1235         ret = do_write(ff, &version, sizeof(u32));
1236         if (ret < 0)
1237                 goto out;
1238
1239         ret = do_write(ff, &cnt, sizeof(u32));
1240         if (ret < 0)
1241                 goto out;
1242
1243         for (i = 0; i < cnt; i++) {
1244                 struct cpu_cache_level *c = &caches[i];
1245
1246                 #define _W(v)                                   \
1247                         ret = do_write(ff, &c->v, sizeof(u32)); \
1248                         if (ret < 0)                            \
1249                                 goto out;
1250
1251                 _W(level)
1252                 _W(line_size)
1253                 _W(sets)
1254                 _W(ways)
1255                 #undef _W
1256
1257                 #define _W(v)                                           \
1258                         ret = do_write_string(ff, (const char *) c->v); \
1259                         if (ret < 0)                                    \
1260                                 goto out;
1261
1262                 _W(type)
1263                 _W(size)
1264                 _W(map)
1265                 #undef _W
1266         }
1267
1268 out:
1269         for (i = 0; i < cnt; i++)
1270                 cpu_cache_level__free(&caches[i]);
1271         return ret;
1272 }
1273
1274 static int write_stat(struct feat_fd *ff __maybe_unused,
1275                       struct perf_evlist *evlist __maybe_unused)
1276 {
1277         return 0;
1278 }
1279
1280 static int write_sample_time(struct feat_fd *ff,
1281                              struct perf_evlist *evlist)
1282 {
1283         int ret;
1284
1285         ret = do_write(ff, &evlist->first_sample_time,
1286                        sizeof(evlist->first_sample_time));
1287         if (ret < 0)
1288                 return ret;
1289
1290         return do_write(ff, &evlist->last_sample_time,
1291                         sizeof(evlist->last_sample_time));
1292 }
1293
1294
1295 static int memory_node__read(struct memory_node *n, unsigned long idx)
1296 {
1297         unsigned int phys, size = 0;
1298         char path[PATH_MAX];
1299         struct dirent *ent;
1300         DIR *dir;
1301
1302 #define for_each_memory(mem, dir)                                       \
1303         while ((ent = readdir(dir)))                                    \
1304                 if (strcmp(ent->d_name, ".") &&                         \
1305                     strcmp(ent->d_name, "..") &&                        \
1306                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1307
1308         scnprintf(path, PATH_MAX,
1309                   "%s/devices/system/node/node%lu",
1310                   sysfs__mountpoint(), idx);
1311
1312         dir = opendir(path);
1313         if (!dir) {
1314                 pr_warning("failed: cant' open memory sysfs data\n");
1315                 return -1;
1316         }
1317
1318         for_each_memory(phys, dir) {
1319                 size = max(phys, size);
1320         }
1321
1322         size++;
1323
1324         n->set = bitmap_alloc(size);
1325         if (!n->set) {
1326                 closedir(dir);
1327                 return -ENOMEM;
1328         }
1329
1330         n->node = idx;
1331         n->size = size;
1332
1333         rewinddir(dir);
1334
1335         for_each_memory(phys, dir) {
1336                 set_bit(phys, n->set);
1337         }
1338
1339         closedir(dir);
1340         return 0;
1341 }
1342
1343 static int memory_node__sort(const void *a, const void *b)
1344 {
1345         const struct memory_node *na = a;
1346         const struct memory_node *nb = b;
1347
1348         return na->node - nb->node;
1349 }
1350
1351 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1352 {
1353         char path[PATH_MAX];
1354         struct dirent *ent;
1355         DIR *dir;
1356         u64 cnt = 0;
1357         int ret = 0;
1358
1359         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1360                   sysfs__mountpoint());
1361
1362         dir = opendir(path);
1363         if (!dir) {
1364                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1365                           __func__, path);
1366                 return -1;
1367         }
1368
1369         while (!ret && (ent = readdir(dir))) {
1370                 unsigned int idx;
1371                 int r;
1372
1373                 if (!strcmp(ent->d_name, ".") ||
1374                     !strcmp(ent->d_name, ".."))
1375                         continue;
1376
1377                 r = sscanf(ent->d_name, "node%u", &idx);
1378                 if (r != 1)
1379                         continue;
1380
1381                 if (WARN_ONCE(cnt >= size,
1382                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1383                         return -1;
1384
1385                 ret = memory_node__read(&nodes[cnt++], idx);
1386         }
1387
1388         *cntp = cnt;
1389         closedir(dir);
1390
1391         if (!ret)
1392                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1393
1394         return ret;
1395 }
1396
1397 #define MAX_MEMORY_NODES 2000
1398
1399 /*
1400  * The MEM_TOPOLOGY holds physical memory map for every
1401  * node in system. The format of data is as follows:
1402  *
1403  *  0 - version          | for future changes
1404  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1405  * 16 - count            | number of nodes
1406  *
1407  * For each node we store map of physical indexes for
1408  * each node:
1409  *
1410  * 32 - node id          | node index
1411  * 40 - size             | size of bitmap
1412  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1413  */
1414 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1415                               struct perf_evlist *evlist __maybe_unused)
1416 {
1417         static struct memory_node nodes[MAX_MEMORY_NODES];
1418         u64 bsize, version = 1, i, nr;
1419         int ret;
1420
1421         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1422                               (unsigned long long *) &bsize);
1423         if (ret)
1424                 return ret;
1425
1426         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1427         if (ret)
1428                 return ret;
1429
1430         ret = do_write(ff, &version, sizeof(version));
1431         if (ret < 0)
1432                 goto out;
1433
1434         ret = do_write(ff, &bsize, sizeof(bsize));
1435         if (ret < 0)
1436                 goto out;
1437
1438         ret = do_write(ff, &nr, sizeof(nr));
1439         if (ret < 0)
1440                 goto out;
1441
1442         for (i = 0; i < nr; i++) {
1443                 struct memory_node *n = &nodes[i];
1444
1445                 #define _W(v)                                           \
1446                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1447                         if (ret < 0)                                    \
1448                                 goto out;
1449
1450                 _W(node)
1451                 _W(size)
1452
1453                 #undef _W
1454
1455                 ret = do_write_bitmap(ff, n->set, n->size);
1456                 if (ret < 0)
1457                         goto out;
1458         }
1459
1460 out:
1461         return ret;
1462 }
1463
1464 static void print_hostname(struct feat_fd *ff, FILE *fp)
1465 {
1466         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1467 }
1468
1469 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1470 {
1471         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1472 }
1473
1474 static void print_arch(struct feat_fd *ff, FILE *fp)
1475 {
1476         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1477 }
1478
1479 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1480 {
1481         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1482 }
1483
1484 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1485 {
1486         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1487         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1488 }
1489
1490 static void print_version(struct feat_fd *ff, FILE *fp)
1491 {
1492         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1493 }
1494
1495 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1496 {
1497         int nr, i;
1498
1499         nr = ff->ph->env.nr_cmdline;
1500
1501         fprintf(fp, "# cmdline : ");
1502
1503         for (i = 0; i < nr; i++) {
1504                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1505                 if (!argv_i) {
1506                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1507                 } else {
1508                         char *mem = argv_i;
1509                         do {
1510                                 char *quote = strchr(argv_i, '\'');
1511                                 if (!quote)
1512                                         break;
1513                                 *quote++ = '\0';
1514                                 fprintf(fp, "%s\\\'", argv_i);
1515                                 argv_i = quote;
1516                         } while (1);
1517                         fprintf(fp, "%s ", argv_i);
1518                         free(mem);
1519                 }
1520         }
1521         fputc('\n', fp);
1522 }
1523
1524 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1525 {
1526         struct perf_header *ph = ff->ph;
1527         int cpu_nr = ph->env.nr_cpus_avail;
1528         int nr, i;
1529         char *str;
1530
1531         nr = ph->env.nr_sibling_cores;
1532         str = ph->env.sibling_cores;
1533
1534         for (i = 0; i < nr; i++) {
1535                 fprintf(fp, "# sibling cores   : %s\n", str);
1536                 str += strlen(str) + 1;
1537         }
1538
1539         nr = ph->env.nr_sibling_threads;
1540         str = ph->env.sibling_threads;
1541
1542         for (i = 0; i < nr; i++) {
1543                 fprintf(fp, "# sibling threads : %s\n", str);
1544                 str += strlen(str) + 1;
1545         }
1546
1547         if (ph->env.cpu != NULL) {
1548                 for (i = 0; i < cpu_nr; i++)
1549                         fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1550                                 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1551         } else
1552                 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1553 }
1554
1555 static void print_clockid(struct feat_fd *ff, FILE *fp)
1556 {
1557         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1558                 ff->ph->env.clockid_res_ns * 1000);
1559 }
1560
1561 static void free_event_desc(struct perf_evsel *events)
1562 {
1563         struct perf_evsel *evsel;
1564
1565         if (!events)
1566                 return;
1567
1568         for (evsel = events; evsel->attr.size; evsel++) {
1569                 zfree(&evsel->name);
1570                 zfree(&evsel->id);
1571         }
1572
1573         free(events);
1574 }
1575
1576 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1577 {
1578         struct perf_evsel *evsel, *events = NULL;
1579         u64 *id;
1580         void *buf = NULL;
1581         u32 nre, sz, nr, i, j;
1582         size_t msz;
1583
1584         /* number of events */
1585         if (do_read_u32(ff, &nre))
1586                 goto error;
1587
1588         if (do_read_u32(ff, &sz))
1589                 goto error;
1590
1591         /* buffer to hold on file attr struct */
1592         buf = malloc(sz);
1593         if (!buf)
1594                 goto error;
1595
1596         /* the last event terminates with evsel->attr.size == 0: */
1597         events = calloc(nre + 1, sizeof(*events));
1598         if (!events)
1599                 goto error;
1600
1601         msz = sizeof(evsel->attr);
1602         if (sz < msz)
1603                 msz = sz;
1604
1605         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1606                 evsel->idx = i;
1607
1608                 /*
1609                  * must read entire on-file attr struct to
1610                  * sync up with layout.
1611                  */
1612                 if (__do_read(ff, buf, sz))
1613                         goto error;
1614
1615                 if (ff->ph->needs_swap)
1616                         perf_event__attr_swap(buf);
1617
1618                 memcpy(&evsel->attr, buf, msz);
1619
1620                 if (do_read_u32(ff, &nr))
1621                         goto error;
1622
1623                 if (ff->ph->needs_swap)
1624                         evsel->needs_swap = true;
1625
1626                 evsel->name = do_read_string(ff);
1627                 if (!evsel->name)
1628                         goto error;
1629
1630                 if (!nr)
1631                         continue;
1632
1633                 id = calloc(nr, sizeof(*id));
1634                 if (!id)
1635                         goto error;
1636                 evsel->ids = nr;
1637                 evsel->id = id;
1638
1639                 for (j = 0 ; j < nr; j++) {
1640                         if (do_read_u64(ff, id))
1641                                 goto error;
1642                         id++;
1643                 }
1644         }
1645 out:
1646         free(buf);
1647         return events;
1648 error:
1649         free_event_desc(events);
1650         events = NULL;
1651         goto out;
1652 }
1653
1654 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1655                                 void *priv __maybe_unused)
1656 {
1657         return fprintf(fp, ", %s = %s", name, val);
1658 }
1659
1660 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1661 {
1662         struct perf_evsel *evsel, *events;
1663         u32 j;
1664         u64 *id;
1665
1666         if (ff->events)
1667                 events = ff->events;
1668         else
1669                 events = read_event_desc(ff);
1670
1671         if (!events) {
1672                 fprintf(fp, "# event desc: not available or unable to read\n");
1673                 return;
1674         }
1675
1676         for (evsel = events; evsel->attr.size; evsel++) {
1677                 fprintf(fp, "# event : name = %s, ", evsel->name);
1678
1679                 if (evsel->ids) {
1680                         fprintf(fp, ", id = {");
1681                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1682                                 if (j)
1683                                         fputc(',', fp);
1684                                 fprintf(fp, " %"PRIu64, *id);
1685                         }
1686                         fprintf(fp, " }");
1687                 }
1688
1689                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1690
1691                 fputc('\n', fp);
1692         }
1693
1694         free_event_desc(events);
1695         ff->events = NULL;
1696 }
1697
1698 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1699 {
1700         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1701 }
1702
1703 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1704 {
1705         int i;
1706         struct numa_node *n;
1707
1708         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1709                 n = &ff->ph->env.numa_nodes[i];
1710
1711                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1712                             " free = %"PRIu64" kB\n",
1713                         n->node, n->mem_total, n->mem_free);
1714
1715                 fprintf(fp, "# node%u cpu list : ", n->node);
1716                 cpu_map__fprintf(n->map, fp);
1717         }
1718 }
1719
1720 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1721 {
1722         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1723 }
1724
1725 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1726 {
1727         fprintf(fp, "# contains samples with branch stack\n");
1728 }
1729
1730 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1731 {
1732         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1733 }
1734
1735 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1736 {
1737         fprintf(fp, "# contains stat data\n");
1738 }
1739
1740 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1741 {
1742         int i;
1743
1744         fprintf(fp, "# CPU cache info:\n");
1745         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1746                 fprintf(fp, "#  ");
1747                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1748         }
1749 }
1750
1751 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1752 {
1753         const char *delimiter = "# pmu mappings: ";
1754         char *str, *tmp;
1755         u32 pmu_num;
1756         u32 type;
1757
1758         pmu_num = ff->ph->env.nr_pmu_mappings;
1759         if (!pmu_num) {
1760                 fprintf(fp, "# pmu mappings: not available\n");
1761                 return;
1762         }
1763
1764         str = ff->ph->env.pmu_mappings;
1765
1766         while (pmu_num) {
1767                 type = strtoul(str, &tmp, 0);
1768                 if (*tmp != ':')
1769                         goto error;
1770
1771                 str = tmp + 1;
1772                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1773
1774                 delimiter = ", ";
1775                 str += strlen(str) + 1;
1776                 pmu_num--;
1777         }
1778
1779         fprintf(fp, "\n");
1780
1781         if (!pmu_num)
1782                 return;
1783 error:
1784         fprintf(fp, "# pmu mappings: unable to read\n");
1785 }
1786
1787 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1788 {
1789         struct perf_session *session;
1790         struct perf_evsel *evsel;
1791         u32 nr = 0;
1792
1793         session = container_of(ff->ph, struct perf_session, header);
1794
1795         evlist__for_each_entry(session->evlist, evsel) {
1796                 if (perf_evsel__is_group_leader(evsel) &&
1797                     evsel->nr_members > 1) {
1798                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1799                                 perf_evsel__name(evsel));
1800
1801                         nr = evsel->nr_members - 1;
1802                 } else if (nr) {
1803                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1804
1805                         if (--nr == 0)
1806                                 fprintf(fp, "}\n");
1807                 }
1808         }
1809 }
1810
1811 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1812 {
1813         struct perf_session *session;
1814         char time_buf[32];
1815         double d;
1816
1817         session = container_of(ff->ph, struct perf_session, header);
1818
1819         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1820                                   time_buf, sizeof(time_buf));
1821         fprintf(fp, "# time of first sample : %s\n", time_buf);
1822
1823         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1824                                   time_buf, sizeof(time_buf));
1825         fprintf(fp, "# time of last sample : %s\n", time_buf);
1826
1827         d = (double)(session->evlist->last_sample_time -
1828                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1829
1830         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1831 }
1832
1833 static void memory_node__fprintf(struct memory_node *n,
1834                                  unsigned long long bsize, FILE *fp)
1835 {
1836         char buf_map[100], buf_size[50];
1837         unsigned long long size;
1838
1839         size = bsize * bitmap_weight(n->set, n->size);
1840         unit_number__scnprintf(buf_size, 50, size);
1841
1842         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1843         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1844 }
1845
1846 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1847 {
1848         struct memory_node *nodes;
1849         int i, nr;
1850
1851         nodes = ff->ph->env.memory_nodes;
1852         nr    = ff->ph->env.nr_memory_nodes;
1853
1854         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1855                 nr, ff->ph->env.memory_bsize);
1856
1857         for (i = 0; i < nr; i++) {
1858                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1859         }
1860 }
1861
1862 static int __event_process_build_id(struct build_id_event *bev,
1863                                     char *filename,
1864                                     struct perf_session *session)
1865 {
1866         int err = -1;
1867         struct machine *machine;
1868         u16 cpumode;
1869         struct dso *dso;
1870         enum dso_kernel_type dso_type;
1871
1872         machine = perf_session__findnew_machine(session, bev->pid);
1873         if (!machine)
1874                 goto out;
1875
1876         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1877
1878         switch (cpumode) {
1879         case PERF_RECORD_MISC_KERNEL:
1880                 dso_type = DSO_TYPE_KERNEL;
1881                 break;
1882         case PERF_RECORD_MISC_GUEST_KERNEL:
1883                 dso_type = DSO_TYPE_GUEST_KERNEL;
1884                 break;
1885         case PERF_RECORD_MISC_USER:
1886         case PERF_RECORD_MISC_GUEST_USER:
1887                 dso_type = DSO_TYPE_USER;
1888                 break;
1889         default:
1890                 goto out;
1891         }
1892
1893         dso = machine__findnew_dso(machine, filename);
1894         if (dso != NULL) {
1895                 char sbuild_id[SBUILD_ID_SIZE];
1896
1897                 dso__set_build_id(dso, &bev->build_id);
1898
1899                 if (dso_type != DSO_TYPE_USER) {
1900                         struct kmod_path m = { .name = NULL, };
1901
1902                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1903                                 dso__set_module_info(dso, &m, machine);
1904                         else
1905                                 dso->kernel = dso_type;
1906
1907                         free(m.name);
1908                 }
1909
1910                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1911                                   sbuild_id);
1912                 pr_debug("build id event received for %s: %s\n",
1913                          dso->long_name, sbuild_id);
1914                 dso__put(dso);
1915         }
1916
1917         err = 0;
1918 out:
1919         return err;
1920 }
1921
1922 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1923                                                  int input, u64 offset, u64 size)
1924 {
1925         struct perf_session *session = container_of(header, struct perf_session, header);
1926         struct {
1927                 struct perf_event_header   header;
1928                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1929                 char                       filename[0];
1930         } old_bev;
1931         struct build_id_event bev;
1932         char filename[PATH_MAX];
1933         u64 limit = offset + size;
1934
1935         while (offset < limit) {
1936                 ssize_t len;
1937
1938                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1939                         return -1;
1940
1941                 if (header->needs_swap)
1942                         perf_event_header__bswap(&old_bev.header);
1943
1944                 len = old_bev.header.size - sizeof(old_bev);
1945                 if (readn(input, filename, len) != len)
1946                         return -1;
1947
1948                 bev.header = old_bev.header;
1949
1950                 /*
1951                  * As the pid is the missing value, we need to fill
1952                  * it properly. The header.misc value give us nice hint.
1953                  */
1954                 bev.pid = HOST_KERNEL_ID;
1955                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1956                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1957                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1958
1959                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1960                 __event_process_build_id(&bev, filename, session);
1961
1962                 offset += bev.header.size;
1963         }
1964
1965         return 0;
1966 }
1967
1968 static int perf_header__read_build_ids(struct perf_header *header,
1969                                        int input, u64 offset, u64 size)
1970 {
1971         struct perf_session *session = container_of(header, struct perf_session, header);
1972         struct build_id_event bev;
1973         char filename[PATH_MAX];
1974         u64 limit = offset + size, orig_offset = offset;
1975         int err = -1;
1976
1977         while (offset < limit) {
1978                 ssize_t len;
1979
1980                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1981                         goto out;
1982
1983                 if (header->needs_swap)
1984                         perf_event_header__bswap(&bev.header);
1985
1986                 len = bev.header.size - sizeof(bev);
1987                 if (readn(input, filename, len) != len)
1988                         goto out;
1989                 /*
1990                  * The a1645ce1 changeset:
1991                  *
1992                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
1993                  *
1994                  * Added a field to struct build_id_event that broke the file
1995                  * format.
1996                  *
1997                  * Since the kernel build-id is the first entry, process the
1998                  * table using the old format if the well known
1999                  * '[kernel.kallsyms]' string for the kernel build-id has the
2000                  * first 4 characters chopped off (where the pid_t sits).
2001                  */
2002                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2003                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2004                                 return -1;
2005                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2006                 }
2007
2008                 __event_process_build_id(&bev, filename, session);
2009
2010                 offset += bev.header.size;
2011         }
2012         err = 0;
2013 out:
2014         return err;
2015 }
2016
2017 /* Macro for features that simply need to read and store a string. */
2018 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2019 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2020 {\
2021         ff->ph->env.__feat_env = do_read_string(ff); \
2022         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2023 }
2024
2025 FEAT_PROCESS_STR_FUN(hostname, hostname);
2026 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2027 FEAT_PROCESS_STR_FUN(version, version);
2028 FEAT_PROCESS_STR_FUN(arch, arch);
2029 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2030 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2031
2032 static int process_tracing_data(struct feat_fd *ff, void *data)
2033 {
2034         ssize_t ret = trace_report(ff->fd, data, false);
2035
2036         return ret < 0 ? -1 : 0;
2037 }
2038
2039 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2040 {
2041         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2042                 pr_debug("Failed to read buildids, continuing...\n");
2043         return 0;
2044 }
2045
2046 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2047 {
2048         int ret;
2049         u32 nr_cpus_avail, nr_cpus_online;
2050
2051         ret = do_read_u32(ff, &nr_cpus_avail);
2052         if (ret)
2053                 return ret;
2054
2055         ret = do_read_u32(ff, &nr_cpus_online);
2056         if (ret)
2057                 return ret;
2058         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2059         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2060         return 0;
2061 }
2062
2063 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2064 {
2065         u64 total_mem;
2066         int ret;
2067
2068         ret = do_read_u64(ff, &total_mem);
2069         if (ret)
2070                 return -1;
2071         ff->ph->env.total_mem = (unsigned long long)total_mem;
2072         return 0;
2073 }
2074
2075 static struct perf_evsel *
2076 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2077 {
2078         struct perf_evsel *evsel;
2079
2080         evlist__for_each_entry(evlist, evsel) {
2081                 if (evsel->idx == idx)
2082                         return evsel;
2083         }
2084
2085         return NULL;
2086 }
2087
2088 static void
2089 perf_evlist__set_event_name(struct perf_evlist *evlist,
2090                             struct perf_evsel *event)
2091 {
2092         struct perf_evsel *evsel;
2093
2094         if (!event->name)
2095                 return;
2096
2097         evsel = perf_evlist__find_by_index(evlist, event->idx);
2098         if (!evsel)
2099                 return;
2100
2101         if (evsel->name)
2102                 return;
2103
2104         evsel->name = strdup(event->name);
2105 }
2106
2107 static int
2108 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2109 {
2110         struct perf_session *session;
2111         struct perf_evsel *evsel, *events = read_event_desc(ff);
2112
2113         if (!events)
2114                 return 0;
2115
2116         session = container_of(ff->ph, struct perf_session, header);
2117
2118         if (session->data->is_pipe) {
2119                 /* Save events for reading later by print_event_desc,
2120                  * since they can't be read again in pipe mode. */
2121                 ff->events = events;
2122         }
2123
2124         for (evsel = events; evsel->attr.size; evsel++)
2125                 perf_evlist__set_event_name(session->evlist, evsel);
2126
2127         if (!session->data->is_pipe)
2128                 free_event_desc(events);
2129
2130         return 0;
2131 }
2132
2133 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2134 {
2135         char *str, *cmdline = NULL, **argv = NULL;
2136         u32 nr, i, len = 0;
2137
2138         if (do_read_u32(ff, &nr))
2139                 return -1;
2140
2141         ff->ph->env.nr_cmdline = nr;
2142
2143         cmdline = zalloc(ff->size + nr + 1);
2144         if (!cmdline)
2145                 return -1;
2146
2147         argv = zalloc(sizeof(char *) * (nr + 1));
2148         if (!argv)
2149                 goto error;
2150
2151         for (i = 0; i < nr; i++) {
2152                 str = do_read_string(ff);
2153                 if (!str)
2154                         goto error;
2155
2156                 argv[i] = cmdline + len;
2157                 memcpy(argv[i], str, strlen(str) + 1);
2158                 len += strlen(str) + 1;
2159                 free(str);
2160         }
2161         ff->ph->env.cmdline = cmdline;
2162         ff->ph->env.cmdline_argv = (const char **) argv;
2163         return 0;
2164
2165 error:
2166         free(argv);
2167         free(cmdline);
2168         return -1;
2169 }
2170
2171 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2172 {
2173         u32 nr, i;
2174         char *str;
2175         struct strbuf sb;
2176         int cpu_nr = ff->ph->env.nr_cpus_avail;
2177         u64 size = 0;
2178         struct perf_header *ph = ff->ph;
2179         bool do_core_id_test = true;
2180
2181         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2182         if (!ph->env.cpu)
2183                 return -1;
2184
2185         if (do_read_u32(ff, &nr))
2186                 goto free_cpu;
2187
2188         ph->env.nr_sibling_cores = nr;
2189         size += sizeof(u32);
2190         if (strbuf_init(&sb, 128) < 0)
2191                 goto free_cpu;
2192
2193         for (i = 0; i < nr; i++) {
2194                 str = do_read_string(ff);
2195                 if (!str)
2196                         goto error;
2197
2198                 /* include a NULL character at the end */
2199                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2200                         goto error;
2201                 size += string_size(str);
2202                 free(str);
2203         }
2204         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2205
2206         if (do_read_u32(ff, &nr))
2207                 return -1;
2208
2209         ph->env.nr_sibling_threads = nr;
2210         size += sizeof(u32);
2211
2212         for (i = 0; i < nr; i++) {
2213                 str = do_read_string(ff);
2214                 if (!str)
2215                         goto error;
2216
2217                 /* include a NULL character at the end */
2218                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2219                         goto error;
2220                 size += string_size(str);
2221                 free(str);
2222         }
2223         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2224
2225         /*
2226          * The header may be from old perf,
2227          * which doesn't include core id and socket id information.
2228          */
2229         if (ff->size <= size) {
2230                 zfree(&ph->env.cpu);
2231                 return 0;
2232         }
2233
2234         /* On s390 the socket_id number is not related to the numbers of cpus.
2235          * The socket_id number might be higher than the numbers of cpus.
2236          * This depends on the configuration.
2237          */
2238         if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2239                 do_core_id_test = false;
2240
2241         for (i = 0; i < (u32)cpu_nr; i++) {
2242                 if (do_read_u32(ff, &nr))
2243                         goto free_cpu;
2244
2245                 ph->env.cpu[i].core_id = nr;
2246
2247                 if (do_read_u32(ff, &nr))
2248                         goto free_cpu;
2249
2250                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2251                         pr_debug("socket_id number is too big."
2252                                  "You may need to upgrade the perf tool.\n");
2253                         goto free_cpu;
2254                 }
2255
2256                 ph->env.cpu[i].socket_id = nr;
2257         }
2258
2259         return 0;
2260
2261 error:
2262         strbuf_release(&sb);
2263 free_cpu:
2264         zfree(&ph->env.cpu);
2265         return -1;
2266 }
2267
2268 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2269 {
2270         struct numa_node *nodes, *n;
2271         u32 nr, i;
2272         char *str;
2273
2274         /* nr nodes */
2275         if (do_read_u32(ff, &nr))
2276                 return -1;
2277
2278         nodes = zalloc(sizeof(*nodes) * nr);
2279         if (!nodes)
2280                 return -ENOMEM;
2281
2282         for (i = 0; i < nr; i++) {
2283                 n = &nodes[i];
2284
2285                 /* node number */
2286                 if (do_read_u32(ff, &n->node))
2287                         goto error;
2288
2289                 if (do_read_u64(ff, &n->mem_total))
2290                         goto error;
2291
2292                 if (do_read_u64(ff, &n->mem_free))
2293                         goto error;
2294
2295                 str = do_read_string(ff);
2296                 if (!str)
2297                         goto error;
2298
2299                 n->map = cpu_map__new(str);
2300                 if (!n->map)
2301                         goto error;
2302
2303                 free(str);
2304         }
2305         ff->ph->env.nr_numa_nodes = nr;
2306         ff->ph->env.numa_nodes = nodes;
2307         return 0;
2308
2309 error:
2310         free(nodes);
2311         return -1;
2312 }
2313
2314 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2315 {
2316         char *name;
2317         u32 pmu_num;
2318         u32 type;
2319         struct strbuf sb;
2320
2321         if (do_read_u32(ff, &pmu_num))
2322                 return -1;
2323
2324         if (!pmu_num) {
2325                 pr_debug("pmu mappings not available\n");
2326                 return 0;
2327         }
2328
2329         ff->ph->env.nr_pmu_mappings = pmu_num;
2330         if (strbuf_init(&sb, 128) < 0)
2331                 return -1;
2332
2333         while (pmu_num) {
2334                 if (do_read_u32(ff, &type))
2335                         goto error;
2336
2337                 name = do_read_string(ff);
2338                 if (!name)
2339                         goto error;
2340
2341                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2342                         goto error;
2343                 /* include a NULL character at the end */
2344                 if (strbuf_add(&sb, "", 1) < 0)
2345                         goto error;
2346
2347                 if (!strcmp(name, "msr"))
2348                         ff->ph->env.msr_pmu_type = type;
2349
2350                 free(name);
2351                 pmu_num--;
2352         }
2353         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2354         return 0;
2355
2356 error:
2357         strbuf_release(&sb);
2358         return -1;
2359 }
2360
2361 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2362 {
2363         size_t ret = -1;
2364         u32 i, nr, nr_groups;
2365         struct perf_session *session;
2366         struct perf_evsel *evsel, *leader = NULL;
2367         struct group_desc {
2368                 char *name;
2369                 u32 leader_idx;
2370                 u32 nr_members;
2371         } *desc;
2372
2373         if (do_read_u32(ff, &nr_groups))
2374                 return -1;
2375
2376         ff->ph->env.nr_groups = nr_groups;
2377         if (!nr_groups) {
2378                 pr_debug("group desc not available\n");
2379                 return 0;
2380         }
2381
2382         desc = calloc(nr_groups, sizeof(*desc));
2383         if (!desc)
2384                 return -1;
2385
2386         for (i = 0; i < nr_groups; i++) {
2387                 desc[i].name = do_read_string(ff);
2388                 if (!desc[i].name)
2389                         goto out_free;
2390
2391                 if (do_read_u32(ff, &desc[i].leader_idx))
2392                         goto out_free;
2393
2394                 if (do_read_u32(ff, &desc[i].nr_members))
2395                         goto out_free;
2396         }
2397
2398         /*
2399          * Rebuild group relationship based on the group_desc
2400          */
2401         session = container_of(ff->ph, struct perf_session, header);
2402         session->evlist->nr_groups = nr_groups;
2403
2404         i = nr = 0;
2405         evlist__for_each_entry(session->evlist, evsel) {
2406                 if (evsel->idx == (int) desc[i].leader_idx) {
2407                         evsel->leader = evsel;
2408                         /* {anon_group} is a dummy name */
2409                         if (strcmp(desc[i].name, "{anon_group}")) {
2410                                 evsel->group_name = desc[i].name;
2411                                 desc[i].name = NULL;
2412                         }
2413                         evsel->nr_members = desc[i].nr_members;
2414
2415                         if (i >= nr_groups || nr > 0) {
2416                                 pr_debug("invalid group desc\n");
2417                                 goto out_free;
2418                         }
2419
2420                         leader = evsel;
2421                         nr = evsel->nr_members - 1;
2422                         i++;
2423                 } else if (nr) {
2424                         /* This is a group member */
2425                         evsel->leader = leader;
2426
2427                         nr--;
2428                 }
2429         }
2430
2431         if (i != nr_groups || nr != 0) {
2432                 pr_debug("invalid group desc\n");
2433                 goto out_free;
2434         }
2435
2436         ret = 0;
2437 out_free:
2438         for (i = 0; i < nr_groups; i++)
2439                 zfree(&desc[i].name);
2440         free(desc);
2441
2442         return ret;
2443 }
2444
2445 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2446 {
2447         struct perf_session *session;
2448         int err;
2449
2450         session = container_of(ff->ph, struct perf_session, header);
2451
2452         err = auxtrace_index__process(ff->fd, ff->size, session,
2453                                       ff->ph->needs_swap);
2454         if (err < 0)
2455                 pr_err("Failed to process auxtrace index\n");
2456         return err;
2457 }
2458
2459 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2460 {
2461         struct cpu_cache_level *caches;
2462         u32 cnt, i, version;
2463
2464         if (do_read_u32(ff, &version))
2465                 return -1;
2466
2467         if (version != 1)
2468                 return -1;
2469
2470         if (do_read_u32(ff, &cnt))
2471                 return -1;
2472
2473         caches = zalloc(sizeof(*caches) * cnt);
2474         if (!caches)
2475                 return -1;
2476
2477         for (i = 0; i < cnt; i++) {
2478                 struct cpu_cache_level c;
2479
2480                 #define _R(v)                                           \
2481                         if (do_read_u32(ff, &c.v))\
2482                                 goto out_free_caches;                   \
2483
2484                 _R(level)
2485                 _R(line_size)
2486                 _R(sets)
2487                 _R(ways)
2488                 #undef _R
2489
2490                 #define _R(v)                                   \
2491                         c.v = do_read_string(ff);               \
2492                         if (!c.v)                               \
2493                                 goto out_free_caches;
2494
2495                 _R(type)
2496                 _R(size)
2497                 _R(map)
2498                 #undef _R
2499
2500                 caches[i] = c;
2501         }
2502
2503         ff->ph->env.caches = caches;
2504         ff->ph->env.caches_cnt = cnt;
2505         return 0;
2506 out_free_caches:
2507         free(caches);
2508         return -1;
2509 }
2510
2511 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2512 {
2513         struct perf_session *session;
2514         u64 first_sample_time, last_sample_time;
2515         int ret;
2516
2517         session = container_of(ff->ph, struct perf_session, header);
2518
2519         ret = do_read_u64(ff, &first_sample_time);
2520         if (ret)
2521                 return -1;
2522
2523         ret = do_read_u64(ff, &last_sample_time);
2524         if (ret)
2525                 return -1;
2526
2527         session->evlist->first_sample_time = first_sample_time;
2528         session->evlist->last_sample_time = last_sample_time;
2529         return 0;
2530 }
2531
2532 static int process_mem_topology(struct feat_fd *ff,
2533                                 void *data __maybe_unused)
2534 {
2535         struct memory_node *nodes;
2536         u64 version, i, nr, bsize;
2537         int ret = -1;
2538
2539         if (do_read_u64(ff, &version))
2540                 return -1;
2541
2542         if (version != 1)
2543                 return -1;
2544
2545         if (do_read_u64(ff, &bsize))
2546                 return -1;
2547
2548         if (do_read_u64(ff, &nr))
2549                 return -1;
2550
2551         nodes = zalloc(sizeof(*nodes) * nr);
2552         if (!nodes)
2553                 return -1;
2554
2555         for (i = 0; i < nr; i++) {
2556                 struct memory_node n;
2557
2558                 #define _R(v)                           \
2559                         if (do_read_u64(ff, &n.v))      \
2560                                 goto out;               \
2561
2562                 _R(node)
2563                 _R(size)
2564
2565                 #undef _R
2566
2567                 if (do_read_bitmap(ff, &n.set, &n.size))
2568                         goto out;
2569
2570                 nodes[i] = n;
2571         }
2572
2573         ff->ph->env.memory_bsize    = bsize;
2574         ff->ph->env.memory_nodes    = nodes;
2575         ff->ph->env.nr_memory_nodes = nr;
2576         ret = 0;
2577
2578 out:
2579         if (ret)
2580                 free(nodes);
2581         return ret;
2582 }
2583
2584 static int process_clockid(struct feat_fd *ff,
2585                            void *data __maybe_unused)
2586 {
2587         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2588                 return -1;
2589
2590         return 0;
2591 }
2592
2593 struct feature_ops {
2594         int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2595         void (*print)(struct feat_fd *ff, FILE *fp);
2596         int (*process)(struct feat_fd *ff, void *data);
2597         const char *name;
2598         bool full_only;
2599         bool synthesize;
2600 };
2601
2602 #define FEAT_OPR(n, func, __full_only) \
2603         [HEADER_##n] = {                                        \
2604                 .name       = __stringify(n),                   \
2605                 .write      = write_##func,                     \
2606                 .print      = print_##func,                     \
2607                 .full_only  = __full_only,                      \
2608                 .process    = process_##func,                   \
2609                 .synthesize = true                              \
2610         }
2611
2612 #define FEAT_OPN(n, func, __full_only) \
2613         [HEADER_##n] = {                                        \
2614                 .name       = __stringify(n),                   \
2615                 .write      = write_##func,                     \
2616                 .print      = print_##func,                     \
2617                 .full_only  = __full_only,                      \
2618                 .process    = process_##func                    \
2619         }
2620
2621 /* feature_ops not implemented: */
2622 #define print_tracing_data      NULL
2623 #define print_build_id          NULL
2624
2625 #define process_branch_stack    NULL
2626 #define process_stat            NULL
2627
2628
2629 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2630         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2631         FEAT_OPN(BUILD_ID,      build_id,       false),
2632         FEAT_OPR(HOSTNAME,      hostname,       false),
2633         FEAT_OPR(OSRELEASE,     osrelease,      false),
2634         FEAT_OPR(VERSION,       version,        false),
2635         FEAT_OPR(ARCH,          arch,           false),
2636         FEAT_OPR(NRCPUS,        nrcpus,         false),
2637         FEAT_OPR(CPUDESC,       cpudesc,        false),
2638         FEAT_OPR(CPUID,         cpuid,          false),
2639         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2640         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2641         FEAT_OPR(CMDLINE,       cmdline,        false),
2642         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2643         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2644         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2645         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2646         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2647         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2648         FEAT_OPN(STAT,          stat,           false),
2649         FEAT_OPN(CACHE,         cache,          true),
2650         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2651         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2652         FEAT_OPR(CLOCKID,       clockid,        false)
2653 };
2654
2655 struct header_print_data {
2656         FILE *fp;
2657         bool full; /* extended list of headers */
2658 };
2659
2660 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2661                                            struct perf_header *ph,
2662                                            int feat, int fd, void *data)
2663 {
2664         struct header_print_data *hd = data;
2665         struct feat_fd ff;
2666
2667         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2668                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2669                                 "%d, continuing...\n", section->offset, feat);
2670                 return 0;
2671         }
2672         if (feat >= HEADER_LAST_FEATURE) {
2673                 pr_warning("unknown feature %d\n", feat);
2674                 return 0;
2675         }
2676         if (!feat_ops[feat].print)
2677                 return 0;
2678
2679         ff = (struct  feat_fd) {
2680                 .fd = fd,
2681                 .ph = ph,
2682         };
2683
2684         if (!feat_ops[feat].full_only || hd->full)
2685                 feat_ops[feat].print(&ff, hd->fp);
2686         else
2687                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2688                         feat_ops[feat].name);
2689
2690         return 0;
2691 }
2692
2693 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2694 {
2695         struct header_print_data hd;
2696         struct perf_header *header = &session->header;
2697         int fd = perf_data__fd(session->data);
2698         struct stat st;
2699         time_t stctime;
2700         int ret, bit;
2701
2702         hd.fp = fp;
2703         hd.full = full;
2704
2705         ret = fstat(fd, &st);
2706         if (ret == -1)
2707                 return -1;
2708
2709         stctime = st.st_ctime;
2710         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2711
2712         fprintf(fp, "# header version : %u\n", header->version);
2713         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2714         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2715         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2716
2717         perf_header__process_sections(header, fd, &hd,
2718                                       perf_file_section__fprintf_info);
2719
2720         if (session->data->is_pipe)
2721                 return 0;
2722
2723         fprintf(fp, "# missing features: ");
2724         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2725                 if (bit)
2726                         fprintf(fp, "%s ", feat_ops[bit].name);
2727         }
2728
2729         fprintf(fp, "\n");
2730         return 0;
2731 }
2732
2733 static int do_write_feat(struct feat_fd *ff, int type,
2734                          struct perf_file_section **p,
2735                          struct perf_evlist *evlist)
2736 {
2737         int err;
2738         int ret = 0;
2739
2740         if (perf_header__has_feat(ff->ph, type)) {
2741                 if (!feat_ops[type].write)
2742                         return -1;
2743
2744                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2745                         return -1;
2746
2747                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2748
2749                 err = feat_ops[type].write(ff, evlist);
2750                 if (err < 0) {
2751                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2752
2753                         /* undo anything written */
2754                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2755
2756                         return -1;
2757                 }
2758                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2759                 (*p)++;
2760         }
2761         return ret;
2762 }
2763
2764 static int perf_header__adds_write(struct perf_header *header,
2765                                    struct perf_evlist *evlist, int fd)
2766 {
2767         int nr_sections;
2768         struct feat_fd ff;
2769         struct perf_file_section *feat_sec, *p;
2770         int sec_size;
2771         u64 sec_start;
2772         int feat;
2773         int err;
2774
2775         ff = (struct feat_fd){
2776                 .fd  = fd,
2777                 .ph = header,
2778         };
2779
2780         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2781         if (!nr_sections)
2782                 return 0;
2783
2784         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2785         if (feat_sec == NULL)
2786                 return -ENOMEM;
2787
2788         sec_size = sizeof(*feat_sec) * nr_sections;
2789
2790         sec_start = header->feat_offset;
2791         lseek(fd, sec_start + sec_size, SEEK_SET);
2792
2793         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2794                 if (do_write_feat(&ff, feat, &p, evlist))
2795                         perf_header__clear_feat(header, feat);
2796         }
2797
2798         lseek(fd, sec_start, SEEK_SET);
2799         /*
2800          * may write more than needed due to dropped feature, but
2801          * this is okay, reader will skip the missing entries
2802          */
2803         err = do_write(&ff, feat_sec, sec_size);
2804         if (err < 0)
2805                 pr_debug("failed to write feature section\n");
2806         free(feat_sec);
2807         return err;
2808 }
2809
2810 int perf_header__write_pipe(int fd)
2811 {
2812         struct perf_pipe_file_header f_header;
2813         struct feat_fd ff;
2814         int err;
2815
2816         ff = (struct feat_fd){ .fd = fd };
2817
2818         f_header = (struct perf_pipe_file_header){
2819                 .magic     = PERF_MAGIC,
2820                 .size      = sizeof(f_header),
2821         };
2822
2823         err = do_write(&ff, &f_header, sizeof(f_header));
2824         if (err < 0) {
2825                 pr_debug("failed to write perf pipe header\n");
2826                 return err;
2827         }
2828
2829         return 0;
2830 }
2831
2832 int perf_session__write_header(struct perf_session *session,
2833                                struct perf_evlist *evlist,
2834                                int fd, bool at_exit)
2835 {
2836         struct perf_file_header f_header;
2837         struct perf_file_attr   f_attr;
2838         struct perf_header *header = &session->header;
2839         struct perf_evsel *evsel;
2840         struct feat_fd ff;
2841         u64 attr_offset;
2842         int err;
2843
2844         ff = (struct feat_fd){ .fd = fd};
2845         lseek(fd, sizeof(f_header), SEEK_SET);
2846
2847         evlist__for_each_entry(session->evlist, evsel) {
2848                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2849                 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2850                 if (err < 0) {
2851                         pr_debug("failed to write perf header\n");
2852                         return err;
2853                 }
2854         }
2855
2856         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2857
2858         evlist__for_each_entry(evlist, evsel) {
2859                 f_attr = (struct perf_file_attr){
2860                         .attr = evsel->attr,
2861                         .ids  = {
2862                                 .offset = evsel->id_offset,
2863                                 .size   = evsel->ids * sizeof(u64),
2864                         }
2865                 };
2866                 err = do_write(&ff, &f_attr, sizeof(f_attr));
2867                 if (err < 0) {
2868                         pr_debug("failed to write perf header attribute\n");
2869                         return err;
2870                 }
2871         }
2872
2873         if (!header->data_offset)
2874                 header->data_offset = lseek(fd, 0, SEEK_CUR);
2875         header->feat_offset = header->data_offset + header->data_size;
2876
2877         if (at_exit) {
2878                 err = perf_header__adds_write(header, evlist, fd);
2879                 if (err < 0)
2880                         return err;
2881         }
2882
2883         f_header = (struct perf_file_header){
2884                 .magic     = PERF_MAGIC,
2885                 .size      = sizeof(f_header),
2886                 .attr_size = sizeof(f_attr),
2887                 .attrs = {
2888                         .offset = attr_offset,
2889                         .size   = evlist->nr_entries * sizeof(f_attr),
2890                 },
2891                 .data = {
2892                         .offset = header->data_offset,
2893                         .size   = header->data_size,
2894                 },
2895                 /* event_types is ignored, store zeros */
2896         };
2897
2898         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2899
2900         lseek(fd, 0, SEEK_SET);
2901         err = do_write(&ff, &f_header, sizeof(f_header));
2902         if (err < 0) {
2903                 pr_debug("failed to write perf header\n");
2904                 return err;
2905         }
2906         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2907
2908         return 0;
2909 }
2910
2911 static int perf_header__getbuffer64(struct perf_header *header,
2912                                     int fd, void *buf, size_t size)
2913 {
2914         if (readn(fd, buf, size) <= 0)
2915                 return -1;
2916
2917         if (header->needs_swap)
2918                 mem_bswap_64(buf, size);
2919
2920         return 0;
2921 }
2922
2923 int perf_header__process_sections(struct perf_header *header, int fd,
2924                                   void *data,
2925                                   int (*process)(struct perf_file_section *section,
2926                                                  struct perf_header *ph,
2927                                                  int feat, int fd, void *data))
2928 {
2929         struct perf_file_section *feat_sec, *sec;
2930         int nr_sections;
2931         int sec_size;
2932         int feat;
2933         int err;
2934
2935         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2936         if (!nr_sections)
2937                 return 0;
2938
2939         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2940         if (!feat_sec)
2941                 return -1;
2942
2943         sec_size = sizeof(*feat_sec) * nr_sections;
2944
2945         lseek(fd, header->feat_offset, SEEK_SET);
2946
2947         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2948         if (err < 0)
2949                 goto out_free;
2950
2951         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2952                 err = process(sec++, header, feat, fd, data);
2953                 if (err < 0)
2954                         goto out_free;
2955         }
2956         err = 0;
2957 out_free:
2958         free(feat_sec);
2959         return err;
2960 }
2961
2962 static const int attr_file_abi_sizes[] = {
2963         [0] = PERF_ATTR_SIZE_VER0,
2964         [1] = PERF_ATTR_SIZE_VER1,
2965         [2] = PERF_ATTR_SIZE_VER2,
2966         [3] = PERF_ATTR_SIZE_VER3,
2967         [4] = PERF_ATTR_SIZE_VER4,
2968         0,
2969 };
2970
2971 /*
2972  * In the legacy file format, the magic number is not used to encode endianness.
2973  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2974  * on ABI revisions, we need to try all combinations for all endianness to
2975  * detect the endianness.
2976  */
2977 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2978 {
2979         uint64_t ref_size, attr_size;
2980         int i;
2981
2982         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2983                 ref_size = attr_file_abi_sizes[i]
2984                          + sizeof(struct perf_file_section);
2985                 if (hdr_sz != ref_size) {
2986                         attr_size = bswap_64(hdr_sz);
2987                         if (attr_size != ref_size)
2988                                 continue;
2989
2990                         ph->needs_swap = true;
2991                 }
2992                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2993                          i,
2994                          ph->needs_swap);
2995                 return 0;
2996         }
2997         /* could not determine endianness */
2998         return -1;
2999 }
3000
3001 #define PERF_PIPE_HDR_VER0      16
3002
3003 static const size_t attr_pipe_abi_sizes[] = {
3004         [0] = PERF_PIPE_HDR_VER0,
3005         0,
3006 };
3007
3008 /*
3009  * In the legacy pipe format, there is an implicit assumption that endiannesss
3010  * between host recording the samples, and host parsing the samples is the
3011  * same. This is not always the case given that the pipe output may always be
3012  * redirected into a file and analyzed on a different machine with possibly a
3013  * different endianness and perf_event ABI revsions in the perf tool itself.
3014  */
3015 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3016 {
3017         u64 attr_size;
3018         int i;
3019
3020         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3021                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3022                         attr_size = bswap_64(hdr_sz);
3023                         if (attr_size != hdr_sz)
3024                                 continue;
3025
3026                         ph->needs_swap = true;
3027                 }
3028                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3029                 return 0;
3030         }
3031         return -1;
3032 }
3033
3034 bool is_perf_magic(u64 magic)
3035 {
3036         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3037                 || magic == __perf_magic2
3038                 || magic == __perf_magic2_sw)
3039                 return true;
3040
3041         return false;
3042 }
3043
3044 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3045                               bool is_pipe, struct perf_header *ph)
3046 {
3047         int ret;
3048
3049         /* check for legacy format */
3050         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3051         if (ret == 0) {
3052                 ph->version = PERF_HEADER_VERSION_1;
3053                 pr_debug("legacy perf.data format\n");
3054                 if (is_pipe)
3055                         return try_all_pipe_abis(hdr_sz, ph);
3056
3057                 return try_all_file_abis(hdr_sz, ph);
3058         }
3059         /*
3060          * the new magic number serves two purposes:
3061          * - unique number to identify actual perf.data files
3062          * - encode endianness of file
3063          */
3064         ph->version = PERF_HEADER_VERSION_2;
3065
3066         /* check magic number with one endianness */
3067         if (magic == __perf_magic2)
3068                 return 0;
3069
3070         /* check magic number with opposite endianness */
3071         if (magic != __perf_magic2_sw)
3072                 return -1;
3073
3074         ph->needs_swap = true;
3075
3076         return 0;
3077 }
3078
3079 int perf_file_header__read(struct perf_file_header *header,
3080                            struct perf_header *ph, int fd)
3081 {
3082         ssize_t ret;
3083
3084         lseek(fd, 0, SEEK_SET);
3085
3086         ret = readn(fd, header, sizeof(*header));
3087         if (ret <= 0)
3088                 return -1;
3089
3090         if (check_magic_endian(header->magic,
3091                                header->attr_size, false, ph) < 0) {
3092                 pr_debug("magic/endian check failed\n");
3093                 return -1;
3094         }
3095
3096         if (ph->needs_swap) {
3097                 mem_bswap_64(header, offsetof(struct perf_file_header,
3098                              adds_features));
3099         }
3100
3101         if (header->size != sizeof(*header)) {
3102                 /* Support the previous format */
3103                 if (header->size == offsetof(typeof(*header), adds_features))
3104                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3105                 else
3106                         return -1;
3107         } else if (ph->needs_swap) {
3108                 /*
3109                  * feature bitmap is declared as an array of unsigned longs --
3110                  * not good since its size can differ between the host that
3111                  * generated the data file and the host analyzing the file.
3112                  *
3113                  * We need to handle endianness, but we don't know the size of
3114                  * the unsigned long where the file was generated. Take a best
3115                  * guess at determining it: try 64-bit swap first (ie., file
3116                  * created on a 64-bit host), and check if the hostname feature
3117                  * bit is set (this feature bit is forced on as of fbe96f2).
3118                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3119                  * swap. If the hostname bit is still not set (e.g., older data
3120                  * file), punt and fallback to the original behavior --
3121                  * clearing all feature bits and setting buildid.
3122                  */
3123                 mem_bswap_64(&header->adds_features,
3124                             BITS_TO_U64(HEADER_FEAT_BITS));
3125
3126                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3127                         /* unswap as u64 */
3128                         mem_bswap_64(&header->adds_features,
3129                                     BITS_TO_U64(HEADER_FEAT_BITS));
3130
3131                         /* unswap as u32 */
3132                         mem_bswap_32(&header->adds_features,
3133                                     BITS_TO_U32(HEADER_FEAT_BITS));
3134                 }
3135
3136                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3137                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3138                         set_bit(HEADER_BUILD_ID, header->adds_features);
3139                 }
3140         }
3141
3142         memcpy(&ph->adds_features, &header->adds_features,
3143                sizeof(ph->adds_features));
3144
3145         ph->data_offset  = header->data.offset;
3146         ph->data_size    = header->data.size;
3147         ph->feat_offset  = header->data.offset + header->data.size;
3148         return 0;
3149 }
3150
3151 static int perf_file_section__process(struct perf_file_section *section,
3152                                       struct perf_header *ph,
3153                                       int feat, int fd, void *data)
3154 {
3155         struct feat_fd fdd = {
3156                 .fd     = fd,
3157                 .ph     = ph,
3158                 .size   = section->size,
3159                 .offset = section->offset,
3160         };
3161
3162         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3163                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3164                           "%d, continuing...\n", section->offset, feat);
3165                 return 0;
3166         }
3167
3168         if (feat >= HEADER_LAST_FEATURE) {
3169                 pr_debug("unknown feature %d, continuing...\n", feat);
3170                 return 0;
3171         }
3172
3173         if (!feat_ops[feat].process)
3174                 return 0;
3175
3176         return feat_ops[feat].process(&fdd, data);
3177 }
3178
3179 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3180                                        struct perf_header *ph, int fd,
3181                                        bool repipe)
3182 {
3183         struct feat_fd ff = {
3184                 .fd = STDOUT_FILENO,
3185                 .ph = ph,
3186         };
3187         ssize_t ret;
3188
3189         ret = readn(fd, header, sizeof(*header));
3190         if (ret <= 0)
3191                 return -1;
3192
3193         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3194                 pr_debug("endian/magic failed\n");
3195                 return -1;
3196         }
3197
3198         if (ph->needs_swap)
3199                 header->size = bswap_64(header->size);
3200
3201         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3202                 return -1;
3203
3204         return 0;
3205 }
3206
3207 static int perf_header__read_pipe(struct perf_session *session)
3208 {
3209         struct perf_header *header = &session->header;
3210         struct perf_pipe_file_header f_header;
3211
3212         if (perf_file_header__read_pipe(&f_header, header,
3213                                         perf_data__fd(session->data),
3214                                         session->repipe) < 0) {
3215                 pr_debug("incompatible file format\n");
3216                 return -EINVAL;
3217         }
3218
3219         return 0;
3220 }
3221
3222 static int read_attr(int fd, struct perf_header *ph,
3223                      struct perf_file_attr *f_attr)
3224 {
3225         struct perf_event_attr *attr = &f_attr->attr;
3226         size_t sz, left;
3227         size_t our_sz = sizeof(f_attr->attr);
3228         ssize_t ret;
3229
3230         memset(f_attr, 0, sizeof(*f_attr));
3231
3232         /* read minimal guaranteed structure */
3233         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3234         if (ret <= 0) {
3235                 pr_debug("cannot read %d bytes of header attr\n",
3236                          PERF_ATTR_SIZE_VER0);
3237                 return -1;
3238         }
3239
3240         /* on file perf_event_attr size */
3241         sz = attr->size;
3242
3243         if (ph->needs_swap)
3244                 sz = bswap_32(sz);
3245
3246         if (sz == 0) {
3247                 /* assume ABI0 */
3248                 sz =  PERF_ATTR_SIZE_VER0;
3249         } else if (sz > our_sz) {
3250                 pr_debug("file uses a more recent and unsupported ABI"
3251                          " (%zu bytes extra)\n", sz - our_sz);
3252                 return -1;
3253         }
3254         /* what we have not yet read and that we know about */
3255         left = sz - PERF_ATTR_SIZE_VER0;
3256         if (left) {
3257                 void *ptr = attr;
3258                 ptr += PERF_ATTR_SIZE_VER0;
3259
3260                 ret = readn(fd, ptr, left);
3261         }
3262         /* read perf_file_section, ids are read in caller */
3263         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3264
3265         return ret <= 0 ? -1 : 0;
3266 }
3267
3268 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3269                                                 struct tep_handle *pevent)
3270 {
3271         struct tep_event *event;
3272         char bf[128];
3273
3274         /* already prepared */
3275         if (evsel->tp_format)
3276                 return 0;
3277
3278         if (pevent == NULL) {
3279                 pr_debug("broken or missing trace data\n");
3280                 return -1;
3281         }
3282
3283         event = tep_find_event(pevent, evsel->attr.config);
3284         if (event == NULL) {
3285                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3286                 return -1;
3287         }
3288
3289         if (!evsel->name) {
3290                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3291                 evsel->name = strdup(bf);
3292                 if (evsel->name == NULL)
3293                         return -1;
3294         }
3295
3296         evsel->tp_format = event;
3297         return 0;
3298 }
3299
3300 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3301                                                   struct tep_handle *pevent)
3302 {
3303         struct perf_evsel *pos;
3304
3305         evlist__for_each_entry(evlist, pos) {
3306                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3307                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3308                         return -1;
3309         }
3310
3311         return 0;
3312 }
3313
3314 int perf_session__read_header(struct perf_session *session)
3315 {
3316         struct perf_data *data = session->data;
3317         struct perf_header *header = &session->header;
3318         struct perf_file_header f_header;
3319         struct perf_file_attr   f_attr;
3320         u64                     f_id;
3321         int nr_attrs, nr_ids, i, j;
3322         int fd = perf_data__fd(data);
3323
3324         session->evlist = perf_evlist__new();
3325         if (session->evlist == NULL)
3326                 return -ENOMEM;
3327
3328         session->evlist->env = &header->env;
3329         session->machines.host.env = &header->env;
3330         if (perf_data__is_pipe(data))
3331                 return perf_header__read_pipe(session);
3332
3333         if (perf_file_header__read(&f_header, header, fd) < 0)
3334                 return -EINVAL;
3335
3336         /*
3337          * Sanity check that perf.data was written cleanly; data size is
3338          * initialized to 0 and updated only if the on_exit function is run.
3339          * If data size is still 0 then the file contains only partial
3340          * information.  Just warn user and process it as much as it can.
3341          */
3342         if (f_header.data.size == 0) {
3343                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3344                            "Was the 'perf record' command properly terminated?\n",
3345                            data->file.path);
3346         }
3347
3348         nr_attrs = f_header.attrs.size / f_header.attr_size;
3349         lseek(fd, f_header.attrs.offset, SEEK_SET);
3350
3351         for (i = 0; i < nr_attrs; i++) {
3352                 struct perf_evsel *evsel;
3353                 off_t tmp;
3354
3355                 if (read_attr(fd, header, &f_attr) < 0)
3356                         goto out_errno;
3357
3358                 if (header->needs_swap) {
3359                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3360                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3361                         perf_event__attr_swap(&f_attr.attr);
3362                 }
3363
3364                 tmp = lseek(fd, 0, SEEK_CUR);
3365                 evsel = perf_evsel__new(&f_attr.attr);
3366
3367                 if (evsel == NULL)
3368                         goto out_delete_evlist;
3369
3370                 evsel->needs_swap = header->needs_swap;
3371                 /*
3372                  * Do it before so that if perf_evsel__alloc_id fails, this
3373                  * entry gets purged too at perf_evlist__delete().
3374                  */
3375                 perf_evlist__add(session->evlist, evsel);
3376
3377                 nr_ids = f_attr.ids.size / sizeof(u64);
3378                 /*
3379                  * We don't have the cpu and thread maps on the header, so
3380                  * for allocating the perf_sample_id table we fake 1 cpu and
3381                  * hattr->ids threads.
3382                  */
3383                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3384                         goto out_delete_evlist;
3385
3386                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3387
3388                 for (j = 0; j < nr_ids; j++) {
3389                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3390                                 goto out_errno;
3391
3392                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3393                 }
3394
3395                 lseek(fd, tmp, SEEK_SET);
3396         }
3397
3398         perf_header__process_sections(header, fd, &session->tevent,
3399                                       perf_file_section__process);
3400
3401         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3402                                                    session->tevent.pevent))
3403                 goto out_delete_evlist;
3404
3405         return 0;
3406 out_errno:
3407         return -errno;
3408
3409 out_delete_evlist:
3410         perf_evlist__delete(session->evlist);
3411         session->evlist = NULL;
3412         return -ENOMEM;
3413 }
3414
3415 int perf_event__synthesize_attr(struct perf_tool *tool,
3416                                 struct perf_event_attr *attr, u32 ids, u64 *id,
3417                                 perf_event__handler_t process)
3418 {
3419         union perf_event *ev;
3420         size_t size;
3421         int err;
3422
3423         size = sizeof(struct perf_event_attr);
3424         size = PERF_ALIGN(size, sizeof(u64));
3425         size += sizeof(struct perf_event_header);
3426         size += ids * sizeof(u64);
3427
3428         ev = malloc(size);
3429
3430         if (ev == NULL)
3431                 return -ENOMEM;
3432
3433         ev->attr.attr = *attr;
3434         memcpy(ev->attr.id, id, ids * sizeof(u64));
3435
3436         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3437         ev->attr.header.size = (u16)size;
3438
3439         if (ev->attr.header.size == size)
3440                 err = process(tool, ev, NULL, NULL);
3441         else
3442                 err = -E2BIG;
3443
3444         free(ev);
3445
3446         return err;
3447 }
3448
3449 int perf_event__synthesize_features(struct perf_tool *tool,
3450                                     struct perf_session *session,
3451                                     struct perf_evlist *evlist,
3452                                     perf_event__handler_t process)
3453 {
3454         struct perf_header *header = &session->header;
3455         struct feat_fd ff;
3456         struct feature_event *fe;
3457         size_t sz, sz_hdr;
3458         int feat, ret;
3459
3460         sz_hdr = sizeof(fe->header);
3461         sz = sizeof(union perf_event);
3462         /* get a nice alignment */
3463         sz = PERF_ALIGN(sz, page_size);
3464
3465         memset(&ff, 0, sizeof(ff));
3466
3467         ff.buf = malloc(sz);
3468         if (!ff.buf)
3469                 return -ENOMEM;
3470
3471         ff.size = sz - sz_hdr;
3472
3473         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3474                 if (!feat_ops[feat].synthesize) {
3475                         pr_debug("No record header feature for header :%d\n", feat);
3476                         continue;
3477                 }
3478
3479                 ff.offset = sizeof(*fe);
3480
3481                 ret = feat_ops[feat].write(&ff, evlist);
3482                 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3483                         pr_debug("Error writing feature\n");
3484                         continue;
3485                 }
3486                 /* ff.buf may have changed due to realloc in do_write() */
3487                 fe = ff.buf;
3488                 memset(fe, 0, sizeof(*fe));
3489
3490                 fe->feat_id = feat;
3491                 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3492                 fe->header.size = ff.offset;
3493
3494                 ret = process(tool, ff.buf, NULL, NULL);
3495                 if (ret) {
3496                         free(ff.buf);
3497                         return ret;
3498                 }
3499         }
3500
3501         /* Send HEADER_LAST_FEATURE mark. */
3502         fe = ff.buf;
3503         fe->feat_id     = HEADER_LAST_FEATURE;
3504         fe->header.type = PERF_RECORD_HEADER_FEATURE;
3505         fe->header.size = sizeof(*fe);
3506
3507         ret = process(tool, ff.buf, NULL, NULL);
3508
3509         free(ff.buf);
3510         return ret;
3511 }
3512
3513 int perf_event__process_feature(struct perf_session *session,
3514                                 union perf_event *event)
3515 {
3516         struct perf_tool *tool = session->tool;
3517         struct feat_fd ff = { .fd = 0 };
3518         struct feature_event *fe = (struct feature_event *)event;
3519         int type = fe->header.type;
3520         u64 feat = fe->feat_id;
3521
3522         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3523                 pr_warning("invalid record type %d in pipe-mode\n", type);
3524                 return 0;
3525         }
3526         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3527                 pr_warning("invalid record type %d in pipe-mode\n", type);
3528                 return -1;
3529         }
3530
3531         if (!feat_ops[feat].process)
3532                 return 0;
3533
3534         ff.buf  = (void *)fe->data;
3535         ff.size = event->header.size - sizeof(event->header);
3536         ff.ph = &session->header;
3537
3538         if (feat_ops[feat].process(&ff, NULL))
3539                 return -1;
3540
3541         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3542                 return 0;
3543
3544         if (!feat_ops[feat].full_only ||
3545             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3546                 feat_ops[feat].print(&ff, stdout);
3547         } else {
3548                 fprintf(stdout, "# %s info available, use -I to display\n",
3549                         feat_ops[feat].name);
3550         }
3551
3552         return 0;
3553 }
3554
3555 static struct event_update_event *
3556 event_update_event__new(size_t size, u64 type, u64 id)
3557 {
3558         struct event_update_event *ev;
3559
3560         size += sizeof(*ev);
3561         size  = PERF_ALIGN(size, sizeof(u64));
3562
3563         ev = zalloc(size);
3564         if (ev) {
3565                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3566                 ev->header.size = (u16)size;
3567                 ev->type = type;
3568                 ev->id = id;
3569         }
3570         return ev;
3571 }
3572
3573 int
3574 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3575                                          struct perf_evsel *evsel,
3576                                          perf_event__handler_t process)
3577 {
3578         struct event_update_event *ev;
3579         size_t size = strlen(evsel->unit);
3580         int err;
3581
3582         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3583         if (ev == NULL)
3584                 return -ENOMEM;
3585
3586         strlcpy(ev->data, evsel->unit, size + 1);
3587         err = process(tool, (union perf_event *)ev, NULL, NULL);
3588         free(ev);
3589         return err;
3590 }
3591
3592 int
3593 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3594                                           struct perf_evsel *evsel,
3595                                           perf_event__handler_t process)
3596 {
3597         struct event_update_event *ev;
3598         struct event_update_event_scale *ev_data;
3599         int err;
3600
3601         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3602         if (ev == NULL)
3603                 return -ENOMEM;
3604
3605         ev_data = (struct event_update_event_scale *) ev->data;
3606         ev_data->scale = evsel->scale;
3607         err = process(tool, (union perf_event*) ev, NULL, NULL);
3608         free(ev);
3609         return err;
3610 }
3611
3612 int
3613 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3614                                          struct perf_evsel *evsel,
3615                                          perf_event__handler_t process)
3616 {
3617         struct event_update_event *ev;
3618         size_t len = strlen(evsel->name);
3619         int err;
3620
3621         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3622         if (ev == NULL)
3623                 return -ENOMEM;
3624
3625         strlcpy(ev->data, evsel->name, len + 1);
3626         err = process(tool, (union perf_event*) ev, NULL, NULL);
3627         free(ev);
3628         return err;
3629 }
3630
3631 int
3632 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3633                                         struct perf_evsel *evsel,
3634                                         perf_event__handler_t process)
3635 {
3636         size_t size = sizeof(struct event_update_event);
3637         struct event_update_event *ev;
3638         int max, err;
3639         u16 type;
3640
3641         if (!evsel->own_cpus)
3642                 return 0;
3643
3644         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3645         if (!ev)
3646                 return -ENOMEM;
3647
3648         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3649         ev->header.size = (u16)size;
3650         ev->type = PERF_EVENT_UPDATE__CPUS;
3651         ev->id   = evsel->id[0];
3652
3653         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3654                                  evsel->own_cpus,
3655                                  type, max);
3656
3657         err = process(tool, (union perf_event*) ev, NULL, NULL);
3658         free(ev);
3659         return err;
3660 }
3661
3662 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3663 {
3664         struct event_update_event *ev = &event->event_update;
3665         struct event_update_event_scale *ev_scale;
3666         struct event_update_event_cpus *ev_cpus;
3667         struct cpu_map *map;
3668         size_t ret;
3669
3670         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3671
3672         switch (ev->type) {
3673         case PERF_EVENT_UPDATE__SCALE:
3674                 ev_scale = (struct event_update_event_scale *) ev->data;
3675                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3676                 break;
3677         case PERF_EVENT_UPDATE__UNIT:
3678                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3679                 break;
3680         case PERF_EVENT_UPDATE__NAME:
3681                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3682                 break;
3683         case PERF_EVENT_UPDATE__CPUS:
3684                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3685                 ret += fprintf(fp, "... ");
3686
3687                 map = cpu_map__new_data(&ev_cpus->cpus);
3688                 if (map)
3689                         ret += cpu_map__fprintf(map, fp);
3690                 else
3691                         ret += fprintf(fp, "failed to get cpus\n");
3692                 break;
3693         default:
3694                 ret += fprintf(fp, "... unknown type\n");
3695                 break;
3696         }
3697
3698         return ret;
3699 }
3700
3701 int perf_event__synthesize_attrs(struct perf_tool *tool,
3702                                  struct perf_evlist *evlist,
3703                                  perf_event__handler_t process)
3704 {
3705         struct perf_evsel *evsel;
3706         int err = 0;
3707
3708         evlist__for_each_entry(evlist, evsel) {
3709                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3710                                                   evsel->id, process);
3711                 if (err) {
3712                         pr_debug("failed to create perf header attribute\n");
3713                         return err;
3714                 }
3715         }
3716
3717         return err;
3718 }
3719
3720 static bool has_unit(struct perf_evsel *counter)
3721 {
3722         return counter->unit && *counter->unit;
3723 }
3724
3725 static bool has_scale(struct perf_evsel *counter)
3726 {
3727         return counter->scale != 1;
3728 }
3729
3730 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3731                                       struct perf_evlist *evsel_list,
3732                                       perf_event__handler_t process,
3733                                       bool is_pipe)
3734 {
3735         struct perf_evsel *counter;
3736         int err;
3737
3738         /*
3739          * Synthesize other events stuff not carried within
3740          * attr event - unit, scale, name
3741          */
3742         evlist__for_each_entry(evsel_list, counter) {
3743                 if (!counter->supported)
3744                         continue;
3745
3746                 /*
3747                  * Synthesize unit and scale only if it's defined.
3748                  */
3749                 if (has_unit(counter)) {
3750                         err = perf_event__synthesize_event_update_unit(tool, counter, process);
3751                         if (err < 0) {
3752                                 pr_err("Couldn't synthesize evsel unit.\n");
3753                                 return err;
3754                         }
3755                 }
3756
3757                 if (has_scale(counter)) {
3758                         err = perf_event__synthesize_event_update_scale(tool, counter, process);
3759                         if (err < 0) {
3760                                 pr_err("Couldn't synthesize evsel counter.\n");
3761                                 return err;
3762                         }
3763                 }
3764
3765                 if (counter->own_cpus) {
3766                         err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3767                         if (err < 0) {
3768                                 pr_err("Couldn't synthesize evsel cpus.\n");
3769                                 return err;
3770                         }
3771                 }
3772
3773                 /*
3774                  * Name is needed only for pipe output,
3775                  * perf.data carries event names.
3776                  */
3777                 if (is_pipe) {
3778                         err = perf_event__synthesize_event_update_name(tool, counter, process);
3779                         if (err < 0) {
3780                                 pr_err("Couldn't synthesize evsel name.\n");
3781                                 return err;
3782                         }
3783                 }
3784         }
3785         return 0;
3786 }
3787
3788 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3789                              union perf_event *event,
3790                              struct perf_evlist **pevlist)
3791 {
3792         u32 i, ids, n_ids;
3793         struct perf_evsel *evsel;
3794         struct perf_evlist *evlist = *pevlist;
3795
3796         if (evlist == NULL) {
3797                 *pevlist = evlist = perf_evlist__new();
3798                 if (evlist == NULL)
3799                         return -ENOMEM;
3800         }
3801
3802         evsel = perf_evsel__new(&event->attr.attr);
3803         if (evsel == NULL)
3804                 return -ENOMEM;
3805
3806         perf_evlist__add(evlist, evsel);
3807
3808         ids = event->header.size;
3809         ids -= (void *)&event->attr.id - (void *)event;
3810         n_ids = ids / sizeof(u64);
3811         /*
3812          * We don't have the cpu and thread maps on the header, so
3813          * for allocating the perf_sample_id table we fake 1 cpu and
3814          * hattr->ids threads.
3815          */
3816         if (perf_evsel__alloc_id(evsel, 1, n_ids))
3817                 return -ENOMEM;
3818
3819         for (i = 0; i < n_ids; i++) {
3820                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3821         }
3822
3823         return 0;
3824 }
3825
3826 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3827                                      union perf_event *event,
3828                                      struct perf_evlist **pevlist)
3829 {
3830         struct event_update_event *ev = &event->event_update;
3831         struct event_update_event_scale *ev_scale;
3832         struct event_update_event_cpus *ev_cpus;
3833         struct perf_evlist *evlist;
3834         struct perf_evsel *evsel;
3835         struct cpu_map *map;
3836
3837         if (!pevlist || *pevlist == NULL)
3838                 return -EINVAL;
3839
3840         evlist = *pevlist;
3841
3842         evsel = perf_evlist__id2evsel(evlist, ev->id);
3843         if (evsel == NULL)
3844                 return -EINVAL;
3845
3846         switch (ev->type) {
3847         case PERF_EVENT_UPDATE__UNIT:
3848                 evsel->unit = strdup(ev->data);
3849                 break;
3850         case PERF_EVENT_UPDATE__NAME:
3851                 evsel->name = strdup(ev->data);
3852                 break;
3853         case PERF_EVENT_UPDATE__SCALE:
3854                 ev_scale = (struct event_update_event_scale *) ev->data;
3855                 evsel->scale = ev_scale->scale;
3856                 break;
3857         case PERF_EVENT_UPDATE__CPUS:
3858                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3859
3860                 map = cpu_map__new_data(&ev_cpus->cpus);
3861                 if (map)
3862                         evsel->own_cpus = map;
3863                 else
3864                         pr_err("failed to get event_update cpus\n");
3865         default:
3866                 break;
3867         }
3868
3869         return 0;
3870 }
3871
3872 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3873                                         struct perf_evlist *evlist,
3874                                         perf_event__handler_t process)
3875 {
3876         union perf_event ev;
3877         struct tracing_data *tdata;
3878         ssize_t size = 0, aligned_size = 0, padding;
3879         struct feat_fd ff;
3880         int err __maybe_unused = 0;
3881
3882         /*
3883          * We are going to store the size of the data followed
3884          * by the data contents. Since the fd descriptor is a pipe,
3885          * we cannot seek back to store the size of the data once
3886          * we know it. Instead we:
3887          *
3888          * - write the tracing data to the temp file
3889          * - get/write the data size to pipe
3890          * - write the tracing data from the temp file
3891          *   to the pipe
3892          */
3893         tdata = tracing_data_get(&evlist->entries, fd, true);
3894         if (!tdata)
3895                 return -1;
3896
3897         memset(&ev, 0, sizeof(ev));
3898
3899         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3900         size = tdata->size;
3901         aligned_size = PERF_ALIGN(size, sizeof(u64));
3902         padding = aligned_size - size;
3903         ev.tracing_data.header.size = sizeof(ev.tracing_data);
3904         ev.tracing_data.size = aligned_size;
3905
3906         process(tool, &ev, NULL, NULL);
3907
3908         /*
3909          * The put function will copy all the tracing data
3910          * stored in temp file to the pipe.
3911          */
3912         tracing_data_put(tdata);
3913
3914         ff = (struct feat_fd){ .fd = fd };
3915         if (write_padded(&ff, NULL, 0, padding))
3916                 return -1;
3917
3918         return aligned_size;
3919 }
3920
3921 int perf_event__process_tracing_data(struct perf_session *session,
3922                                      union perf_event *event)
3923 {
3924         ssize_t size_read, padding, size = event->tracing_data.size;
3925         int fd = perf_data__fd(session->data);
3926         off_t offset = lseek(fd, 0, SEEK_CUR);
3927         char buf[BUFSIZ];
3928
3929         /* setup for reading amidst mmap */
3930         lseek(fd, offset + sizeof(struct tracing_data_event),
3931               SEEK_SET);
3932
3933         size_read = trace_report(fd, &session->tevent,
3934                                  session->repipe);
3935         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3936
3937         if (readn(fd, buf, padding) < 0) {
3938                 pr_err("%s: reading input file", __func__);
3939                 return -1;
3940         }
3941         if (session->repipe) {
3942                 int retw = write(STDOUT_FILENO, buf, padding);
3943                 if (retw <= 0 || retw != padding) {
3944                         pr_err("%s: repiping tracing data padding", __func__);
3945                         return -1;
3946                 }
3947         }
3948
3949         if (size_read + padding != size) {
3950                 pr_err("%s: tracing data size mismatch", __func__);
3951                 return -1;
3952         }
3953
3954         perf_evlist__prepare_tracepoint_events(session->evlist,
3955                                                session->tevent.pevent);
3956
3957         return size_read + padding;
3958 }
3959
3960 int perf_event__synthesize_build_id(struct perf_tool *tool,
3961                                     struct dso *pos, u16 misc,
3962                                     perf_event__handler_t process,
3963                                     struct machine *machine)
3964 {
3965         union perf_event ev;
3966         size_t len;
3967         int err = 0;
3968
3969         if (!pos->hit)
3970                 return err;
3971
3972         memset(&ev, 0, sizeof(ev));
3973
3974         len = pos->long_name_len + 1;
3975         len = PERF_ALIGN(len, NAME_ALIGN);
3976         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3977         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3978         ev.build_id.header.misc = misc;
3979         ev.build_id.pid = machine->pid;
3980         ev.build_id.header.size = sizeof(ev.build_id) + len;
3981         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3982
3983         err = process(tool, &ev, NULL, machine);
3984
3985         return err;
3986 }
3987
3988 int perf_event__process_build_id(struct perf_session *session,
3989                                  union perf_event *event)
3990 {
3991         __event_process_build_id(&event->build_id,
3992                                  event->build_id.filename,
3993                                  session);
3994         return 0;
3995 }