]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/header.c
Merge drm-misc-next-fixes-2019-05-20 into drm-misc-fixes
[linux.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 #include <bpf/libbpf.h>
22
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "header.h"
26 #include "memswap.h"
27 #include "../perf.h"
28 #include "trace-event.h"
29 #include "session.h"
30 #include "symbol.h"
31 #include "debug.h"
32 #include "cpumap.h"
33 #include "pmu.h"
34 #include "vdso.h"
35 #include "strbuf.h"
36 #include "build-id.h"
37 #include "data.h"
38 #include <api/fs/fs.h>
39 #include "asm/bug.h"
40 #include "tool.h"
41 #include "time-utils.h"
42 #include "units.h"
43 #include "cputopo.h"
44 #include "bpf-event.h"
45
46 #include "sane_ctype.h"
47
48 /*
49  * magic2 = "PERFILE2"
50  * must be a numerical value to let the endianness
51  * determine the memory layout. That way we are able
52  * to detect endianness when reading the perf.data file
53  * back.
54  *
55  * we check for legacy (PERFFILE) format.
56  */
57 static const char *__perf_magic1 = "PERFFILE";
58 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
59 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
60
61 #define PERF_MAGIC      __perf_magic2
62
63 const char perf_version_string[] = PERF_VERSION;
64
65 struct perf_file_attr {
66         struct perf_event_attr  attr;
67         struct perf_file_section        ids;
68 };
69
70 struct feat_fd {
71         struct perf_header      *ph;
72         int                     fd;
73         void                    *buf;   /* Either buf != NULL or fd >= 0 */
74         ssize_t                 offset;
75         size_t                  size;
76         struct perf_evsel       *events;
77 };
78
79 void perf_header__set_feat(struct perf_header *header, int feat)
80 {
81         set_bit(feat, header->adds_features);
82 }
83
84 void perf_header__clear_feat(struct perf_header *header, int feat)
85 {
86         clear_bit(feat, header->adds_features);
87 }
88
89 bool perf_header__has_feat(const struct perf_header *header, int feat)
90 {
91         return test_bit(feat, header->adds_features);
92 }
93
94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95 {
96         ssize_t ret = writen(ff->fd, buf, size);
97
98         if (ret != (ssize_t)size)
99                 return ret < 0 ? (int)ret : -1;
100         return 0;
101 }
102
103 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
104 {
105         /* struct perf_event_header::size is u16 */
106         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
107         size_t new_size = ff->size;
108         void *addr;
109
110         if (size + ff->offset > max_size)
111                 return -E2BIG;
112
113         while (size > (new_size - ff->offset))
114                 new_size <<= 1;
115         new_size = min(max_size, new_size);
116
117         if (ff->size < new_size) {
118                 addr = realloc(ff->buf, new_size);
119                 if (!addr)
120                         return -ENOMEM;
121                 ff->buf = addr;
122                 ff->size = new_size;
123         }
124
125         memcpy(ff->buf + ff->offset, buf, size);
126         ff->offset += size;
127
128         return 0;
129 }
130
131 /* Return: 0 if succeded, -ERR if failed. */
132 int do_write(struct feat_fd *ff, const void *buf, size_t size)
133 {
134         if (!ff->buf)
135                 return __do_write_fd(ff, buf, size);
136         return __do_write_buf(ff, buf, size);
137 }
138
139 /* Return: 0 if succeded, -ERR if failed. */
140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
141 {
142         u64 *p = (u64 *) set;
143         int i, ret;
144
145         ret = do_write(ff, &size, sizeof(size));
146         if (ret < 0)
147                 return ret;
148
149         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
150                 ret = do_write(ff, p + i, sizeof(*p));
151                 if (ret < 0)
152                         return ret;
153         }
154
155         return 0;
156 }
157
158 /* Return: 0 if succeded, -ERR if failed. */
159 int write_padded(struct feat_fd *ff, const void *bf,
160                  size_t count, size_t count_aligned)
161 {
162         static const char zero_buf[NAME_ALIGN];
163         int err = do_write(ff, bf, count);
164
165         if (!err)
166                 err = do_write(ff, zero_buf, count_aligned - count);
167
168         return err;
169 }
170
171 #define string_size(str)                                                \
172         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
173
174 /* Return: 0 if succeded, -ERR if failed. */
175 static int do_write_string(struct feat_fd *ff, const char *str)
176 {
177         u32 len, olen;
178         int ret;
179
180         olen = strlen(str) + 1;
181         len = PERF_ALIGN(olen, NAME_ALIGN);
182
183         /* write len, incl. \0 */
184         ret = do_write(ff, &len, sizeof(len));
185         if (ret < 0)
186                 return ret;
187
188         return write_padded(ff, str, olen, len);
189 }
190
191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192 {
193         ssize_t ret = readn(ff->fd, addr, size);
194
195         if (ret != size)
196                 return ret < 0 ? (int)ret : -1;
197         return 0;
198 }
199
200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
201 {
202         if (size > (ssize_t)ff->size - ff->offset)
203                 return -1;
204
205         memcpy(addr, ff->buf + ff->offset, size);
206         ff->offset += size;
207
208         return 0;
209
210 }
211
212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
213 {
214         if (!ff->buf)
215                 return __do_read_fd(ff, addr, size);
216         return __do_read_buf(ff, addr, size);
217 }
218
219 static int do_read_u32(struct feat_fd *ff, u32 *addr)
220 {
221         int ret;
222
223         ret = __do_read(ff, addr, sizeof(*addr));
224         if (ret)
225                 return ret;
226
227         if (ff->ph->needs_swap)
228                 *addr = bswap_32(*addr);
229         return 0;
230 }
231
232 static int do_read_u64(struct feat_fd *ff, u64 *addr)
233 {
234         int ret;
235
236         ret = __do_read(ff, addr, sizeof(*addr));
237         if (ret)
238                 return ret;
239
240         if (ff->ph->needs_swap)
241                 *addr = bswap_64(*addr);
242         return 0;
243 }
244
245 static char *do_read_string(struct feat_fd *ff)
246 {
247         u32 len;
248         char *buf;
249
250         if (do_read_u32(ff, &len))
251                 return NULL;
252
253         buf = malloc(len);
254         if (!buf)
255                 return NULL;
256
257         if (!__do_read(ff, buf, len)) {
258                 /*
259                  * strings are padded by zeroes
260                  * thus the actual strlen of buf
261                  * may be less than len
262                  */
263                 return buf;
264         }
265
266         free(buf);
267         return NULL;
268 }
269
270 /* Return: 0 if succeded, -ERR if failed. */
271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
272 {
273         unsigned long *set;
274         u64 size, *p;
275         int i, ret;
276
277         ret = do_read_u64(ff, &size);
278         if (ret)
279                 return ret;
280
281         set = bitmap_alloc(size);
282         if (!set)
283                 return -ENOMEM;
284
285         p = (u64 *) set;
286
287         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
288                 ret = do_read_u64(ff, p + i);
289                 if (ret < 0) {
290                         free(set);
291                         return ret;
292                 }
293         }
294
295         *pset  = set;
296         *psize = size;
297         return 0;
298 }
299
300 static int write_tracing_data(struct feat_fd *ff,
301                               struct perf_evlist *evlist)
302 {
303         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
304                 return -1;
305
306         return read_tracing_data(ff->fd, &evlist->entries);
307 }
308
309 static int write_build_id(struct feat_fd *ff,
310                           struct perf_evlist *evlist __maybe_unused)
311 {
312         struct perf_session *session;
313         int err;
314
315         session = container_of(ff->ph, struct perf_session, header);
316
317         if (!perf_session__read_build_ids(session, true))
318                 return -1;
319
320         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
321                 return -1;
322
323         err = perf_session__write_buildid_table(session, ff);
324         if (err < 0) {
325                 pr_debug("failed to write buildid table\n");
326                 return err;
327         }
328         perf_session__cache_build_ids(session);
329
330         return 0;
331 }
332
333 static int write_hostname(struct feat_fd *ff,
334                           struct perf_evlist *evlist __maybe_unused)
335 {
336         struct utsname uts;
337         int ret;
338
339         ret = uname(&uts);
340         if (ret < 0)
341                 return -1;
342
343         return do_write_string(ff, uts.nodename);
344 }
345
346 static int write_osrelease(struct feat_fd *ff,
347                            struct perf_evlist *evlist __maybe_unused)
348 {
349         struct utsname uts;
350         int ret;
351
352         ret = uname(&uts);
353         if (ret < 0)
354                 return -1;
355
356         return do_write_string(ff, uts.release);
357 }
358
359 static int write_arch(struct feat_fd *ff,
360                       struct perf_evlist *evlist __maybe_unused)
361 {
362         struct utsname uts;
363         int ret;
364
365         ret = uname(&uts);
366         if (ret < 0)
367                 return -1;
368
369         return do_write_string(ff, uts.machine);
370 }
371
372 static int write_version(struct feat_fd *ff,
373                          struct perf_evlist *evlist __maybe_unused)
374 {
375         return do_write_string(ff, perf_version_string);
376 }
377
378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379 {
380         FILE *file;
381         char *buf = NULL;
382         char *s, *p;
383         const char *search = cpuinfo_proc;
384         size_t len = 0;
385         int ret = -1;
386
387         if (!search)
388                 return -1;
389
390         file = fopen("/proc/cpuinfo", "r");
391         if (!file)
392                 return -1;
393
394         while (getline(&buf, &len, file) > 0) {
395                 ret = strncmp(buf, search, strlen(search));
396                 if (!ret)
397                         break;
398         }
399
400         if (ret) {
401                 ret = -1;
402                 goto done;
403         }
404
405         s = buf;
406
407         p = strchr(buf, ':');
408         if (p && *(p+1) == ' ' && *(p+2))
409                 s = p + 2;
410         p = strchr(s, '\n');
411         if (p)
412                 *p = '\0';
413
414         /* squash extra space characters (branding string) */
415         p = s;
416         while (*p) {
417                 if (isspace(*p)) {
418                         char *r = p + 1;
419                         char *q = r;
420                         *p = ' ';
421                         while (*q && isspace(*q))
422                                 q++;
423                         if (q != (p+1))
424                                 while ((*r++ = *q++));
425                 }
426                 p++;
427         }
428         ret = do_write_string(ff, s);
429 done:
430         free(buf);
431         fclose(file);
432         return ret;
433 }
434
435 static int write_cpudesc(struct feat_fd *ff,
436                        struct perf_evlist *evlist __maybe_unused)
437 {
438         const char *cpuinfo_procs[] = CPUINFO_PROC;
439         unsigned int i;
440
441         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
442                 int ret;
443                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444                 if (ret >= 0)
445                         return ret;
446         }
447         return -1;
448 }
449
450
451 static int write_nrcpus(struct feat_fd *ff,
452                         struct perf_evlist *evlist __maybe_unused)
453 {
454         long nr;
455         u32 nrc, nra;
456         int ret;
457
458         nrc = cpu__max_present_cpu();
459
460         nr = sysconf(_SC_NPROCESSORS_ONLN);
461         if (nr < 0)
462                 return -1;
463
464         nra = (u32)(nr & UINT_MAX);
465
466         ret = do_write(ff, &nrc, sizeof(nrc));
467         if (ret < 0)
468                 return ret;
469
470         return do_write(ff, &nra, sizeof(nra));
471 }
472
473 static int write_event_desc(struct feat_fd *ff,
474                             struct perf_evlist *evlist)
475 {
476         struct perf_evsel *evsel;
477         u32 nre, nri, sz;
478         int ret;
479
480         nre = evlist->nr_entries;
481
482         /*
483          * write number of events
484          */
485         ret = do_write(ff, &nre, sizeof(nre));
486         if (ret < 0)
487                 return ret;
488
489         /*
490          * size of perf_event_attr struct
491          */
492         sz = (u32)sizeof(evsel->attr);
493         ret = do_write(ff, &sz, sizeof(sz));
494         if (ret < 0)
495                 return ret;
496
497         evlist__for_each_entry(evlist, evsel) {
498                 ret = do_write(ff, &evsel->attr, sz);
499                 if (ret < 0)
500                         return ret;
501                 /*
502                  * write number of unique id per event
503                  * there is one id per instance of an event
504                  *
505                  * copy into an nri to be independent of the
506                  * type of ids,
507                  */
508                 nri = evsel->ids;
509                 ret = do_write(ff, &nri, sizeof(nri));
510                 if (ret < 0)
511                         return ret;
512
513                 /*
514                  * write event string as passed on cmdline
515                  */
516                 ret = do_write_string(ff, perf_evsel__name(evsel));
517                 if (ret < 0)
518                         return ret;
519                 /*
520                  * write unique ids for this event
521                  */
522                 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523                 if (ret < 0)
524                         return ret;
525         }
526         return 0;
527 }
528
529 static int write_cmdline(struct feat_fd *ff,
530                          struct perf_evlist *evlist __maybe_unused)
531 {
532         char pbuf[MAXPATHLEN], *buf;
533         int i, ret, n;
534
535         /* actual path to perf binary */
536         buf = perf_exe(pbuf, MAXPATHLEN);
537
538         /* account for binary path */
539         n = perf_env.nr_cmdline + 1;
540
541         ret = do_write(ff, &n, sizeof(n));
542         if (ret < 0)
543                 return ret;
544
545         ret = do_write_string(ff, buf);
546         if (ret < 0)
547                 return ret;
548
549         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551                 if (ret < 0)
552                         return ret;
553         }
554         return 0;
555 }
556
557
558 static int write_cpu_topology(struct feat_fd *ff,
559                               struct perf_evlist *evlist __maybe_unused)
560 {
561         struct cpu_topology *tp;
562         u32 i;
563         int ret, j;
564
565         tp = cpu_topology__new();
566         if (!tp)
567                 return -1;
568
569         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570         if (ret < 0)
571                 goto done;
572
573         for (i = 0; i < tp->core_sib; i++) {
574                 ret = do_write_string(ff, tp->core_siblings[i]);
575                 if (ret < 0)
576                         goto done;
577         }
578         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579         if (ret < 0)
580                 goto done;
581
582         for (i = 0; i < tp->thread_sib; i++) {
583                 ret = do_write_string(ff, tp->thread_siblings[i]);
584                 if (ret < 0)
585                         break;
586         }
587
588         ret = perf_env__read_cpu_topology_map(&perf_env);
589         if (ret < 0)
590                 goto done;
591
592         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593                 ret = do_write(ff, &perf_env.cpu[j].core_id,
594                                sizeof(perf_env.cpu[j].core_id));
595                 if (ret < 0)
596                         return ret;
597                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
598                                sizeof(perf_env.cpu[j].socket_id));
599                 if (ret < 0)
600                         return ret;
601         }
602 done:
603         cpu_topology__delete(tp);
604         return ret;
605 }
606
607
608
609 static int write_total_mem(struct feat_fd *ff,
610                            struct perf_evlist *evlist __maybe_unused)
611 {
612         char *buf = NULL;
613         FILE *fp;
614         size_t len = 0;
615         int ret = -1, n;
616         uint64_t mem;
617
618         fp = fopen("/proc/meminfo", "r");
619         if (!fp)
620                 return -1;
621
622         while (getline(&buf, &len, fp) > 0) {
623                 ret = strncmp(buf, "MemTotal:", 9);
624                 if (!ret)
625                         break;
626         }
627         if (!ret) {
628                 n = sscanf(buf, "%*s %"PRIu64, &mem);
629                 if (n == 1)
630                         ret = do_write(ff, &mem, sizeof(mem));
631         } else
632                 ret = -1;
633         free(buf);
634         fclose(fp);
635         return ret;
636 }
637
638 static int write_numa_topology(struct feat_fd *ff,
639                                struct perf_evlist *evlist __maybe_unused)
640 {
641         struct numa_topology *tp;
642         int ret = -1;
643         u32 i;
644
645         tp = numa_topology__new();
646         if (!tp)
647                 return -ENOMEM;
648
649         ret = do_write(ff, &tp->nr, sizeof(u32));
650         if (ret < 0)
651                 goto err;
652
653         for (i = 0; i < tp->nr; i++) {
654                 struct numa_topology_node *n = &tp->nodes[i];
655
656                 ret = do_write(ff, &n->node, sizeof(u32));
657                 if (ret < 0)
658                         goto err;
659
660                 ret = do_write(ff, &n->mem_total, sizeof(u64));
661                 if (ret)
662                         goto err;
663
664                 ret = do_write(ff, &n->mem_free, sizeof(u64));
665                 if (ret)
666                         goto err;
667
668                 ret = do_write_string(ff, n->cpus);
669                 if (ret < 0)
670                         goto err;
671         }
672
673         ret = 0;
674
675 err:
676         numa_topology__delete(tp);
677         return ret;
678 }
679
680 /*
681  * File format:
682  *
683  * struct pmu_mappings {
684  *      u32     pmu_num;
685  *      struct pmu_map {
686  *              u32     type;
687  *              char    name[];
688  *      }[pmu_num];
689  * };
690  */
691
692 static int write_pmu_mappings(struct feat_fd *ff,
693                               struct perf_evlist *evlist __maybe_unused)
694 {
695         struct perf_pmu *pmu = NULL;
696         u32 pmu_num = 0;
697         int ret;
698
699         /*
700          * Do a first pass to count number of pmu to avoid lseek so this
701          * works in pipe mode as well.
702          */
703         while ((pmu = perf_pmu__scan(pmu))) {
704                 if (!pmu->name)
705                         continue;
706                 pmu_num++;
707         }
708
709         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710         if (ret < 0)
711                 return ret;
712
713         while ((pmu = perf_pmu__scan(pmu))) {
714                 if (!pmu->name)
715                         continue;
716
717                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718                 if (ret < 0)
719                         return ret;
720
721                 ret = do_write_string(ff, pmu->name);
722                 if (ret < 0)
723                         return ret;
724         }
725
726         return 0;
727 }
728
729 /*
730  * File format:
731  *
732  * struct group_descs {
733  *      u32     nr_groups;
734  *      struct group_desc {
735  *              char    name[];
736  *              u32     leader_idx;
737  *              u32     nr_members;
738  *      }[nr_groups];
739  * };
740  */
741 static int write_group_desc(struct feat_fd *ff,
742                             struct perf_evlist *evlist)
743 {
744         u32 nr_groups = evlist->nr_groups;
745         struct perf_evsel *evsel;
746         int ret;
747
748         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749         if (ret < 0)
750                 return ret;
751
752         evlist__for_each_entry(evlist, evsel) {
753                 if (perf_evsel__is_group_leader(evsel) &&
754                     evsel->nr_members > 1) {
755                         const char *name = evsel->group_name ?: "{anon_group}";
756                         u32 leader_idx = evsel->idx;
757                         u32 nr_members = evsel->nr_members;
758
759                         ret = do_write_string(ff, name);
760                         if (ret < 0)
761                                 return ret;
762
763                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764                         if (ret < 0)
765                                 return ret;
766
767                         ret = do_write(ff, &nr_members, sizeof(nr_members));
768                         if (ret < 0)
769                                 return ret;
770                 }
771         }
772         return 0;
773 }
774
775 /*
776  * Return the CPU id as a raw string.
777  *
778  * Each architecture should provide a more precise id string that
779  * can be use to match the architecture's "mapfile".
780  */
781 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
782 {
783         return NULL;
784 }
785
786 /* Return zero when the cpuid from the mapfile.csv matches the
787  * cpuid string generated on this platform.
788  * Otherwise return non-zero.
789  */
790 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
791 {
792         regex_t re;
793         regmatch_t pmatch[1];
794         int match;
795
796         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
797                 /* Warn unable to generate match particular string. */
798                 pr_info("Invalid regular expression %s\n", mapcpuid);
799                 return 1;
800         }
801
802         match = !regexec(&re, cpuid, 1, pmatch, 0);
803         regfree(&re);
804         if (match) {
805                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
806
807                 /* Verify the entire string matched. */
808                 if (match_len == strlen(cpuid))
809                         return 0;
810         }
811         return 1;
812 }
813
814 /*
815  * default get_cpuid(): nothing gets recorded
816  * actual implementation must be in arch/$(SRCARCH)/util/header.c
817  */
818 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
819 {
820         return -1;
821 }
822
823 static int write_cpuid(struct feat_fd *ff,
824                        struct perf_evlist *evlist __maybe_unused)
825 {
826         char buffer[64];
827         int ret;
828
829         ret = get_cpuid(buffer, sizeof(buffer));
830         if (ret)
831                 return -1;
832
833         return do_write_string(ff, buffer);
834 }
835
836 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
837                               struct perf_evlist *evlist __maybe_unused)
838 {
839         return 0;
840 }
841
842 static int write_auxtrace(struct feat_fd *ff,
843                           struct perf_evlist *evlist __maybe_unused)
844 {
845         struct perf_session *session;
846         int err;
847
848         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
849                 return -1;
850
851         session = container_of(ff->ph, struct perf_session, header);
852
853         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854         if (err < 0)
855                 pr_err("Failed to write auxtrace index\n");
856         return err;
857 }
858
859 static int write_clockid(struct feat_fd *ff,
860                          struct perf_evlist *evlist __maybe_unused)
861 {
862         return do_write(ff, &ff->ph->env.clockid_res_ns,
863                         sizeof(ff->ph->env.clockid_res_ns));
864 }
865
866 static int write_dir_format(struct feat_fd *ff,
867                             struct perf_evlist *evlist __maybe_unused)
868 {
869         struct perf_session *session;
870         struct perf_data *data;
871
872         session = container_of(ff->ph, struct perf_session, header);
873         data = session->data;
874
875         if (WARN_ON(!perf_data__is_dir(data)))
876                 return -1;
877
878         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
879 }
880
881 #ifdef HAVE_LIBBPF_SUPPORT
882 static int write_bpf_prog_info(struct feat_fd *ff,
883                                struct perf_evlist *evlist __maybe_unused)
884 {
885         struct perf_env *env = &ff->ph->env;
886         struct rb_root *root;
887         struct rb_node *next;
888         int ret;
889
890         down_read(&env->bpf_progs.lock);
891
892         ret = do_write(ff, &env->bpf_progs.infos_cnt,
893                        sizeof(env->bpf_progs.infos_cnt));
894         if (ret < 0)
895                 goto out;
896
897         root = &env->bpf_progs.infos;
898         next = rb_first(root);
899         while (next) {
900                 struct bpf_prog_info_node *node;
901                 size_t len;
902
903                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
904                 next = rb_next(&node->rb_node);
905                 len = sizeof(struct bpf_prog_info_linear) +
906                         node->info_linear->data_len;
907
908                 /* before writing to file, translate address to offset */
909                 bpf_program__bpil_addr_to_offs(node->info_linear);
910                 ret = do_write(ff, node->info_linear, len);
911                 /*
912                  * translate back to address even when do_write() fails,
913                  * so that this function never changes the data.
914                  */
915                 bpf_program__bpil_offs_to_addr(node->info_linear);
916                 if (ret < 0)
917                         goto out;
918         }
919 out:
920         up_read(&env->bpf_progs.lock);
921         return ret;
922 }
923 #else // HAVE_LIBBPF_SUPPORT
924 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
925                                struct perf_evlist *evlist __maybe_unused)
926 {
927         return 0;
928 }
929 #endif // HAVE_LIBBPF_SUPPORT
930
931 static int write_bpf_btf(struct feat_fd *ff,
932                          struct perf_evlist *evlist __maybe_unused)
933 {
934         struct perf_env *env = &ff->ph->env;
935         struct rb_root *root;
936         struct rb_node *next;
937         int ret;
938
939         down_read(&env->bpf_progs.lock);
940
941         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
942                        sizeof(env->bpf_progs.btfs_cnt));
943
944         if (ret < 0)
945                 goto out;
946
947         root = &env->bpf_progs.btfs;
948         next = rb_first(root);
949         while (next) {
950                 struct btf_node *node;
951
952                 node = rb_entry(next, struct btf_node, rb_node);
953                 next = rb_next(&node->rb_node);
954                 ret = do_write(ff, &node->id,
955                                sizeof(u32) * 2 + node->data_size);
956                 if (ret < 0)
957                         goto out;
958         }
959 out:
960         up_read(&env->bpf_progs.lock);
961         return ret;
962 }
963
964 static int cpu_cache_level__sort(const void *a, const void *b)
965 {
966         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
967         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
968
969         return cache_a->level - cache_b->level;
970 }
971
972 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
973 {
974         if (a->level != b->level)
975                 return false;
976
977         if (a->line_size != b->line_size)
978                 return false;
979
980         if (a->sets != b->sets)
981                 return false;
982
983         if (a->ways != b->ways)
984                 return false;
985
986         if (strcmp(a->type, b->type))
987                 return false;
988
989         if (strcmp(a->size, b->size))
990                 return false;
991
992         if (strcmp(a->map, b->map))
993                 return false;
994
995         return true;
996 }
997
998 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
999 {
1000         char path[PATH_MAX], file[PATH_MAX];
1001         struct stat st;
1002         size_t len;
1003
1004         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1005         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1006
1007         if (stat(file, &st))
1008                 return 1;
1009
1010         scnprintf(file, PATH_MAX, "%s/level", path);
1011         if (sysfs__read_int(file, (int *) &cache->level))
1012                 return -1;
1013
1014         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1015         if (sysfs__read_int(file, (int *) &cache->line_size))
1016                 return -1;
1017
1018         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1019         if (sysfs__read_int(file, (int *) &cache->sets))
1020                 return -1;
1021
1022         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1023         if (sysfs__read_int(file, (int *) &cache->ways))
1024                 return -1;
1025
1026         scnprintf(file, PATH_MAX, "%s/type", path);
1027         if (sysfs__read_str(file, &cache->type, &len))
1028                 return -1;
1029
1030         cache->type[len] = 0;
1031         cache->type = rtrim(cache->type);
1032
1033         scnprintf(file, PATH_MAX, "%s/size", path);
1034         if (sysfs__read_str(file, &cache->size, &len)) {
1035                 free(cache->type);
1036                 return -1;
1037         }
1038
1039         cache->size[len] = 0;
1040         cache->size = rtrim(cache->size);
1041
1042         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1043         if (sysfs__read_str(file, &cache->map, &len)) {
1044                 free(cache->map);
1045                 free(cache->type);
1046                 return -1;
1047         }
1048
1049         cache->map[len] = 0;
1050         cache->map = rtrim(cache->map);
1051         return 0;
1052 }
1053
1054 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1055 {
1056         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1057 }
1058
1059 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1060 {
1061         u32 i, cnt = 0;
1062         long ncpus;
1063         u32 nr, cpu;
1064         u16 level;
1065
1066         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1067         if (ncpus < 0)
1068                 return -1;
1069
1070         nr = (u32)(ncpus & UINT_MAX);
1071
1072         for (cpu = 0; cpu < nr; cpu++) {
1073                 for (level = 0; level < 10; level++) {
1074                         struct cpu_cache_level c;
1075                         int err;
1076
1077                         err = cpu_cache_level__read(&c, cpu, level);
1078                         if (err < 0)
1079                                 return err;
1080
1081                         if (err == 1)
1082                                 break;
1083
1084                         for (i = 0; i < cnt; i++) {
1085                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1086                                         break;
1087                         }
1088
1089                         if (i == cnt)
1090                                 caches[cnt++] = c;
1091                         else
1092                                 cpu_cache_level__free(&c);
1093
1094                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1095                                 goto out;
1096                 }
1097         }
1098  out:
1099         *cntp = cnt;
1100         return 0;
1101 }
1102
1103 #define MAX_CACHES 2000
1104
1105 static int write_cache(struct feat_fd *ff,
1106                        struct perf_evlist *evlist __maybe_unused)
1107 {
1108         struct cpu_cache_level caches[MAX_CACHES];
1109         u32 cnt = 0, i, version = 1;
1110         int ret;
1111
1112         ret = build_caches(caches, MAX_CACHES, &cnt);
1113         if (ret)
1114                 goto out;
1115
1116         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1117
1118         ret = do_write(ff, &version, sizeof(u32));
1119         if (ret < 0)
1120                 goto out;
1121
1122         ret = do_write(ff, &cnt, sizeof(u32));
1123         if (ret < 0)
1124                 goto out;
1125
1126         for (i = 0; i < cnt; i++) {
1127                 struct cpu_cache_level *c = &caches[i];
1128
1129                 #define _W(v)                                   \
1130                         ret = do_write(ff, &c->v, sizeof(u32)); \
1131                         if (ret < 0)                            \
1132                                 goto out;
1133
1134                 _W(level)
1135                 _W(line_size)
1136                 _W(sets)
1137                 _W(ways)
1138                 #undef _W
1139
1140                 #define _W(v)                                           \
1141                         ret = do_write_string(ff, (const char *) c->v); \
1142                         if (ret < 0)                                    \
1143                                 goto out;
1144
1145                 _W(type)
1146                 _W(size)
1147                 _W(map)
1148                 #undef _W
1149         }
1150
1151 out:
1152         for (i = 0; i < cnt; i++)
1153                 cpu_cache_level__free(&caches[i]);
1154         return ret;
1155 }
1156
1157 static int write_stat(struct feat_fd *ff __maybe_unused,
1158                       struct perf_evlist *evlist __maybe_unused)
1159 {
1160         return 0;
1161 }
1162
1163 static int write_sample_time(struct feat_fd *ff,
1164                              struct perf_evlist *evlist)
1165 {
1166         int ret;
1167
1168         ret = do_write(ff, &evlist->first_sample_time,
1169                        sizeof(evlist->first_sample_time));
1170         if (ret < 0)
1171                 return ret;
1172
1173         return do_write(ff, &evlist->last_sample_time,
1174                         sizeof(evlist->last_sample_time));
1175 }
1176
1177
1178 static int memory_node__read(struct memory_node *n, unsigned long idx)
1179 {
1180         unsigned int phys, size = 0;
1181         char path[PATH_MAX];
1182         struct dirent *ent;
1183         DIR *dir;
1184
1185 #define for_each_memory(mem, dir)                                       \
1186         while ((ent = readdir(dir)))                                    \
1187                 if (strcmp(ent->d_name, ".") &&                         \
1188                     strcmp(ent->d_name, "..") &&                        \
1189                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1190
1191         scnprintf(path, PATH_MAX,
1192                   "%s/devices/system/node/node%lu",
1193                   sysfs__mountpoint(), idx);
1194
1195         dir = opendir(path);
1196         if (!dir) {
1197                 pr_warning("failed: cant' open memory sysfs data\n");
1198                 return -1;
1199         }
1200
1201         for_each_memory(phys, dir) {
1202                 size = max(phys, size);
1203         }
1204
1205         size++;
1206
1207         n->set = bitmap_alloc(size);
1208         if (!n->set) {
1209                 closedir(dir);
1210                 return -ENOMEM;
1211         }
1212
1213         n->node = idx;
1214         n->size = size;
1215
1216         rewinddir(dir);
1217
1218         for_each_memory(phys, dir) {
1219                 set_bit(phys, n->set);
1220         }
1221
1222         closedir(dir);
1223         return 0;
1224 }
1225
1226 static int memory_node__sort(const void *a, const void *b)
1227 {
1228         const struct memory_node *na = a;
1229         const struct memory_node *nb = b;
1230
1231         return na->node - nb->node;
1232 }
1233
1234 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1235 {
1236         char path[PATH_MAX];
1237         struct dirent *ent;
1238         DIR *dir;
1239         u64 cnt = 0;
1240         int ret = 0;
1241
1242         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1243                   sysfs__mountpoint());
1244
1245         dir = opendir(path);
1246         if (!dir) {
1247                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1248                           __func__, path);
1249                 return -1;
1250         }
1251
1252         while (!ret && (ent = readdir(dir))) {
1253                 unsigned int idx;
1254                 int r;
1255
1256                 if (!strcmp(ent->d_name, ".") ||
1257                     !strcmp(ent->d_name, ".."))
1258                         continue;
1259
1260                 r = sscanf(ent->d_name, "node%u", &idx);
1261                 if (r != 1)
1262                         continue;
1263
1264                 if (WARN_ONCE(cnt >= size,
1265                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1266                         return -1;
1267
1268                 ret = memory_node__read(&nodes[cnt++], idx);
1269         }
1270
1271         *cntp = cnt;
1272         closedir(dir);
1273
1274         if (!ret)
1275                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1276
1277         return ret;
1278 }
1279
1280 #define MAX_MEMORY_NODES 2000
1281
1282 /*
1283  * The MEM_TOPOLOGY holds physical memory map for every
1284  * node in system. The format of data is as follows:
1285  *
1286  *  0 - version          | for future changes
1287  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1288  * 16 - count            | number of nodes
1289  *
1290  * For each node we store map of physical indexes for
1291  * each node:
1292  *
1293  * 32 - node id          | node index
1294  * 40 - size             | size of bitmap
1295  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1296  */
1297 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1298                               struct perf_evlist *evlist __maybe_unused)
1299 {
1300         static struct memory_node nodes[MAX_MEMORY_NODES];
1301         u64 bsize, version = 1, i, nr;
1302         int ret;
1303
1304         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1305                               (unsigned long long *) &bsize);
1306         if (ret)
1307                 return ret;
1308
1309         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1310         if (ret)
1311                 return ret;
1312
1313         ret = do_write(ff, &version, sizeof(version));
1314         if (ret < 0)
1315                 goto out;
1316
1317         ret = do_write(ff, &bsize, sizeof(bsize));
1318         if (ret < 0)
1319                 goto out;
1320
1321         ret = do_write(ff, &nr, sizeof(nr));
1322         if (ret < 0)
1323                 goto out;
1324
1325         for (i = 0; i < nr; i++) {
1326                 struct memory_node *n = &nodes[i];
1327
1328                 #define _W(v)                                           \
1329                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1330                         if (ret < 0)                                    \
1331                                 goto out;
1332
1333                 _W(node)
1334                 _W(size)
1335
1336                 #undef _W
1337
1338                 ret = do_write_bitmap(ff, n->set, n->size);
1339                 if (ret < 0)
1340                         goto out;
1341         }
1342
1343 out:
1344         return ret;
1345 }
1346
1347 static int write_compressed(struct feat_fd *ff __maybe_unused,
1348                             struct perf_evlist *evlist __maybe_unused)
1349 {
1350         int ret;
1351
1352         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1353         if (ret)
1354                 return ret;
1355
1356         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1357         if (ret)
1358                 return ret;
1359
1360         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1361         if (ret)
1362                 return ret;
1363
1364         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1365         if (ret)
1366                 return ret;
1367
1368         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1369 }
1370
1371 static void print_hostname(struct feat_fd *ff, FILE *fp)
1372 {
1373         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1374 }
1375
1376 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1377 {
1378         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1379 }
1380
1381 static void print_arch(struct feat_fd *ff, FILE *fp)
1382 {
1383         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1384 }
1385
1386 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1387 {
1388         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1389 }
1390
1391 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1392 {
1393         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1394         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1395 }
1396
1397 static void print_version(struct feat_fd *ff, FILE *fp)
1398 {
1399         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1400 }
1401
1402 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1403 {
1404         int nr, i;
1405
1406         nr = ff->ph->env.nr_cmdline;
1407
1408         fprintf(fp, "# cmdline : ");
1409
1410         for (i = 0; i < nr; i++) {
1411                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1412                 if (!argv_i) {
1413                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1414                 } else {
1415                         char *mem = argv_i;
1416                         do {
1417                                 char *quote = strchr(argv_i, '\'');
1418                                 if (!quote)
1419                                         break;
1420                                 *quote++ = '\0';
1421                                 fprintf(fp, "%s\\\'", argv_i);
1422                                 argv_i = quote;
1423                         } while (1);
1424                         fprintf(fp, "%s ", argv_i);
1425                         free(mem);
1426                 }
1427         }
1428         fputc('\n', fp);
1429 }
1430
1431 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1432 {
1433         struct perf_header *ph = ff->ph;
1434         int cpu_nr = ph->env.nr_cpus_avail;
1435         int nr, i;
1436         char *str;
1437
1438         nr = ph->env.nr_sibling_cores;
1439         str = ph->env.sibling_cores;
1440
1441         for (i = 0; i < nr; i++) {
1442                 fprintf(fp, "# sibling cores   : %s\n", str);
1443                 str += strlen(str) + 1;
1444         }
1445
1446         nr = ph->env.nr_sibling_threads;
1447         str = ph->env.sibling_threads;
1448
1449         for (i = 0; i < nr; i++) {
1450                 fprintf(fp, "# sibling threads : %s\n", str);
1451                 str += strlen(str) + 1;
1452         }
1453
1454         if (ph->env.cpu != NULL) {
1455                 for (i = 0; i < cpu_nr; i++)
1456                         fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1457                                 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1458         } else
1459                 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1460 }
1461
1462 static void print_clockid(struct feat_fd *ff, FILE *fp)
1463 {
1464         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1465                 ff->ph->env.clockid_res_ns * 1000);
1466 }
1467
1468 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1469 {
1470         struct perf_session *session;
1471         struct perf_data *data;
1472
1473         session = container_of(ff->ph, struct perf_session, header);
1474         data = session->data;
1475
1476         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1477 }
1478
1479 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1480 {
1481         struct perf_env *env = &ff->ph->env;
1482         struct rb_root *root;
1483         struct rb_node *next;
1484
1485         down_read(&env->bpf_progs.lock);
1486
1487         root = &env->bpf_progs.infos;
1488         next = rb_first(root);
1489
1490         while (next) {
1491                 struct bpf_prog_info_node *node;
1492
1493                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1494                 next = rb_next(&node->rb_node);
1495
1496                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1497                                                env, fp);
1498         }
1499
1500         up_read(&env->bpf_progs.lock);
1501 }
1502
1503 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1504 {
1505         struct perf_env *env = &ff->ph->env;
1506         struct rb_root *root;
1507         struct rb_node *next;
1508
1509         down_read(&env->bpf_progs.lock);
1510
1511         root = &env->bpf_progs.btfs;
1512         next = rb_first(root);
1513
1514         while (next) {
1515                 struct btf_node *node;
1516
1517                 node = rb_entry(next, struct btf_node, rb_node);
1518                 next = rb_next(&node->rb_node);
1519                 fprintf(fp, "# btf info of id %u\n", node->id);
1520         }
1521
1522         up_read(&env->bpf_progs.lock);
1523 }
1524
1525 static void free_event_desc(struct perf_evsel *events)
1526 {
1527         struct perf_evsel *evsel;
1528
1529         if (!events)
1530                 return;
1531
1532         for (evsel = events; evsel->attr.size; evsel++) {
1533                 zfree(&evsel->name);
1534                 zfree(&evsel->id);
1535         }
1536
1537         free(events);
1538 }
1539
1540 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1541 {
1542         struct perf_evsel *evsel, *events = NULL;
1543         u64 *id;
1544         void *buf = NULL;
1545         u32 nre, sz, nr, i, j;
1546         size_t msz;
1547
1548         /* number of events */
1549         if (do_read_u32(ff, &nre))
1550                 goto error;
1551
1552         if (do_read_u32(ff, &sz))
1553                 goto error;
1554
1555         /* buffer to hold on file attr struct */
1556         buf = malloc(sz);
1557         if (!buf)
1558                 goto error;
1559
1560         /* the last event terminates with evsel->attr.size == 0: */
1561         events = calloc(nre + 1, sizeof(*events));
1562         if (!events)
1563                 goto error;
1564
1565         msz = sizeof(evsel->attr);
1566         if (sz < msz)
1567                 msz = sz;
1568
1569         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1570                 evsel->idx = i;
1571
1572                 /*
1573                  * must read entire on-file attr struct to
1574                  * sync up with layout.
1575                  */
1576                 if (__do_read(ff, buf, sz))
1577                         goto error;
1578
1579                 if (ff->ph->needs_swap)
1580                         perf_event__attr_swap(buf);
1581
1582                 memcpy(&evsel->attr, buf, msz);
1583
1584                 if (do_read_u32(ff, &nr))
1585                         goto error;
1586
1587                 if (ff->ph->needs_swap)
1588                         evsel->needs_swap = true;
1589
1590                 evsel->name = do_read_string(ff);
1591                 if (!evsel->name)
1592                         goto error;
1593
1594                 if (!nr)
1595                         continue;
1596
1597                 id = calloc(nr, sizeof(*id));
1598                 if (!id)
1599                         goto error;
1600                 evsel->ids = nr;
1601                 evsel->id = id;
1602
1603                 for (j = 0 ; j < nr; j++) {
1604                         if (do_read_u64(ff, id))
1605                                 goto error;
1606                         id++;
1607                 }
1608         }
1609 out:
1610         free(buf);
1611         return events;
1612 error:
1613         free_event_desc(events);
1614         events = NULL;
1615         goto out;
1616 }
1617
1618 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1619                                 void *priv __maybe_unused)
1620 {
1621         return fprintf(fp, ", %s = %s", name, val);
1622 }
1623
1624 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1625 {
1626         struct perf_evsel *evsel, *events;
1627         u32 j;
1628         u64 *id;
1629
1630         if (ff->events)
1631                 events = ff->events;
1632         else
1633                 events = read_event_desc(ff);
1634
1635         if (!events) {
1636                 fprintf(fp, "# event desc: not available or unable to read\n");
1637                 return;
1638         }
1639
1640         for (evsel = events; evsel->attr.size; evsel++) {
1641                 fprintf(fp, "# event : name = %s, ", evsel->name);
1642
1643                 if (evsel->ids) {
1644                         fprintf(fp, ", id = {");
1645                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1646                                 if (j)
1647                                         fputc(',', fp);
1648                                 fprintf(fp, " %"PRIu64, *id);
1649                         }
1650                         fprintf(fp, " }");
1651                 }
1652
1653                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1654
1655                 fputc('\n', fp);
1656         }
1657
1658         free_event_desc(events);
1659         ff->events = NULL;
1660 }
1661
1662 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1663 {
1664         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1665 }
1666
1667 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1668 {
1669         int i;
1670         struct numa_node *n;
1671
1672         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1673                 n = &ff->ph->env.numa_nodes[i];
1674
1675                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1676                             " free = %"PRIu64" kB\n",
1677                         n->node, n->mem_total, n->mem_free);
1678
1679                 fprintf(fp, "# node%u cpu list : ", n->node);
1680                 cpu_map__fprintf(n->map, fp);
1681         }
1682 }
1683
1684 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1685 {
1686         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1687 }
1688
1689 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1690 {
1691         fprintf(fp, "# contains samples with branch stack\n");
1692 }
1693
1694 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1695 {
1696         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1697 }
1698
1699 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1700 {
1701         fprintf(fp, "# contains stat data\n");
1702 }
1703
1704 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1705 {
1706         int i;
1707
1708         fprintf(fp, "# CPU cache info:\n");
1709         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1710                 fprintf(fp, "#  ");
1711                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1712         }
1713 }
1714
1715 static void print_compressed(struct feat_fd *ff, FILE *fp)
1716 {
1717         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1718                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1719                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1720 }
1721
1722 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1723 {
1724         const char *delimiter = "# pmu mappings: ";
1725         char *str, *tmp;
1726         u32 pmu_num;
1727         u32 type;
1728
1729         pmu_num = ff->ph->env.nr_pmu_mappings;
1730         if (!pmu_num) {
1731                 fprintf(fp, "# pmu mappings: not available\n");
1732                 return;
1733         }
1734
1735         str = ff->ph->env.pmu_mappings;
1736
1737         while (pmu_num) {
1738                 type = strtoul(str, &tmp, 0);
1739                 if (*tmp != ':')
1740                         goto error;
1741
1742                 str = tmp + 1;
1743                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1744
1745                 delimiter = ", ";
1746                 str += strlen(str) + 1;
1747                 pmu_num--;
1748         }
1749
1750         fprintf(fp, "\n");
1751
1752         if (!pmu_num)
1753                 return;
1754 error:
1755         fprintf(fp, "# pmu mappings: unable to read\n");
1756 }
1757
1758 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1759 {
1760         struct perf_session *session;
1761         struct perf_evsel *evsel;
1762         u32 nr = 0;
1763
1764         session = container_of(ff->ph, struct perf_session, header);
1765
1766         evlist__for_each_entry(session->evlist, evsel) {
1767                 if (perf_evsel__is_group_leader(evsel) &&
1768                     evsel->nr_members > 1) {
1769                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1770                                 perf_evsel__name(evsel));
1771
1772                         nr = evsel->nr_members - 1;
1773                 } else if (nr) {
1774                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1775
1776                         if (--nr == 0)
1777                                 fprintf(fp, "}\n");
1778                 }
1779         }
1780 }
1781
1782 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1783 {
1784         struct perf_session *session;
1785         char time_buf[32];
1786         double d;
1787
1788         session = container_of(ff->ph, struct perf_session, header);
1789
1790         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1791                                   time_buf, sizeof(time_buf));
1792         fprintf(fp, "# time of first sample : %s\n", time_buf);
1793
1794         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1795                                   time_buf, sizeof(time_buf));
1796         fprintf(fp, "# time of last sample : %s\n", time_buf);
1797
1798         d = (double)(session->evlist->last_sample_time -
1799                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1800
1801         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1802 }
1803
1804 static void memory_node__fprintf(struct memory_node *n,
1805                                  unsigned long long bsize, FILE *fp)
1806 {
1807         char buf_map[100], buf_size[50];
1808         unsigned long long size;
1809
1810         size = bsize * bitmap_weight(n->set, n->size);
1811         unit_number__scnprintf(buf_size, 50, size);
1812
1813         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1814         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1815 }
1816
1817 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1818 {
1819         struct memory_node *nodes;
1820         int i, nr;
1821
1822         nodes = ff->ph->env.memory_nodes;
1823         nr    = ff->ph->env.nr_memory_nodes;
1824
1825         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1826                 nr, ff->ph->env.memory_bsize);
1827
1828         for (i = 0; i < nr; i++) {
1829                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1830         }
1831 }
1832
1833 static int __event_process_build_id(struct build_id_event *bev,
1834                                     char *filename,
1835                                     struct perf_session *session)
1836 {
1837         int err = -1;
1838         struct machine *machine;
1839         u16 cpumode;
1840         struct dso *dso;
1841         enum dso_kernel_type dso_type;
1842
1843         machine = perf_session__findnew_machine(session, bev->pid);
1844         if (!machine)
1845                 goto out;
1846
1847         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1848
1849         switch (cpumode) {
1850         case PERF_RECORD_MISC_KERNEL:
1851                 dso_type = DSO_TYPE_KERNEL;
1852                 break;
1853         case PERF_RECORD_MISC_GUEST_KERNEL:
1854                 dso_type = DSO_TYPE_GUEST_KERNEL;
1855                 break;
1856         case PERF_RECORD_MISC_USER:
1857         case PERF_RECORD_MISC_GUEST_USER:
1858                 dso_type = DSO_TYPE_USER;
1859                 break;
1860         default:
1861                 goto out;
1862         }
1863
1864         dso = machine__findnew_dso(machine, filename);
1865         if (dso != NULL) {
1866                 char sbuild_id[SBUILD_ID_SIZE];
1867
1868                 dso__set_build_id(dso, &bev->build_id);
1869
1870                 if (dso_type != DSO_TYPE_USER) {
1871                         struct kmod_path m = { .name = NULL, };
1872
1873                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1874                                 dso__set_module_info(dso, &m, machine);
1875                         else
1876                                 dso->kernel = dso_type;
1877
1878                         free(m.name);
1879                 }
1880
1881                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1882                                   sbuild_id);
1883                 pr_debug("build id event received for %s: %s\n",
1884                          dso->long_name, sbuild_id);
1885                 dso__put(dso);
1886         }
1887
1888         err = 0;
1889 out:
1890         return err;
1891 }
1892
1893 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1894                                                  int input, u64 offset, u64 size)
1895 {
1896         struct perf_session *session = container_of(header, struct perf_session, header);
1897         struct {
1898                 struct perf_event_header   header;
1899                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1900                 char                       filename[0];
1901         } old_bev;
1902         struct build_id_event bev;
1903         char filename[PATH_MAX];
1904         u64 limit = offset + size;
1905
1906         while (offset < limit) {
1907                 ssize_t len;
1908
1909                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1910                         return -1;
1911
1912                 if (header->needs_swap)
1913                         perf_event_header__bswap(&old_bev.header);
1914
1915                 len = old_bev.header.size - sizeof(old_bev);
1916                 if (readn(input, filename, len) != len)
1917                         return -1;
1918
1919                 bev.header = old_bev.header;
1920
1921                 /*
1922                  * As the pid is the missing value, we need to fill
1923                  * it properly. The header.misc value give us nice hint.
1924                  */
1925                 bev.pid = HOST_KERNEL_ID;
1926                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1927                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1928                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1929
1930                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1931                 __event_process_build_id(&bev, filename, session);
1932
1933                 offset += bev.header.size;
1934         }
1935
1936         return 0;
1937 }
1938
1939 static int perf_header__read_build_ids(struct perf_header *header,
1940                                        int input, u64 offset, u64 size)
1941 {
1942         struct perf_session *session = container_of(header, struct perf_session, header);
1943         struct build_id_event bev;
1944         char filename[PATH_MAX];
1945         u64 limit = offset + size, orig_offset = offset;
1946         int err = -1;
1947
1948         while (offset < limit) {
1949                 ssize_t len;
1950
1951                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1952                         goto out;
1953
1954                 if (header->needs_swap)
1955                         perf_event_header__bswap(&bev.header);
1956
1957                 len = bev.header.size - sizeof(bev);
1958                 if (readn(input, filename, len) != len)
1959                         goto out;
1960                 /*
1961                  * The a1645ce1 changeset:
1962                  *
1963                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
1964                  *
1965                  * Added a field to struct build_id_event that broke the file
1966                  * format.
1967                  *
1968                  * Since the kernel build-id is the first entry, process the
1969                  * table using the old format if the well known
1970                  * '[kernel.kallsyms]' string for the kernel build-id has the
1971                  * first 4 characters chopped off (where the pid_t sits).
1972                  */
1973                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1974                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1975                                 return -1;
1976                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1977                 }
1978
1979                 __event_process_build_id(&bev, filename, session);
1980
1981                 offset += bev.header.size;
1982         }
1983         err = 0;
1984 out:
1985         return err;
1986 }
1987
1988 /* Macro for features that simply need to read and store a string. */
1989 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1990 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1991 {\
1992         ff->ph->env.__feat_env = do_read_string(ff); \
1993         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1994 }
1995
1996 FEAT_PROCESS_STR_FUN(hostname, hostname);
1997 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1998 FEAT_PROCESS_STR_FUN(version, version);
1999 FEAT_PROCESS_STR_FUN(arch, arch);
2000 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2001 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2002
2003 static int process_tracing_data(struct feat_fd *ff, void *data)
2004 {
2005         ssize_t ret = trace_report(ff->fd, data, false);
2006
2007         return ret < 0 ? -1 : 0;
2008 }
2009
2010 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2011 {
2012         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2013                 pr_debug("Failed to read buildids, continuing...\n");
2014         return 0;
2015 }
2016
2017 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2018 {
2019         int ret;
2020         u32 nr_cpus_avail, nr_cpus_online;
2021
2022         ret = do_read_u32(ff, &nr_cpus_avail);
2023         if (ret)
2024                 return ret;
2025
2026         ret = do_read_u32(ff, &nr_cpus_online);
2027         if (ret)
2028                 return ret;
2029         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2030         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2031         return 0;
2032 }
2033
2034 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2035 {
2036         u64 total_mem;
2037         int ret;
2038
2039         ret = do_read_u64(ff, &total_mem);
2040         if (ret)
2041                 return -1;
2042         ff->ph->env.total_mem = (unsigned long long)total_mem;
2043         return 0;
2044 }
2045
2046 static struct perf_evsel *
2047 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2048 {
2049         struct perf_evsel *evsel;
2050
2051         evlist__for_each_entry(evlist, evsel) {
2052                 if (evsel->idx == idx)
2053                         return evsel;
2054         }
2055
2056         return NULL;
2057 }
2058
2059 static void
2060 perf_evlist__set_event_name(struct perf_evlist *evlist,
2061                             struct perf_evsel *event)
2062 {
2063         struct perf_evsel *evsel;
2064
2065         if (!event->name)
2066                 return;
2067
2068         evsel = perf_evlist__find_by_index(evlist, event->idx);
2069         if (!evsel)
2070                 return;
2071
2072         if (evsel->name)
2073                 return;
2074
2075         evsel->name = strdup(event->name);
2076 }
2077
2078 static int
2079 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2080 {
2081         struct perf_session *session;
2082         struct perf_evsel *evsel, *events = read_event_desc(ff);
2083
2084         if (!events)
2085                 return 0;
2086
2087         session = container_of(ff->ph, struct perf_session, header);
2088
2089         if (session->data->is_pipe) {
2090                 /* Save events for reading later by print_event_desc,
2091                  * since they can't be read again in pipe mode. */
2092                 ff->events = events;
2093         }
2094
2095         for (evsel = events; evsel->attr.size; evsel++)
2096                 perf_evlist__set_event_name(session->evlist, evsel);
2097
2098         if (!session->data->is_pipe)
2099                 free_event_desc(events);
2100
2101         return 0;
2102 }
2103
2104 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2105 {
2106         char *str, *cmdline = NULL, **argv = NULL;
2107         u32 nr, i, len = 0;
2108
2109         if (do_read_u32(ff, &nr))
2110                 return -1;
2111
2112         ff->ph->env.nr_cmdline = nr;
2113
2114         cmdline = zalloc(ff->size + nr + 1);
2115         if (!cmdline)
2116                 return -1;
2117
2118         argv = zalloc(sizeof(char *) * (nr + 1));
2119         if (!argv)
2120                 goto error;
2121
2122         for (i = 0; i < nr; i++) {
2123                 str = do_read_string(ff);
2124                 if (!str)
2125                         goto error;
2126
2127                 argv[i] = cmdline + len;
2128                 memcpy(argv[i], str, strlen(str) + 1);
2129                 len += strlen(str) + 1;
2130                 free(str);
2131         }
2132         ff->ph->env.cmdline = cmdline;
2133         ff->ph->env.cmdline_argv = (const char **) argv;
2134         return 0;
2135
2136 error:
2137         free(argv);
2138         free(cmdline);
2139         return -1;
2140 }
2141
2142 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2143 {
2144         u32 nr, i;
2145         char *str;
2146         struct strbuf sb;
2147         int cpu_nr = ff->ph->env.nr_cpus_avail;
2148         u64 size = 0;
2149         struct perf_header *ph = ff->ph;
2150         bool do_core_id_test = true;
2151
2152         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2153         if (!ph->env.cpu)
2154                 return -1;
2155
2156         if (do_read_u32(ff, &nr))
2157                 goto free_cpu;
2158
2159         ph->env.nr_sibling_cores = nr;
2160         size += sizeof(u32);
2161         if (strbuf_init(&sb, 128) < 0)
2162                 goto free_cpu;
2163
2164         for (i = 0; i < nr; i++) {
2165                 str = do_read_string(ff);
2166                 if (!str)
2167                         goto error;
2168
2169                 /* include a NULL character at the end */
2170                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2171                         goto error;
2172                 size += string_size(str);
2173                 free(str);
2174         }
2175         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2176
2177         if (do_read_u32(ff, &nr))
2178                 return -1;
2179
2180         ph->env.nr_sibling_threads = nr;
2181         size += sizeof(u32);
2182
2183         for (i = 0; i < nr; i++) {
2184                 str = do_read_string(ff);
2185                 if (!str)
2186                         goto error;
2187
2188                 /* include a NULL character at the end */
2189                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2190                         goto error;
2191                 size += string_size(str);
2192                 free(str);
2193         }
2194         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2195
2196         /*
2197          * The header may be from old perf,
2198          * which doesn't include core id and socket id information.
2199          */
2200         if (ff->size <= size) {
2201                 zfree(&ph->env.cpu);
2202                 return 0;
2203         }
2204
2205         /* On s390 the socket_id number is not related to the numbers of cpus.
2206          * The socket_id number might be higher than the numbers of cpus.
2207          * This depends on the configuration.
2208          */
2209         if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2210                 do_core_id_test = false;
2211
2212         for (i = 0; i < (u32)cpu_nr; i++) {
2213                 if (do_read_u32(ff, &nr))
2214                         goto free_cpu;
2215
2216                 ph->env.cpu[i].core_id = nr;
2217
2218                 if (do_read_u32(ff, &nr))
2219                         goto free_cpu;
2220
2221                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2222                         pr_debug("socket_id number is too big."
2223                                  "You may need to upgrade the perf tool.\n");
2224                         goto free_cpu;
2225                 }
2226
2227                 ph->env.cpu[i].socket_id = nr;
2228         }
2229
2230         return 0;
2231
2232 error:
2233         strbuf_release(&sb);
2234 free_cpu:
2235         zfree(&ph->env.cpu);
2236         return -1;
2237 }
2238
2239 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2240 {
2241         struct numa_node *nodes, *n;
2242         u32 nr, i;
2243         char *str;
2244
2245         /* nr nodes */
2246         if (do_read_u32(ff, &nr))
2247                 return -1;
2248
2249         nodes = zalloc(sizeof(*nodes) * nr);
2250         if (!nodes)
2251                 return -ENOMEM;
2252
2253         for (i = 0; i < nr; i++) {
2254                 n = &nodes[i];
2255
2256                 /* node number */
2257                 if (do_read_u32(ff, &n->node))
2258                         goto error;
2259
2260                 if (do_read_u64(ff, &n->mem_total))
2261                         goto error;
2262
2263                 if (do_read_u64(ff, &n->mem_free))
2264                         goto error;
2265
2266                 str = do_read_string(ff);
2267                 if (!str)
2268                         goto error;
2269
2270                 n->map = cpu_map__new(str);
2271                 if (!n->map)
2272                         goto error;
2273
2274                 free(str);
2275         }
2276         ff->ph->env.nr_numa_nodes = nr;
2277         ff->ph->env.numa_nodes = nodes;
2278         return 0;
2279
2280 error:
2281         free(nodes);
2282         return -1;
2283 }
2284
2285 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2286 {
2287         char *name;
2288         u32 pmu_num;
2289         u32 type;
2290         struct strbuf sb;
2291
2292         if (do_read_u32(ff, &pmu_num))
2293                 return -1;
2294
2295         if (!pmu_num) {
2296                 pr_debug("pmu mappings not available\n");
2297                 return 0;
2298         }
2299
2300         ff->ph->env.nr_pmu_mappings = pmu_num;
2301         if (strbuf_init(&sb, 128) < 0)
2302                 return -1;
2303
2304         while (pmu_num) {
2305                 if (do_read_u32(ff, &type))
2306                         goto error;
2307
2308                 name = do_read_string(ff);
2309                 if (!name)
2310                         goto error;
2311
2312                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2313                         goto error;
2314                 /* include a NULL character at the end */
2315                 if (strbuf_add(&sb, "", 1) < 0)
2316                         goto error;
2317
2318                 if (!strcmp(name, "msr"))
2319                         ff->ph->env.msr_pmu_type = type;
2320
2321                 free(name);
2322                 pmu_num--;
2323         }
2324         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2325         return 0;
2326
2327 error:
2328         strbuf_release(&sb);
2329         return -1;
2330 }
2331
2332 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2333 {
2334         size_t ret = -1;
2335         u32 i, nr, nr_groups;
2336         struct perf_session *session;
2337         struct perf_evsel *evsel, *leader = NULL;
2338         struct group_desc {
2339                 char *name;
2340                 u32 leader_idx;
2341                 u32 nr_members;
2342         } *desc;
2343
2344         if (do_read_u32(ff, &nr_groups))
2345                 return -1;
2346
2347         ff->ph->env.nr_groups = nr_groups;
2348         if (!nr_groups) {
2349                 pr_debug("group desc not available\n");
2350                 return 0;
2351         }
2352
2353         desc = calloc(nr_groups, sizeof(*desc));
2354         if (!desc)
2355                 return -1;
2356
2357         for (i = 0; i < nr_groups; i++) {
2358                 desc[i].name = do_read_string(ff);
2359                 if (!desc[i].name)
2360                         goto out_free;
2361
2362                 if (do_read_u32(ff, &desc[i].leader_idx))
2363                         goto out_free;
2364
2365                 if (do_read_u32(ff, &desc[i].nr_members))
2366                         goto out_free;
2367         }
2368
2369         /*
2370          * Rebuild group relationship based on the group_desc
2371          */
2372         session = container_of(ff->ph, struct perf_session, header);
2373         session->evlist->nr_groups = nr_groups;
2374
2375         i = nr = 0;
2376         evlist__for_each_entry(session->evlist, evsel) {
2377                 if (evsel->idx == (int) desc[i].leader_idx) {
2378                         evsel->leader = evsel;
2379                         /* {anon_group} is a dummy name */
2380                         if (strcmp(desc[i].name, "{anon_group}")) {
2381                                 evsel->group_name = desc[i].name;
2382                                 desc[i].name = NULL;
2383                         }
2384                         evsel->nr_members = desc[i].nr_members;
2385
2386                         if (i >= nr_groups || nr > 0) {
2387                                 pr_debug("invalid group desc\n");
2388                                 goto out_free;
2389                         }
2390
2391                         leader = evsel;
2392                         nr = evsel->nr_members - 1;
2393                         i++;
2394                 } else if (nr) {
2395                         /* This is a group member */
2396                         evsel->leader = leader;
2397
2398                         nr--;
2399                 }
2400         }
2401
2402         if (i != nr_groups || nr != 0) {
2403                 pr_debug("invalid group desc\n");
2404                 goto out_free;
2405         }
2406
2407         ret = 0;
2408 out_free:
2409         for (i = 0; i < nr_groups; i++)
2410                 zfree(&desc[i].name);
2411         free(desc);
2412
2413         return ret;
2414 }
2415
2416 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2417 {
2418         struct perf_session *session;
2419         int err;
2420
2421         session = container_of(ff->ph, struct perf_session, header);
2422
2423         err = auxtrace_index__process(ff->fd, ff->size, session,
2424                                       ff->ph->needs_swap);
2425         if (err < 0)
2426                 pr_err("Failed to process auxtrace index\n");
2427         return err;
2428 }
2429
2430 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2431 {
2432         struct cpu_cache_level *caches;
2433         u32 cnt, i, version;
2434
2435         if (do_read_u32(ff, &version))
2436                 return -1;
2437
2438         if (version != 1)
2439                 return -1;
2440
2441         if (do_read_u32(ff, &cnt))
2442                 return -1;
2443
2444         caches = zalloc(sizeof(*caches) * cnt);
2445         if (!caches)
2446                 return -1;
2447
2448         for (i = 0; i < cnt; i++) {
2449                 struct cpu_cache_level c;
2450
2451                 #define _R(v)                                           \
2452                         if (do_read_u32(ff, &c.v))\
2453                                 goto out_free_caches;                   \
2454
2455                 _R(level)
2456                 _R(line_size)
2457                 _R(sets)
2458                 _R(ways)
2459                 #undef _R
2460
2461                 #define _R(v)                                   \
2462                         c.v = do_read_string(ff);               \
2463                         if (!c.v)                               \
2464                                 goto out_free_caches;
2465
2466                 _R(type)
2467                 _R(size)
2468                 _R(map)
2469                 #undef _R
2470
2471                 caches[i] = c;
2472         }
2473
2474         ff->ph->env.caches = caches;
2475         ff->ph->env.caches_cnt = cnt;
2476         return 0;
2477 out_free_caches:
2478         free(caches);
2479         return -1;
2480 }
2481
2482 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2483 {
2484         struct perf_session *session;
2485         u64 first_sample_time, last_sample_time;
2486         int ret;
2487
2488         session = container_of(ff->ph, struct perf_session, header);
2489
2490         ret = do_read_u64(ff, &first_sample_time);
2491         if (ret)
2492                 return -1;
2493
2494         ret = do_read_u64(ff, &last_sample_time);
2495         if (ret)
2496                 return -1;
2497
2498         session->evlist->first_sample_time = first_sample_time;
2499         session->evlist->last_sample_time = last_sample_time;
2500         return 0;
2501 }
2502
2503 static int process_mem_topology(struct feat_fd *ff,
2504                                 void *data __maybe_unused)
2505 {
2506         struct memory_node *nodes;
2507         u64 version, i, nr, bsize;
2508         int ret = -1;
2509
2510         if (do_read_u64(ff, &version))
2511                 return -1;
2512
2513         if (version != 1)
2514                 return -1;
2515
2516         if (do_read_u64(ff, &bsize))
2517                 return -1;
2518
2519         if (do_read_u64(ff, &nr))
2520                 return -1;
2521
2522         nodes = zalloc(sizeof(*nodes) * nr);
2523         if (!nodes)
2524                 return -1;
2525
2526         for (i = 0; i < nr; i++) {
2527                 struct memory_node n;
2528
2529                 #define _R(v)                           \
2530                         if (do_read_u64(ff, &n.v))      \
2531                                 goto out;               \
2532
2533                 _R(node)
2534                 _R(size)
2535
2536                 #undef _R
2537
2538                 if (do_read_bitmap(ff, &n.set, &n.size))
2539                         goto out;
2540
2541                 nodes[i] = n;
2542         }
2543
2544         ff->ph->env.memory_bsize    = bsize;
2545         ff->ph->env.memory_nodes    = nodes;
2546         ff->ph->env.nr_memory_nodes = nr;
2547         ret = 0;
2548
2549 out:
2550         if (ret)
2551                 free(nodes);
2552         return ret;
2553 }
2554
2555 static int process_clockid(struct feat_fd *ff,
2556                            void *data __maybe_unused)
2557 {
2558         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2559                 return -1;
2560
2561         return 0;
2562 }
2563
2564 static int process_dir_format(struct feat_fd *ff,
2565                               void *_data __maybe_unused)
2566 {
2567         struct perf_session *session;
2568         struct perf_data *data;
2569
2570         session = container_of(ff->ph, struct perf_session, header);
2571         data = session->data;
2572
2573         if (WARN_ON(!perf_data__is_dir(data)))
2574                 return -1;
2575
2576         return do_read_u64(ff, &data->dir.version);
2577 }
2578
2579 #ifdef HAVE_LIBBPF_SUPPORT
2580 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2581 {
2582         struct bpf_prog_info_linear *info_linear;
2583         struct bpf_prog_info_node *info_node;
2584         struct perf_env *env = &ff->ph->env;
2585         u32 count, i;
2586         int err = -1;
2587
2588         if (ff->ph->needs_swap) {
2589                 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2590                 return 0;
2591         }
2592
2593         if (do_read_u32(ff, &count))
2594                 return -1;
2595
2596         down_write(&env->bpf_progs.lock);
2597
2598         for (i = 0; i < count; ++i) {
2599                 u32 info_len, data_len;
2600
2601                 info_linear = NULL;
2602                 info_node = NULL;
2603                 if (do_read_u32(ff, &info_len))
2604                         goto out;
2605                 if (do_read_u32(ff, &data_len))
2606                         goto out;
2607
2608                 if (info_len > sizeof(struct bpf_prog_info)) {
2609                         pr_warning("detected invalid bpf_prog_info\n");
2610                         goto out;
2611                 }
2612
2613                 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2614                                      data_len);
2615                 if (!info_linear)
2616                         goto out;
2617                 info_linear->info_len = sizeof(struct bpf_prog_info);
2618                 info_linear->data_len = data_len;
2619                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2620                         goto out;
2621                 if (__do_read(ff, &info_linear->info, info_len))
2622                         goto out;
2623                 if (info_len < sizeof(struct bpf_prog_info))
2624                         memset(((void *)(&info_linear->info)) + info_len, 0,
2625                                sizeof(struct bpf_prog_info) - info_len);
2626
2627                 if (__do_read(ff, info_linear->data, data_len))
2628                         goto out;
2629
2630                 info_node = malloc(sizeof(struct bpf_prog_info_node));
2631                 if (!info_node)
2632                         goto out;
2633
2634                 /* after reading from file, translate offset to address */
2635                 bpf_program__bpil_offs_to_addr(info_linear);
2636                 info_node->info_linear = info_linear;
2637                 perf_env__insert_bpf_prog_info(env, info_node);
2638         }
2639
2640         up_write(&env->bpf_progs.lock);
2641         return 0;
2642 out:
2643         free(info_linear);
2644         free(info_node);
2645         up_write(&env->bpf_progs.lock);
2646         return err;
2647 }
2648 #else // HAVE_LIBBPF_SUPPORT
2649 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2650 {
2651         return 0;
2652 }
2653 #endif // HAVE_LIBBPF_SUPPORT
2654
2655 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2656 {
2657         struct perf_env *env = &ff->ph->env;
2658         struct btf_node *node = NULL;
2659         u32 count, i;
2660         int err = -1;
2661
2662         if (ff->ph->needs_swap) {
2663                 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2664                 return 0;
2665         }
2666
2667         if (do_read_u32(ff, &count))
2668                 return -1;
2669
2670         down_write(&env->bpf_progs.lock);
2671
2672         for (i = 0; i < count; ++i) {
2673                 u32 id, data_size;
2674
2675                 if (do_read_u32(ff, &id))
2676                         goto out;
2677                 if (do_read_u32(ff, &data_size))
2678                         goto out;
2679
2680                 node = malloc(sizeof(struct btf_node) + data_size);
2681                 if (!node)
2682                         goto out;
2683
2684                 node->id = id;
2685                 node->data_size = data_size;
2686
2687                 if (__do_read(ff, node->data, data_size))
2688                         goto out;
2689
2690                 perf_env__insert_btf(env, node);
2691                 node = NULL;
2692         }
2693
2694         err = 0;
2695 out:
2696         up_write(&env->bpf_progs.lock);
2697         free(node);
2698         return err;
2699 }
2700
2701 static int process_compressed(struct feat_fd *ff,
2702                               void *data __maybe_unused)
2703 {
2704         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2705                 return -1;
2706
2707         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2708                 return -1;
2709
2710         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2711                 return -1;
2712
2713         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2714                 return -1;
2715
2716         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2717                 return -1;
2718
2719         return 0;
2720 }
2721
2722 struct feature_ops {
2723         int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2724         void (*print)(struct feat_fd *ff, FILE *fp);
2725         int (*process)(struct feat_fd *ff, void *data);
2726         const char *name;
2727         bool full_only;
2728         bool synthesize;
2729 };
2730
2731 #define FEAT_OPR(n, func, __full_only) \
2732         [HEADER_##n] = {                                        \
2733                 .name       = __stringify(n),                   \
2734                 .write      = write_##func,                     \
2735                 .print      = print_##func,                     \
2736                 .full_only  = __full_only,                      \
2737                 .process    = process_##func,                   \
2738                 .synthesize = true                              \
2739         }
2740
2741 #define FEAT_OPN(n, func, __full_only) \
2742         [HEADER_##n] = {                                        \
2743                 .name       = __stringify(n),                   \
2744                 .write      = write_##func,                     \
2745                 .print      = print_##func,                     \
2746                 .full_only  = __full_only,                      \
2747                 .process    = process_##func                    \
2748         }
2749
2750 /* feature_ops not implemented: */
2751 #define print_tracing_data      NULL
2752 #define print_build_id          NULL
2753
2754 #define process_branch_stack    NULL
2755 #define process_stat            NULL
2756
2757
2758 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2759         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2760         FEAT_OPN(BUILD_ID,      build_id,       false),
2761         FEAT_OPR(HOSTNAME,      hostname,       false),
2762         FEAT_OPR(OSRELEASE,     osrelease,      false),
2763         FEAT_OPR(VERSION,       version,        false),
2764         FEAT_OPR(ARCH,          arch,           false),
2765         FEAT_OPR(NRCPUS,        nrcpus,         false),
2766         FEAT_OPR(CPUDESC,       cpudesc,        false),
2767         FEAT_OPR(CPUID,         cpuid,          false),
2768         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2769         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2770         FEAT_OPR(CMDLINE,       cmdline,        false),
2771         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2772         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2773         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2774         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2775         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2776         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2777         FEAT_OPN(STAT,          stat,           false),
2778         FEAT_OPN(CACHE,         cache,          true),
2779         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2780         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2781         FEAT_OPR(CLOCKID,       clockid,        false),
2782         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2783         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2784         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2785         FEAT_OPR(COMPRESSED,    compressed,     false),
2786 };
2787
2788 struct header_print_data {
2789         FILE *fp;
2790         bool full; /* extended list of headers */
2791 };
2792
2793 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2794                                            struct perf_header *ph,
2795                                            int feat, int fd, void *data)
2796 {
2797         struct header_print_data *hd = data;
2798         struct feat_fd ff;
2799
2800         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2801                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2802                                 "%d, continuing...\n", section->offset, feat);
2803                 return 0;
2804         }
2805         if (feat >= HEADER_LAST_FEATURE) {
2806                 pr_warning("unknown feature %d\n", feat);
2807                 return 0;
2808         }
2809         if (!feat_ops[feat].print)
2810                 return 0;
2811
2812         ff = (struct  feat_fd) {
2813                 .fd = fd,
2814                 .ph = ph,
2815         };
2816
2817         if (!feat_ops[feat].full_only || hd->full)
2818                 feat_ops[feat].print(&ff, hd->fp);
2819         else
2820                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2821                         feat_ops[feat].name);
2822
2823         return 0;
2824 }
2825
2826 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2827 {
2828         struct header_print_data hd;
2829         struct perf_header *header = &session->header;
2830         int fd = perf_data__fd(session->data);
2831         struct stat st;
2832         time_t stctime;
2833         int ret, bit;
2834
2835         hd.fp = fp;
2836         hd.full = full;
2837
2838         ret = fstat(fd, &st);
2839         if (ret == -1)
2840                 return -1;
2841
2842         stctime = st.st_ctime;
2843         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2844
2845         fprintf(fp, "# header version : %u\n", header->version);
2846         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2847         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2848         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2849
2850         perf_header__process_sections(header, fd, &hd,
2851                                       perf_file_section__fprintf_info);
2852
2853         if (session->data->is_pipe)
2854                 return 0;
2855
2856         fprintf(fp, "# missing features: ");
2857         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2858                 if (bit)
2859                         fprintf(fp, "%s ", feat_ops[bit].name);
2860         }
2861
2862         fprintf(fp, "\n");
2863         return 0;
2864 }
2865
2866 static int do_write_feat(struct feat_fd *ff, int type,
2867                          struct perf_file_section **p,
2868                          struct perf_evlist *evlist)
2869 {
2870         int err;
2871         int ret = 0;
2872
2873         if (perf_header__has_feat(ff->ph, type)) {
2874                 if (!feat_ops[type].write)
2875                         return -1;
2876
2877                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2878                         return -1;
2879
2880                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2881
2882                 err = feat_ops[type].write(ff, evlist);
2883                 if (err < 0) {
2884                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2885
2886                         /* undo anything written */
2887                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2888
2889                         return -1;
2890                 }
2891                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2892                 (*p)++;
2893         }
2894         return ret;
2895 }
2896
2897 static int perf_header__adds_write(struct perf_header *header,
2898                                    struct perf_evlist *evlist, int fd)
2899 {
2900         int nr_sections;
2901         struct feat_fd ff;
2902         struct perf_file_section *feat_sec, *p;
2903         int sec_size;
2904         u64 sec_start;
2905         int feat;
2906         int err;
2907
2908         ff = (struct feat_fd){
2909                 .fd  = fd,
2910                 .ph = header,
2911         };
2912
2913         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2914         if (!nr_sections)
2915                 return 0;
2916
2917         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2918         if (feat_sec == NULL)
2919                 return -ENOMEM;
2920
2921         sec_size = sizeof(*feat_sec) * nr_sections;
2922
2923         sec_start = header->feat_offset;
2924         lseek(fd, sec_start + sec_size, SEEK_SET);
2925
2926         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2927                 if (do_write_feat(&ff, feat, &p, evlist))
2928                         perf_header__clear_feat(header, feat);
2929         }
2930
2931         lseek(fd, sec_start, SEEK_SET);
2932         /*
2933          * may write more than needed due to dropped feature, but
2934          * this is okay, reader will skip the missing entries
2935          */
2936         err = do_write(&ff, feat_sec, sec_size);
2937         if (err < 0)
2938                 pr_debug("failed to write feature section\n");
2939         free(feat_sec);
2940         return err;
2941 }
2942
2943 int perf_header__write_pipe(int fd)
2944 {
2945         struct perf_pipe_file_header f_header;
2946         struct feat_fd ff;
2947         int err;
2948
2949         ff = (struct feat_fd){ .fd = fd };
2950
2951         f_header = (struct perf_pipe_file_header){
2952                 .magic     = PERF_MAGIC,
2953                 .size      = sizeof(f_header),
2954         };
2955
2956         err = do_write(&ff, &f_header, sizeof(f_header));
2957         if (err < 0) {
2958                 pr_debug("failed to write perf pipe header\n");
2959                 return err;
2960         }
2961
2962         return 0;
2963 }
2964
2965 int perf_session__write_header(struct perf_session *session,
2966                                struct perf_evlist *evlist,
2967                                int fd, bool at_exit)
2968 {
2969         struct perf_file_header f_header;
2970         struct perf_file_attr   f_attr;
2971         struct perf_header *header = &session->header;
2972         struct perf_evsel *evsel;
2973         struct feat_fd ff;
2974         u64 attr_offset;
2975         int err;
2976
2977         ff = (struct feat_fd){ .fd = fd};
2978         lseek(fd, sizeof(f_header), SEEK_SET);
2979
2980         evlist__for_each_entry(session->evlist, evsel) {
2981                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2982                 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2983                 if (err < 0) {
2984                         pr_debug("failed to write perf header\n");
2985                         return err;
2986                 }
2987         }
2988
2989         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2990
2991         evlist__for_each_entry(evlist, evsel) {
2992                 f_attr = (struct perf_file_attr){
2993                         .attr = evsel->attr,
2994                         .ids  = {
2995                                 .offset = evsel->id_offset,
2996                                 .size   = evsel->ids * sizeof(u64),
2997                         }
2998                 };
2999                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3000                 if (err < 0) {
3001                         pr_debug("failed to write perf header attribute\n");
3002                         return err;
3003                 }
3004         }
3005
3006         if (!header->data_offset)
3007                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3008         header->feat_offset = header->data_offset + header->data_size;
3009
3010         if (at_exit) {
3011                 err = perf_header__adds_write(header, evlist, fd);
3012                 if (err < 0)
3013                         return err;
3014         }
3015
3016         f_header = (struct perf_file_header){
3017                 .magic     = PERF_MAGIC,
3018                 .size      = sizeof(f_header),
3019                 .attr_size = sizeof(f_attr),
3020                 .attrs = {
3021                         .offset = attr_offset,
3022                         .size   = evlist->nr_entries * sizeof(f_attr),
3023                 },
3024                 .data = {
3025                         .offset = header->data_offset,
3026                         .size   = header->data_size,
3027                 },
3028                 /* event_types is ignored, store zeros */
3029         };
3030
3031         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3032
3033         lseek(fd, 0, SEEK_SET);
3034         err = do_write(&ff, &f_header, sizeof(f_header));
3035         if (err < 0) {
3036                 pr_debug("failed to write perf header\n");
3037                 return err;
3038         }
3039         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3040
3041         return 0;
3042 }
3043
3044 static int perf_header__getbuffer64(struct perf_header *header,
3045                                     int fd, void *buf, size_t size)
3046 {
3047         if (readn(fd, buf, size) <= 0)
3048                 return -1;
3049
3050         if (header->needs_swap)
3051                 mem_bswap_64(buf, size);
3052
3053         return 0;
3054 }
3055
3056 int perf_header__process_sections(struct perf_header *header, int fd,
3057                                   void *data,
3058                                   int (*process)(struct perf_file_section *section,
3059                                                  struct perf_header *ph,
3060                                                  int feat, int fd, void *data))
3061 {
3062         struct perf_file_section *feat_sec, *sec;
3063         int nr_sections;
3064         int sec_size;
3065         int feat;
3066         int err;
3067
3068         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3069         if (!nr_sections)
3070                 return 0;
3071
3072         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3073         if (!feat_sec)
3074                 return -1;
3075
3076         sec_size = sizeof(*feat_sec) * nr_sections;
3077
3078         lseek(fd, header->feat_offset, SEEK_SET);
3079
3080         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3081         if (err < 0)
3082                 goto out_free;
3083
3084         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3085                 err = process(sec++, header, feat, fd, data);
3086                 if (err < 0)
3087                         goto out_free;
3088         }
3089         err = 0;
3090 out_free:
3091         free(feat_sec);
3092         return err;
3093 }
3094
3095 static const int attr_file_abi_sizes[] = {
3096         [0] = PERF_ATTR_SIZE_VER0,
3097         [1] = PERF_ATTR_SIZE_VER1,
3098         [2] = PERF_ATTR_SIZE_VER2,
3099         [3] = PERF_ATTR_SIZE_VER3,
3100         [4] = PERF_ATTR_SIZE_VER4,
3101         0,
3102 };
3103
3104 /*
3105  * In the legacy file format, the magic number is not used to encode endianness.
3106  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3107  * on ABI revisions, we need to try all combinations for all endianness to
3108  * detect the endianness.
3109  */
3110 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3111 {
3112         uint64_t ref_size, attr_size;
3113         int i;
3114
3115         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3116                 ref_size = attr_file_abi_sizes[i]
3117                          + sizeof(struct perf_file_section);
3118                 if (hdr_sz != ref_size) {
3119                         attr_size = bswap_64(hdr_sz);
3120                         if (attr_size != ref_size)
3121                                 continue;
3122
3123                         ph->needs_swap = true;
3124                 }
3125                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3126                          i,
3127                          ph->needs_swap);
3128                 return 0;
3129         }
3130         /* could not determine endianness */
3131         return -1;
3132 }
3133
3134 #define PERF_PIPE_HDR_VER0      16
3135
3136 static const size_t attr_pipe_abi_sizes[] = {
3137         [0] = PERF_PIPE_HDR_VER0,
3138         0,
3139 };
3140
3141 /*
3142  * In the legacy pipe format, there is an implicit assumption that endiannesss
3143  * between host recording the samples, and host parsing the samples is the
3144  * same. This is not always the case given that the pipe output may always be
3145  * redirected into a file and analyzed on a different machine with possibly a
3146  * different endianness and perf_event ABI revsions in the perf tool itself.
3147  */
3148 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3149 {
3150         u64 attr_size;
3151         int i;
3152
3153         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3154                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3155                         attr_size = bswap_64(hdr_sz);
3156                         if (attr_size != hdr_sz)
3157                                 continue;
3158
3159                         ph->needs_swap = true;
3160                 }
3161                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3162                 return 0;
3163         }
3164         return -1;
3165 }
3166
3167 bool is_perf_magic(u64 magic)
3168 {
3169         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3170                 || magic == __perf_magic2
3171                 || magic == __perf_magic2_sw)
3172                 return true;
3173
3174         return false;
3175 }
3176
3177 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3178                               bool is_pipe, struct perf_header *ph)
3179 {
3180         int ret;
3181
3182         /* check for legacy format */
3183         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3184         if (ret == 0) {
3185                 ph->version = PERF_HEADER_VERSION_1;
3186                 pr_debug("legacy perf.data format\n");
3187                 if (is_pipe)
3188                         return try_all_pipe_abis(hdr_sz, ph);
3189
3190                 return try_all_file_abis(hdr_sz, ph);
3191         }
3192         /*
3193          * the new magic number serves two purposes:
3194          * - unique number to identify actual perf.data files
3195          * - encode endianness of file
3196          */
3197         ph->version = PERF_HEADER_VERSION_2;
3198
3199         /* check magic number with one endianness */
3200         if (magic == __perf_magic2)
3201                 return 0;
3202
3203         /* check magic number with opposite endianness */
3204         if (magic != __perf_magic2_sw)
3205                 return -1;
3206
3207         ph->needs_swap = true;
3208
3209         return 0;
3210 }
3211
3212 int perf_file_header__read(struct perf_file_header *header,
3213                            struct perf_header *ph, int fd)
3214 {
3215         ssize_t ret;
3216
3217         lseek(fd, 0, SEEK_SET);
3218
3219         ret = readn(fd, header, sizeof(*header));
3220         if (ret <= 0)
3221                 return -1;
3222
3223         if (check_magic_endian(header->magic,
3224                                header->attr_size, false, ph) < 0) {
3225                 pr_debug("magic/endian check failed\n");
3226                 return -1;
3227         }
3228
3229         if (ph->needs_swap) {
3230                 mem_bswap_64(header, offsetof(struct perf_file_header,
3231                              adds_features));
3232         }
3233
3234         if (header->size != sizeof(*header)) {
3235                 /* Support the previous format */
3236                 if (header->size == offsetof(typeof(*header), adds_features))
3237                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3238                 else
3239                         return -1;
3240         } else if (ph->needs_swap) {
3241                 /*
3242                  * feature bitmap is declared as an array of unsigned longs --
3243                  * not good since its size can differ between the host that
3244                  * generated the data file and the host analyzing the file.
3245                  *
3246                  * We need to handle endianness, but we don't know the size of
3247                  * the unsigned long where the file was generated. Take a best
3248                  * guess at determining it: try 64-bit swap first (ie., file
3249                  * created on a 64-bit host), and check if the hostname feature
3250                  * bit is set (this feature bit is forced on as of fbe96f2).
3251                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3252                  * swap. If the hostname bit is still not set (e.g., older data
3253                  * file), punt and fallback to the original behavior --
3254                  * clearing all feature bits and setting buildid.
3255                  */
3256                 mem_bswap_64(&header->adds_features,
3257                             BITS_TO_U64(HEADER_FEAT_BITS));
3258
3259                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3260                         /* unswap as u64 */
3261                         mem_bswap_64(&header->adds_features,
3262                                     BITS_TO_U64(HEADER_FEAT_BITS));
3263
3264                         /* unswap as u32 */
3265                         mem_bswap_32(&header->adds_features,
3266                                     BITS_TO_U32(HEADER_FEAT_BITS));
3267                 }
3268
3269                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3270                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3271                         set_bit(HEADER_BUILD_ID, header->adds_features);
3272                 }
3273         }
3274
3275         memcpy(&ph->adds_features, &header->adds_features,
3276                sizeof(ph->adds_features));
3277
3278         ph->data_offset  = header->data.offset;
3279         ph->data_size    = header->data.size;
3280         ph->feat_offset  = header->data.offset + header->data.size;
3281         return 0;
3282 }
3283
3284 static int perf_file_section__process(struct perf_file_section *section,
3285                                       struct perf_header *ph,
3286                                       int feat, int fd, void *data)
3287 {
3288         struct feat_fd fdd = {
3289                 .fd     = fd,
3290                 .ph     = ph,
3291                 .size   = section->size,
3292                 .offset = section->offset,
3293         };
3294
3295         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3296                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3297                           "%d, continuing...\n", section->offset, feat);
3298                 return 0;
3299         }
3300
3301         if (feat >= HEADER_LAST_FEATURE) {
3302                 pr_debug("unknown feature %d, continuing...\n", feat);
3303                 return 0;
3304         }
3305
3306         if (!feat_ops[feat].process)
3307                 return 0;
3308
3309         return feat_ops[feat].process(&fdd, data);
3310 }
3311
3312 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3313                                        struct perf_header *ph, int fd,
3314                                        bool repipe)
3315 {
3316         struct feat_fd ff = {
3317                 .fd = STDOUT_FILENO,
3318                 .ph = ph,
3319         };
3320         ssize_t ret;
3321
3322         ret = readn(fd, header, sizeof(*header));
3323         if (ret <= 0)
3324                 return -1;
3325
3326         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3327                 pr_debug("endian/magic failed\n");
3328                 return -1;
3329         }
3330
3331         if (ph->needs_swap)
3332                 header->size = bswap_64(header->size);
3333
3334         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3335                 return -1;
3336
3337         return 0;
3338 }
3339
3340 static int perf_header__read_pipe(struct perf_session *session)
3341 {
3342         struct perf_header *header = &session->header;
3343         struct perf_pipe_file_header f_header;
3344
3345         if (perf_file_header__read_pipe(&f_header, header,
3346                                         perf_data__fd(session->data),
3347                                         session->repipe) < 0) {
3348                 pr_debug("incompatible file format\n");
3349                 return -EINVAL;
3350         }
3351
3352         return 0;
3353 }
3354
3355 static int read_attr(int fd, struct perf_header *ph,
3356                      struct perf_file_attr *f_attr)
3357 {
3358         struct perf_event_attr *attr = &f_attr->attr;
3359         size_t sz, left;
3360         size_t our_sz = sizeof(f_attr->attr);
3361         ssize_t ret;
3362
3363         memset(f_attr, 0, sizeof(*f_attr));
3364
3365         /* read minimal guaranteed structure */
3366         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3367         if (ret <= 0) {
3368                 pr_debug("cannot read %d bytes of header attr\n",
3369                          PERF_ATTR_SIZE_VER0);
3370                 return -1;
3371         }
3372
3373         /* on file perf_event_attr size */
3374         sz = attr->size;
3375
3376         if (ph->needs_swap)
3377                 sz = bswap_32(sz);
3378
3379         if (sz == 0) {
3380                 /* assume ABI0 */
3381                 sz =  PERF_ATTR_SIZE_VER0;
3382         } else if (sz > our_sz) {
3383                 pr_debug("file uses a more recent and unsupported ABI"
3384                          " (%zu bytes extra)\n", sz - our_sz);
3385                 return -1;
3386         }
3387         /* what we have not yet read and that we know about */
3388         left = sz - PERF_ATTR_SIZE_VER0;
3389         if (left) {
3390                 void *ptr = attr;
3391                 ptr += PERF_ATTR_SIZE_VER0;
3392
3393                 ret = readn(fd, ptr, left);
3394         }
3395         /* read perf_file_section, ids are read in caller */
3396         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3397
3398         return ret <= 0 ? -1 : 0;
3399 }
3400
3401 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3402                                                 struct tep_handle *pevent)
3403 {
3404         struct tep_event *event;
3405         char bf[128];
3406
3407         /* already prepared */
3408         if (evsel->tp_format)
3409                 return 0;
3410
3411         if (pevent == NULL) {
3412                 pr_debug("broken or missing trace data\n");
3413                 return -1;
3414         }
3415
3416         event = tep_find_event(pevent, evsel->attr.config);
3417         if (event == NULL) {
3418                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3419                 return -1;
3420         }
3421
3422         if (!evsel->name) {
3423                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3424                 evsel->name = strdup(bf);
3425                 if (evsel->name == NULL)
3426                         return -1;
3427         }
3428
3429         evsel->tp_format = event;
3430         return 0;
3431 }
3432
3433 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3434                                                   struct tep_handle *pevent)
3435 {
3436         struct perf_evsel *pos;
3437
3438         evlist__for_each_entry(evlist, pos) {
3439                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3440                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3441                         return -1;
3442         }
3443
3444         return 0;
3445 }
3446
3447 int perf_session__read_header(struct perf_session *session)
3448 {
3449         struct perf_data *data = session->data;
3450         struct perf_header *header = &session->header;
3451         struct perf_file_header f_header;
3452         struct perf_file_attr   f_attr;
3453         u64                     f_id;
3454         int nr_attrs, nr_ids, i, j;
3455         int fd = perf_data__fd(data);
3456
3457         session->evlist = perf_evlist__new();
3458         if (session->evlist == NULL)
3459                 return -ENOMEM;
3460
3461         session->evlist->env = &header->env;
3462         session->machines.host.env = &header->env;
3463         if (perf_data__is_pipe(data))
3464                 return perf_header__read_pipe(session);
3465
3466         if (perf_file_header__read(&f_header, header, fd) < 0)
3467                 return -EINVAL;
3468
3469         /*
3470          * Sanity check that perf.data was written cleanly; data size is
3471          * initialized to 0 and updated only if the on_exit function is run.
3472          * If data size is still 0 then the file contains only partial
3473          * information.  Just warn user and process it as much as it can.
3474          */
3475         if (f_header.data.size == 0) {
3476                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3477                            "Was the 'perf record' command properly terminated?\n",
3478                            data->file.path);
3479         }
3480
3481         nr_attrs = f_header.attrs.size / f_header.attr_size;
3482         lseek(fd, f_header.attrs.offset, SEEK_SET);
3483
3484         for (i = 0; i < nr_attrs; i++) {
3485                 struct perf_evsel *evsel;
3486                 off_t tmp;
3487
3488                 if (read_attr(fd, header, &f_attr) < 0)
3489                         goto out_errno;
3490
3491                 if (header->needs_swap) {
3492                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3493                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3494                         perf_event__attr_swap(&f_attr.attr);
3495                 }
3496
3497                 tmp = lseek(fd, 0, SEEK_CUR);
3498                 evsel = perf_evsel__new(&f_attr.attr);
3499
3500                 if (evsel == NULL)
3501                         goto out_delete_evlist;
3502
3503                 evsel->needs_swap = header->needs_swap;
3504                 /*
3505                  * Do it before so that if perf_evsel__alloc_id fails, this
3506                  * entry gets purged too at perf_evlist__delete().
3507                  */
3508                 perf_evlist__add(session->evlist, evsel);
3509
3510                 nr_ids = f_attr.ids.size / sizeof(u64);
3511                 /*
3512                  * We don't have the cpu and thread maps on the header, so
3513                  * for allocating the perf_sample_id table we fake 1 cpu and
3514                  * hattr->ids threads.
3515                  */
3516                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3517                         goto out_delete_evlist;
3518
3519                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3520
3521                 for (j = 0; j < nr_ids; j++) {
3522                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3523                                 goto out_errno;
3524
3525                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3526                 }
3527
3528                 lseek(fd, tmp, SEEK_SET);
3529         }
3530
3531         perf_header__process_sections(header, fd, &session->tevent,
3532                                       perf_file_section__process);
3533
3534         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3535                                                    session->tevent.pevent))
3536                 goto out_delete_evlist;
3537
3538         return 0;
3539 out_errno:
3540         return -errno;
3541
3542 out_delete_evlist:
3543         perf_evlist__delete(session->evlist);
3544         session->evlist = NULL;
3545         return -ENOMEM;
3546 }
3547
3548 int perf_event__synthesize_attr(struct perf_tool *tool,
3549                                 struct perf_event_attr *attr, u32 ids, u64 *id,
3550                                 perf_event__handler_t process)
3551 {
3552         union perf_event *ev;
3553         size_t size;
3554         int err;
3555
3556         size = sizeof(struct perf_event_attr);
3557         size = PERF_ALIGN(size, sizeof(u64));
3558         size += sizeof(struct perf_event_header);
3559         size += ids * sizeof(u64);
3560
3561         ev = malloc(size);
3562
3563         if (ev == NULL)
3564                 return -ENOMEM;
3565
3566         ev->attr.attr = *attr;
3567         memcpy(ev->attr.id, id, ids * sizeof(u64));
3568
3569         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3570         ev->attr.header.size = (u16)size;
3571
3572         if (ev->attr.header.size == size)
3573                 err = process(tool, ev, NULL, NULL);
3574         else
3575                 err = -E2BIG;
3576
3577         free(ev);
3578
3579         return err;
3580 }
3581
3582 int perf_event__synthesize_features(struct perf_tool *tool,
3583                                     struct perf_session *session,
3584                                     struct perf_evlist *evlist,
3585                                     perf_event__handler_t process)
3586 {
3587         struct perf_header *header = &session->header;
3588         struct feat_fd ff;
3589         struct feature_event *fe;
3590         size_t sz, sz_hdr;
3591         int feat, ret;
3592
3593         sz_hdr = sizeof(fe->header);
3594         sz = sizeof(union perf_event);
3595         /* get a nice alignment */
3596         sz = PERF_ALIGN(sz, page_size);
3597
3598         memset(&ff, 0, sizeof(ff));
3599
3600         ff.buf = malloc(sz);
3601         if (!ff.buf)
3602                 return -ENOMEM;
3603
3604         ff.size = sz - sz_hdr;
3605
3606         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3607                 if (!feat_ops[feat].synthesize) {
3608                         pr_debug("No record header feature for header :%d\n", feat);
3609                         continue;
3610                 }
3611
3612                 ff.offset = sizeof(*fe);
3613
3614                 ret = feat_ops[feat].write(&ff, evlist);
3615                 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3616                         pr_debug("Error writing feature\n");
3617                         continue;
3618                 }
3619                 /* ff.buf may have changed due to realloc in do_write() */
3620                 fe = ff.buf;
3621                 memset(fe, 0, sizeof(*fe));
3622
3623                 fe->feat_id = feat;
3624                 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3625                 fe->header.size = ff.offset;
3626
3627                 ret = process(tool, ff.buf, NULL, NULL);
3628                 if (ret) {
3629                         free(ff.buf);
3630                         return ret;
3631                 }
3632         }
3633
3634         /* Send HEADER_LAST_FEATURE mark. */
3635         fe = ff.buf;
3636         fe->feat_id     = HEADER_LAST_FEATURE;
3637         fe->header.type = PERF_RECORD_HEADER_FEATURE;
3638         fe->header.size = sizeof(*fe);
3639
3640         ret = process(tool, ff.buf, NULL, NULL);
3641
3642         free(ff.buf);
3643         return ret;
3644 }
3645
3646 int perf_event__process_feature(struct perf_session *session,
3647                                 union perf_event *event)
3648 {
3649         struct perf_tool *tool = session->tool;
3650         struct feat_fd ff = { .fd = 0 };
3651         struct feature_event *fe = (struct feature_event *)event;
3652         int type = fe->header.type;
3653         u64 feat = fe->feat_id;
3654
3655         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3656                 pr_warning("invalid record type %d in pipe-mode\n", type);
3657                 return 0;
3658         }
3659         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3660                 pr_warning("invalid record type %d in pipe-mode\n", type);
3661                 return -1;
3662         }
3663
3664         if (!feat_ops[feat].process)
3665                 return 0;
3666
3667         ff.buf  = (void *)fe->data;
3668         ff.size = event->header.size - sizeof(event->header);
3669         ff.ph = &session->header;
3670
3671         if (feat_ops[feat].process(&ff, NULL))
3672                 return -1;
3673
3674         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3675                 return 0;
3676
3677         if (!feat_ops[feat].full_only ||
3678             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3679                 feat_ops[feat].print(&ff, stdout);
3680         } else {
3681                 fprintf(stdout, "# %s info available, use -I to display\n",
3682                         feat_ops[feat].name);
3683         }
3684
3685         return 0;
3686 }
3687
3688 static struct event_update_event *
3689 event_update_event__new(size_t size, u64 type, u64 id)
3690 {
3691         struct event_update_event *ev;
3692
3693         size += sizeof(*ev);
3694         size  = PERF_ALIGN(size, sizeof(u64));
3695
3696         ev = zalloc(size);
3697         if (ev) {
3698                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3699                 ev->header.size = (u16)size;
3700                 ev->type = type;
3701                 ev->id = id;
3702         }
3703         return ev;
3704 }
3705
3706 int
3707 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3708                                          struct perf_evsel *evsel,
3709                                          perf_event__handler_t process)
3710 {
3711         struct event_update_event *ev;
3712         size_t size = strlen(evsel->unit);
3713         int err;
3714
3715         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3716         if (ev == NULL)
3717                 return -ENOMEM;
3718
3719         strlcpy(ev->data, evsel->unit, size + 1);
3720         err = process(tool, (union perf_event *)ev, NULL, NULL);
3721         free(ev);
3722         return err;
3723 }
3724
3725 int
3726 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3727                                           struct perf_evsel *evsel,
3728                                           perf_event__handler_t process)
3729 {
3730         struct event_update_event *ev;
3731         struct event_update_event_scale *ev_data;
3732         int err;
3733
3734         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3735         if (ev == NULL)
3736                 return -ENOMEM;
3737
3738         ev_data = (struct event_update_event_scale *) ev->data;
3739         ev_data->scale = evsel->scale;
3740         err = process(tool, (union perf_event*) ev, NULL, NULL);
3741         free(ev);
3742         return err;
3743 }
3744
3745 int
3746 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3747                                          struct perf_evsel *evsel,
3748                                          perf_event__handler_t process)
3749 {
3750         struct event_update_event *ev;
3751         size_t len = strlen(evsel->name);
3752         int err;
3753
3754         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3755         if (ev == NULL)
3756                 return -ENOMEM;
3757
3758         strlcpy(ev->data, evsel->name, len + 1);
3759         err = process(tool, (union perf_event*) ev, NULL, NULL);
3760         free(ev);
3761         return err;
3762 }
3763
3764 int
3765 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3766                                         struct perf_evsel *evsel,
3767                                         perf_event__handler_t process)
3768 {
3769         size_t size = sizeof(struct event_update_event);
3770         struct event_update_event *ev;
3771         int max, err;
3772         u16 type;
3773
3774         if (!evsel->own_cpus)
3775                 return 0;
3776
3777         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3778         if (!ev)
3779                 return -ENOMEM;
3780
3781         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3782         ev->header.size = (u16)size;
3783         ev->type = PERF_EVENT_UPDATE__CPUS;
3784         ev->id   = evsel->id[0];
3785
3786         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3787                                  evsel->own_cpus,
3788                                  type, max);
3789
3790         err = process(tool, (union perf_event*) ev, NULL, NULL);
3791         free(ev);
3792         return err;
3793 }
3794
3795 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3796 {
3797         struct event_update_event *ev = &event->event_update;
3798         struct event_update_event_scale *ev_scale;
3799         struct event_update_event_cpus *ev_cpus;
3800         struct cpu_map *map;
3801         size_t ret;
3802
3803         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3804
3805         switch (ev->type) {
3806         case PERF_EVENT_UPDATE__SCALE:
3807                 ev_scale = (struct event_update_event_scale *) ev->data;
3808                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3809                 break;
3810         case PERF_EVENT_UPDATE__UNIT:
3811                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3812                 break;
3813         case PERF_EVENT_UPDATE__NAME:
3814                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3815                 break;
3816         case PERF_EVENT_UPDATE__CPUS:
3817                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3818                 ret += fprintf(fp, "... ");
3819
3820                 map = cpu_map__new_data(&ev_cpus->cpus);
3821                 if (map)
3822                         ret += cpu_map__fprintf(map, fp);
3823                 else
3824                         ret += fprintf(fp, "failed to get cpus\n");
3825                 break;
3826         default:
3827                 ret += fprintf(fp, "... unknown type\n");
3828                 break;
3829         }
3830
3831         return ret;
3832 }
3833
3834 int perf_event__synthesize_attrs(struct perf_tool *tool,
3835                                  struct perf_evlist *evlist,
3836                                  perf_event__handler_t process)
3837 {
3838         struct perf_evsel *evsel;
3839         int err = 0;
3840
3841         evlist__for_each_entry(evlist, evsel) {
3842                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3843                                                   evsel->id, process);
3844                 if (err) {
3845                         pr_debug("failed to create perf header attribute\n");
3846                         return err;
3847                 }
3848         }
3849
3850         return err;
3851 }
3852
3853 static bool has_unit(struct perf_evsel *counter)
3854 {
3855         return counter->unit && *counter->unit;
3856 }
3857
3858 static bool has_scale(struct perf_evsel *counter)
3859 {
3860         return counter->scale != 1;
3861 }
3862
3863 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3864                                       struct perf_evlist *evsel_list,
3865                                       perf_event__handler_t process,
3866                                       bool is_pipe)
3867 {
3868         struct perf_evsel *counter;
3869         int err;
3870
3871         /*
3872          * Synthesize other events stuff not carried within
3873          * attr event - unit, scale, name
3874          */
3875         evlist__for_each_entry(evsel_list, counter) {
3876                 if (!counter->supported)
3877                         continue;
3878
3879                 /*
3880                  * Synthesize unit and scale only if it's defined.
3881                  */
3882                 if (has_unit(counter)) {
3883                         err = perf_event__synthesize_event_update_unit(tool, counter, process);
3884                         if (err < 0) {
3885                                 pr_err("Couldn't synthesize evsel unit.\n");
3886                                 return err;
3887                         }
3888                 }
3889
3890                 if (has_scale(counter)) {
3891                         err = perf_event__synthesize_event_update_scale(tool, counter, process);
3892                         if (err < 0) {
3893                                 pr_err("Couldn't synthesize evsel counter.\n");
3894                                 return err;
3895                         }
3896                 }
3897
3898                 if (counter->own_cpus) {
3899                         err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3900                         if (err < 0) {
3901                                 pr_err("Couldn't synthesize evsel cpus.\n");
3902                                 return err;
3903                         }
3904                 }
3905
3906                 /*
3907                  * Name is needed only for pipe output,
3908                  * perf.data carries event names.
3909                  */
3910                 if (is_pipe) {
3911                         err = perf_event__synthesize_event_update_name(tool, counter, process);
3912                         if (err < 0) {
3913                                 pr_err("Couldn't synthesize evsel name.\n");
3914                                 return err;
3915                         }
3916                 }
3917         }
3918         return 0;
3919 }
3920
3921 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3922                              union perf_event *event,
3923                              struct perf_evlist **pevlist)
3924 {
3925         u32 i, ids, n_ids;
3926         struct perf_evsel *evsel;
3927         struct perf_evlist *evlist = *pevlist;
3928
3929         if (evlist == NULL) {
3930                 *pevlist = evlist = perf_evlist__new();
3931                 if (evlist == NULL)
3932                         return -ENOMEM;
3933         }
3934
3935         evsel = perf_evsel__new(&event->attr.attr);
3936         if (evsel == NULL)
3937                 return -ENOMEM;
3938
3939         perf_evlist__add(evlist, evsel);
3940
3941         ids = event->header.size;
3942         ids -= (void *)&event->attr.id - (void *)event;
3943         n_ids = ids / sizeof(u64);
3944         /*
3945          * We don't have the cpu and thread maps on the header, so
3946          * for allocating the perf_sample_id table we fake 1 cpu and
3947          * hattr->ids threads.
3948          */
3949         if (perf_evsel__alloc_id(evsel, 1, n_ids))
3950                 return -ENOMEM;
3951
3952         for (i = 0; i < n_ids; i++) {
3953                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3954         }
3955
3956         return 0;
3957 }
3958
3959 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3960                                      union perf_event *event,
3961                                      struct perf_evlist **pevlist)
3962 {
3963         struct event_update_event *ev = &event->event_update;
3964         struct event_update_event_scale *ev_scale;
3965         struct event_update_event_cpus *ev_cpus;
3966         struct perf_evlist *evlist;
3967         struct perf_evsel *evsel;
3968         struct cpu_map *map;
3969
3970         if (!pevlist || *pevlist == NULL)
3971                 return -EINVAL;
3972
3973         evlist = *pevlist;
3974
3975         evsel = perf_evlist__id2evsel(evlist, ev->id);
3976         if (evsel == NULL)
3977                 return -EINVAL;
3978
3979         switch (ev->type) {
3980         case PERF_EVENT_UPDATE__UNIT:
3981                 evsel->unit = strdup(ev->data);
3982                 break;
3983         case PERF_EVENT_UPDATE__NAME:
3984                 evsel->name = strdup(ev->data);
3985                 break;
3986         case PERF_EVENT_UPDATE__SCALE:
3987                 ev_scale = (struct event_update_event_scale *) ev->data;
3988                 evsel->scale = ev_scale->scale;
3989                 break;
3990         case PERF_EVENT_UPDATE__CPUS:
3991                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3992
3993                 map = cpu_map__new_data(&ev_cpus->cpus);
3994                 if (map)
3995                         evsel->own_cpus = map;
3996                 else
3997                         pr_err("failed to get event_update cpus\n");
3998         default:
3999                 break;
4000         }
4001
4002         return 0;
4003 }
4004
4005 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
4006                                         struct perf_evlist *evlist,
4007                                         perf_event__handler_t process)
4008 {
4009         union perf_event ev;
4010         struct tracing_data *tdata;
4011         ssize_t size = 0, aligned_size = 0, padding;
4012         struct feat_fd ff;
4013         int err __maybe_unused = 0;
4014
4015         /*
4016          * We are going to store the size of the data followed
4017          * by the data contents. Since the fd descriptor is a pipe,
4018          * we cannot seek back to store the size of the data once
4019          * we know it. Instead we:
4020          *
4021          * - write the tracing data to the temp file
4022          * - get/write the data size to pipe
4023          * - write the tracing data from the temp file
4024          *   to the pipe
4025          */
4026         tdata = tracing_data_get(&evlist->entries, fd, true);
4027         if (!tdata)
4028                 return -1;
4029
4030         memset(&ev, 0, sizeof(ev));
4031
4032         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
4033         size = tdata->size;
4034         aligned_size = PERF_ALIGN(size, sizeof(u64));
4035         padding = aligned_size - size;
4036         ev.tracing_data.header.size = sizeof(ev.tracing_data);
4037         ev.tracing_data.size = aligned_size;
4038
4039         process(tool, &ev, NULL, NULL);
4040
4041         /*
4042          * The put function will copy all the tracing data
4043          * stored in temp file to the pipe.
4044          */
4045         tracing_data_put(tdata);
4046
4047         ff = (struct feat_fd){ .fd = fd };
4048         if (write_padded(&ff, NULL, 0, padding))
4049                 return -1;
4050
4051         return aligned_size;
4052 }
4053
4054 int perf_event__process_tracing_data(struct perf_session *session,
4055                                      union perf_event *event)
4056 {
4057         ssize_t size_read, padding, size = event->tracing_data.size;
4058         int fd = perf_data__fd(session->data);
4059         off_t offset = lseek(fd, 0, SEEK_CUR);
4060         char buf[BUFSIZ];
4061
4062         /* setup for reading amidst mmap */
4063         lseek(fd, offset + sizeof(struct tracing_data_event),
4064               SEEK_SET);
4065
4066         size_read = trace_report(fd, &session->tevent,
4067                                  session->repipe);
4068         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4069
4070         if (readn(fd, buf, padding) < 0) {
4071                 pr_err("%s: reading input file", __func__);
4072                 return -1;
4073         }
4074         if (session->repipe) {
4075                 int retw = write(STDOUT_FILENO, buf, padding);
4076                 if (retw <= 0 || retw != padding) {
4077                         pr_err("%s: repiping tracing data padding", __func__);
4078                         return -1;
4079                 }
4080         }
4081
4082         if (size_read + padding != size) {
4083                 pr_err("%s: tracing data size mismatch", __func__);
4084                 return -1;
4085         }
4086
4087         perf_evlist__prepare_tracepoint_events(session->evlist,
4088                                                session->tevent.pevent);
4089
4090         return size_read + padding;
4091 }
4092
4093 int perf_event__synthesize_build_id(struct perf_tool *tool,
4094                                     struct dso *pos, u16 misc,
4095                                     perf_event__handler_t process,
4096                                     struct machine *machine)
4097 {
4098         union perf_event ev;
4099         size_t len;
4100         int err = 0;
4101
4102         if (!pos->hit)
4103                 return err;
4104
4105         memset(&ev, 0, sizeof(ev));
4106
4107         len = pos->long_name_len + 1;
4108         len = PERF_ALIGN(len, NAME_ALIGN);
4109         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4110         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4111         ev.build_id.header.misc = misc;
4112         ev.build_id.pid = machine->pid;
4113         ev.build_id.header.size = sizeof(ev.build_id) + len;
4114         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4115
4116         err = process(tool, &ev, NULL, machine);
4117
4118         return err;
4119 }
4120
4121 int perf_event__process_build_id(struct perf_session *session,
4122                                  union perf_event *event)
4123 {
4124         __event_process_build_id(&event->build_id,
4125                                  event->build_id.filename,
4126                                  session);
4127         return 0;
4128 }