]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/header.c
Linux 5.6-rc7
[linux.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #include <bpf/libbpf.h>
23 #include <perf/cpumap.h>
24
25 #include "dso.h"
26 #include "evlist.h"
27 #include "evsel.h"
28 #include "util/evsel_fprintf.h"
29 #include "header.h"
30 #include "memswap.h"
31 #include "trace-event.h"
32 #include "session.h"
33 #include "symbol.h"
34 #include "debug.h"
35 #include "cpumap.h"
36 #include "pmu.h"
37 #include "vdso.h"
38 #include "strbuf.h"
39 #include "build-id.h"
40 #include "data.h"
41 #include <api/fs/fs.h>
42 #include "asm/bug.h"
43 #include "tool.h"
44 #include "time-utils.h"
45 #include "units.h"
46 #include "util/util.h" // perf_exe()
47 #include "cputopo.h"
48 #include "bpf-event.h"
49
50 #include <linux/ctype.h>
51 #include <internal/lib.h>
52
53 /*
54  * magic2 = "PERFILE2"
55  * must be a numerical value to let the endianness
56  * determine the memory layout. That way we are able
57  * to detect endianness when reading the perf.data file
58  * back.
59  *
60  * we check for legacy (PERFFILE) format.
61  */
62 static const char *__perf_magic1 = "PERFFILE";
63 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
64 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
65
66 #define PERF_MAGIC      __perf_magic2
67
68 const char perf_version_string[] = PERF_VERSION;
69
70 struct perf_file_attr {
71         struct perf_event_attr  attr;
72         struct perf_file_section        ids;
73 };
74
75 void perf_header__set_feat(struct perf_header *header, int feat)
76 {
77         set_bit(feat, header->adds_features);
78 }
79
80 void perf_header__clear_feat(struct perf_header *header, int feat)
81 {
82         clear_bit(feat, header->adds_features);
83 }
84
85 bool perf_header__has_feat(const struct perf_header *header, int feat)
86 {
87         return test_bit(feat, header->adds_features);
88 }
89
90 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
91 {
92         ssize_t ret = writen(ff->fd, buf, size);
93
94         if (ret != (ssize_t)size)
95                 return ret < 0 ? (int)ret : -1;
96         return 0;
97 }
98
99 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
100 {
101         /* struct perf_event_header::size is u16 */
102         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
103         size_t new_size = ff->size;
104         void *addr;
105
106         if (size + ff->offset > max_size)
107                 return -E2BIG;
108
109         while (size > (new_size - ff->offset))
110                 new_size <<= 1;
111         new_size = min(max_size, new_size);
112
113         if (ff->size < new_size) {
114                 addr = realloc(ff->buf, new_size);
115                 if (!addr)
116                         return -ENOMEM;
117                 ff->buf = addr;
118                 ff->size = new_size;
119         }
120
121         memcpy(ff->buf + ff->offset, buf, size);
122         ff->offset += size;
123
124         return 0;
125 }
126
127 /* Return: 0 if succeded, -ERR if failed. */
128 int do_write(struct feat_fd *ff, const void *buf, size_t size)
129 {
130         if (!ff->buf)
131                 return __do_write_fd(ff, buf, size);
132         return __do_write_buf(ff, buf, size);
133 }
134
135 /* Return: 0 if succeded, -ERR if failed. */
136 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
137 {
138         u64 *p = (u64 *) set;
139         int i, ret;
140
141         ret = do_write(ff, &size, sizeof(size));
142         if (ret < 0)
143                 return ret;
144
145         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
146                 ret = do_write(ff, p + i, sizeof(*p));
147                 if (ret < 0)
148                         return ret;
149         }
150
151         return 0;
152 }
153
154 /* Return: 0 if succeded, -ERR if failed. */
155 int write_padded(struct feat_fd *ff, const void *bf,
156                  size_t count, size_t count_aligned)
157 {
158         static const char zero_buf[NAME_ALIGN];
159         int err = do_write(ff, bf, count);
160
161         if (!err)
162                 err = do_write(ff, zero_buf, count_aligned - count);
163
164         return err;
165 }
166
167 #define string_size(str)                                                \
168         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
169
170 /* Return: 0 if succeded, -ERR if failed. */
171 static int do_write_string(struct feat_fd *ff, const char *str)
172 {
173         u32 len, olen;
174         int ret;
175
176         olen = strlen(str) + 1;
177         len = PERF_ALIGN(olen, NAME_ALIGN);
178
179         /* write len, incl. \0 */
180         ret = do_write(ff, &len, sizeof(len));
181         if (ret < 0)
182                 return ret;
183
184         return write_padded(ff, str, olen, len);
185 }
186
187 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
188 {
189         ssize_t ret = readn(ff->fd, addr, size);
190
191         if (ret != size)
192                 return ret < 0 ? (int)ret : -1;
193         return 0;
194 }
195
196 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
197 {
198         if (size > (ssize_t)ff->size - ff->offset)
199                 return -1;
200
201         memcpy(addr, ff->buf + ff->offset, size);
202         ff->offset += size;
203
204         return 0;
205
206 }
207
208 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
209 {
210         if (!ff->buf)
211                 return __do_read_fd(ff, addr, size);
212         return __do_read_buf(ff, addr, size);
213 }
214
215 static int do_read_u32(struct feat_fd *ff, u32 *addr)
216 {
217         int ret;
218
219         ret = __do_read(ff, addr, sizeof(*addr));
220         if (ret)
221                 return ret;
222
223         if (ff->ph->needs_swap)
224                 *addr = bswap_32(*addr);
225         return 0;
226 }
227
228 static int do_read_u64(struct feat_fd *ff, u64 *addr)
229 {
230         int ret;
231
232         ret = __do_read(ff, addr, sizeof(*addr));
233         if (ret)
234                 return ret;
235
236         if (ff->ph->needs_swap)
237                 *addr = bswap_64(*addr);
238         return 0;
239 }
240
241 static char *do_read_string(struct feat_fd *ff)
242 {
243         u32 len;
244         char *buf;
245
246         if (do_read_u32(ff, &len))
247                 return NULL;
248
249         buf = malloc(len);
250         if (!buf)
251                 return NULL;
252
253         if (!__do_read(ff, buf, len)) {
254                 /*
255                  * strings are padded by zeroes
256                  * thus the actual strlen of buf
257                  * may be less than len
258                  */
259                 return buf;
260         }
261
262         free(buf);
263         return NULL;
264 }
265
266 /* Return: 0 if succeded, -ERR if failed. */
267 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
268 {
269         unsigned long *set;
270         u64 size, *p;
271         int i, ret;
272
273         ret = do_read_u64(ff, &size);
274         if (ret)
275                 return ret;
276
277         set = bitmap_alloc(size);
278         if (!set)
279                 return -ENOMEM;
280
281         p = (u64 *) set;
282
283         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
284                 ret = do_read_u64(ff, p + i);
285                 if (ret < 0) {
286                         free(set);
287                         return ret;
288                 }
289         }
290
291         *pset  = set;
292         *psize = size;
293         return 0;
294 }
295
296 static int write_tracing_data(struct feat_fd *ff,
297                               struct evlist *evlist)
298 {
299         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
300                 return -1;
301
302         return read_tracing_data(ff->fd, &evlist->core.entries);
303 }
304
305 static int write_build_id(struct feat_fd *ff,
306                           struct evlist *evlist __maybe_unused)
307 {
308         struct perf_session *session;
309         int err;
310
311         session = container_of(ff->ph, struct perf_session, header);
312
313         if (!perf_session__read_build_ids(session, true))
314                 return -1;
315
316         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
317                 return -1;
318
319         err = perf_session__write_buildid_table(session, ff);
320         if (err < 0) {
321                 pr_debug("failed to write buildid table\n");
322                 return err;
323         }
324         perf_session__cache_build_ids(session);
325
326         return 0;
327 }
328
329 static int write_hostname(struct feat_fd *ff,
330                           struct evlist *evlist __maybe_unused)
331 {
332         struct utsname uts;
333         int ret;
334
335         ret = uname(&uts);
336         if (ret < 0)
337                 return -1;
338
339         return do_write_string(ff, uts.nodename);
340 }
341
342 static int write_osrelease(struct feat_fd *ff,
343                            struct evlist *evlist __maybe_unused)
344 {
345         struct utsname uts;
346         int ret;
347
348         ret = uname(&uts);
349         if (ret < 0)
350                 return -1;
351
352         return do_write_string(ff, uts.release);
353 }
354
355 static int write_arch(struct feat_fd *ff,
356                       struct evlist *evlist __maybe_unused)
357 {
358         struct utsname uts;
359         int ret;
360
361         ret = uname(&uts);
362         if (ret < 0)
363                 return -1;
364
365         return do_write_string(ff, uts.machine);
366 }
367
368 static int write_version(struct feat_fd *ff,
369                          struct evlist *evlist __maybe_unused)
370 {
371         return do_write_string(ff, perf_version_string);
372 }
373
374 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
375 {
376         FILE *file;
377         char *buf = NULL;
378         char *s, *p;
379         const char *search = cpuinfo_proc;
380         size_t len = 0;
381         int ret = -1;
382
383         if (!search)
384                 return -1;
385
386         file = fopen("/proc/cpuinfo", "r");
387         if (!file)
388                 return -1;
389
390         while (getline(&buf, &len, file) > 0) {
391                 ret = strncmp(buf, search, strlen(search));
392                 if (!ret)
393                         break;
394         }
395
396         if (ret) {
397                 ret = -1;
398                 goto done;
399         }
400
401         s = buf;
402
403         p = strchr(buf, ':');
404         if (p && *(p+1) == ' ' && *(p+2))
405                 s = p + 2;
406         p = strchr(s, '\n');
407         if (p)
408                 *p = '\0';
409
410         /* squash extra space characters (branding string) */
411         p = s;
412         while (*p) {
413                 if (isspace(*p)) {
414                         char *r = p + 1;
415                         char *q = skip_spaces(r);
416                         *p = ' ';
417                         if (q != (p+1))
418                                 while ((*r++ = *q++));
419                 }
420                 p++;
421         }
422         ret = do_write_string(ff, s);
423 done:
424         free(buf);
425         fclose(file);
426         return ret;
427 }
428
429 static int write_cpudesc(struct feat_fd *ff,
430                        struct evlist *evlist __maybe_unused)
431 {
432 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
433 #define CPUINFO_PROC    { "cpu", }
434 #elif defined(__s390__)
435 #define CPUINFO_PROC    { "vendor_id", }
436 #elif defined(__sh__)
437 #define CPUINFO_PROC    { "cpu type", }
438 #elif defined(__alpha__) || defined(__mips__)
439 #define CPUINFO_PROC    { "cpu model", }
440 #elif defined(__arm__)
441 #define CPUINFO_PROC    { "model name", "Processor", }
442 #elif defined(__arc__)
443 #define CPUINFO_PROC    { "Processor", }
444 #elif defined(__xtensa__)
445 #define CPUINFO_PROC    { "core ID", }
446 #else
447 #define CPUINFO_PROC    { "model name", }
448 #endif
449         const char *cpuinfo_procs[] = CPUINFO_PROC;
450 #undef CPUINFO_PROC
451         unsigned int i;
452
453         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
454                 int ret;
455                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
456                 if (ret >= 0)
457                         return ret;
458         }
459         return -1;
460 }
461
462
463 static int write_nrcpus(struct feat_fd *ff,
464                         struct evlist *evlist __maybe_unused)
465 {
466         long nr;
467         u32 nrc, nra;
468         int ret;
469
470         nrc = cpu__max_present_cpu();
471
472         nr = sysconf(_SC_NPROCESSORS_ONLN);
473         if (nr < 0)
474                 return -1;
475
476         nra = (u32)(nr & UINT_MAX);
477
478         ret = do_write(ff, &nrc, sizeof(nrc));
479         if (ret < 0)
480                 return ret;
481
482         return do_write(ff, &nra, sizeof(nra));
483 }
484
485 static int write_event_desc(struct feat_fd *ff,
486                             struct evlist *evlist)
487 {
488         struct evsel *evsel;
489         u32 nre, nri, sz;
490         int ret;
491
492         nre = evlist->core.nr_entries;
493
494         /*
495          * write number of events
496          */
497         ret = do_write(ff, &nre, sizeof(nre));
498         if (ret < 0)
499                 return ret;
500
501         /*
502          * size of perf_event_attr struct
503          */
504         sz = (u32)sizeof(evsel->core.attr);
505         ret = do_write(ff, &sz, sizeof(sz));
506         if (ret < 0)
507                 return ret;
508
509         evlist__for_each_entry(evlist, evsel) {
510                 ret = do_write(ff, &evsel->core.attr, sz);
511                 if (ret < 0)
512                         return ret;
513                 /*
514                  * write number of unique id per event
515                  * there is one id per instance of an event
516                  *
517                  * copy into an nri to be independent of the
518                  * type of ids,
519                  */
520                 nri = evsel->core.ids;
521                 ret = do_write(ff, &nri, sizeof(nri));
522                 if (ret < 0)
523                         return ret;
524
525                 /*
526                  * write event string as passed on cmdline
527                  */
528                 ret = do_write_string(ff, perf_evsel__name(evsel));
529                 if (ret < 0)
530                         return ret;
531                 /*
532                  * write unique ids for this event
533                  */
534                 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
535                 if (ret < 0)
536                         return ret;
537         }
538         return 0;
539 }
540
541 static int write_cmdline(struct feat_fd *ff,
542                          struct evlist *evlist __maybe_unused)
543 {
544         char pbuf[MAXPATHLEN], *buf;
545         int i, ret, n;
546
547         /* actual path to perf binary */
548         buf = perf_exe(pbuf, MAXPATHLEN);
549
550         /* account for binary path */
551         n = perf_env.nr_cmdline + 1;
552
553         ret = do_write(ff, &n, sizeof(n));
554         if (ret < 0)
555                 return ret;
556
557         ret = do_write_string(ff, buf);
558         if (ret < 0)
559                 return ret;
560
561         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
562                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
563                 if (ret < 0)
564                         return ret;
565         }
566         return 0;
567 }
568
569
570 static int write_cpu_topology(struct feat_fd *ff,
571                               struct evlist *evlist __maybe_unused)
572 {
573         struct cpu_topology *tp;
574         u32 i;
575         int ret, j;
576
577         tp = cpu_topology__new();
578         if (!tp)
579                 return -1;
580
581         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
582         if (ret < 0)
583                 goto done;
584
585         for (i = 0; i < tp->core_sib; i++) {
586                 ret = do_write_string(ff, tp->core_siblings[i]);
587                 if (ret < 0)
588                         goto done;
589         }
590         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
591         if (ret < 0)
592                 goto done;
593
594         for (i = 0; i < tp->thread_sib; i++) {
595                 ret = do_write_string(ff, tp->thread_siblings[i]);
596                 if (ret < 0)
597                         break;
598         }
599
600         ret = perf_env__read_cpu_topology_map(&perf_env);
601         if (ret < 0)
602                 goto done;
603
604         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
605                 ret = do_write(ff, &perf_env.cpu[j].core_id,
606                                sizeof(perf_env.cpu[j].core_id));
607                 if (ret < 0)
608                         return ret;
609                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
610                                sizeof(perf_env.cpu[j].socket_id));
611                 if (ret < 0)
612                         return ret;
613         }
614
615         if (!tp->die_sib)
616                 goto done;
617
618         ret = do_write(ff, &tp->die_sib, sizeof(tp->die_sib));
619         if (ret < 0)
620                 goto done;
621
622         for (i = 0; i < tp->die_sib; i++) {
623                 ret = do_write_string(ff, tp->die_siblings[i]);
624                 if (ret < 0)
625                         goto done;
626         }
627
628         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
629                 ret = do_write(ff, &perf_env.cpu[j].die_id,
630                                sizeof(perf_env.cpu[j].die_id));
631                 if (ret < 0)
632                         return ret;
633         }
634
635 done:
636         cpu_topology__delete(tp);
637         return ret;
638 }
639
640
641
642 static int write_total_mem(struct feat_fd *ff,
643                            struct evlist *evlist __maybe_unused)
644 {
645         char *buf = NULL;
646         FILE *fp;
647         size_t len = 0;
648         int ret = -1, n;
649         uint64_t mem;
650
651         fp = fopen("/proc/meminfo", "r");
652         if (!fp)
653                 return -1;
654
655         while (getline(&buf, &len, fp) > 0) {
656                 ret = strncmp(buf, "MemTotal:", 9);
657                 if (!ret)
658                         break;
659         }
660         if (!ret) {
661                 n = sscanf(buf, "%*s %"PRIu64, &mem);
662                 if (n == 1)
663                         ret = do_write(ff, &mem, sizeof(mem));
664         } else
665                 ret = -1;
666         free(buf);
667         fclose(fp);
668         return ret;
669 }
670
671 static int write_numa_topology(struct feat_fd *ff,
672                                struct evlist *evlist __maybe_unused)
673 {
674         struct numa_topology *tp;
675         int ret = -1;
676         u32 i;
677
678         tp = numa_topology__new();
679         if (!tp)
680                 return -ENOMEM;
681
682         ret = do_write(ff, &tp->nr, sizeof(u32));
683         if (ret < 0)
684                 goto err;
685
686         for (i = 0; i < tp->nr; i++) {
687                 struct numa_topology_node *n = &tp->nodes[i];
688
689                 ret = do_write(ff, &n->node, sizeof(u32));
690                 if (ret < 0)
691                         goto err;
692
693                 ret = do_write(ff, &n->mem_total, sizeof(u64));
694                 if (ret)
695                         goto err;
696
697                 ret = do_write(ff, &n->mem_free, sizeof(u64));
698                 if (ret)
699                         goto err;
700
701                 ret = do_write_string(ff, n->cpus);
702                 if (ret < 0)
703                         goto err;
704         }
705
706         ret = 0;
707
708 err:
709         numa_topology__delete(tp);
710         return ret;
711 }
712
713 /*
714  * File format:
715  *
716  * struct pmu_mappings {
717  *      u32     pmu_num;
718  *      struct pmu_map {
719  *              u32     type;
720  *              char    name[];
721  *      }[pmu_num];
722  * };
723  */
724
725 static int write_pmu_mappings(struct feat_fd *ff,
726                               struct evlist *evlist __maybe_unused)
727 {
728         struct perf_pmu *pmu = NULL;
729         u32 pmu_num = 0;
730         int ret;
731
732         /*
733          * Do a first pass to count number of pmu to avoid lseek so this
734          * works in pipe mode as well.
735          */
736         while ((pmu = perf_pmu__scan(pmu))) {
737                 if (!pmu->name)
738                         continue;
739                 pmu_num++;
740         }
741
742         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
743         if (ret < 0)
744                 return ret;
745
746         while ((pmu = perf_pmu__scan(pmu))) {
747                 if (!pmu->name)
748                         continue;
749
750                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
751                 if (ret < 0)
752                         return ret;
753
754                 ret = do_write_string(ff, pmu->name);
755                 if (ret < 0)
756                         return ret;
757         }
758
759         return 0;
760 }
761
762 /*
763  * File format:
764  *
765  * struct group_descs {
766  *      u32     nr_groups;
767  *      struct group_desc {
768  *              char    name[];
769  *              u32     leader_idx;
770  *              u32     nr_members;
771  *      }[nr_groups];
772  * };
773  */
774 static int write_group_desc(struct feat_fd *ff,
775                             struct evlist *evlist)
776 {
777         u32 nr_groups = evlist->nr_groups;
778         struct evsel *evsel;
779         int ret;
780
781         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
782         if (ret < 0)
783                 return ret;
784
785         evlist__for_each_entry(evlist, evsel) {
786                 if (perf_evsel__is_group_leader(evsel) &&
787                     evsel->core.nr_members > 1) {
788                         const char *name = evsel->group_name ?: "{anon_group}";
789                         u32 leader_idx = evsel->idx;
790                         u32 nr_members = evsel->core.nr_members;
791
792                         ret = do_write_string(ff, name);
793                         if (ret < 0)
794                                 return ret;
795
796                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
797                         if (ret < 0)
798                                 return ret;
799
800                         ret = do_write(ff, &nr_members, sizeof(nr_members));
801                         if (ret < 0)
802                                 return ret;
803                 }
804         }
805         return 0;
806 }
807
808 /*
809  * Return the CPU id as a raw string.
810  *
811  * Each architecture should provide a more precise id string that
812  * can be use to match the architecture's "mapfile".
813  */
814 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
815 {
816         return NULL;
817 }
818
819 /* Return zero when the cpuid from the mapfile.csv matches the
820  * cpuid string generated on this platform.
821  * Otherwise return non-zero.
822  */
823 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
824 {
825         regex_t re;
826         regmatch_t pmatch[1];
827         int match;
828
829         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
830                 /* Warn unable to generate match particular string. */
831                 pr_info("Invalid regular expression %s\n", mapcpuid);
832                 return 1;
833         }
834
835         match = !regexec(&re, cpuid, 1, pmatch, 0);
836         regfree(&re);
837         if (match) {
838                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
839
840                 /* Verify the entire string matched. */
841                 if (match_len == strlen(cpuid))
842                         return 0;
843         }
844         return 1;
845 }
846
847 /*
848  * default get_cpuid(): nothing gets recorded
849  * actual implementation must be in arch/$(SRCARCH)/util/header.c
850  */
851 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
852 {
853         return ENOSYS; /* Not implemented */
854 }
855
856 static int write_cpuid(struct feat_fd *ff,
857                        struct evlist *evlist __maybe_unused)
858 {
859         char buffer[64];
860         int ret;
861
862         ret = get_cpuid(buffer, sizeof(buffer));
863         if (ret)
864                 return -1;
865
866         return do_write_string(ff, buffer);
867 }
868
869 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
870                               struct evlist *evlist __maybe_unused)
871 {
872         return 0;
873 }
874
875 static int write_auxtrace(struct feat_fd *ff,
876                           struct evlist *evlist __maybe_unused)
877 {
878         struct perf_session *session;
879         int err;
880
881         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
882                 return -1;
883
884         session = container_of(ff->ph, struct perf_session, header);
885
886         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
887         if (err < 0)
888                 pr_err("Failed to write auxtrace index\n");
889         return err;
890 }
891
892 static int write_clockid(struct feat_fd *ff,
893                          struct evlist *evlist __maybe_unused)
894 {
895         return do_write(ff, &ff->ph->env.clockid_res_ns,
896                         sizeof(ff->ph->env.clockid_res_ns));
897 }
898
899 static int write_dir_format(struct feat_fd *ff,
900                             struct evlist *evlist __maybe_unused)
901 {
902         struct perf_session *session;
903         struct perf_data *data;
904
905         session = container_of(ff->ph, struct perf_session, header);
906         data = session->data;
907
908         if (WARN_ON(!perf_data__is_dir(data)))
909                 return -1;
910
911         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
912 }
913
914 #ifdef HAVE_LIBBPF_SUPPORT
915 static int write_bpf_prog_info(struct feat_fd *ff,
916                                struct evlist *evlist __maybe_unused)
917 {
918         struct perf_env *env = &ff->ph->env;
919         struct rb_root *root;
920         struct rb_node *next;
921         int ret;
922
923         down_read(&env->bpf_progs.lock);
924
925         ret = do_write(ff, &env->bpf_progs.infos_cnt,
926                        sizeof(env->bpf_progs.infos_cnt));
927         if (ret < 0)
928                 goto out;
929
930         root = &env->bpf_progs.infos;
931         next = rb_first(root);
932         while (next) {
933                 struct bpf_prog_info_node *node;
934                 size_t len;
935
936                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
937                 next = rb_next(&node->rb_node);
938                 len = sizeof(struct bpf_prog_info_linear) +
939                         node->info_linear->data_len;
940
941                 /* before writing to file, translate address to offset */
942                 bpf_program__bpil_addr_to_offs(node->info_linear);
943                 ret = do_write(ff, node->info_linear, len);
944                 /*
945                  * translate back to address even when do_write() fails,
946                  * so that this function never changes the data.
947                  */
948                 bpf_program__bpil_offs_to_addr(node->info_linear);
949                 if (ret < 0)
950                         goto out;
951         }
952 out:
953         up_read(&env->bpf_progs.lock);
954         return ret;
955 }
956 #else // HAVE_LIBBPF_SUPPORT
957 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
958                                struct evlist *evlist __maybe_unused)
959 {
960         return 0;
961 }
962 #endif // HAVE_LIBBPF_SUPPORT
963
964 static int write_bpf_btf(struct feat_fd *ff,
965                          struct evlist *evlist __maybe_unused)
966 {
967         struct perf_env *env = &ff->ph->env;
968         struct rb_root *root;
969         struct rb_node *next;
970         int ret;
971
972         down_read(&env->bpf_progs.lock);
973
974         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
975                        sizeof(env->bpf_progs.btfs_cnt));
976
977         if (ret < 0)
978                 goto out;
979
980         root = &env->bpf_progs.btfs;
981         next = rb_first(root);
982         while (next) {
983                 struct btf_node *node;
984
985                 node = rb_entry(next, struct btf_node, rb_node);
986                 next = rb_next(&node->rb_node);
987                 ret = do_write(ff, &node->id,
988                                sizeof(u32) * 2 + node->data_size);
989                 if (ret < 0)
990                         goto out;
991         }
992 out:
993         up_read(&env->bpf_progs.lock);
994         return ret;
995 }
996
997 static int cpu_cache_level__sort(const void *a, const void *b)
998 {
999         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1000         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1001
1002         return cache_a->level - cache_b->level;
1003 }
1004
1005 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1006 {
1007         if (a->level != b->level)
1008                 return false;
1009
1010         if (a->line_size != b->line_size)
1011                 return false;
1012
1013         if (a->sets != b->sets)
1014                 return false;
1015
1016         if (a->ways != b->ways)
1017                 return false;
1018
1019         if (strcmp(a->type, b->type))
1020                 return false;
1021
1022         if (strcmp(a->size, b->size))
1023                 return false;
1024
1025         if (strcmp(a->map, b->map))
1026                 return false;
1027
1028         return true;
1029 }
1030
1031 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1032 {
1033         char path[PATH_MAX], file[PATH_MAX];
1034         struct stat st;
1035         size_t len;
1036
1037         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1038         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1039
1040         if (stat(file, &st))
1041                 return 1;
1042
1043         scnprintf(file, PATH_MAX, "%s/level", path);
1044         if (sysfs__read_int(file, (int *) &cache->level))
1045                 return -1;
1046
1047         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1048         if (sysfs__read_int(file, (int *) &cache->line_size))
1049                 return -1;
1050
1051         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1052         if (sysfs__read_int(file, (int *) &cache->sets))
1053                 return -1;
1054
1055         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1056         if (sysfs__read_int(file, (int *) &cache->ways))
1057                 return -1;
1058
1059         scnprintf(file, PATH_MAX, "%s/type", path);
1060         if (sysfs__read_str(file, &cache->type, &len))
1061                 return -1;
1062
1063         cache->type[len] = 0;
1064         cache->type = strim(cache->type);
1065
1066         scnprintf(file, PATH_MAX, "%s/size", path);
1067         if (sysfs__read_str(file, &cache->size, &len)) {
1068                 zfree(&cache->type);
1069                 return -1;
1070         }
1071
1072         cache->size[len] = 0;
1073         cache->size = strim(cache->size);
1074
1075         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1076         if (sysfs__read_str(file, &cache->map, &len)) {
1077                 zfree(&cache->size);
1078                 zfree(&cache->type);
1079                 return -1;
1080         }
1081
1082         cache->map[len] = 0;
1083         cache->map = strim(cache->map);
1084         return 0;
1085 }
1086
1087 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1088 {
1089         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1090 }
1091
1092 #define MAX_CACHE_LVL 4
1093
1094 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1095 {
1096         u32 i, cnt = 0;
1097         u32 nr, cpu;
1098         u16 level;
1099
1100         nr = cpu__max_cpu();
1101
1102         for (cpu = 0; cpu < nr; cpu++) {
1103                 for (level = 0; level < MAX_CACHE_LVL; level++) {
1104                         struct cpu_cache_level c;
1105                         int err;
1106
1107                         err = cpu_cache_level__read(&c, cpu, level);
1108                         if (err < 0)
1109                                 return err;
1110
1111                         if (err == 1)
1112                                 break;
1113
1114                         for (i = 0; i < cnt; i++) {
1115                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1116                                         break;
1117                         }
1118
1119                         if (i == cnt)
1120                                 caches[cnt++] = c;
1121                         else
1122                                 cpu_cache_level__free(&c);
1123                 }
1124         }
1125         *cntp = cnt;
1126         return 0;
1127 }
1128
1129 static int write_cache(struct feat_fd *ff,
1130                        struct evlist *evlist __maybe_unused)
1131 {
1132         u32 max_caches = cpu__max_cpu() * MAX_CACHE_LVL;
1133         struct cpu_cache_level caches[max_caches];
1134         u32 cnt = 0, i, version = 1;
1135         int ret;
1136
1137         ret = build_caches(caches, &cnt);
1138         if (ret)
1139                 goto out;
1140
1141         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1142
1143         ret = do_write(ff, &version, sizeof(u32));
1144         if (ret < 0)
1145                 goto out;
1146
1147         ret = do_write(ff, &cnt, sizeof(u32));
1148         if (ret < 0)
1149                 goto out;
1150
1151         for (i = 0; i < cnt; i++) {
1152                 struct cpu_cache_level *c = &caches[i];
1153
1154                 #define _W(v)                                   \
1155                         ret = do_write(ff, &c->v, sizeof(u32)); \
1156                         if (ret < 0)                            \
1157                                 goto out;
1158
1159                 _W(level)
1160                 _W(line_size)
1161                 _W(sets)
1162                 _W(ways)
1163                 #undef _W
1164
1165                 #define _W(v)                                           \
1166                         ret = do_write_string(ff, (const char *) c->v); \
1167                         if (ret < 0)                                    \
1168                                 goto out;
1169
1170                 _W(type)
1171                 _W(size)
1172                 _W(map)
1173                 #undef _W
1174         }
1175
1176 out:
1177         for (i = 0; i < cnt; i++)
1178                 cpu_cache_level__free(&caches[i]);
1179         return ret;
1180 }
1181
1182 static int write_stat(struct feat_fd *ff __maybe_unused,
1183                       struct evlist *evlist __maybe_unused)
1184 {
1185         return 0;
1186 }
1187
1188 static int write_sample_time(struct feat_fd *ff,
1189                              struct evlist *evlist)
1190 {
1191         int ret;
1192
1193         ret = do_write(ff, &evlist->first_sample_time,
1194                        sizeof(evlist->first_sample_time));
1195         if (ret < 0)
1196                 return ret;
1197
1198         return do_write(ff, &evlist->last_sample_time,
1199                         sizeof(evlist->last_sample_time));
1200 }
1201
1202
1203 static int memory_node__read(struct memory_node *n, unsigned long idx)
1204 {
1205         unsigned int phys, size = 0;
1206         char path[PATH_MAX];
1207         struct dirent *ent;
1208         DIR *dir;
1209
1210 #define for_each_memory(mem, dir)                                       \
1211         while ((ent = readdir(dir)))                                    \
1212                 if (strcmp(ent->d_name, ".") &&                         \
1213                     strcmp(ent->d_name, "..") &&                        \
1214                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1215
1216         scnprintf(path, PATH_MAX,
1217                   "%s/devices/system/node/node%lu",
1218                   sysfs__mountpoint(), idx);
1219
1220         dir = opendir(path);
1221         if (!dir) {
1222                 pr_warning("failed: cant' open memory sysfs data\n");
1223                 return -1;
1224         }
1225
1226         for_each_memory(phys, dir) {
1227                 size = max(phys, size);
1228         }
1229
1230         size++;
1231
1232         n->set = bitmap_alloc(size);
1233         if (!n->set) {
1234                 closedir(dir);
1235                 return -ENOMEM;
1236         }
1237
1238         n->node = idx;
1239         n->size = size;
1240
1241         rewinddir(dir);
1242
1243         for_each_memory(phys, dir) {
1244                 set_bit(phys, n->set);
1245         }
1246
1247         closedir(dir);
1248         return 0;
1249 }
1250
1251 static int memory_node__sort(const void *a, const void *b)
1252 {
1253         const struct memory_node *na = a;
1254         const struct memory_node *nb = b;
1255
1256         return na->node - nb->node;
1257 }
1258
1259 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1260 {
1261         char path[PATH_MAX];
1262         struct dirent *ent;
1263         DIR *dir;
1264         u64 cnt = 0;
1265         int ret = 0;
1266
1267         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1268                   sysfs__mountpoint());
1269
1270         dir = opendir(path);
1271         if (!dir) {
1272                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1273                           __func__, path);
1274                 return -1;
1275         }
1276
1277         while (!ret && (ent = readdir(dir))) {
1278                 unsigned int idx;
1279                 int r;
1280
1281                 if (!strcmp(ent->d_name, ".") ||
1282                     !strcmp(ent->d_name, ".."))
1283                         continue;
1284
1285                 r = sscanf(ent->d_name, "node%u", &idx);
1286                 if (r != 1)
1287                         continue;
1288
1289                 if (WARN_ONCE(cnt >= size,
1290                         "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1291                         closedir(dir);
1292                         return -1;
1293                 }
1294
1295                 ret = memory_node__read(&nodes[cnt++], idx);
1296         }
1297
1298         *cntp = cnt;
1299         closedir(dir);
1300
1301         if (!ret)
1302                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1303
1304         return ret;
1305 }
1306
1307 #define MAX_MEMORY_NODES 2000
1308
1309 /*
1310  * The MEM_TOPOLOGY holds physical memory map for every
1311  * node in system. The format of data is as follows:
1312  *
1313  *  0 - version          | for future changes
1314  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1315  * 16 - count            | number of nodes
1316  *
1317  * For each node we store map of physical indexes for
1318  * each node:
1319  *
1320  * 32 - node id          | node index
1321  * 40 - size             | size of bitmap
1322  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1323  */
1324 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1325                               struct evlist *evlist __maybe_unused)
1326 {
1327         static struct memory_node nodes[MAX_MEMORY_NODES];
1328         u64 bsize, version = 1, i, nr;
1329         int ret;
1330
1331         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1332                               (unsigned long long *) &bsize);
1333         if (ret)
1334                 return ret;
1335
1336         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1337         if (ret)
1338                 return ret;
1339
1340         ret = do_write(ff, &version, sizeof(version));
1341         if (ret < 0)
1342                 goto out;
1343
1344         ret = do_write(ff, &bsize, sizeof(bsize));
1345         if (ret < 0)
1346                 goto out;
1347
1348         ret = do_write(ff, &nr, sizeof(nr));
1349         if (ret < 0)
1350                 goto out;
1351
1352         for (i = 0; i < nr; i++) {
1353                 struct memory_node *n = &nodes[i];
1354
1355                 #define _W(v)                                           \
1356                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1357                         if (ret < 0)                                    \
1358                                 goto out;
1359
1360                 _W(node)
1361                 _W(size)
1362
1363                 #undef _W
1364
1365                 ret = do_write_bitmap(ff, n->set, n->size);
1366                 if (ret < 0)
1367                         goto out;
1368         }
1369
1370 out:
1371         return ret;
1372 }
1373
1374 static int write_compressed(struct feat_fd *ff __maybe_unused,
1375                             struct evlist *evlist __maybe_unused)
1376 {
1377         int ret;
1378
1379         ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1380         if (ret)
1381                 return ret;
1382
1383         ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1384         if (ret)
1385                 return ret;
1386
1387         ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1388         if (ret)
1389                 return ret;
1390
1391         ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1392         if (ret)
1393                 return ret;
1394
1395         return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1396 }
1397
1398 static void print_hostname(struct feat_fd *ff, FILE *fp)
1399 {
1400         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1401 }
1402
1403 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1404 {
1405         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1406 }
1407
1408 static void print_arch(struct feat_fd *ff, FILE *fp)
1409 {
1410         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1411 }
1412
1413 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1414 {
1415         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1416 }
1417
1418 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1419 {
1420         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1421         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1422 }
1423
1424 static void print_version(struct feat_fd *ff, FILE *fp)
1425 {
1426         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1427 }
1428
1429 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1430 {
1431         int nr, i;
1432
1433         nr = ff->ph->env.nr_cmdline;
1434
1435         fprintf(fp, "# cmdline : ");
1436
1437         for (i = 0; i < nr; i++) {
1438                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1439                 if (!argv_i) {
1440                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1441                 } else {
1442                         char *mem = argv_i;
1443                         do {
1444                                 char *quote = strchr(argv_i, '\'');
1445                                 if (!quote)
1446                                         break;
1447                                 *quote++ = '\0';
1448                                 fprintf(fp, "%s\\\'", argv_i);
1449                                 argv_i = quote;
1450                         } while (1);
1451                         fprintf(fp, "%s ", argv_i);
1452                         free(mem);
1453                 }
1454         }
1455         fputc('\n', fp);
1456 }
1457
1458 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1459 {
1460         struct perf_header *ph = ff->ph;
1461         int cpu_nr = ph->env.nr_cpus_avail;
1462         int nr, i;
1463         char *str;
1464
1465         nr = ph->env.nr_sibling_cores;
1466         str = ph->env.sibling_cores;
1467
1468         for (i = 0; i < nr; i++) {
1469                 fprintf(fp, "# sibling sockets : %s\n", str);
1470                 str += strlen(str) + 1;
1471         }
1472
1473         if (ph->env.nr_sibling_dies) {
1474                 nr = ph->env.nr_sibling_dies;
1475                 str = ph->env.sibling_dies;
1476
1477                 for (i = 0; i < nr; i++) {
1478                         fprintf(fp, "# sibling dies    : %s\n", str);
1479                         str += strlen(str) + 1;
1480                 }
1481         }
1482
1483         nr = ph->env.nr_sibling_threads;
1484         str = ph->env.sibling_threads;
1485
1486         for (i = 0; i < nr; i++) {
1487                 fprintf(fp, "# sibling threads : %s\n", str);
1488                 str += strlen(str) + 1;
1489         }
1490
1491         if (ph->env.nr_sibling_dies) {
1492                 if (ph->env.cpu != NULL) {
1493                         for (i = 0; i < cpu_nr; i++)
1494                                 fprintf(fp, "# CPU %d: Core ID %d, "
1495                                             "Die ID %d, Socket ID %d\n",
1496                                             i, ph->env.cpu[i].core_id,
1497                                             ph->env.cpu[i].die_id,
1498                                             ph->env.cpu[i].socket_id);
1499                 } else
1500                         fprintf(fp, "# Core ID, Die ID and Socket ID "
1501                                     "information is not available\n");
1502         } else {
1503                 if (ph->env.cpu != NULL) {
1504                         for (i = 0; i < cpu_nr; i++)
1505                                 fprintf(fp, "# CPU %d: Core ID %d, "
1506                                             "Socket ID %d\n",
1507                                             i, ph->env.cpu[i].core_id,
1508                                             ph->env.cpu[i].socket_id);
1509                 } else
1510                         fprintf(fp, "# Core ID and Socket ID "
1511                                     "information is not available\n");
1512         }
1513 }
1514
1515 static void print_clockid(struct feat_fd *ff, FILE *fp)
1516 {
1517         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1518                 ff->ph->env.clockid_res_ns * 1000);
1519 }
1520
1521 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1522 {
1523         struct perf_session *session;
1524         struct perf_data *data;
1525
1526         session = container_of(ff->ph, struct perf_session, header);
1527         data = session->data;
1528
1529         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1530 }
1531
1532 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1533 {
1534         struct perf_env *env = &ff->ph->env;
1535         struct rb_root *root;
1536         struct rb_node *next;
1537
1538         down_read(&env->bpf_progs.lock);
1539
1540         root = &env->bpf_progs.infos;
1541         next = rb_first(root);
1542
1543         while (next) {
1544                 struct bpf_prog_info_node *node;
1545
1546                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1547                 next = rb_next(&node->rb_node);
1548
1549                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1550                                                env, fp);
1551         }
1552
1553         up_read(&env->bpf_progs.lock);
1554 }
1555
1556 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1557 {
1558         struct perf_env *env = &ff->ph->env;
1559         struct rb_root *root;
1560         struct rb_node *next;
1561
1562         down_read(&env->bpf_progs.lock);
1563
1564         root = &env->bpf_progs.btfs;
1565         next = rb_first(root);
1566
1567         while (next) {
1568                 struct btf_node *node;
1569
1570                 node = rb_entry(next, struct btf_node, rb_node);
1571                 next = rb_next(&node->rb_node);
1572                 fprintf(fp, "# btf info of id %u\n", node->id);
1573         }
1574
1575         up_read(&env->bpf_progs.lock);
1576 }
1577
1578 static void free_event_desc(struct evsel *events)
1579 {
1580         struct evsel *evsel;
1581
1582         if (!events)
1583                 return;
1584
1585         for (evsel = events; evsel->core.attr.size; evsel++) {
1586                 zfree(&evsel->name);
1587                 zfree(&evsel->core.id);
1588         }
1589
1590         free(events);
1591 }
1592
1593 static struct evsel *read_event_desc(struct feat_fd *ff)
1594 {
1595         struct evsel *evsel, *events = NULL;
1596         u64 *id;
1597         void *buf = NULL;
1598         u32 nre, sz, nr, i, j;
1599         size_t msz;
1600
1601         /* number of events */
1602         if (do_read_u32(ff, &nre))
1603                 goto error;
1604
1605         if (do_read_u32(ff, &sz))
1606                 goto error;
1607
1608         /* buffer to hold on file attr struct */
1609         buf = malloc(sz);
1610         if (!buf)
1611                 goto error;
1612
1613         /* the last event terminates with evsel->core.attr.size == 0: */
1614         events = calloc(nre + 1, sizeof(*events));
1615         if (!events)
1616                 goto error;
1617
1618         msz = sizeof(evsel->core.attr);
1619         if (sz < msz)
1620                 msz = sz;
1621
1622         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1623                 evsel->idx = i;
1624
1625                 /*
1626                  * must read entire on-file attr struct to
1627                  * sync up with layout.
1628                  */
1629                 if (__do_read(ff, buf, sz))
1630                         goto error;
1631
1632                 if (ff->ph->needs_swap)
1633                         perf_event__attr_swap(buf);
1634
1635                 memcpy(&evsel->core.attr, buf, msz);
1636
1637                 if (do_read_u32(ff, &nr))
1638                         goto error;
1639
1640                 if (ff->ph->needs_swap)
1641                         evsel->needs_swap = true;
1642
1643                 evsel->name = do_read_string(ff);
1644                 if (!evsel->name)
1645                         goto error;
1646
1647                 if (!nr)
1648                         continue;
1649
1650                 id = calloc(nr, sizeof(*id));
1651                 if (!id)
1652                         goto error;
1653                 evsel->core.ids = nr;
1654                 evsel->core.id = id;
1655
1656                 for (j = 0 ; j < nr; j++) {
1657                         if (do_read_u64(ff, id))
1658                                 goto error;
1659                         id++;
1660                 }
1661         }
1662 out:
1663         free(buf);
1664         return events;
1665 error:
1666         free_event_desc(events);
1667         events = NULL;
1668         goto out;
1669 }
1670
1671 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1672                                 void *priv __maybe_unused)
1673 {
1674         return fprintf(fp, ", %s = %s", name, val);
1675 }
1676
1677 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1678 {
1679         struct evsel *evsel, *events;
1680         u32 j;
1681         u64 *id;
1682
1683         if (ff->events)
1684                 events = ff->events;
1685         else
1686                 events = read_event_desc(ff);
1687
1688         if (!events) {
1689                 fprintf(fp, "# event desc: not available or unable to read\n");
1690                 return;
1691         }
1692
1693         for (evsel = events; evsel->core.attr.size; evsel++) {
1694                 fprintf(fp, "# event : name = %s, ", evsel->name);
1695
1696                 if (evsel->core.ids) {
1697                         fprintf(fp, ", id = {");
1698                         for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
1699                                 if (j)
1700                                         fputc(',', fp);
1701                                 fprintf(fp, " %"PRIu64, *id);
1702                         }
1703                         fprintf(fp, " }");
1704                 }
1705
1706                 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
1707
1708                 fputc('\n', fp);
1709         }
1710
1711         free_event_desc(events);
1712         ff->events = NULL;
1713 }
1714
1715 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1716 {
1717         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1718 }
1719
1720 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1721 {
1722         int i;
1723         struct numa_node *n;
1724
1725         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1726                 n = &ff->ph->env.numa_nodes[i];
1727
1728                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1729                             " free = %"PRIu64" kB\n",
1730                         n->node, n->mem_total, n->mem_free);
1731
1732                 fprintf(fp, "# node%u cpu list : ", n->node);
1733                 cpu_map__fprintf(n->map, fp);
1734         }
1735 }
1736
1737 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1738 {
1739         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1740 }
1741
1742 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1743 {
1744         fprintf(fp, "# contains samples with branch stack\n");
1745 }
1746
1747 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1748 {
1749         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1750 }
1751
1752 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1753 {
1754         fprintf(fp, "# contains stat data\n");
1755 }
1756
1757 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1758 {
1759         int i;
1760
1761         fprintf(fp, "# CPU cache info:\n");
1762         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1763                 fprintf(fp, "#  ");
1764                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1765         }
1766 }
1767
1768 static void print_compressed(struct feat_fd *ff, FILE *fp)
1769 {
1770         fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
1771                 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
1772                 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
1773 }
1774
1775 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1776 {
1777         const char *delimiter = "# pmu mappings: ";
1778         char *str, *tmp;
1779         u32 pmu_num;
1780         u32 type;
1781
1782         pmu_num = ff->ph->env.nr_pmu_mappings;
1783         if (!pmu_num) {
1784                 fprintf(fp, "# pmu mappings: not available\n");
1785                 return;
1786         }
1787
1788         str = ff->ph->env.pmu_mappings;
1789
1790         while (pmu_num) {
1791                 type = strtoul(str, &tmp, 0);
1792                 if (*tmp != ':')
1793                         goto error;
1794
1795                 str = tmp + 1;
1796                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1797
1798                 delimiter = ", ";
1799                 str += strlen(str) + 1;
1800                 pmu_num--;
1801         }
1802
1803         fprintf(fp, "\n");
1804
1805         if (!pmu_num)
1806                 return;
1807 error:
1808         fprintf(fp, "# pmu mappings: unable to read\n");
1809 }
1810
1811 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1812 {
1813         struct perf_session *session;
1814         struct evsel *evsel;
1815         u32 nr = 0;
1816
1817         session = container_of(ff->ph, struct perf_session, header);
1818
1819         evlist__for_each_entry(session->evlist, evsel) {
1820                 if (perf_evsel__is_group_leader(evsel) &&
1821                     evsel->core.nr_members > 1) {
1822                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1823                                 perf_evsel__name(evsel));
1824
1825                         nr = evsel->core.nr_members - 1;
1826                 } else if (nr) {
1827                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1828
1829                         if (--nr == 0)
1830                                 fprintf(fp, "}\n");
1831                 }
1832         }
1833 }
1834
1835 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1836 {
1837         struct perf_session *session;
1838         char time_buf[32];
1839         double d;
1840
1841         session = container_of(ff->ph, struct perf_session, header);
1842
1843         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1844                                   time_buf, sizeof(time_buf));
1845         fprintf(fp, "# time of first sample : %s\n", time_buf);
1846
1847         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1848                                   time_buf, sizeof(time_buf));
1849         fprintf(fp, "# time of last sample : %s\n", time_buf);
1850
1851         d = (double)(session->evlist->last_sample_time -
1852                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1853
1854         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1855 }
1856
1857 static void memory_node__fprintf(struct memory_node *n,
1858                                  unsigned long long bsize, FILE *fp)
1859 {
1860         char buf_map[100], buf_size[50];
1861         unsigned long long size;
1862
1863         size = bsize * bitmap_weight(n->set, n->size);
1864         unit_number__scnprintf(buf_size, 50, size);
1865
1866         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1867         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1868 }
1869
1870 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1871 {
1872         struct memory_node *nodes;
1873         int i, nr;
1874
1875         nodes = ff->ph->env.memory_nodes;
1876         nr    = ff->ph->env.nr_memory_nodes;
1877
1878         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1879                 nr, ff->ph->env.memory_bsize);
1880
1881         for (i = 0; i < nr; i++) {
1882                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1883         }
1884 }
1885
1886 static int __event_process_build_id(struct perf_record_header_build_id *bev,
1887                                     char *filename,
1888                                     struct perf_session *session)
1889 {
1890         int err = -1;
1891         struct machine *machine;
1892         u16 cpumode;
1893         struct dso *dso;
1894         enum dso_kernel_type dso_type;
1895
1896         machine = perf_session__findnew_machine(session, bev->pid);
1897         if (!machine)
1898                 goto out;
1899
1900         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1901
1902         switch (cpumode) {
1903         case PERF_RECORD_MISC_KERNEL:
1904                 dso_type = DSO_TYPE_KERNEL;
1905                 break;
1906         case PERF_RECORD_MISC_GUEST_KERNEL:
1907                 dso_type = DSO_TYPE_GUEST_KERNEL;
1908                 break;
1909         case PERF_RECORD_MISC_USER:
1910         case PERF_RECORD_MISC_GUEST_USER:
1911                 dso_type = DSO_TYPE_USER;
1912                 break;
1913         default:
1914                 goto out;
1915         }
1916
1917         dso = machine__findnew_dso(machine, filename);
1918         if (dso != NULL) {
1919                 char sbuild_id[SBUILD_ID_SIZE];
1920
1921                 dso__set_build_id(dso, &bev->build_id);
1922
1923                 if (dso_type != DSO_TYPE_USER) {
1924                         struct kmod_path m = { .name = NULL, };
1925
1926                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1927                                 dso__set_module_info(dso, &m, machine);
1928                         else
1929                                 dso->kernel = dso_type;
1930
1931                         free(m.name);
1932                 }
1933
1934                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1935                                   sbuild_id);
1936                 pr_debug("build id event received for %s: %s\n",
1937                          dso->long_name, sbuild_id);
1938                 dso__put(dso);
1939         }
1940
1941         err = 0;
1942 out:
1943         return err;
1944 }
1945
1946 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1947                                                  int input, u64 offset, u64 size)
1948 {
1949         struct perf_session *session = container_of(header, struct perf_session, header);
1950         struct {
1951                 struct perf_event_header   header;
1952                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1953                 char                       filename[0];
1954         } old_bev;
1955         struct perf_record_header_build_id bev;
1956         char filename[PATH_MAX];
1957         u64 limit = offset + size;
1958
1959         while (offset < limit) {
1960                 ssize_t len;
1961
1962                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1963                         return -1;
1964
1965                 if (header->needs_swap)
1966                         perf_event_header__bswap(&old_bev.header);
1967
1968                 len = old_bev.header.size - sizeof(old_bev);
1969                 if (readn(input, filename, len) != len)
1970                         return -1;
1971
1972                 bev.header = old_bev.header;
1973
1974                 /*
1975                  * As the pid is the missing value, we need to fill
1976                  * it properly. The header.misc value give us nice hint.
1977                  */
1978                 bev.pid = HOST_KERNEL_ID;
1979                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1980                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1981                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1982
1983                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1984                 __event_process_build_id(&bev, filename, session);
1985
1986                 offset += bev.header.size;
1987         }
1988
1989         return 0;
1990 }
1991
1992 static int perf_header__read_build_ids(struct perf_header *header,
1993                                        int input, u64 offset, u64 size)
1994 {
1995         struct perf_session *session = container_of(header, struct perf_session, header);
1996         struct perf_record_header_build_id bev;
1997         char filename[PATH_MAX];
1998         u64 limit = offset + size, orig_offset = offset;
1999         int err = -1;
2000
2001         while (offset < limit) {
2002                 ssize_t len;
2003
2004                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2005                         goto out;
2006
2007                 if (header->needs_swap)
2008                         perf_event_header__bswap(&bev.header);
2009
2010                 len = bev.header.size - sizeof(bev);
2011                 if (readn(input, filename, len) != len)
2012                         goto out;
2013                 /*
2014                  * The a1645ce1 changeset:
2015                  *
2016                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
2017                  *
2018                  * Added a field to struct perf_record_header_build_id that broke the file
2019                  * format.
2020                  *
2021                  * Since the kernel build-id is the first entry, process the
2022                  * table using the old format if the well known
2023                  * '[kernel.kallsyms]' string for the kernel build-id has the
2024                  * first 4 characters chopped off (where the pid_t sits).
2025                  */
2026                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2027                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2028                                 return -1;
2029                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2030                 }
2031
2032                 __event_process_build_id(&bev, filename, session);
2033
2034                 offset += bev.header.size;
2035         }
2036         err = 0;
2037 out:
2038         return err;
2039 }
2040
2041 /* Macro for features that simply need to read and store a string. */
2042 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2043 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2044 {\
2045         ff->ph->env.__feat_env = do_read_string(ff); \
2046         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2047 }
2048
2049 FEAT_PROCESS_STR_FUN(hostname, hostname);
2050 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2051 FEAT_PROCESS_STR_FUN(version, version);
2052 FEAT_PROCESS_STR_FUN(arch, arch);
2053 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2054 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2055
2056 static int process_tracing_data(struct feat_fd *ff, void *data)
2057 {
2058         ssize_t ret = trace_report(ff->fd, data, false);
2059
2060         return ret < 0 ? -1 : 0;
2061 }
2062
2063 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2064 {
2065         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2066                 pr_debug("Failed to read buildids, continuing...\n");
2067         return 0;
2068 }
2069
2070 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2071 {
2072         int ret;
2073         u32 nr_cpus_avail, nr_cpus_online;
2074
2075         ret = do_read_u32(ff, &nr_cpus_avail);
2076         if (ret)
2077                 return ret;
2078
2079         ret = do_read_u32(ff, &nr_cpus_online);
2080         if (ret)
2081                 return ret;
2082         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2083         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2084         return 0;
2085 }
2086
2087 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2088 {
2089         u64 total_mem;
2090         int ret;
2091
2092         ret = do_read_u64(ff, &total_mem);
2093         if (ret)
2094                 return -1;
2095         ff->ph->env.total_mem = (unsigned long long)total_mem;
2096         return 0;
2097 }
2098
2099 static struct evsel *
2100 perf_evlist__find_by_index(struct evlist *evlist, int idx)
2101 {
2102         struct evsel *evsel;
2103
2104         evlist__for_each_entry(evlist, evsel) {
2105                 if (evsel->idx == idx)
2106                         return evsel;
2107         }
2108
2109         return NULL;
2110 }
2111
2112 static void
2113 perf_evlist__set_event_name(struct evlist *evlist,
2114                             struct evsel *event)
2115 {
2116         struct evsel *evsel;
2117
2118         if (!event->name)
2119                 return;
2120
2121         evsel = perf_evlist__find_by_index(evlist, event->idx);
2122         if (!evsel)
2123                 return;
2124
2125         if (evsel->name)
2126                 return;
2127
2128         evsel->name = strdup(event->name);
2129 }
2130
2131 static int
2132 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2133 {
2134         struct perf_session *session;
2135         struct evsel *evsel, *events = read_event_desc(ff);
2136
2137         if (!events)
2138                 return 0;
2139
2140         session = container_of(ff->ph, struct perf_session, header);
2141
2142         if (session->data->is_pipe) {
2143                 /* Save events for reading later by print_event_desc,
2144                  * since they can't be read again in pipe mode. */
2145                 ff->events = events;
2146         }
2147
2148         for (evsel = events; evsel->core.attr.size; evsel++)
2149                 perf_evlist__set_event_name(session->evlist, evsel);
2150
2151         if (!session->data->is_pipe)
2152                 free_event_desc(events);
2153
2154         return 0;
2155 }
2156
2157 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2158 {
2159         char *str, *cmdline = NULL, **argv = NULL;
2160         u32 nr, i, len = 0;
2161
2162         if (do_read_u32(ff, &nr))
2163                 return -1;
2164
2165         ff->ph->env.nr_cmdline = nr;
2166
2167         cmdline = zalloc(ff->size + nr + 1);
2168         if (!cmdline)
2169                 return -1;
2170
2171         argv = zalloc(sizeof(char *) * (nr + 1));
2172         if (!argv)
2173                 goto error;
2174
2175         for (i = 0; i < nr; i++) {
2176                 str = do_read_string(ff);
2177                 if (!str)
2178                         goto error;
2179
2180                 argv[i] = cmdline + len;
2181                 memcpy(argv[i], str, strlen(str) + 1);
2182                 len += strlen(str) + 1;
2183                 free(str);
2184         }
2185         ff->ph->env.cmdline = cmdline;
2186         ff->ph->env.cmdline_argv = (const char **) argv;
2187         return 0;
2188
2189 error:
2190         free(argv);
2191         free(cmdline);
2192         return -1;
2193 }
2194
2195 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2196 {
2197         u32 nr, i;
2198         char *str;
2199         struct strbuf sb;
2200         int cpu_nr = ff->ph->env.nr_cpus_avail;
2201         u64 size = 0;
2202         struct perf_header *ph = ff->ph;
2203         bool do_core_id_test = true;
2204
2205         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2206         if (!ph->env.cpu)
2207                 return -1;
2208
2209         if (do_read_u32(ff, &nr))
2210                 goto free_cpu;
2211
2212         ph->env.nr_sibling_cores = nr;
2213         size += sizeof(u32);
2214         if (strbuf_init(&sb, 128) < 0)
2215                 goto free_cpu;
2216
2217         for (i = 0; i < nr; i++) {
2218                 str = do_read_string(ff);
2219                 if (!str)
2220                         goto error;
2221
2222                 /* include a NULL character at the end */
2223                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2224                         goto error;
2225                 size += string_size(str);
2226                 free(str);
2227         }
2228         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2229
2230         if (do_read_u32(ff, &nr))
2231                 return -1;
2232
2233         ph->env.nr_sibling_threads = nr;
2234         size += sizeof(u32);
2235
2236         for (i = 0; i < nr; i++) {
2237                 str = do_read_string(ff);
2238                 if (!str)
2239                         goto error;
2240
2241                 /* include a NULL character at the end */
2242                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2243                         goto error;
2244                 size += string_size(str);
2245                 free(str);
2246         }
2247         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2248
2249         /*
2250          * The header may be from old perf,
2251          * which doesn't include core id and socket id information.
2252          */
2253         if (ff->size <= size) {
2254                 zfree(&ph->env.cpu);
2255                 return 0;
2256         }
2257
2258         /* On s390 the socket_id number is not related to the numbers of cpus.
2259          * The socket_id number might be higher than the numbers of cpus.
2260          * This depends on the configuration.
2261          * AArch64 is the same.
2262          */
2263         if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2264                           || !strncmp(ph->env.arch, "aarch64", 7)))
2265                 do_core_id_test = false;
2266
2267         for (i = 0; i < (u32)cpu_nr; i++) {
2268                 if (do_read_u32(ff, &nr))
2269                         goto free_cpu;
2270
2271                 ph->env.cpu[i].core_id = nr;
2272                 size += sizeof(u32);
2273
2274                 if (do_read_u32(ff, &nr))
2275                         goto free_cpu;
2276
2277                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2278                         pr_debug("socket_id number is too big."
2279                                  "You may need to upgrade the perf tool.\n");
2280                         goto free_cpu;
2281                 }
2282
2283                 ph->env.cpu[i].socket_id = nr;
2284                 size += sizeof(u32);
2285         }
2286
2287         /*
2288          * The header may be from old perf,
2289          * which doesn't include die information.
2290          */
2291         if (ff->size <= size)
2292                 return 0;
2293
2294         if (do_read_u32(ff, &nr))
2295                 return -1;
2296
2297         ph->env.nr_sibling_dies = nr;
2298         size += sizeof(u32);
2299
2300         for (i = 0; i < nr; i++) {
2301                 str = do_read_string(ff);
2302                 if (!str)
2303                         goto error;
2304
2305                 /* include a NULL character at the end */
2306                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2307                         goto error;
2308                 size += string_size(str);
2309                 free(str);
2310         }
2311         ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2312
2313         for (i = 0; i < (u32)cpu_nr; i++) {
2314                 if (do_read_u32(ff, &nr))
2315                         goto free_cpu;
2316
2317                 ph->env.cpu[i].die_id = nr;
2318         }
2319
2320         return 0;
2321
2322 error:
2323         strbuf_release(&sb);
2324 free_cpu:
2325         zfree(&ph->env.cpu);
2326         return -1;
2327 }
2328
2329 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2330 {
2331         struct numa_node *nodes, *n;
2332         u32 nr, i;
2333         char *str;
2334
2335         /* nr nodes */
2336         if (do_read_u32(ff, &nr))
2337                 return -1;
2338
2339         nodes = zalloc(sizeof(*nodes) * nr);
2340         if (!nodes)
2341                 return -ENOMEM;
2342
2343         for (i = 0; i < nr; i++) {
2344                 n = &nodes[i];
2345
2346                 /* node number */
2347                 if (do_read_u32(ff, &n->node))
2348                         goto error;
2349
2350                 if (do_read_u64(ff, &n->mem_total))
2351                         goto error;
2352
2353                 if (do_read_u64(ff, &n->mem_free))
2354                         goto error;
2355
2356                 str = do_read_string(ff);
2357                 if (!str)
2358                         goto error;
2359
2360                 n->map = perf_cpu_map__new(str);
2361                 if (!n->map)
2362                         goto error;
2363
2364                 free(str);
2365         }
2366         ff->ph->env.nr_numa_nodes = nr;
2367         ff->ph->env.numa_nodes = nodes;
2368         return 0;
2369
2370 error:
2371         free(nodes);
2372         return -1;
2373 }
2374
2375 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2376 {
2377         char *name;
2378         u32 pmu_num;
2379         u32 type;
2380         struct strbuf sb;
2381
2382         if (do_read_u32(ff, &pmu_num))
2383                 return -1;
2384
2385         if (!pmu_num) {
2386                 pr_debug("pmu mappings not available\n");
2387                 return 0;
2388         }
2389
2390         ff->ph->env.nr_pmu_mappings = pmu_num;
2391         if (strbuf_init(&sb, 128) < 0)
2392                 return -1;
2393
2394         while (pmu_num) {
2395                 if (do_read_u32(ff, &type))
2396                         goto error;
2397
2398                 name = do_read_string(ff);
2399                 if (!name)
2400                         goto error;
2401
2402                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2403                         goto error;
2404                 /* include a NULL character at the end */
2405                 if (strbuf_add(&sb, "", 1) < 0)
2406                         goto error;
2407
2408                 if (!strcmp(name, "msr"))
2409                         ff->ph->env.msr_pmu_type = type;
2410
2411                 free(name);
2412                 pmu_num--;
2413         }
2414         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2415         return 0;
2416
2417 error:
2418         strbuf_release(&sb);
2419         return -1;
2420 }
2421
2422 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2423 {
2424         size_t ret = -1;
2425         u32 i, nr, nr_groups;
2426         struct perf_session *session;
2427         struct evsel *evsel, *leader = NULL;
2428         struct group_desc {
2429                 char *name;
2430                 u32 leader_idx;
2431                 u32 nr_members;
2432         } *desc;
2433
2434         if (do_read_u32(ff, &nr_groups))
2435                 return -1;
2436
2437         ff->ph->env.nr_groups = nr_groups;
2438         if (!nr_groups) {
2439                 pr_debug("group desc not available\n");
2440                 return 0;
2441         }
2442
2443         desc = calloc(nr_groups, sizeof(*desc));
2444         if (!desc)
2445                 return -1;
2446
2447         for (i = 0; i < nr_groups; i++) {
2448                 desc[i].name = do_read_string(ff);
2449                 if (!desc[i].name)
2450                         goto out_free;
2451
2452                 if (do_read_u32(ff, &desc[i].leader_idx))
2453                         goto out_free;
2454
2455                 if (do_read_u32(ff, &desc[i].nr_members))
2456                         goto out_free;
2457         }
2458
2459         /*
2460          * Rebuild group relationship based on the group_desc
2461          */
2462         session = container_of(ff->ph, struct perf_session, header);
2463         session->evlist->nr_groups = nr_groups;
2464
2465         i = nr = 0;
2466         evlist__for_each_entry(session->evlist, evsel) {
2467                 if (evsel->idx == (int) desc[i].leader_idx) {
2468                         evsel->leader = evsel;
2469                         /* {anon_group} is a dummy name */
2470                         if (strcmp(desc[i].name, "{anon_group}")) {
2471                                 evsel->group_name = desc[i].name;
2472                                 desc[i].name = NULL;
2473                         }
2474                         evsel->core.nr_members = desc[i].nr_members;
2475
2476                         if (i >= nr_groups || nr > 0) {
2477                                 pr_debug("invalid group desc\n");
2478                                 goto out_free;
2479                         }
2480
2481                         leader = evsel;
2482                         nr = evsel->core.nr_members - 1;
2483                         i++;
2484                 } else if (nr) {
2485                         /* This is a group member */
2486                         evsel->leader = leader;
2487
2488                         nr--;
2489                 }
2490         }
2491
2492         if (i != nr_groups || nr != 0) {
2493                 pr_debug("invalid group desc\n");
2494                 goto out_free;
2495         }
2496
2497         ret = 0;
2498 out_free:
2499         for (i = 0; i < nr_groups; i++)
2500                 zfree(&desc[i].name);
2501         free(desc);
2502
2503         return ret;
2504 }
2505
2506 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2507 {
2508         struct perf_session *session;
2509         int err;
2510
2511         session = container_of(ff->ph, struct perf_session, header);
2512
2513         err = auxtrace_index__process(ff->fd, ff->size, session,
2514                                       ff->ph->needs_swap);
2515         if (err < 0)
2516                 pr_err("Failed to process auxtrace index\n");
2517         return err;
2518 }
2519
2520 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2521 {
2522         struct cpu_cache_level *caches;
2523         u32 cnt, i, version;
2524
2525         if (do_read_u32(ff, &version))
2526                 return -1;
2527
2528         if (version != 1)
2529                 return -1;
2530
2531         if (do_read_u32(ff, &cnt))
2532                 return -1;
2533
2534         caches = zalloc(sizeof(*caches) * cnt);
2535         if (!caches)
2536                 return -1;
2537
2538         for (i = 0; i < cnt; i++) {
2539                 struct cpu_cache_level c;
2540
2541                 #define _R(v)                                           \
2542                         if (do_read_u32(ff, &c.v))\
2543                                 goto out_free_caches;                   \
2544
2545                 _R(level)
2546                 _R(line_size)
2547                 _R(sets)
2548                 _R(ways)
2549                 #undef _R
2550
2551                 #define _R(v)                                   \
2552                         c.v = do_read_string(ff);               \
2553                         if (!c.v)                               \
2554                                 goto out_free_caches;
2555
2556                 _R(type)
2557                 _R(size)
2558                 _R(map)
2559                 #undef _R
2560
2561                 caches[i] = c;
2562         }
2563
2564         ff->ph->env.caches = caches;
2565         ff->ph->env.caches_cnt = cnt;
2566         return 0;
2567 out_free_caches:
2568         free(caches);
2569         return -1;
2570 }
2571
2572 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2573 {
2574         struct perf_session *session;
2575         u64 first_sample_time, last_sample_time;
2576         int ret;
2577
2578         session = container_of(ff->ph, struct perf_session, header);
2579
2580         ret = do_read_u64(ff, &first_sample_time);
2581         if (ret)
2582                 return -1;
2583
2584         ret = do_read_u64(ff, &last_sample_time);
2585         if (ret)
2586                 return -1;
2587
2588         session->evlist->first_sample_time = first_sample_time;
2589         session->evlist->last_sample_time = last_sample_time;
2590         return 0;
2591 }
2592
2593 static int process_mem_topology(struct feat_fd *ff,
2594                                 void *data __maybe_unused)
2595 {
2596         struct memory_node *nodes;
2597         u64 version, i, nr, bsize;
2598         int ret = -1;
2599
2600         if (do_read_u64(ff, &version))
2601                 return -1;
2602
2603         if (version != 1)
2604                 return -1;
2605
2606         if (do_read_u64(ff, &bsize))
2607                 return -1;
2608
2609         if (do_read_u64(ff, &nr))
2610                 return -1;
2611
2612         nodes = zalloc(sizeof(*nodes) * nr);
2613         if (!nodes)
2614                 return -1;
2615
2616         for (i = 0; i < nr; i++) {
2617                 struct memory_node n;
2618
2619                 #define _R(v)                           \
2620                         if (do_read_u64(ff, &n.v))      \
2621                                 goto out;               \
2622
2623                 _R(node)
2624                 _R(size)
2625
2626                 #undef _R
2627
2628                 if (do_read_bitmap(ff, &n.set, &n.size))
2629                         goto out;
2630
2631                 nodes[i] = n;
2632         }
2633
2634         ff->ph->env.memory_bsize    = bsize;
2635         ff->ph->env.memory_nodes    = nodes;
2636         ff->ph->env.nr_memory_nodes = nr;
2637         ret = 0;
2638
2639 out:
2640         if (ret)
2641                 free(nodes);
2642         return ret;
2643 }
2644
2645 static int process_clockid(struct feat_fd *ff,
2646                            void *data __maybe_unused)
2647 {
2648         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2649                 return -1;
2650
2651         return 0;
2652 }
2653
2654 static int process_dir_format(struct feat_fd *ff,
2655                               void *_data __maybe_unused)
2656 {
2657         struct perf_session *session;
2658         struct perf_data *data;
2659
2660         session = container_of(ff->ph, struct perf_session, header);
2661         data = session->data;
2662
2663         if (WARN_ON(!perf_data__is_dir(data)))
2664                 return -1;
2665
2666         return do_read_u64(ff, &data->dir.version);
2667 }
2668
2669 #ifdef HAVE_LIBBPF_SUPPORT
2670 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2671 {
2672         struct bpf_prog_info_linear *info_linear;
2673         struct bpf_prog_info_node *info_node;
2674         struct perf_env *env = &ff->ph->env;
2675         u32 count, i;
2676         int err = -1;
2677
2678         if (ff->ph->needs_swap) {
2679                 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2680                 return 0;
2681         }
2682
2683         if (do_read_u32(ff, &count))
2684                 return -1;
2685
2686         down_write(&env->bpf_progs.lock);
2687
2688         for (i = 0; i < count; ++i) {
2689                 u32 info_len, data_len;
2690
2691                 info_linear = NULL;
2692                 info_node = NULL;
2693                 if (do_read_u32(ff, &info_len))
2694                         goto out;
2695                 if (do_read_u32(ff, &data_len))
2696                         goto out;
2697
2698                 if (info_len > sizeof(struct bpf_prog_info)) {
2699                         pr_warning("detected invalid bpf_prog_info\n");
2700                         goto out;
2701                 }
2702
2703                 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2704                                      data_len);
2705                 if (!info_linear)
2706                         goto out;
2707                 info_linear->info_len = sizeof(struct bpf_prog_info);
2708                 info_linear->data_len = data_len;
2709                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2710                         goto out;
2711                 if (__do_read(ff, &info_linear->info, info_len))
2712                         goto out;
2713                 if (info_len < sizeof(struct bpf_prog_info))
2714                         memset(((void *)(&info_linear->info)) + info_len, 0,
2715                                sizeof(struct bpf_prog_info) - info_len);
2716
2717                 if (__do_read(ff, info_linear->data, data_len))
2718                         goto out;
2719
2720                 info_node = malloc(sizeof(struct bpf_prog_info_node));
2721                 if (!info_node)
2722                         goto out;
2723
2724                 /* after reading from file, translate offset to address */
2725                 bpf_program__bpil_offs_to_addr(info_linear);
2726                 info_node->info_linear = info_linear;
2727                 perf_env__insert_bpf_prog_info(env, info_node);
2728         }
2729
2730         up_write(&env->bpf_progs.lock);
2731         return 0;
2732 out:
2733         free(info_linear);
2734         free(info_node);
2735         up_write(&env->bpf_progs.lock);
2736         return err;
2737 }
2738 #else // HAVE_LIBBPF_SUPPORT
2739 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2740 {
2741         return 0;
2742 }
2743 #endif // HAVE_LIBBPF_SUPPORT
2744
2745 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2746 {
2747         struct perf_env *env = &ff->ph->env;
2748         struct btf_node *node = NULL;
2749         u32 count, i;
2750         int err = -1;
2751
2752         if (ff->ph->needs_swap) {
2753                 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2754                 return 0;
2755         }
2756
2757         if (do_read_u32(ff, &count))
2758                 return -1;
2759
2760         down_write(&env->bpf_progs.lock);
2761
2762         for (i = 0; i < count; ++i) {
2763                 u32 id, data_size;
2764
2765                 if (do_read_u32(ff, &id))
2766                         goto out;
2767                 if (do_read_u32(ff, &data_size))
2768                         goto out;
2769
2770                 node = malloc(sizeof(struct btf_node) + data_size);
2771                 if (!node)
2772                         goto out;
2773
2774                 node->id = id;
2775                 node->data_size = data_size;
2776
2777                 if (__do_read(ff, node->data, data_size))
2778                         goto out;
2779
2780                 perf_env__insert_btf(env, node);
2781                 node = NULL;
2782         }
2783
2784         err = 0;
2785 out:
2786         up_write(&env->bpf_progs.lock);
2787         free(node);
2788         return err;
2789 }
2790
2791 static int process_compressed(struct feat_fd *ff,
2792                               void *data __maybe_unused)
2793 {
2794         if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
2795                 return -1;
2796
2797         if (do_read_u32(ff, &(ff->ph->env.comp_type)))
2798                 return -1;
2799
2800         if (do_read_u32(ff, &(ff->ph->env.comp_level)))
2801                 return -1;
2802
2803         if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
2804                 return -1;
2805
2806         if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
2807                 return -1;
2808
2809         return 0;
2810 }
2811
2812 #define FEAT_OPR(n, func, __full_only) \
2813         [HEADER_##n] = {                                        \
2814                 .name       = __stringify(n),                   \
2815                 .write      = write_##func,                     \
2816                 .print      = print_##func,                     \
2817                 .full_only  = __full_only,                      \
2818                 .process    = process_##func,                   \
2819                 .synthesize = true                              \
2820         }
2821
2822 #define FEAT_OPN(n, func, __full_only) \
2823         [HEADER_##n] = {                                        \
2824                 .name       = __stringify(n),                   \
2825                 .write      = write_##func,                     \
2826                 .print      = print_##func,                     \
2827                 .full_only  = __full_only,                      \
2828                 .process    = process_##func                    \
2829         }
2830
2831 /* feature_ops not implemented: */
2832 #define print_tracing_data      NULL
2833 #define print_build_id          NULL
2834
2835 #define process_branch_stack    NULL
2836 #define process_stat            NULL
2837
2838 // Only used in util/synthetic-events.c
2839 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
2840
2841 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2842         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2843         FEAT_OPN(BUILD_ID,      build_id,       false),
2844         FEAT_OPR(HOSTNAME,      hostname,       false),
2845         FEAT_OPR(OSRELEASE,     osrelease,      false),
2846         FEAT_OPR(VERSION,       version,        false),
2847         FEAT_OPR(ARCH,          arch,           false),
2848         FEAT_OPR(NRCPUS,        nrcpus,         false),
2849         FEAT_OPR(CPUDESC,       cpudesc,        false),
2850         FEAT_OPR(CPUID,         cpuid,          false),
2851         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2852         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2853         FEAT_OPR(CMDLINE,       cmdline,        false),
2854         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2855         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2856         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2857         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2858         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2859         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2860         FEAT_OPN(STAT,          stat,           false),
2861         FEAT_OPN(CACHE,         cache,          true),
2862         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2863         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2864         FEAT_OPR(CLOCKID,       clockid,        false),
2865         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2866         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2867         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2868         FEAT_OPR(COMPRESSED,    compressed,     false),
2869 };
2870
2871 struct header_print_data {
2872         FILE *fp;
2873         bool full; /* extended list of headers */
2874 };
2875
2876 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2877                                            struct perf_header *ph,
2878                                            int feat, int fd, void *data)
2879 {
2880         struct header_print_data *hd = data;
2881         struct feat_fd ff;
2882
2883         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2884                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2885                                 "%d, continuing...\n", section->offset, feat);
2886                 return 0;
2887         }
2888         if (feat >= HEADER_LAST_FEATURE) {
2889                 pr_warning("unknown feature %d\n", feat);
2890                 return 0;
2891         }
2892         if (!feat_ops[feat].print)
2893                 return 0;
2894
2895         ff = (struct  feat_fd) {
2896                 .fd = fd,
2897                 .ph = ph,
2898         };
2899
2900         if (!feat_ops[feat].full_only || hd->full)
2901                 feat_ops[feat].print(&ff, hd->fp);
2902         else
2903                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2904                         feat_ops[feat].name);
2905
2906         return 0;
2907 }
2908
2909 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2910 {
2911         struct header_print_data hd;
2912         struct perf_header *header = &session->header;
2913         int fd = perf_data__fd(session->data);
2914         struct stat st;
2915         time_t stctime;
2916         int ret, bit;
2917
2918         hd.fp = fp;
2919         hd.full = full;
2920
2921         ret = fstat(fd, &st);
2922         if (ret == -1)
2923                 return -1;
2924
2925         stctime = st.st_mtime;
2926         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2927
2928         fprintf(fp, "# header version : %u\n", header->version);
2929         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2930         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2931         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2932
2933         perf_header__process_sections(header, fd, &hd,
2934                                       perf_file_section__fprintf_info);
2935
2936         if (session->data->is_pipe)
2937                 return 0;
2938
2939         fprintf(fp, "# missing features: ");
2940         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2941                 if (bit)
2942                         fprintf(fp, "%s ", feat_ops[bit].name);
2943         }
2944
2945         fprintf(fp, "\n");
2946         return 0;
2947 }
2948
2949 static int do_write_feat(struct feat_fd *ff, int type,
2950                          struct perf_file_section **p,
2951                          struct evlist *evlist)
2952 {
2953         int err;
2954         int ret = 0;
2955
2956         if (perf_header__has_feat(ff->ph, type)) {
2957                 if (!feat_ops[type].write)
2958                         return -1;
2959
2960                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2961                         return -1;
2962
2963                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2964
2965                 err = feat_ops[type].write(ff, evlist);
2966                 if (err < 0) {
2967                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2968
2969                         /* undo anything written */
2970                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2971
2972                         return -1;
2973                 }
2974                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2975                 (*p)++;
2976         }
2977         return ret;
2978 }
2979
2980 static int perf_header__adds_write(struct perf_header *header,
2981                                    struct evlist *evlist, int fd)
2982 {
2983         int nr_sections;
2984         struct feat_fd ff;
2985         struct perf_file_section *feat_sec, *p;
2986         int sec_size;
2987         u64 sec_start;
2988         int feat;
2989         int err;
2990
2991         ff = (struct feat_fd){
2992                 .fd  = fd,
2993                 .ph = header,
2994         };
2995
2996         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2997         if (!nr_sections)
2998                 return 0;
2999
3000         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3001         if (feat_sec == NULL)
3002                 return -ENOMEM;
3003
3004         sec_size = sizeof(*feat_sec) * nr_sections;
3005
3006         sec_start = header->feat_offset;
3007         lseek(fd, sec_start + sec_size, SEEK_SET);
3008
3009         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3010                 if (do_write_feat(&ff, feat, &p, evlist))
3011                         perf_header__clear_feat(header, feat);
3012         }
3013
3014         lseek(fd, sec_start, SEEK_SET);
3015         /*
3016          * may write more than needed due to dropped feature, but
3017          * this is okay, reader will skip the missing entries
3018          */
3019         err = do_write(&ff, feat_sec, sec_size);
3020         if (err < 0)
3021                 pr_debug("failed to write feature section\n");
3022         free(feat_sec);
3023         return err;
3024 }
3025
3026 int perf_header__write_pipe(int fd)
3027 {
3028         struct perf_pipe_file_header f_header;
3029         struct feat_fd ff;
3030         int err;
3031
3032         ff = (struct feat_fd){ .fd = fd };
3033
3034         f_header = (struct perf_pipe_file_header){
3035                 .magic     = PERF_MAGIC,
3036                 .size      = sizeof(f_header),
3037         };
3038
3039         err = do_write(&ff, &f_header, sizeof(f_header));
3040         if (err < 0) {
3041                 pr_debug("failed to write perf pipe header\n");
3042                 return err;
3043         }
3044
3045         return 0;
3046 }
3047
3048 int perf_session__write_header(struct perf_session *session,
3049                                struct evlist *evlist,
3050                                int fd, bool at_exit)
3051 {
3052         struct perf_file_header f_header;
3053         struct perf_file_attr   f_attr;
3054         struct perf_header *header = &session->header;
3055         struct evsel *evsel;
3056         struct feat_fd ff;
3057         u64 attr_offset;
3058         int err;
3059
3060         ff = (struct feat_fd){ .fd = fd};
3061         lseek(fd, sizeof(f_header), SEEK_SET);
3062
3063         evlist__for_each_entry(session->evlist, evsel) {
3064                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3065                 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3066                 if (err < 0) {
3067                         pr_debug("failed to write perf header\n");
3068                         return err;
3069                 }
3070         }
3071
3072         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3073
3074         evlist__for_each_entry(evlist, evsel) {
3075                 f_attr = (struct perf_file_attr){
3076                         .attr = evsel->core.attr,
3077                         .ids  = {
3078                                 .offset = evsel->id_offset,
3079                                 .size   = evsel->core.ids * sizeof(u64),
3080                         }
3081                 };
3082                 err = do_write(&ff, &f_attr, sizeof(f_attr));
3083                 if (err < 0) {
3084                         pr_debug("failed to write perf header attribute\n");
3085                         return err;
3086                 }
3087         }
3088
3089         if (!header->data_offset)
3090                 header->data_offset = lseek(fd, 0, SEEK_CUR);
3091         header->feat_offset = header->data_offset + header->data_size;
3092
3093         if (at_exit) {
3094                 err = perf_header__adds_write(header, evlist, fd);
3095                 if (err < 0)
3096                         return err;
3097         }
3098
3099         f_header = (struct perf_file_header){
3100                 .magic     = PERF_MAGIC,
3101                 .size      = sizeof(f_header),
3102                 .attr_size = sizeof(f_attr),
3103                 .attrs = {
3104                         .offset = attr_offset,
3105                         .size   = evlist->core.nr_entries * sizeof(f_attr),
3106                 },
3107                 .data = {
3108                         .offset = header->data_offset,
3109                         .size   = header->data_size,
3110                 },
3111                 /* event_types is ignored, store zeros */
3112         };
3113
3114         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3115
3116         lseek(fd, 0, SEEK_SET);
3117         err = do_write(&ff, &f_header, sizeof(f_header));
3118         if (err < 0) {
3119                 pr_debug("failed to write perf header\n");
3120                 return err;
3121         }
3122         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3123
3124         return 0;
3125 }
3126
3127 static int perf_header__getbuffer64(struct perf_header *header,
3128                                     int fd, void *buf, size_t size)
3129 {
3130         if (readn(fd, buf, size) <= 0)
3131                 return -1;
3132
3133         if (header->needs_swap)
3134                 mem_bswap_64(buf, size);
3135
3136         return 0;
3137 }
3138
3139 int perf_header__process_sections(struct perf_header *header, int fd,
3140                                   void *data,
3141                                   int (*process)(struct perf_file_section *section,
3142                                                  struct perf_header *ph,
3143                                                  int feat, int fd, void *data))
3144 {
3145         struct perf_file_section *feat_sec, *sec;
3146         int nr_sections;
3147         int sec_size;
3148         int feat;
3149         int err;
3150
3151         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3152         if (!nr_sections)
3153                 return 0;
3154
3155         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3156         if (!feat_sec)
3157                 return -1;
3158
3159         sec_size = sizeof(*feat_sec) * nr_sections;
3160
3161         lseek(fd, header->feat_offset, SEEK_SET);
3162
3163         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3164         if (err < 0)
3165                 goto out_free;
3166
3167         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3168                 err = process(sec++, header, feat, fd, data);
3169                 if (err < 0)
3170                         goto out_free;
3171         }
3172         err = 0;
3173 out_free:
3174         free(feat_sec);
3175         return err;
3176 }
3177
3178 static const int attr_file_abi_sizes[] = {
3179         [0] = PERF_ATTR_SIZE_VER0,
3180         [1] = PERF_ATTR_SIZE_VER1,
3181         [2] = PERF_ATTR_SIZE_VER2,
3182         [3] = PERF_ATTR_SIZE_VER3,
3183         [4] = PERF_ATTR_SIZE_VER4,
3184         0,
3185 };
3186
3187 /*
3188  * In the legacy file format, the magic number is not used to encode endianness.
3189  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3190  * on ABI revisions, we need to try all combinations for all endianness to
3191  * detect the endianness.
3192  */
3193 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3194 {
3195         uint64_t ref_size, attr_size;
3196         int i;
3197
3198         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3199                 ref_size = attr_file_abi_sizes[i]
3200                          + sizeof(struct perf_file_section);
3201                 if (hdr_sz != ref_size) {
3202                         attr_size = bswap_64(hdr_sz);
3203                         if (attr_size != ref_size)
3204                                 continue;
3205
3206                         ph->needs_swap = true;
3207                 }
3208                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3209                          i,
3210                          ph->needs_swap);
3211                 return 0;
3212         }
3213         /* could not determine endianness */
3214         return -1;
3215 }
3216
3217 #define PERF_PIPE_HDR_VER0      16
3218
3219 static const size_t attr_pipe_abi_sizes[] = {
3220         [0] = PERF_PIPE_HDR_VER0,
3221         0,
3222 };
3223
3224 /*
3225  * In the legacy pipe format, there is an implicit assumption that endiannesss
3226  * between host recording the samples, and host parsing the samples is the
3227  * same. This is not always the case given that the pipe output may always be
3228  * redirected into a file and analyzed on a different machine with possibly a
3229  * different endianness and perf_event ABI revsions in the perf tool itself.
3230  */
3231 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3232 {
3233         u64 attr_size;
3234         int i;
3235
3236         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3237                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3238                         attr_size = bswap_64(hdr_sz);
3239                         if (attr_size != hdr_sz)
3240                                 continue;
3241
3242                         ph->needs_swap = true;
3243                 }
3244                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3245                 return 0;
3246         }
3247         return -1;
3248 }
3249
3250 bool is_perf_magic(u64 magic)
3251 {
3252         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3253                 || magic == __perf_magic2
3254                 || magic == __perf_magic2_sw)
3255                 return true;
3256
3257         return false;
3258 }
3259
3260 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3261                               bool is_pipe, struct perf_header *ph)
3262 {
3263         int ret;
3264
3265         /* check for legacy format */
3266         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3267         if (ret == 0) {
3268                 ph->version = PERF_HEADER_VERSION_1;
3269                 pr_debug("legacy perf.data format\n");
3270                 if (is_pipe)
3271                         return try_all_pipe_abis(hdr_sz, ph);
3272
3273                 return try_all_file_abis(hdr_sz, ph);
3274         }
3275         /*
3276          * the new magic number serves two purposes:
3277          * - unique number to identify actual perf.data files
3278          * - encode endianness of file
3279          */
3280         ph->version = PERF_HEADER_VERSION_2;
3281
3282         /* check magic number with one endianness */
3283         if (magic == __perf_magic2)
3284                 return 0;
3285
3286         /* check magic number with opposite endianness */
3287         if (magic != __perf_magic2_sw)
3288                 return -1;
3289
3290         ph->needs_swap = true;
3291
3292         return 0;
3293 }
3294
3295 int perf_file_header__read(struct perf_file_header *header,
3296                            struct perf_header *ph, int fd)
3297 {
3298         ssize_t ret;
3299
3300         lseek(fd, 0, SEEK_SET);
3301
3302         ret = readn(fd, header, sizeof(*header));
3303         if (ret <= 0)
3304                 return -1;
3305
3306         if (check_magic_endian(header->magic,
3307                                header->attr_size, false, ph) < 0) {
3308                 pr_debug("magic/endian check failed\n");
3309                 return -1;
3310         }
3311
3312         if (ph->needs_swap) {
3313                 mem_bswap_64(header, offsetof(struct perf_file_header,
3314                              adds_features));
3315         }
3316
3317         if (header->size != sizeof(*header)) {
3318                 /* Support the previous format */
3319                 if (header->size == offsetof(typeof(*header), adds_features))
3320                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3321                 else
3322                         return -1;
3323         } else if (ph->needs_swap) {
3324                 /*
3325                  * feature bitmap is declared as an array of unsigned longs --
3326                  * not good since its size can differ between the host that
3327                  * generated the data file and the host analyzing the file.
3328                  *
3329                  * We need to handle endianness, but we don't know the size of
3330                  * the unsigned long where the file was generated. Take a best
3331                  * guess at determining it: try 64-bit swap first (ie., file
3332                  * created on a 64-bit host), and check if the hostname feature
3333                  * bit is set (this feature bit is forced on as of fbe96f2).
3334                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3335                  * swap. If the hostname bit is still not set (e.g., older data
3336                  * file), punt and fallback to the original behavior --
3337                  * clearing all feature bits and setting buildid.
3338                  */
3339                 mem_bswap_64(&header->adds_features,
3340                             BITS_TO_U64(HEADER_FEAT_BITS));
3341
3342                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3343                         /* unswap as u64 */
3344                         mem_bswap_64(&header->adds_features,
3345                                     BITS_TO_U64(HEADER_FEAT_BITS));
3346
3347                         /* unswap as u32 */
3348                         mem_bswap_32(&header->adds_features,
3349                                     BITS_TO_U32(HEADER_FEAT_BITS));
3350                 }
3351
3352                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3353                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3354                         set_bit(HEADER_BUILD_ID, header->adds_features);
3355                 }
3356         }
3357
3358         memcpy(&ph->adds_features, &header->adds_features,
3359                sizeof(ph->adds_features));
3360
3361         ph->data_offset  = header->data.offset;
3362         ph->data_size    = header->data.size;
3363         ph->feat_offset  = header->data.offset + header->data.size;
3364         return 0;
3365 }
3366
3367 static int perf_file_section__process(struct perf_file_section *section,
3368                                       struct perf_header *ph,
3369                                       int feat, int fd, void *data)
3370 {
3371         struct feat_fd fdd = {
3372                 .fd     = fd,
3373                 .ph     = ph,
3374                 .size   = section->size,
3375                 .offset = section->offset,
3376         };
3377
3378         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3379                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3380                           "%d, continuing...\n", section->offset, feat);
3381                 return 0;
3382         }
3383
3384         if (feat >= HEADER_LAST_FEATURE) {
3385                 pr_debug("unknown feature %d, continuing...\n", feat);
3386                 return 0;
3387         }
3388
3389         if (!feat_ops[feat].process)
3390                 return 0;
3391
3392         return feat_ops[feat].process(&fdd, data);
3393 }
3394
3395 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3396                                        struct perf_header *ph, int fd,
3397                                        bool repipe)
3398 {
3399         struct feat_fd ff = {
3400                 .fd = STDOUT_FILENO,
3401                 .ph = ph,
3402         };
3403         ssize_t ret;
3404
3405         ret = readn(fd, header, sizeof(*header));
3406         if (ret <= 0)
3407                 return -1;
3408
3409         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3410                 pr_debug("endian/magic failed\n");
3411                 return -1;
3412         }
3413
3414         if (ph->needs_swap)
3415                 header->size = bswap_64(header->size);
3416
3417         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3418                 return -1;
3419
3420         return 0;
3421 }
3422
3423 static int perf_header__read_pipe(struct perf_session *session)
3424 {
3425         struct perf_header *header = &session->header;
3426         struct perf_pipe_file_header f_header;
3427
3428         if (perf_file_header__read_pipe(&f_header, header,
3429                                         perf_data__fd(session->data),
3430                                         session->repipe) < 0) {
3431                 pr_debug("incompatible file format\n");
3432                 return -EINVAL;
3433         }
3434
3435         return 0;
3436 }
3437
3438 static int read_attr(int fd, struct perf_header *ph,
3439                      struct perf_file_attr *f_attr)
3440 {
3441         struct perf_event_attr *attr = &f_attr->attr;
3442         size_t sz, left;
3443         size_t our_sz = sizeof(f_attr->attr);
3444         ssize_t ret;
3445
3446         memset(f_attr, 0, sizeof(*f_attr));
3447
3448         /* read minimal guaranteed structure */
3449         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3450         if (ret <= 0) {
3451                 pr_debug("cannot read %d bytes of header attr\n",
3452                          PERF_ATTR_SIZE_VER0);
3453                 return -1;
3454         }
3455
3456         /* on file perf_event_attr size */
3457         sz = attr->size;
3458
3459         if (ph->needs_swap)
3460                 sz = bswap_32(sz);
3461
3462         if (sz == 0) {
3463                 /* assume ABI0 */
3464                 sz =  PERF_ATTR_SIZE_VER0;
3465         } else if (sz > our_sz) {
3466                 pr_debug("file uses a more recent and unsupported ABI"
3467                          " (%zu bytes extra)\n", sz - our_sz);
3468                 return -1;
3469         }
3470         /* what we have not yet read and that we know about */
3471         left = sz - PERF_ATTR_SIZE_VER0;
3472         if (left) {
3473                 void *ptr = attr;
3474                 ptr += PERF_ATTR_SIZE_VER0;
3475
3476                 ret = readn(fd, ptr, left);
3477         }
3478         /* read perf_file_section, ids are read in caller */
3479         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3480
3481         return ret <= 0 ? -1 : 0;
3482 }
3483
3484 static int perf_evsel__prepare_tracepoint_event(struct evsel *evsel,
3485                                                 struct tep_handle *pevent)
3486 {
3487         struct tep_event *event;
3488         char bf[128];
3489
3490         /* already prepared */
3491         if (evsel->tp_format)
3492                 return 0;
3493
3494         if (pevent == NULL) {
3495                 pr_debug("broken or missing trace data\n");
3496                 return -1;
3497         }
3498
3499         event = tep_find_event(pevent, evsel->core.attr.config);
3500         if (event == NULL) {
3501                 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
3502                 return -1;
3503         }
3504
3505         if (!evsel->name) {
3506                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3507                 evsel->name = strdup(bf);
3508                 if (evsel->name == NULL)
3509                         return -1;
3510         }
3511
3512         evsel->tp_format = event;
3513         return 0;
3514 }
3515
3516 static int perf_evlist__prepare_tracepoint_events(struct evlist *evlist,
3517                                                   struct tep_handle *pevent)
3518 {
3519         struct evsel *pos;
3520
3521         evlist__for_each_entry(evlist, pos) {
3522                 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
3523                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3524                         return -1;
3525         }
3526
3527         return 0;
3528 }
3529
3530 int perf_session__read_header(struct perf_session *session)
3531 {
3532         struct perf_data *data = session->data;
3533         struct perf_header *header = &session->header;
3534         struct perf_file_header f_header;
3535         struct perf_file_attr   f_attr;
3536         u64                     f_id;
3537         int nr_attrs, nr_ids, i, j;
3538         int fd = perf_data__fd(data);
3539
3540         session->evlist = evlist__new();
3541         if (session->evlist == NULL)
3542                 return -ENOMEM;
3543
3544         session->evlist->env = &header->env;
3545         session->machines.host.env = &header->env;
3546         if (perf_data__is_pipe(data))
3547                 return perf_header__read_pipe(session);
3548
3549         if (perf_file_header__read(&f_header, header, fd) < 0)
3550                 return -EINVAL;
3551
3552         /*
3553          * Sanity check that perf.data was written cleanly; data size is
3554          * initialized to 0 and updated only if the on_exit function is run.
3555          * If data size is still 0 then the file contains only partial
3556          * information.  Just warn user and process it as much as it can.
3557          */
3558         if (f_header.data.size == 0) {
3559                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3560                            "Was the 'perf record' command properly terminated?\n",
3561                            data->file.path);
3562         }
3563
3564         if (f_header.attr_size == 0) {
3565                 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
3566                        "Was the 'perf record' command properly terminated?\n",
3567                        data->file.path);
3568                 return -EINVAL;
3569         }
3570
3571         nr_attrs = f_header.attrs.size / f_header.attr_size;
3572         lseek(fd, f_header.attrs.offset, SEEK_SET);
3573
3574         for (i = 0; i < nr_attrs; i++) {
3575                 struct evsel *evsel;
3576                 off_t tmp;
3577
3578                 if (read_attr(fd, header, &f_attr) < 0)
3579                         goto out_errno;
3580
3581                 if (header->needs_swap) {
3582                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3583                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3584                         perf_event__attr_swap(&f_attr.attr);
3585                 }
3586
3587                 tmp = lseek(fd, 0, SEEK_CUR);
3588                 evsel = evsel__new(&f_attr.attr);
3589
3590                 if (evsel == NULL)
3591                         goto out_delete_evlist;
3592
3593                 evsel->needs_swap = header->needs_swap;
3594                 /*
3595                  * Do it before so that if perf_evsel__alloc_id fails, this
3596                  * entry gets purged too at evlist__delete().
3597                  */
3598                 evlist__add(session->evlist, evsel);
3599
3600                 nr_ids = f_attr.ids.size / sizeof(u64);
3601                 /*
3602                  * We don't have the cpu and thread maps on the header, so
3603                  * for allocating the perf_sample_id table we fake 1 cpu and
3604                  * hattr->ids threads.
3605                  */
3606                 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
3607                         goto out_delete_evlist;
3608
3609                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3610
3611                 for (j = 0; j < nr_ids; j++) {
3612                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3613                                 goto out_errno;
3614
3615                         perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
3616                 }
3617
3618                 lseek(fd, tmp, SEEK_SET);
3619         }
3620
3621         perf_header__process_sections(header, fd, &session->tevent,
3622                                       perf_file_section__process);
3623
3624         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3625                                                    session->tevent.pevent))
3626                 goto out_delete_evlist;
3627
3628         return 0;
3629 out_errno:
3630         return -errno;
3631
3632 out_delete_evlist:
3633         evlist__delete(session->evlist);
3634         session->evlist = NULL;
3635         return -ENOMEM;
3636 }
3637
3638 int perf_event__process_feature(struct perf_session *session,
3639                                 union perf_event *event)
3640 {
3641         struct perf_tool *tool = session->tool;
3642         struct feat_fd ff = { .fd = 0 };
3643         struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
3644         int type = fe->header.type;
3645         u64 feat = fe->feat_id;
3646
3647         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3648                 pr_warning("invalid record type %d in pipe-mode\n", type);
3649                 return 0;
3650         }
3651         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3652                 pr_warning("invalid record type %d in pipe-mode\n", type);
3653                 return -1;
3654         }
3655
3656         if (!feat_ops[feat].process)
3657                 return 0;
3658
3659         ff.buf  = (void *)fe->data;
3660         ff.size = event->header.size - sizeof(*fe);
3661         ff.ph = &session->header;
3662
3663         if (feat_ops[feat].process(&ff, NULL))
3664                 return -1;
3665
3666         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3667                 return 0;
3668
3669         if (!feat_ops[feat].full_only ||
3670             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3671                 feat_ops[feat].print(&ff, stdout);
3672         } else {
3673                 fprintf(stdout, "# %s info available, use -I to display\n",
3674                         feat_ops[feat].name);
3675         }
3676
3677         return 0;
3678 }
3679
3680 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3681 {
3682         struct perf_record_event_update *ev = &event->event_update;
3683         struct perf_record_event_update_scale *ev_scale;
3684         struct perf_record_event_update_cpus *ev_cpus;
3685         struct perf_cpu_map *map;
3686         size_t ret;
3687
3688         ret = fprintf(fp, "\n... id:    %" PRI_lu64 "\n", ev->id);
3689
3690         switch (ev->type) {
3691         case PERF_EVENT_UPDATE__SCALE:
3692                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3693                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3694                 break;
3695         case PERF_EVENT_UPDATE__UNIT:
3696                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3697                 break;
3698         case PERF_EVENT_UPDATE__NAME:
3699                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3700                 break;
3701         case PERF_EVENT_UPDATE__CPUS:
3702                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3703                 ret += fprintf(fp, "... ");
3704
3705                 map = cpu_map__new_data(&ev_cpus->cpus);
3706                 if (map)
3707                         ret += cpu_map__fprintf(map, fp);
3708                 else
3709                         ret += fprintf(fp, "failed to get cpus\n");
3710                 break;
3711         default:
3712                 ret += fprintf(fp, "... unknown type\n");
3713                 break;
3714         }
3715
3716         return ret;
3717 }
3718
3719 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3720                              union perf_event *event,
3721                              struct evlist **pevlist)
3722 {
3723         u32 i, ids, n_ids;
3724         struct evsel *evsel;
3725         struct evlist *evlist = *pevlist;
3726
3727         if (evlist == NULL) {
3728                 *pevlist = evlist = evlist__new();
3729                 if (evlist == NULL)
3730                         return -ENOMEM;
3731         }
3732
3733         evsel = evsel__new(&event->attr.attr);
3734         if (evsel == NULL)
3735                 return -ENOMEM;
3736
3737         evlist__add(evlist, evsel);
3738
3739         ids = event->header.size;
3740         ids -= (void *)&event->attr.id - (void *)event;
3741         n_ids = ids / sizeof(u64);
3742         /*
3743          * We don't have the cpu and thread maps on the header, so
3744          * for allocating the perf_sample_id table we fake 1 cpu and
3745          * hattr->ids threads.
3746          */
3747         if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
3748                 return -ENOMEM;
3749
3750         for (i = 0; i < n_ids; i++) {
3751                 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
3752         }
3753
3754         return 0;
3755 }
3756
3757 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3758                                      union perf_event *event,
3759                                      struct evlist **pevlist)
3760 {
3761         struct perf_record_event_update *ev = &event->event_update;
3762         struct perf_record_event_update_scale *ev_scale;
3763         struct perf_record_event_update_cpus *ev_cpus;
3764         struct evlist *evlist;
3765         struct evsel *evsel;
3766         struct perf_cpu_map *map;
3767
3768         if (!pevlist || *pevlist == NULL)
3769                 return -EINVAL;
3770
3771         evlist = *pevlist;
3772
3773         evsel = perf_evlist__id2evsel(evlist, ev->id);
3774         if (evsel == NULL)
3775                 return -EINVAL;
3776
3777         switch (ev->type) {
3778         case PERF_EVENT_UPDATE__UNIT:
3779                 evsel->unit = strdup(ev->data);
3780                 break;
3781         case PERF_EVENT_UPDATE__NAME:
3782                 evsel->name = strdup(ev->data);
3783                 break;
3784         case PERF_EVENT_UPDATE__SCALE:
3785                 ev_scale = (struct perf_record_event_update_scale *)ev->data;
3786                 evsel->scale = ev_scale->scale;
3787                 break;
3788         case PERF_EVENT_UPDATE__CPUS:
3789                 ev_cpus = (struct perf_record_event_update_cpus *)ev->data;
3790
3791                 map = cpu_map__new_data(&ev_cpus->cpus);
3792                 if (map)
3793                         evsel->core.own_cpus = map;
3794                 else
3795                         pr_err("failed to get event_update cpus\n");
3796         default:
3797                 break;
3798         }
3799
3800         return 0;
3801 }
3802
3803 int perf_event__process_tracing_data(struct perf_session *session,
3804                                      union perf_event *event)
3805 {
3806         ssize_t size_read, padding, size = event->tracing_data.size;
3807         int fd = perf_data__fd(session->data);
3808         off_t offset = lseek(fd, 0, SEEK_CUR);
3809         char buf[BUFSIZ];
3810
3811         /* setup for reading amidst mmap */
3812         lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
3813               SEEK_SET);
3814
3815         size_read = trace_report(fd, &session->tevent,
3816                                  session->repipe);
3817         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3818
3819         if (readn(fd, buf, padding) < 0) {
3820                 pr_err("%s: reading input file", __func__);
3821                 return -1;
3822         }
3823         if (session->repipe) {
3824                 int retw = write(STDOUT_FILENO, buf, padding);
3825                 if (retw <= 0 || retw != padding) {
3826                         pr_err("%s: repiping tracing data padding", __func__);
3827                         return -1;
3828                 }
3829         }
3830
3831         if (size_read + padding != size) {
3832                 pr_err("%s: tracing data size mismatch", __func__);
3833                 return -1;
3834         }
3835
3836         perf_evlist__prepare_tracepoint_events(session->evlist,
3837                                                session->tevent.pevent);
3838
3839         return size_read + padding;
3840 }
3841
3842 int perf_event__process_build_id(struct perf_session *session,
3843                                  union perf_event *event)
3844 {
3845         __event_process_build_id(&event->build_id,
3846                                  event->build_id.filename,
3847                                  session);
3848         return 0;
3849 }