]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/header.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21 #include <bpf/libbpf.h>
22
23 #include "evlist.h"
24 #include "evsel.h"
25 #include "header.h"
26 #include "memswap.h"
27 #include "../perf.h"
28 #include "trace-event.h"
29 #include "session.h"
30 #include "symbol.h"
31 #include "debug.h"
32 #include "cpumap.h"
33 #include "pmu.h"
34 #include "vdso.h"
35 #include "strbuf.h"
36 #include "build-id.h"
37 #include "data.h"
38 #include <api/fs/fs.h>
39 #include "asm/bug.h"
40 #include "tool.h"
41 #include "time-utils.h"
42 #include "units.h"
43 #include "cputopo.h"
44 #include "bpf-event.h"
45
46 #include "sane_ctype.h"
47
48 /*
49  * magic2 = "PERFILE2"
50  * must be a numerical value to let the endianness
51  * determine the memory layout. That way we are able
52  * to detect endianness when reading the perf.data file
53  * back.
54  *
55  * we check for legacy (PERFFILE) format.
56  */
57 static const char *__perf_magic1 = "PERFFILE";
58 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
59 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
60
61 #define PERF_MAGIC      __perf_magic2
62
63 const char perf_version_string[] = PERF_VERSION;
64
65 struct perf_file_attr {
66         struct perf_event_attr  attr;
67         struct perf_file_section        ids;
68 };
69
70 struct feat_fd {
71         struct perf_header      *ph;
72         int                     fd;
73         void                    *buf;   /* Either buf != NULL or fd >= 0 */
74         ssize_t                 offset;
75         size_t                  size;
76         struct perf_evsel       *events;
77 };
78
79 void perf_header__set_feat(struct perf_header *header, int feat)
80 {
81         set_bit(feat, header->adds_features);
82 }
83
84 void perf_header__clear_feat(struct perf_header *header, int feat)
85 {
86         clear_bit(feat, header->adds_features);
87 }
88
89 bool perf_header__has_feat(const struct perf_header *header, int feat)
90 {
91         return test_bit(feat, header->adds_features);
92 }
93
94 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
95 {
96         ssize_t ret = writen(ff->fd, buf, size);
97
98         if (ret != (ssize_t)size)
99                 return ret < 0 ? (int)ret : -1;
100         return 0;
101 }
102
103 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
104 {
105         /* struct perf_event_header::size is u16 */
106         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
107         size_t new_size = ff->size;
108         void *addr;
109
110         if (size + ff->offset > max_size)
111                 return -E2BIG;
112
113         while (size > (new_size - ff->offset))
114                 new_size <<= 1;
115         new_size = min(max_size, new_size);
116
117         if (ff->size < new_size) {
118                 addr = realloc(ff->buf, new_size);
119                 if (!addr)
120                         return -ENOMEM;
121                 ff->buf = addr;
122                 ff->size = new_size;
123         }
124
125         memcpy(ff->buf + ff->offset, buf, size);
126         ff->offset += size;
127
128         return 0;
129 }
130
131 /* Return: 0 if succeded, -ERR if failed. */
132 int do_write(struct feat_fd *ff, const void *buf, size_t size)
133 {
134         if (!ff->buf)
135                 return __do_write_fd(ff, buf, size);
136         return __do_write_buf(ff, buf, size);
137 }
138
139 /* Return: 0 if succeded, -ERR if failed. */
140 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
141 {
142         u64 *p = (u64 *) set;
143         int i, ret;
144
145         ret = do_write(ff, &size, sizeof(size));
146         if (ret < 0)
147                 return ret;
148
149         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
150                 ret = do_write(ff, p + i, sizeof(*p));
151                 if (ret < 0)
152                         return ret;
153         }
154
155         return 0;
156 }
157
158 /* Return: 0 if succeded, -ERR if failed. */
159 int write_padded(struct feat_fd *ff, const void *bf,
160                  size_t count, size_t count_aligned)
161 {
162         static const char zero_buf[NAME_ALIGN];
163         int err = do_write(ff, bf, count);
164
165         if (!err)
166                 err = do_write(ff, zero_buf, count_aligned - count);
167
168         return err;
169 }
170
171 #define string_size(str)                                                \
172         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
173
174 /* Return: 0 if succeded, -ERR if failed. */
175 static int do_write_string(struct feat_fd *ff, const char *str)
176 {
177         u32 len, olen;
178         int ret;
179
180         olen = strlen(str) + 1;
181         len = PERF_ALIGN(olen, NAME_ALIGN);
182
183         /* write len, incl. \0 */
184         ret = do_write(ff, &len, sizeof(len));
185         if (ret < 0)
186                 return ret;
187
188         return write_padded(ff, str, olen, len);
189 }
190
191 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
192 {
193         ssize_t ret = readn(ff->fd, addr, size);
194
195         if (ret != size)
196                 return ret < 0 ? (int)ret : -1;
197         return 0;
198 }
199
200 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
201 {
202         if (size > (ssize_t)ff->size - ff->offset)
203                 return -1;
204
205         memcpy(addr, ff->buf + ff->offset, size);
206         ff->offset += size;
207
208         return 0;
209
210 }
211
212 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
213 {
214         if (!ff->buf)
215                 return __do_read_fd(ff, addr, size);
216         return __do_read_buf(ff, addr, size);
217 }
218
219 static int do_read_u32(struct feat_fd *ff, u32 *addr)
220 {
221         int ret;
222
223         ret = __do_read(ff, addr, sizeof(*addr));
224         if (ret)
225                 return ret;
226
227         if (ff->ph->needs_swap)
228                 *addr = bswap_32(*addr);
229         return 0;
230 }
231
232 static int do_read_u64(struct feat_fd *ff, u64 *addr)
233 {
234         int ret;
235
236         ret = __do_read(ff, addr, sizeof(*addr));
237         if (ret)
238                 return ret;
239
240         if (ff->ph->needs_swap)
241                 *addr = bswap_64(*addr);
242         return 0;
243 }
244
245 static char *do_read_string(struct feat_fd *ff)
246 {
247         u32 len;
248         char *buf;
249
250         if (do_read_u32(ff, &len))
251                 return NULL;
252
253         buf = malloc(len);
254         if (!buf)
255                 return NULL;
256
257         if (!__do_read(ff, buf, len)) {
258                 /*
259                  * strings are padded by zeroes
260                  * thus the actual strlen of buf
261                  * may be less than len
262                  */
263                 return buf;
264         }
265
266         free(buf);
267         return NULL;
268 }
269
270 /* Return: 0 if succeded, -ERR if failed. */
271 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
272 {
273         unsigned long *set;
274         u64 size, *p;
275         int i, ret;
276
277         ret = do_read_u64(ff, &size);
278         if (ret)
279                 return ret;
280
281         set = bitmap_alloc(size);
282         if (!set)
283                 return -ENOMEM;
284
285         p = (u64 *) set;
286
287         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
288                 ret = do_read_u64(ff, p + i);
289                 if (ret < 0) {
290                         free(set);
291                         return ret;
292                 }
293         }
294
295         *pset  = set;
296         *psize = size;
297         return 0;
298 }
299
300 static int write_tracing_data(struct feat_fd *ff,
301                               struct perf_evlist *evlist)
302 {
303         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
304                 return -1;
305
306         return read_tracing_data(ff->fd, &evlist->entries);
307 }
308
309 static int write_build_id(struct feat_fd *ff,
310                           struct perf_evlist *evlist __maybe_unused)
311 {
312         struct perf_session *session;
313         int err;
314
315         session = container_of(ff->ph, struct perf_session, header);
316
317         if (!perf_session__read_build_ids(session, true))
318                 return -1;
319
320         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
321                 return -1;
322
323         err = perf_session__write_buildid_table(session, ff);
324         if (err < 0) {
325                 pr_debug("failed to write buildid table\n");
326                 return err;
327         }
328         perf_session__cache_build_ids(session);
329
330         return 0;
331 }
332
333 static int write_hostname(struct feat_fd *ff,
334                           struct perf_evlist *evlist __maybe_unused)
335 {
336         struct utsname uts;
337         int ret;
338
339         ret = uname(&uts);
340         if (ret < 0)
341                 return -1;
342
343         return do_write_string(ff, uts.nodename);
344 }
345
346 static int write_osrelease(struct feat_fd *ff,
347                            struct perf_evlist *evlist __maybe_unused)
348 {
349         struct utsname uts;
350         int ret;
351
352         ret = uname(&uts);
353         if (ret < 0)
354                 return -1;
355
356         return do_write_string(ff, uts.release);
357 }
358
359 static int write_arch(struct feat_fd *ff,
360                       struct perf_evlist *evlist __maybe_unused)
361 {
362         struct utsname uts;
363         int ret;
364
365         ret = uname(&uts);
366         if (ret < 0)
367                 return -1;
368
369         return do_write_string(ff, uts.machine);
370 }
371
372 static int write_version(struct feat_fd *ff,
373                          struct perf_evlist *evlist __maybe_unused)
374 {
375         return do_write_string(ff, perf_version_string);
376 }
377
378 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
379 {
380         FILE *file;
381         char *buf = NULL;
382         char *s, *p;
383         const char *search = cpuinfo_proc;
384         size_t len = 0;
385         int ret = -1;
386
387         if (!search)
388                 return -1;
389
390         file = fopen("/proc/cpuinfo", "r");
391         if (!file)
392                 return -1;
393
394         while (getline(&buf, &len, file) > 0) {
395                 ret = strncmp(buf, search, strlen(search));
396                 if (!ret)
397                         break;
398         }
399
400         if (ret) {
401                 ret = -1;
402                 goto done;
403         }
404
405         s = buf;
406
407         p = strchr(buf, ':');
408         if (p && *(p+1) == ' ' && *(p+2))
409                 s = p + 2;
410         p = strchr(s, '\n');
411         if (p)
412                 *p = '\0';
413
414         /* squash extra space characters (branding string) */
415         p = s;
416         while (*p) {
417                 if (isspace(*p)) {
418                         char *r = p + 1;
419                         char *q = r;
420                         *p = ' ';
421                         while (*q && isspace(*q))
422                                 q++;
423                         if (q != (p+1))
424                                 while ((*r++ = *q++));
425                 }
426                 p++;
427         }
428         ret = do_write_string(ff, s);
429 done:
430         free(buf);
431         fclose(file);
432         return ret;
433 }
434
435 static int write_cpudesc(struct feat_fd *ff,
436                        struct perf_evlist *evlist __maybe_unused)
437 {
438         const char *cpuinfo_procs[] = CPUINFO_PROC;
439         unsigned int i;
440
441         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
442                 int ret;
443                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
444                 if (ret >= 0)
445                         return ret;
446         }
447         return -1;
448 }
449
450
451 static int write_nrcpus(struct feat_fd *ff,
452                         struct perf_evlist *evlist __maybe_unused)
453 {
454         long nr;
455         u32 nrc, nra;
456         int ret;
457
458         nrc = cpu__max_present_cpu();
459
460         nr = sysconf(_SC_NPROCESSORS_ONLN);
461         if (nr < 0)
462                 return -1;
463
464         nra = (u32)(nr & UINT_MAX);
465
466         ret = do_write(ff, &nrc, sizeof(nrc));
467         if (ret < 0)
468                 return ret;
469
470         return do_write(ff, &nra, sizeof(nra));
471 }
472
473 static int write_event_desc(struct feat_fd *ff,
474                             struct perf_evlist *evlist)
475 {
476         struct perf_evsel *evsel;
477         u32 nre, nri, sz;
478         int ret;
479
480         nre = evlist->nr_entries;
481
482         /*
483          * write number of events
484          */
485         ret = do_write(ff, &nre, sizeof(nre));
486         if (ret < 0)
487                 return ret;
488
489         /*
490          * size of perf_event_attr struct
491          */
492         sz = (u32)sizeof(evsel->attr);
493         ret = do_write(ff, &sz, sizeof(sz));
494         if (ret < 0)
495                 return ret;
496
497         evlist__for_each_entry(evlist, evsel) {
498                 ret = do_write(ff, &evsel->attr, sz);
499                 if (ret < 0)
500                         return ret;
501                 /*
502                  * write number of unique id per event
503                  * there is one id per instance of an event
504                  *
505                  * copy into an nri to be independent of the
506                  * type of ids,
507                  */
508                 nri = evsel->ids;
509                 ret = do_write(ff, &nri, sizeof(nri));
510                 if (ret < 0)
511                         return ret;
512
513                 /*
514                  * write event string as passed on cmdline
515                  */
516                 ret = do_write_string(ff, perf_evsel__name(evsel));
517                 if (ret < 0)
518                         return ret;
519                 /*
520                  * write unique ids for this event
521                  */
522                 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
523                 if (ret < 0)
524                         return ret;
525         }
526         return 0;
527 }
528
529 static int write_cmdline(struct feat_fd *ff,
530                          struct perf_evlist *evlist __maybe_unused)
531 {
532         char pbuf[MAXPATHLEN], *buf;
533         int i, ret, n;
534
535         /* actual path to perf binary */
536         buf = perf_exe(pbuf, MAXPATHLEN);
537
538         /* account for binary path */
539         n = perf_env.nr_cmdline + 1;
540
541         ret = do_write(ff, &n, sizeof(n));
542         if (ret < 0)
543                 return ret;
544
545         ret = do_write_string(ff, buf);
546         if (ret < 0)
547                 return ret;
548
549         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
550                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
551                 if (ret < 0)
552                         return ret;
553         }
554         return 0;
555 }
556
557
558 static int write_cpu_topology(struct feat_fd *ff,
559                               struct perf_evlist *evlist __maybe_unused)
560 {
561         struct cpu_topology *tp;
562         u32 i;
563         int ret, j;
564
565         tp = cpu_topology__new();
566         if (!tp)
567                 return -1;
568
569         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
570         if (ret < 0)
571                 goto done;
572
573         for (i = 0; i < tp->core_sib; i++) {
574                 ret = do_write_string(ff, tp->core_siblings[i]);
575                 if (ret < 0)
576                         goto done;
577         }
578         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
579         if (ret < 0)
580                 goto done;
581
582         for (i = 0; i < tp->thread_sib; i++) {
583                 ret = do_write_string(ff, tp->thread_siblings[i]);
584                 if (ret < 0)
585                         break;
586         }
587
588         ret = perf_env__read_cpu_topology_map(&perf_env);
589         if (ret < 0)
590                 goto done;
591
592         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
593                 ret = do_write(ff, &perf_env.cpu[j].core_id,
594                                sizeof(perf_env.cpu[j].core_id));
595                 if (ret < 0)
596                         return ret;
597                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
598                                sizeof(perf_env.cpu[j].socket_id));
599                 if (ret < 0)
600                         return ret;
601         }
602 done:
603         cpu_topology__delete(tp);
604         return ret;
605 }
606
607
608
609 static int write_total_mem(struct feat_fd *ff,
610                            struct perf_evlist *evlist __maybe_unused)
611 {
612         char *buf = NULL;
613         FILE *fp;
614         size_t len = 0;
615         int ret = -1, n;
616         uint64_t mem;
617
618         fp = fopen("/proc/meminfo", "r");
619         if (!fp)
620                 return -1;
621
622         while (getline(&buf, &len, fp) > 0) {
623                 ret = strncmp(buf, "MemTotal:", 9);
624                 if (!ret)
625                         break;
626         }
627         if (!ret) {
628                 n = sscanf(buf, "%*s %"PRIu64, &mem);
629                 if (n == 1)
630                         ret = do_write(ff, &mem, sizeof(mem));
631         } else
632                 ret = -1;
633         free(buf);
634         fclose(fp);
635         return ret;
636 }
637
638 static int write_numa_topology(struct feat_fd *ff,
639                                struct perf_evlist *evlist __maybe_unused)
640 {
641         struct numa_topology *tp;
642         int ret = -1;
643         u32 i;
644
645         tp = numa_topology__new();
646         if (!tp)
647                 return -ENOMEM;
648
649         ret = do_write(ff, &tp->nr, sizeof(u32));
650         if (ret < 0)
651                 goto err;
652
653         for (i = 0; i < tp->nr; i++) {
654                 struct numa_topology_node *n = &tp->nodes[i];
655
656                 ret = do_write(ff, &n->node, sizeof(u32));
657                 if (ret < 0)
658                         goto err;
659
660                 ret = do_write(ff, &n->mem_total, sizeof(u64));
661                 if (ret)
662                         goto err;
663
664                 ret = do_write(ff, &n->mem_free, sizeof(u64));
665                 if (ret)
666                         goto err;
667
668                 ret = do_write_string(ff, n->cpus);
669                 if (ret < 0)
670                         goto err;
671         }
672
673         ret = 0;
674
675 err:
676         numa_topology__delete(tp);
677         return ret;
678 }
679
680 /*
681  * File format:
682  *
683  * struct pmu_mappings {
684  *      u32     pmu_num;
685  *      struct pmu_map {
686  *              u32     type;
687  *              char    name[];
688  *      }[pmu_num];
689  * };
690  */
691
692 static int write_pmu_mappings(struct feat_fd *ff,
693                               struct perf_evlist *evlist __maybe_unused)
694 {
695         struct perf_pmu *pmu = NULL;
696         u32 pmu_num = 0;
697         int ret;
698
699         /*
700          * Do a first pass to count number of pmu to avoid lseek so this
701          * works in pipe mode as well.
702          */
703         while ((pmu = perf_pmu__scan(pmu))) {
704                 if (!pmu->name)
705                         continue;
706                 pmu_num++;
707         }
708
709         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
710         if (ret < 0)
711                 return ret;
712
713         while ((pmu = perf_pmu__scan(pmu))) {
714                 if (!pmu->name)
715                         continue;
716
717                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
718                 if (ret < 0)
719                         return ret;
720
721                 ret = do_write_string(ff, pmu->name);
722                 if (ret < 0)
723                         return ret;
724         }
725
726         return 0;
727 }
728
729 /*
730  * File format:
731  *
732  * struct group_descs {
733  *      u32     nr_groups;
734  *      struct group_desc {
735  *              char    name[];
736  *              u32     leader_idx;
737  *              u32     nr_members;
738  *      }[nr_groups];
739  * };
740  */
741 static int write_group_desc(struct feat_fd *ff,
742                             struct perf_evlist *evlist)
743 {
744         u32 nr_groups = evlist->nr_groups;
745         struct perf_evsel *evsel;
746         int ret;
747
748         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
749         if (ret < 0)
750                 return ret;
751
752         evlist__for_each_entry(evlist, evsel) {
753                 if (perf_evsel__is_group_leader(evsel) &&
754                     evsel->nr_members > 1) {
755                         const char *name = evsel->group_name ?: "{anon_group}";
756                         u32 leader_idx = evsel->idx;
757                         u32 nr_members = evsel->nr_members;
758
759                         ret = do_write_string(ff, name);
760                         if (ret < 0)
761                                 return ret;
762
763                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
764                         if (ret < 0)
765                                 return ret;
766
767                         ret = do_write(ff, &nr_members, sizeof(nr_members));
768                         if (ret < 0)
769                                 return ret;
770                 }
771         }
772         return 0;
773 }
774
775 /*
776  * Return the CPU id as a raw string.
777  *
778  * Each architecture should provide a more precise id string that
779  * can be use to match the architecture's "mapfile".
780  */
781 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
782 {
783         return NULL;
784 }
785
786 /* Return zero when the cpuid from the mapfile.csv matches the
787  * cpuid string generated on this platform.
788  * Otherwise return non-zero.
789  */
790 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
791 {
792         regex_t re;
793         regmatch_t pmatch[1];
794         int match;
795
796         if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
797                 /* Warn unable to generate match particular string. */
798                 pr_info("Invalid regular expression %s\n", mapcpuid);
799                 return 1;
800         }
801
802         match = !regexec(&re, cpuid, 1, pmatch, 0);
803         regfree(&re);
804         if (match) {
805                 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
806
807                 /* Verify the entire string matched. */
808                 if (match_len == strlen(cpuid))
809                         return 0;
810         }
811         return 1;
812 }
813
814 /*
815  * default get_cpuid(): nothing gets recorded
816  * actual implementation must be in arch/$(SRCARCH)/util/header.c
817  */
818 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
819 {
820         return -1;
821 }
822
823 static int write_cpuid(struct feat_fd *ff,
824                        struct perf_evlist *evlist __maybe_unused)
825 {
826         char buffer[64];
827         int ret;
828
829         ret = get_cpuid(buffer, sizeof(buffer));
830         if (ret)
831                 return -1;
832
833         return do_write_string(ff, buffer);
834 }
835
836 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
837                               struct perf_evlist *evlist __maybe_unused)
838 {
839         return 0;
840 }
841
842 static int write_auxtrace(struct feat_fd *ff,
843                           struct perf_evlist *evlist __maybe_unused)
844 {
845         struct perf_session *session;
846         int err;
847
848         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
849                 return -1;
850
851         session = container_of(ff->ph, struct perf_session, header);
852
853         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
854         if (err < 0)
855                 pr_err("Failed to write auxtrace index\n");
856         return err;
857 }
858
859 static int write_clockid(struct feat_fd *ff,
860                          struct perf_evlist *evlist __maybe_unused)
861 {
862         return do_write(ff, &ff->ph->env.clockid_res_ns,
863                         sizeof(ff->ph->env.clockid_res_ns));
864 }
865
866 static int write_dir_format(struct feat_fd *ff,
867                             struct perf_evlist *evlist __maybe_unused)
868 {
869         struct perf_session *session;
870         struct perf_data *data;
871
872         session = container_of(ff->ph, struct perf_session, header);
873         data = session->data;
874
875         if (WARN_ON(!perf_data__is_dir(data)))
876                 return -1;
877
878         return do_write(ff, &data->dir.version, sizeof(data->dir.version));
879 }
880
881 #ifdef HAVE_LIBBPF_SUPPORT
882 static int write_bpf_prog_info(struct feat_fd *ff,
883                                struct perf_evlist *evlist __maybe_unused)
884 {
885         struct perf_env *env = &ff->ph->env;
886         struct rb_root *root;
887         struct rb_node *next;
888         int ret;
889
890         down_read(&env->bpf_progs.lock);
891
892         ret = do_write(ff, &env->bpf_progs.infos_cnt,
893                        sizeof(env->bpf_progs.infos_cnt));
894         if (ret < 0)
895                 goto out;
896
897         root = &env->bpf_progs.infos;
898         next = rb_first(root);
899         while (next) {
900                 struct bpf_prog_info_node *node;
901                 size_t len;
902
903                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
904                 next = rb_next(&node->rb_node);
905                 len = sizeof(struct bpf_prog_info_linear) +
906                         node->info_linear->data_len;
907
908                 /* before writing to file, translate address to offset */
909                 bpf_program__bpil_addr_to_offs(node->info_linear);
910                 ret = do_write(ff, node->info_linear, len);
911                 /*
912                  * translate back to address even when do_write() fails,
913                  * so that this function never changes the data.
914                  */
915                 bpf_program__bpil_offs_to_addr(node->info_linear);
916                 if (ret < 0)
917                         goto out;
918         }
919 out:
920         up_read(&env->bpf_progs.lock);
921         return ret;
922 }
923 #else // HAVE_LIBBPF_SUPPORT
924 static int write_bpf_prog_info(struct feat_fd *ff __maybe_unused,
925                                struct perf_evlist *evlist __maybe_unused)
926 {
927         return 0;
928 }
929 #endif // HAVE_LIBBPF_SUPPORT
930
931 static int write_bpf_btf(struct feat_fd *ff,
932                          struct perf_evlist *evlist __maybe_unused)
933 {
934         struct perf_env *env = &ff->ph->env;
935         struct rb_root *root;
936         struct rb_node *next;
937         int ret;
938
939         down_read(&env->bpf_progs.lock);
940
941         ret = do_write(ff, &env->bpf_progs.btfs_cnt,
942                        sizeof(env->bpf_progs.btfs_cnt));
943
944         if (ret < 0)
945                 goto out;
946
947         root = &env->bpf_progs.btfs;
948         next = rb_first(root);
949         while (next) {
950                 struct btf_node *node;
951
952                 node = rb_entry(next, struct btf_node, rb_node);
953                 next = rb_next(&node->rb_node);
954                 ret = do_write(ff, &node->id,
955                                sizeof(u32) * 2 + node->data_size);
956                 if (ret < 0)
957                         goto out;
958         }
959 out:
960         up_read(&env->bpf_progs.lock);
961         return ret;
962 }
963
964 static int cpu_cache_level__sort(const void *a, const void *b)
965 {
966         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
967         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
968
969         return cache_a->level - cache_b->level;
970 }
971
972 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
973 {
974         if (a->level != b->level)
975                 return false;
976
977         if (a->line_size != b->line_size)
978                 return false;
979
980         if (a->sets != b->sets)
981                 return false;
982
983         if (a->ways != b->ways)
984                 return false;
985
986         if (strcmp(a->type, b->type))
987                 return false;
988
989         if (strcmp(a->size, b->size))
990                 return false;
991
992         if (strcmp(a->map, b->map))
993                 return false;
994
995         return true;
996 }
997
998 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
999 {
1000         char path[PATH_MAX], file[PATH_MAX];
1001         struct stat st;
1002         size_t len;
1003
1004         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1005         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1006
1007         if (stat(file, &st))
1008                 return 1;
1009
1010         scnprintf(file, PATH_MAX, "%s/level", path);
1011         if (sysfs__read_int(file, (int *) &cache->level))
1012                 return -1;
1013
1014         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1015         if (sysfs__read_int(file, (int *) &cache->line_size))
1016                 return -1;
1017
1018         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1019         if (sysfs__read_int(file, (int *) &cache->sets))
1020                 return -1;
1021
1022         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1023         if (sysfs__read_int(file, (int *) &cache->ways))
1024                 return -1;
1025
1026         scnprintf(file, PATH_MAX, "%s/type", path);
1027         if (sysfs__read_str(file, &cache->type, &len))
1028                 return -1;
1029
1030         cache->type[len] = 0;
1031         cache->type = rtrim(cache->type);
1032
1033         scnprintf(file, PATH_MAX, "%s/size", path);
1034         if (sysfs__read_str(file, &cache->size, &len)) {
1035                 free(cache->type);
1036                 return -1;
1037         }
1038
1039         cache->size[len] = 0;
1040         cache->size = rtrim(cache->size);
1041
1042         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1043         if (sysfs__read_str(file, &cache->map, &len)) {
1044                 free(cache->map);
1045                 free(cache->type);
1046                 return -1;
1047         }
1048
1049         cache->map[len] = 0;
1050         cache->map = rtrim(cache->map);
1051         return 0;
1052 }
1053
1054 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1055 {
1056         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1057 }
1058
1059 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1060 {
1061         u32 i, cnt = 0;
1062         long ncpus;
1063         u32 nr, cpu;
1064         u16 level;
1065
1066         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1067         if (ncpus < 0)
1068                 return -1;
1069
1070         nr = (u32)(ncpus & UINT_MAX);
1071
1072         for (cpu = 0; cpu < nr; cpu++) {
1073                 for (level = 0; level < 10; level++) {
1074                         struct cpu_cache_level c;
1075                         int err;
1076
1077                         err = cpu_cache_level__read(&c, cpu, level);
1078                         if (err < 0)
1079                                 return err;
1080
1081                         if (err == 1)
1082                                 break;
1083
1084                         for (i = 0; i < cnt; i++) {
1085                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1086                                         break;
1087                         }
1088
1089                         if (i == cnt)
1090                                 caches[cnt++] = c;
1091                         else
1092                                 cpu_cache_level__free(&c);
1093
1094                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1095                                 goto out;
1096                 }
1097         }
1098  out:
1099         *cntp = cnt;
1100         return 0;
1101 }
1102
1103 #define MAX_CACHES 2000
1104
1105 static int write_cache(struct feat_fd *ff,
1106                        struct perf_evlist *evlist __maybe_unused)
1107 {
1108         struct cpu_cache_level caches[MAX_CACHES];
1109         u32 cnt = 0, i, version = 1;
1110         int ret;
1111
1112         ret = build_caches(caches, MAX_CACHES, &cnt);
1113         if (ret)
1114                 goto out;
1115
1116         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1117
1118         ret = do_write(ff, &version, sizeof(u32));
1119         if (ret < 0)
1120                 goto out;
1121
1122         ret = do_write(ff, &cnt, sizeof(u32));
1123         if (ret < 0)
1124                 goto out;
1125
1126         for (i = 0; i < cnt; i++) {
1127                 struct cpu_cache_level *c = &caches[i];
1128
1129                 #define _W(v)                                   \
1130                         ret = do_write(ff, &c->v, sizeof(u32)); \
1131                         if (ret < 0)                            \
1132                                 goto out;
1133
1134                 _W(level)
1135                 _W(line_size)
1136                 _W(sets)
1137                 _W(ways)
1138                 #undef _W
1139
1140                 #define _W(v)                                           \
1141                         ret = do_write_string(ff, (const char *) c->v); \
1142                         if (ret < 0)                                    \
1143                                 goto out;
1144
1145                 _W(type)
1146                 _W(size)
1147                 _W(map)
1148                 #undef _W
1149         }
1150
1151 out:
1152         for (i = 0; i < cnt; i++)
1153                 cpu_cache_level__free(&caches[i]);
1154         return ret;
1155 }
1156
1157 static int write_stat(struct feat_fd *ff __maybe_unused,
1158                       struct perf_evlist *evlist __maybe_unused)
1159 {
1160         return 0;
1161 }
1162
1163 static int write_sample_time(struct feat_fd *ff,
1164                              struct perf_evlist *evlist)
1165 {
1166         int ret;
1167
1168         ret = do_write(ff, &evlist->first_sample_time,
1169                        sizeof(evlist->first_sample_time));
1170         if (ret < 0)
1171                 return ret;
1172
1173         return do_write(ff, &evlist->last_sample_time,
1174                         sizeof(evlist->last_sample_time));
1175 }
1176
1177
1178 static int memory_node__read(struct memory_node *n, unsigned long idx)
1179 {
1180         unsigned int phys, size = 0;
1181         char path[PATH_MAX];
1182         struct dirent *ent;
1183         DIR *dir;
1184
1185 #define for_each_memory(mem, dir)                                       \
1186         while ((ent = readdir(dir)))                                    \
1187                 if (strcmp(ent->d_name, ".") &&                         \
1188                     strcmp(ent->d_name, "..") &&                        \
1189                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1190
1191         scnprintf(path, PATH_MAX,
1192                   "%s/devices/system/node/node%lu",
1193                   sysfs__mountpoint(), idx);
1194
1195         dir = opendir(path);
1196         if (!dir) {
1197                 pr_warning("failed: cant' open memory sysfs data\n");
1198                 return -1;
1199         }
1200
1201         for_each_memory(phys, dir) {
1202                 size = max(phys, size);
1203         }
1204
1205         size++;
1206
1207         n->set = bitmap_alloc(size);
1208         if (!n->set) {
1209                 closedir(dir);
1210                 return -ENOMEM;
1211         }
1212
1213         n->node = idx;
1214         n->size = size;
1215
1216         rewinddir(dir);
1217
1218         for_each_memory(phys, dir) {
1219                 set_bit(phys, n->set);
1220         }
1221
1222         closedir(dir);
1223         return 0;
1224 }
1225
1226 static int memory_node__sort(const void *a, const void *b)
1227 {
1228         const struct memory_node *na = a;
1229         const struct memory_node *nb = b;
1230
1231         return na->node - nb->node;
1232 }
1233
1234 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1235 {
1236         char path[PATH_MAX];
1237         struct dirent *ent;
1238         DIR *dir;
1239         u64 cnt = 0;
1240         int ret = 0;
1241
1242         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1243                   sysfs__mountpoint());
1244
1245         dir = opendir(path);
1246         if (!dir) {
1247                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1248                           __func__, path);
1249                 return -1;
1250         }
1251
1252         while (!ret && (ent = readdir(dir))) {
1253                 unsigned int idx;
1254                 int r;
1255
1256                 if (!strcmp(ent->d_name, ".") ||
1257                     !strcmp(ent->d_name, ".."))
1258                         continue;
1259
1260                 r = sscanf(ent->d_name, "node%u", &idx);
1261                 if (r != 1)
1262                         continue;
1263
1264                 if (WARN_ONCE(cnt >= size,
1265                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1266                         return -1;
1267
1268                 ret = memory_node__read(&nodes[cnt++], idx);
1269         }
1270
1271         *cntp = cnt;
1272         closedir(dir);
1273
1274         if (!ret)
1275                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1276
1277         return ret;
1278 }
1279
1280 #define MAX_MEMORY_NODES 2000
1281
1282 /*
1283  * The MEM_TOPOLOGY holds physical memory map for every
1284  * node in system. The format of data is as follows:
1285  *
1286  *  0 - version          | for future changes
1287  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1288  * 16 - count            | number of nodes
1289  *
1290  * For each node we store map of physical indexes for
1291  * each node:
1292  *
1293  * 32 - node id          | node index
1294  * 40 - size             | size of bitmap
1295  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1296  */
1297 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1298                               struct perf_evlist *evlist __maybe_unused)
1299 {
1300         static struct memory_node nodes[MAX_MEMORY_NODES];
1301         u64 bsize, version = 1, i, nr;
1302         int ret;
1303
1304         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1305                               (unsigned long long *) &bsize);
1306         if (ret)
1307                 return ret;
1308
1309         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1310         if (ret)
1311                 return ret;
1312
1313         ret = do_write(ff, &version, sizeof(version));
1314         if (ret < 0)
1315                 goto out;
1316
1317         ret = do_write(ff, &bsize, sizeof(bsize));
1318         if (ret < 0)
1319                 goto out;
1320
1321         ret = do_write(ff, &nr, sizeof(nr));
1322         if (ret < 0)
1323                 goto out;
1324
1325         for (i = 0; i < nr; i++) {
1326                 struct memory_node *n = &nodes[i];
1327
1328                 #define _W(v)                                           \
1329                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1330                         if (ret < 0)                                    \
1331                                 goto out;
1332
1333                 _W(node)
1334                 _W(size)
1335
1336                 #undef _W
1337
1338                 ret = do_write_bitmap(ff, n->set, n->size);
1339                 if (ret < 0)
1340                         goto out;
1341         }
1342
1343 out:
1344         return ret;
1345 }
1346
1347 static void print_hostname(struct feat_fd *ff, FILE *fp)
1348 {
1349         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1350 }
1351
1352 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1353 {
1354         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1355 }
1356
1357 static void print_arch(struct feat_fd *ff, FILE *fp)
1358 {
1359         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1360 }
1361
1362 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1363 {
1364         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1365 }
1366
1367 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1368 {
1369         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1370         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1371 }
1372
1373 static void print_version(struct feat_fd *ff, FILE *fp)
1374 {
1375         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1376 }
1377
1378 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1379 {
1380         int nr, i;
1381
1382         nr = ff->ph->env.nr_cmdline;
1383
1384         fprintf(fp, "# cmdline : ");
1385
1386         for (i = 0; i < nr; i++) {
1387                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1388                 if (!argv_i) {
1389                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1390                 } else {
1391                         char *mem = argv_i;
1392                         do {
1393                                 char *quote = strchr(argv_i, '\'');
1394                                 if (!quote)
1395                                         break;
1396                                 *quote++ = '\0';
1397                                 fprintf(fp, "%s\\\'", argv_i);
1398                                 argv_i = quote;
1399                         } while (1);
1400                         fprintf(fp, "%s ", argv_i);
1401                         free(mem);
1402                 }
1403         }
1404         fputc('\n', fp);
1405 }
1406
1407 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1408 {
1409         struct perf_header *ph = ff->ph;
1410         int cpu_nr = ph->env.nr_cpus_avail;
1411         int nr, i;
1412         char *str;
1413
1414         nr = ph->env.nr_sibling_cores;
1415         str = ph->env.sibling_cores;
1416
1417         for (i = 0; i < nr; i++) {
1418                 fprintf(fp, "# sibling cores   : %s\n", str);
1419                 str += strlen(str) + 1;
1420         }
1421
1422         nr = ph->env.nr_sibling_threads;
1423         str = ph->env.sibling_threads;
1424
1425         for (i = 0; i < nr; i++) {
1426                 fprintf(fp, "# sibling threads : %s\n", str);
1427                 str += strlen(str) + 1;
1428         }
1429
1430         if (ph->env.cpu != NULL) {
1431                 for (i = 0; i < cpu_nr; i++)
1432                         fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1433                                 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1434         } else
1435                 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1436 }
1437
1438 static void print_clockid(struct feat_fd *ff, FILE *fp)
1439 {
1440         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1441                 ff->ph->env.clockid_res_ns * 1000);
1442 }
1443
1444 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1445 {
1446         struct perf_session *session;
1447         struct perf_data *data;
1448
1449         session = container_of(ff->ph, struct perf_session, header);
1450         data = session->data;
1451
1452         fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1453 }
1454
1455 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1456 {
1457         struct perf_env *env = &ff->ph->env;
1458         struct rb_root *root;
1459         struct rb_node *next;
1460
1461         down_read(&env->bpf_progs.lock);
1462
1463         root = &env->bpf_progs.infos;
1464         next = rb_first(root);
1465
1466         while (next) {
1467                 struct bpf_prog_info_node *node;
1468
1469                 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1470                 next = rb_next(&node->rb_node);
1471
1472                 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1473                                                env, fp);
1474         }
1475
1476         up_read(&env->bpf_progs.lock);
1477 }
1478
1479 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1480 {
1481         struct perf_env *env = &ff->ph->env;
1482         struct rb_root *root;
1483         struct rb_node *next;
1484
1485         down_read(&env->bpf_progs.lock);
1486
1487         root = &env->bpf_progs.btfs;
1488         next = rb_first(root);
1489
1490         while (next) {
1491                 struct btf_node *node;
1492
1493                 node = rb_entry(next, struct btf_node, rb_node);
1494                 next = rb_next(&node->rb_node);
1495                 fprintf(fp, "# btf info of id %u\n", node->id);
1496         }
1497
1498         up_read(&env->bpf_progs.lock);
1499 }
1500
1501 static void free_event_desc(struct perf_evsel *events)
1502 {
1503         struct perf_evsel *evsel;
1504
1505         if (!events)
1506                 return;
1507
1508         for (evsel = events; evsel->attr.size; evsel++) {
1509                 zfree(&evsel->name);
1510                 zfree(&evsel->id);
1511         }
1512
1513         free(events);
1514 }
1515
1516 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1517 {
1518         struct perf_evsel *evsel, *events = NULL;
1519         u64 *id;
1520         void *buf = NULL;
1521         u32 nre, sz, nr, i, j;
1522         size_t msz;
1523
1524         /* number of events */
1525         if (do_read_u32(ff, &nre))
1526                 goto error;
1527
1528         if (do_read_u32(ff, &sz))
1529                 goto error;
1530
1531         /* buffer to hold on file attr struct */
1532         buf = malloc(sz);
1533         if (!buf)
1534                 goto error;
1535
1536         /* the last event terminates with evsel->attr.size == 0: */
1537         events = calloc(nre + 1, sizeof(*events));
1538         if (!events)
1539                 goto error;
1540
1541         msz = sizeof(evsel->attr);
1542         if (sz < msz)
1543                 msz = sz;
1544
1545         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1546                 evsel->idx = i;
1547
1548                 /*
1549                  * must read entire on-file attr struct to
1550                  * sync up with layout.
1551                  */
1552                 if (__do_read(ff, buf, sz))
1553                         goto error;
1554
1555                 if (ff->ph->needs_swap)
1556                         perf_event__attr_swap(buf);
1557
1558                 memcpy(&evsel->attr, buf, msz);
1559
1560                 if (do_read_u32(ff, &nr))
1561                         goto error;
1562
1563                 if (ff->ph->needs_swap)
1564                         evsel->needs_swap = true;
1565
1566                 evsel->name = do_read_string(ff);
1567                 if (!evsel->name)
1568                         goto error;
1569
1570                 if (!nr)
1571                         continue;
1572
1573                 id = calloc(nr, sizeof(*id));
1574                 if (!id)
1575                         goto error;
1576                 evsel->ids = nr;
1577                 evsel->id = id;
1578
1579                 for (j = 0 ; j < nr; j++) {
1580                         if (do_read_u64(ff, id))
1581                                 goto error;
1582                         id++;
1583                 }
1584         }
1585 out:
1586         free(buf);
1587         return events;
1588 error:
1589         free_event_desc(events);
1590         events = NULL;
1591         goto out;
1592 }
1593
1594 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1595                                 void *priv __maybe_unused)
1596 {
1597         return fprintf(fp, ", %s = %s", name, val);
1598 }
1599
1600 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1601 {
1602         struct perf_evsel *evsel, *events;
1603         u32 j;
1604         u64 *id;
1605
1606         if (ff->events)
1607                 events = ff->events;
1608         else
1609                 events = read_event_desc(ff);
1610
1611         if (!events) {
1612                 fprintf(fp, "# event desc: not available or unable to read\n");
1613                 return;
1614         }
1615
1616         for (evsel = events; evsel->attr.size; evsel++) {
1617                 fprintf(fp, "# event : name = %s, ", evsel->name);
1618
1619                 if (evsel->ids) {
1620                         fprintf(fp, ", id = {");
1621                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1622                                 if (j)
1623                                         fputc(',', fp);
1624                                 fprintf(fp, " %"PRIu64, *id);
1625                         }
1626                         fprintf(fp, " }");
1627                 }
1628
1629                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1630
1631                 fputc('\n', fp);
1632         }
1633
1634         free_event_desc(events);
1635         ff->events = NULL;
1636 }
1637
1638 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1639 {
1640         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1641 }
1642
1643 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1644 {
1645         int i;
1646         struct numa_node *n;
1647
1648         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1649                 n = &ff->ph->env.numa_nodes[i];
1650
1651                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1652                             " free = %"PRIu64" kB\n",
1653                         n->node, n->mem_total, n->mem_free);
1654
1655                 fprintf(fp, "# node%u cpu list : ", n->node);
1656                 cpu_map__fprintf(n->map, fp);
1657         }
1658 }
1659
1660 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1661 {
1662         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1663 }
1664
1665 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1666 {
1667         fprintf(fp, "# contains samples with branch stack\n");
1668 }
1669
1670 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1671 {
1672         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1673 }
1674
1675 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1676 {
1677         fprintf(fp, "# contains stat data\n");
1678 }
1679
1680 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1681 {
1682         int i;
1683
1684         fprintf(fp, "# CPU cache info:\n");
1685         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1686                 fprintf(fp, "#  ");
1687                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1688         }
1689 }
1690
1691 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1692 {
1693         const char *delimiter = "# pmu mappings: ";
1694         char *str, *tmp;
1695         u32 pmu_num;
1696         u32 type;
1697
1698         pmu_num = ff->ph->env.nr_pmu_mappings;
1699         if (!pmu_num) {
1700                 fprintf(fp, "# pmu mappings: not available\n");
1701                 return;
1702         }
1703
1704         str = ff->ph->env.pmu_mappings;
1705
1706         while (pmu_num) {
1707                 type = strtoul(str, &tmp, 0);
1708                 if (*tmp != ':')
1709                         goto error;
1710
1711                 str = tmp + 1;
1712                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1713
1714                 delimiter = ", ";
1715                 str += strlen(str) + 1;
1716                 pmu_num--;
1717         }
1718
1719         fprintf(fp, "\n");
1720
1721         if (!pmu_num)
1722                 return;
1723 error:
1724         fprintf(fp, "# pmu mappings: unable to read\n");
1725 }
1726
1727 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1728 {
1729         struct perf_session *session;
1730         struct perf_evsel *evsel;
1731         u32 nr = 0;
1732
1733         session = container_of(ff->ph, struct perf_session, header);
1734
1735         evlist__for_each_entry(session->evlist, evsel) {
1736                 if (perf_evsel__is_group_leader(evsel) &&
1737                     evsel->nr_members > 1) {
1738                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1739                                 perf_evsel__name(evsel));
1740
1741                         nr = evsel->nr_members - 1;
1742                 } else if (nr) {
1743                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1744
1745                         if (--nr == 0)
1746                                 fprintf(fp, "}\n");
1747                 }
1748         }
1749 }
1750
1751 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1752 {
1753         struct perf_session *session;
1754         char time_buf[32];
1755         double d;
1756
1757         session = container_of(ff->ph, struct perf_session, header);
1758
1759         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1760                                   time_buf, sizeof(time_buf));
1761         fprintf(fp, "# time of first sample : %s\n", time_buf);
1762
1763         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1764                                   time_buf, sizeof(time_buf));
1765         fprintf(fp, "# time of last sample : %s\n", time_buf);
1766
1767         d = (double)(session->evlist->last_sample_time -
1768                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1769
1770         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1771 }
1772
1773 static void memory_node__fprintf(struct memory_node *n,
1774                                  unsigned long long bsize, FILE *fp)
1775 {
1776         char buf_map[100], buf_size[50];
1777         unsigned long long size;
1778
1779         size = bsize * bitmap_weight(n->set, n->size);
1780         unit_number__scnprintf(buf_size, 50, size);
1781
1782         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1783         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1784 }
1785
1786 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1787 {
1788         struct memory_node *nodes;
1789         int i, nr;
1790
1791         nodes = ff->ph->env.memory_nodes;
1792         nr    = ff->ph->env.nr_memory_nodes;
1793
1794         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1795                 nr, ff->ph->env.memory_bsize);
1796
1797         for (i = 0; i < nr; i++) {
1798                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1799         }
1800 }
1801
1802 static int __event_process_build_id(struct build_id_event *bev,
1803                                     char *filename,
1804                                     struct perf_session *session)
1805 {
1806         int err = -1;
1807         struct machine *machine;
1808         u16 cpumode;
1809         struct dso *dso;
1810         enum dso_kernel_type dso_type;
1811
1812         machine = perf_session__findnew_machine(session, bev->pid);
1813         if (!machine)
1814                 goto out;
1815
1816         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1817
1818         switch (cpumode) {
1819         case PERF_RECORD_MISC_KERNEL:
1820                 dso_type = DSO_TYPE_KERNEL;
1821                 break;
1822         case PERF_RECORD_MISC_GUEST_KERNEL:
1823                 dso_type = DSO_TYPE_GUEST_KERNEL;
1824                 break;
1825         case PERF_RECORD_MISC_USER:
1826         case PERF_RECORD_MISC_GUEST_USER:
1827                 dso_type = DSO_TYPE_USER;
1828                 break;
1829         default:
1830                 goto out;
1831         }
1832
1833         dso = machine__findnew_dso(machine, filename);
1834         if (dso != NULL) {
1835                 char sbuild_id[SBUILD_ID_SIZE];
1836
1837                 dso__set_build_id(dso, &bev->build_id);
1838
1839                 if (dso_type != DSO_TYPE_USER) {
1840                         struct kmod_path m = { .name = NULL, };
1841
1842                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1843                                 dso__set_module_info(dso, &m, machine);
1844                         else
1845                                 dso->kernel = dso_type;
1846
1847                         free(m.name);
1848                 }
1849
1850                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1851                                   sbuild_id);
1852                 pr_debug("build id event received for %s: %s\n",
1853                          dso->long_name, sbuild_id);
1854                 dso__put(dso);
1855         }
1856
1857         err = 0;
1858 out:
1859         return err;
1860 }
1861
1862 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1863                                                  int input, u64 offset, u64 size)
1864 {
1865         struct perf_session *session = container_of(header, struct perf_session, header);
1866         struct {
1867                 struct perf_event_header   header;
1868                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1869                 char                       filename[0];
1870         } old_bev;
1871         struct build_id_event bev;
1872         char filename[PATH_MAX];
1873         u64 limit = offset + size;
1874
1875         while (offset < limit) {
1876                 ssize_t len;
1877
1878                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1879                         return -1;
1880
1881                 if (header->needs_swap)
1882                         perf_event_header__bswap(&old_bev.header);
1883
1884                 len = old_bev.header.size - sizeof(old_bev);
1885                 if (readn(input, filename, len) != len)
1886                         return -1;
1887
1888                 bev.header = old_bev.header;
1889
1890                 /*
1891                  * As the pid is the missing value, we need to fill
1892                  * it properly. The header.misc value give us nice hint.
1893                  */
1894                 bev.pid = HOST_KERNEL_ID;
1895                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1896                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1897                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1898
1899                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1900                 __event_process_build_id(&bev, filename, session);
1901
1902                 offset += bev.header.size;
1903         }
1904
1905         return 0;
1906 }
1907
1908 static int perf_header__read_build_ids(struct perf_header *header,
1909                                        int input, u64 offset, u64 size)
1910 {
1911         struct perf_session *session = container_of(header, struct perf_session, header);
1912         struct build_id_event bev;
1913         char filename[PATH_MAX];
1914         u64 limit = offset + size, orig_offset = offset;
1915         int err = -1;
1916
1917         while (offset < limit) {
1918                 ssize_t len;
1919
1920                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1921                         goto out;
1922
1923                 if (header->needs_swap)
1924                         perf_event_header__bswap(&bev.header);
1925
1926                 len = bev.header.size - sizeof(bev);
1927                 if (readn(input, filename, len) != len)
1928                         goto out;
1929                 /*
1930                  * The a1645ce1 changeset:
1931                  *
1932                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
1933                  *
1934                  * Added a field to struct build_id_event that broke the file
1935                  * format.
1936                  *
1937                  * Since the kernel build-id is the first entry, process the
1938                  * table using the old format if the well known
1939                  * '[kernel.kallsyms]' string for the kernel build-id has the
1940                  * first 4 characters chopped off (where the pid_t sits).
1941                  */
1942                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1943                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1944                                 return -1;
1945                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1946                 }
1947
1948                 __event_process_build_id(&bev, filename, session);
1949
1950                 offset += bev.header.size;
1951         }
1952         err = 0;
1953 out:
1954         return err;
1955 }
1956
1957 /* Macro for features that simply need to read and store a string. */
1958 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1959 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1960 {\
1961         ff->ph->env.__feat_env = do_read_string(ff); \
1962         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1963 }
1964
1965 FEAT_PROCESS_STR_FUN(hostname, hostname);
1966 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1967 FEAT_PROCESS_STR_FUN(version, version);
1968 FEAT_PROCESS_STR_FUN(arch, arch);
1969 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1970 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1971
1972 static int process_tracing_data(struct feat_fd *ff, void *data)
1973 {
1974         ssize_t ret = trace_report(ff->fd, data, false);
1975
1976         return ret < 0 ? -1 : 0;
1977 }
1978
1979 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
1980 {
1981         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
1982                 pr_debug("Failed to read buildids, continuing...\n");
1983         return 0;
1984 }
1985
1986 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
1987 {
1988         int ret;
1989         u32 nr_cpus_avail, nr_cpus_online;
1990
1991         ret = do_read_u32(ff, &nr_cpus_avail);
1992         if (ret)
1993                 return ret;
1994
1995         ret = do_read_u32(ff, &nr_cpus_online);
1996         if (ret)
1997                 return ret;
1998         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
1999         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2000         return 0;
2001 }
2002
2003 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2004 {
2005         u64 total_mem;
2006         int ret;
2007
2008         ret = do_read_u64(ff, &total_mem);
2009         if (ret)
2010                 return -1;
2011         ff->ph->env.total_mem = (unsigned long long)total_mem;
2012         return 0;
2013 }
2014
2015 static struct perf_evsel *
2016 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2017 {
2018         struct perf_evsel *evsel;
2019
2020         evlist__for_each_entry(evlist, evsel) {
2021                 if (evsel->idx == idx)
2022                         return evsel;
2023         }
2024
2025         return NULL;
2026 }
2027
2028 static void
2029 perf_evlist__set_event_name(struct perf_evlist *evlist,
2030                             struct perf_evsel *event)
2031 {
2032         struct perf_evsel *evsel;
2033
2034         if (!event->name)
2035                 return;
2036
2037         evsel = perf_evlist__find_by_index(evlist, event->idx);
2038         if (!evsel)
2039                 return;
2040
2041         if (evsel->name)
2042                 return;
2043
2044         evsel->name = strdup(event->name);
2045 }
2046
2047 static int
2048 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2049 {
2050         struct perf_session *session;
2051         struct perf_evsel *evsel, *events = read_event_desc(ff);
2052
2053         if (!events)
2054                 return 0;
2055
2056         session = container_of(ff->ph, struct perf_session, header);
2057
2058         if (session->data->is_pipe) {
2059                 /* Save events for reading later by print_event_desc,
2060                  * since they can't be read again in pipe mode. */
2061                 ff->events = events;
2062         }
2063
2064         for (evsel = events; evsel->attr.size; evsel++)
2065                 perf_evlist__set_event_name(session->evlist, evsel);
2066
2067         if (!session->data->is_pipe)
2068                 free_event_desc(events);
2069
2070         return 0;
2071 }
2072
2073 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2074 {
2075         char *str, *cmdline = NULL, **argv = NULL;
2076         u32 nr, i, len = 0;
2077
2078         if (do_read_u32(ff, &nr))
2079                 return -1;
2080
2081         ff->ph->env.nr_cmdline = nr;
2082
2083         cmdline = zalloc(ff->size + nr + 1);
2084         if (!cmdline)
2085                 return -1;
2086
2087         argv = zalloc(sizeof(char *) * (nr + 1));
2088         if (!argv)
2089                 goto error;
2090
2091         for (i = 0; i < nr; i++) {
2092                 str = do_read_string(ff);
2093                 if (!str)
2094                         goto error;
2095
2096                 argv[i] = cmdline + len;
2097                 memcpy(argv[i], str, strlen(str) + 1);
2098                 len += strlen(str) + 1;
2099                 free(str);
2100         }
2101         ff->ph->env.cmdline = cmdline;
2102         ff->ph->env.cmdline_argv = (const char **) argv;
2103         return 0;
2104
2105 error:
2106         free(argv);
2107         free(cmdline);
2108         return -1;
2109 }
2110
2111 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2112 {
2113         u32 nr, i;
2114         char *str;
2115         struct strbuf sb;
2116         int cpu_nr = ff->ph->env.nr_cpus_avail;
2117         u64 size = 0;
2118         struct perf_header *ph = ff->ph;
2119         bool do_core_id_test = true;
2120
2121         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2122         if (!ph->env.cpu)
2123                 return -1;
2124
2125         if (do_read_u32(ff, &nr))
2126                 goto free_cpu;
2127
2128         ph->env.nr_sibling_cores = nr;
2129         size += sizeof(u32);
2130         if (strbuf_init(&sb, 128) < 0)
2131                 goto free_cpu;
2132
2133         for (i = 0; i < nr; i++) {
2134                 str = do_read_string(ff);
2135                 if (!str)
2136                         goto error;
2137
2138                 /* include a NULL character at the end */
2139                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2140                         goto error;
2141                 size += string_size(str);
2142                 free(str);
2143         }
2144         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2145
2146         if (do_read_u32(ff, &nr))
2147                 return -1;
2148
2149         ph->env.nr_sibling_threads = nr;
2150         size += sizeof(u32);
2151
2152         for (i = 0; i < nr; i++) {
2153                 str = do_read_string(ff);
2154                 if (!str)
2155                         goto error;
2156
2157                 /* include a NULL character at the end */
2158                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2159                         goto error;
2160                 size += string_size(str);
2161                 free(str);
2162         }
2163         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2164
2165         /*
2166          * The header may be from old perf,
2167          * which doesn't include core id and socket id information.
2168          */
2169         if (ff->size <= size) {
2170                 zfree(&ph->env.cpu);
2171                 return 0;
2172         }
2173
2174         /* On s390 the socket_id number is not related to the numbers of cpus.
2175          * The socket_id number might be higher than the numbers of cpus.
2176          * This depends on the configuration.
2177          */
2178         if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2179                 do_core_id_test = false;
2180
2181         for (i = 0; i < (u32)cpu_nr; i++) {
2182                 if (do_read_u32(ff, &nr))
2183                         goto free_cpu;
2184
2185                 ph->env.cpu[i].core_id = nr;
2186
2187                 if (do_read_u32(ff, &nr))
2188                         goto free_cpu;
2189
2190                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2191                         pr_debug("socket_id number is too big."
2192                                  "You may need to upgrade the perf tool.\n");
2193                         goto free_cpu;
2194                 }
2195
2196                 ph->env.cpu[i].socket_id = nr;
2197         }
2198
2199         return 0;
2200
2201 error:
2202         strbuf_release(&sb);
2203 free_cpu:
2204         zfree(&ph->env.cpu);
2205         return -1;
2206 }
2207
2208 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2209 {
2210         struct numa_node *nodes, *n;
2211         u32 nr, i;
2212         char *str;
2213
2214         /* nr nodes */
2215         if (do_read_u32(ff, &nr))
2216                 return -1;
2217
2218         nodes = zalloc(sizeof(*nodes) * nr);
2219         if (!nodes)
2220                 return -ENOMEM;
2221
2222         for (i = 0; i < nr; i++) {
2223                 n = &nodes[i];
2224
2225                 /* node number */
2226                 if (do_read_u32(ff, &n->node))
2227                         goto error;
2228
2229                 if (do_read_u64(ff, &n->mem_total))
2230                         goto error;
2231
2232                 if (do_read_u64(ff, &n->mem_free))
2233                         goto error;
2234
2235                 str = do_read_string(ff);
2236                 if (!str)
2237                         goto error;
2238
2239                 n->map = cpu_map__new(str);
2240                 if (!n->map)
2241                         goto error;
2242
2243                 free(str);
2244         }
2245         ff->ph->env.nr_numa_nodes = nr;
2246         ff->ph->env.numa_nodes = nodes;
2247         return 0;
2248
2249 error:
2250         free(nodes);
2251         return -1;
2252 }
2253
2254 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2255 {
2256         char *name;
2257         u32 pmu_num;
2258         u32 type;
2259         struct strbuf sb;
2260
2261         if (do_read_u32(ff, &pmu_num))
2262                 return -1;
2263
2264         if (!pmu_num) {
2265                 pr_debug("pmu mappings not available\n");
2266                 return 0;
2267         }
2268
2269         ff->ph->env.nr_pmu_mappings = pmu_num;
2270         if (strbuf_init(&sb, 128) < 0)
2271                 return -1;
2272
2273         while (pmu_num) {
2274                 if (do_read_u32(ff, &type))
2275                         goto error;
2276
2277                 name = do_read_string(ff);
2278                 if (!name)
2279                         goto error;
2280
2281                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2282                         goto error;
2283                 /* include a NULL character at the end */
2284                 if (strbuf_add(&sb, "", 1) < 0)
2285                         goto error;
2286
2287                 if (!strcmp(name, "msr"))
2288                         ff->ph->env.msr_pmu_type = type;
2289
2290                 free(name);
2291                 pmu_num--;
2292         }
2293         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2294         return 0;
2295
2296 error:
2297         strbuf_release(&sb);
2298         return -1;
2299 }
2300
2301 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2302 {
2303         size_t ret = -1;
2304         u32 i, nr, nr_groups;
2305         struct perf_session *session;
2306         struct perf_evsel *evsel, *leader = NULL;
2307         struct group_desc {
2308                 char *name;
2309                 u32 leader_idx;
2310                 u32 nr_members;
2311         } *desc;
2312
2313         if (do_read_u32(ff, &nr_groups))
2314                 return -1;
2315
2316         ff->ph->env.nr_groups = nr_groups;
2317         if (!nr_groups) {
2318                 pr_debug("group desc not available\n");
2319                 return 0;
2320         }
2321
2322         desc = calloc(nr_groups, sizeof(*desc));
2323         if (!desc)
2324                 return -1;
2325
2326         for (i = 0; i < nr_groups; i++) {
2327                 desc[i].name = do_read_string(ff);
2328                 if (!desc[i].name)
2329                         goto out_free;
2330
2331                 if (do_read_u32(ff, &desc[i].leader_idx))
2332                         goto out_free;
2333
2334                 if (do_read_u32(ff, &desc[i].nr_members))
2335                         goto out_free;
2336         }
2337
2338         /*
2339          * Rebuild group relationship based on the group_desc
2340          */
2341         session = container_of(ff->ph, struct perf_session, header);
2342         session->evlist->nr_groups = nr_groups;
2343
2344         i = nr = 0;
2345         evlist__for_each_entry(session->evlist, evsel) {
2346                 if (evsel->idx == (int) desc[i].leader_idx) {
2347                         evsel->leader = evsel;
2348                         /* {anon_group} is a dummy name */
2349                         if (strcmp(desc[i].name, "{anon_group}")) {
2350                                 evsel->group_name = desc[i].name;
2351                                 desc[i].name = NULL;
2352                         }
2353                         evsel->nr_members = desc[i].nr_members;
2354
2355                         if (i >= nr_groups || nr > 0) {
2356                                 pr_debug("invalid group desc\n");
2357                                 goto out_free;
2358                         }
2359
2360                         leader = evsel;
2361                         nr = evsel->nr_members - 1;
2362                         i++;
2363                 } else if (nr) {
2364                         /* This is a group member */
2365                         evsel->leader = leader;
2366
2367                         nr--;
2368                 }
2369         }
2370
2371         if (i != nr_groups || nr != 0) {
2372                 pr_debug("invalid group desc\n");
2373                 goto out_free;
2374         }
2375
2376         ret = 0;
2377 out_free:
2378         for (i = 0; i < nr_groups; i++)
2379                 zfree(&desc[i].name);
2380         free(desc);
2381
2382         return ret;
2383 }
2384
2385 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2386 {
2387         struct perf_session *session;
2388         int err;
2389
2390         session = container_of(ff->ph, struct perf_session, header);
2391
2392         err = auxtrace_index__process(ff->fd, ff->size, session,
2393                                       ff->ph->needs_swap);
2394         if (err < 0)
2395                 pr_err("Failed to process auxtrace index\n");
2396         return err;
2397 }
2398
2399 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2400 {
2401         struct cpu_cache_level *caches;
2402         u32 cnt, i, version;
2403
2404         if (do_read_u32(ff, &version))
2405                 return -1;
2406
2407         if (version != 1)
2408                 return -1;
2409
2410         if (do_read_u32(ff, &cnt))
2411                 return -1;
2412
2413         caches = zalloc(sizeof(*caches) * cnt);
2414         if (!caches)
2415                 return -1;
2416
2417         for (i = 0; i < cnt; i++) {
2418                 struct cpu_cache_level c;
2419
2420                 #define _R(v)                                           \
2421                         if (do_read_u32(ff, &c.v))\
2422                                 goto out_free_caches;                   \
2423
2424                 _R(level)
2425                 _R(line_size)
2426                 _R(sets)
2427                 _R(ways)
2428                 #undef _R
2429
2430                 #define _R(v)                                   \
2431                         c.v = do_read_string(ff);               \
2432                         if (!c.v)                               \
2433                                 goto out_free_caches;
2434
2435                 _R(type)
2436                 _R(size)
2437                 _R(map)
2438                 #undef _R
2439
2440                 caches[i] = c;
2441         }
2442
2443         ff->ph->env.caches = caches;
2444         ff->ph->env.caches_cnt = cnt;
2445         return 0;
2446 out_free_caches:
2447         free(caches);
2448         return -1;
2449 }
2450
2451 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2452 {
2453         struct perf_session *session;
2454         u64 first_sample_time, last_sample_time;
2455         int ret;
2456
2457         session = container_of(ff->ph, struct perf_session, header);
2458
2459         ret = do_read_u64(ff, &first_sample_time);
2460         if (ret)
2461                 return -1;
2462
2463         ret = do_read_u64(ff, &last_sample_time);
2464         if (ret)
2465                 return -1;
2466
2467         session->evlist->first_sample_time = first_sample_time;
2468         session->evlist->last_sample_time = last_sample_time;
2469         return 0;
2470 }
2471
2472 static int process_mem_topology(struct feat_fd *ff,
2473                                 void *data __maybe_unused)
2474 {
2475         struct memory_node *nodes;
2476         u64 version, i, nr, bsize;
2477         int ret = -1;
2478
2479         if (do_read_u64(ff, &version))
2480                 return -1;
2481
2482         if (version != 1)
2483                 return -1;
2484
2485         if (do_read_u64(ff, &bsize))
2486                 return -1;
2487
2488         if (do_read_u64(ff, &nr))
2489                 return -1;
2490
2491         nodes = zalloc(sizeof(*nodes) * nr);
2492         if (!nodes)
2493                 return -1;
2494
2495         for (i = 0; i < nr; i++) {
2496                 struct memory_node n;
2497
2498                 #define _R(v)                           \
2499                         if (do_read_u64(ff, &n.v))      \
2500                                 goto out;               \
2501
2502                 _R(node)
2503                 _R(size)
2504
2505                 #undef _R
2506
2507                 if (do_read_bitmap(ff, &n.set, &n.size))
2508                         goto out;
2509
2510                 nodes[i] = n;
2511         }
2512
2513         ff->ph->env.memory_bsize    = bsize;
2514         ff->ph->env.memory_nodes    = nodes;
2515         ff->ph->env.nr_memory_nodes = nr;
2516         ret = 0;
2517
2518 out:
2519         if (ret)
2520                 free(nodes);
2521         return ret;
2522 }
2523
2524 static int process_clockid(struct feat_fd *ff,
2525                            void *data __maybe_unused)
2526 {
2527         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2528                 return -1;
2529
2530         return 0;
2531 }
2532
2533 static int process_dir_format(struct feat_fd *ff,
2534                               void *_data __maybe_unused)
2535 {
2536         struct perf_session *session;
2537         struct perf_data *data;
2538
2539         session = container_of(ff->ph, struct perf_session, header);
2540         data = session->data;
2541
2542         if (WARN_ON(!perf_data__is_dir(data)))
2543                 return -1;
2544
2545         return do_read_u64(ff, &data->dir.version);
2546 }
2547
2548 #ifdef HAVE_LIBBPF_SUPPORT
2549 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
2550 {
2551         struct bpf_prog_info_linear *info_linear;
2552         struct bpf_prog_info_node *info_node;
2553         struct perf_env *env = &ff->ph->env;
2554         u32 count, i;
2555         int err = -1;
2556
2557         if (ff->ph->needs_swap) {
2558                 pr_warning("interpreting bpf_prog_info from systems with endianity is not yet supported\n");
2559                 return 0;
2560         }
2561
2562         if (do_read_u32(ff, &count))
2563                 return -1;
2564
2565         down_write(&env->bpf_progs.lock);
2566
2567         for (i = 0; i < count; ++i) {
2568                 u32 info_len, data_len;
2569
2570                 info_linear = NULL;
2571                 info_node = NULL;
2572                 if (do_read_u32(ff, &info_len))
2573                         goto out;
2574                 if (do_read_u32(ff, &data_len))
2575                         goto out;
2576
2577                 if (info_len > sizeof(struct bpf_prog_info)) {
2578                         pr_warning("detected invalid bpf_prog_info\n");
2579                         goto out;
2580                 }
2581
2582                 info_linear = malloc(sizeof(struct bpf_prog_info_linear) +
2583                                      data_len);
2584                 if (!info_linear)
2585                         goto out;
2586                 info_linear->info_len = sizeof(struct bpf_prog_info);
2587                 info_linear->data_len = data_len;
2588                 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
2589                         goto out;
2590                 if (__do_read(ff, &info_linear->info, info_len))
2591                         goto out;
2592                 if (info_len < sizeof(struct bpf_prog_info))
2593                         memset(((void *)(&info_linear->info)) + info_len, 0,
2594                                sizeof(struct bpf_prog_info) - info_len);
2595
2596                 if (__do_read(ff, info_linear->data, data_len))
2597                         goto out;
2598
2599                 info_node = malloc(sizeof(struct bpf_prog_info_node));
2600                 if (!info_node)
2601                         goto out;
2602
2603                 /* after reading from file, translate offset to address */
2604                 bpf_program__bpil_offs_to_addr(info_linear);
2605                 info_node->info_linear = info_linear;
2606                 perf_env__insert_bpf_prog_info(env, info_node);
2607         }
2608
2609         up_write(&env->bpf_progs.lock);
2610         return 0;
2611 out:
2612         free(info_linear);
2613         free(info_node);
2614         up_write(&env->bpf_progs.lock);
2615         return err;
2616 }
2617 #else // HAVE_LIBBPF_SUPPORT
2618 static int process_bpf_prog_info(struct feat_fd *ff __maybe_unused, void *data __maybe_unused)
2619 {
2620         return 0;
2621 }
2622 #endif // HAVE_LIBBPF_SUPPORT
2623
2624 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
2625 {
2626         struct perf_env *env = &ff->ph->env;
2627         struct btf_node *node = NULL;
2628         u32 count, i;
2629         int err = -1;
2630
2631         if (ff->ph->needs_swap) {
2632                 pr_warning("interpreting btf from systems with endianity is not yet supported\n");
2633                 return 0;
2634         }
2635
2636         if (do_read_u32(ff, &count))
2637                 return -1;
2638
2639         down_write(&env->bpf_progs.lock);
2640
2641         for (i = 0; i < count; ++i) {
2642                 u32 id, data_size;
2643
2644                 if (do_read_u32(ff, &id))
2645                         goto out;
2646                 if (do_read_u32(ff, &data_size))
2647                         goto out;
2648
2649                 node = malloc(sizeof(struct btf_node) + data_size);
2650                 if (!node)
2651                         goto out;
2652
2653                 node->id = id;
2654                 node->data_size = data_size;
2655
2656                 if (__do_read(ff, node->data, data_size))
2657                         goto out;
2658
2659                 perf_env__insert_btf(env, node);
2660                 node = NULL;
2661         }
2662
2663         err = 0;
2664 out:
2665         up_write(&env->bpf_progs.lock);
2666         free(node);
2667         return err;
2668 }
2669
2670 struct feature_ops {
2671         int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2672         void (*print)(struct feat_fd *ff, FILE *fp);
2673         int (*process)(struct feat_fd *ff, void *data);
2674         const char *name;
2675         bool full_only;
2676         bool synthesize;
2677 };
2678
2679 #define FEAT_OPR(n, func, __full_only) \
2680         [HEADER_##n] = {                                        \
2681                 .name       = __stringify(n),                   \
2682                 .write      = write_##func,                     \
2683                 .print      = print_##func,                     \
2684                 .full_only  = __full_only,                      \
2685                 .process    = process_##func,                   \
2686                 .synthesize = true                              \
2687         }
2688
2689 #define FEAT_OPN(n, func, __full_only) \
2690         [HEADER_##n] = {                                        \
2691                 .name       = __stringify(n),                   \
2692                 .write      = write_##func,                     \
2693                 .print      = print_##func,                     \
2694                 .full_only  = __full_only,                      \
2695                 .process    = process_##func                    \
2696         }
2697
2698 /* feature_ops not implemented: */
2699 #define print_tracing_data      NULL
2700 #define print_build_id          NULL
2701
2702 #define process_branch_stack    NULL
2703 #define process_stat            NULL
2704
2705
2706 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2707         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2708         FEAT_OPN(BUILD_ID,      build_id,       false),
2709         FEAT_OPR(HOSTNAME,      hostname,       false),
2710         FEAT_OPR(OSRELEASE,     osrelease,      false),
2711         FEAT_OPR(VERSION,       version,        false),
2712         FEAT_OPR(ARCH,          arch,           false),
2713         FEAT_OPR(NRCPUS,        nrcpus,         false),
2714         FEAT_OPR(CPUDESC,       cpudesc,        false),
2715         FEAT_OPR(CPUID,         cpuid,          false),
2716         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2717         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2718         FEAT_OPR(CMDLINE,       cmdline,        false),
2719         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2720         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2721         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2722         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2723         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2724         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2725         FEAT_OPN(STAT,          stat,           false),
2726         FEAT_OPN(CACHE,         cache,          true),
2727         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2728         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2729         FEAT_OPR(CLOCKID,       clockid,        false),
2730         FEAT_OPN(DIR_FORMAT,    dir_format,     false),
2731         FEAT_OPR(BPF_PROG_INFO, bpf_prog_info,  false),
2732         FEAT_OPR(BPF_BTF,       bpf_btf,        false),
2733 };
2734
2735 struct header_print_data {
2736         FILE *fp;
2737         bool full; /* extended list of headers */
2738 };
2739
2740 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2741                                            struct perf_header *ph,
2742                                            int feat, int fd, void *data)
2743 {
2744         struct header_print_data *hd = data;
2745         struct feat_fd ff;
2746
2747         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2748                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2749                                 "%d, continuing...\n", section->offset, feat);
2750                 return 0;
2751         }
2752         if (feat >= HEADER_LAST_FEATURE) {
2753                 pr_warning("unknown feature %d\n", feat);
2754                 return 0;
2755         }
2756         if (!feat_ops[feat].print)
2757                 return 0;
2758
2759         ff = (struct  feat_fd) {
2760                 .fd = fd,
2761                 .ph = ph,
2762         };
2763
2764         if (!feat_ops[feat].full_only || hd->full)
2765                 feat_ops[feat].print(&ff, hd->fp);
2766         else
2767                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2768                         feat_ops[feat].name);
2769
2770         return 0;
2771 }
2772
2773 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2774 {
2775         struct header_print_data hd;
2776         struct perf_header *header = &session->header;
2777         int fd = perf_data__fd(session->data);
2778         struct stat st;
2779         time_t stctime;
2780         int ret, bit;
2781
2782         hd.fp = fp;
2783         hd.full = full;
2784
2785         ret = fstat(fd, &st);
2786         if (ret == -1)
2787                 return -1;
2788
2789         stctime = st.st_ctime;
2790         fprintf(fp, "# captured on    : %s", ctime(&stctime));
2791
2792         fprintf(fp, "# header version : %u\n", header->version);
2793         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2794         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2795         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2796
2797         perf_header__process_sections(header, fd, &hd,
2798                                       perf_file_section__fprintf_info);
2799
2800         if (session->data->is_pipe)
2801                 return 0;
2802
2803         fprintf(fp, "# missing features: ");
2804         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2805                 if (bit)
2806                         fprintf(fp, "%s ", feat_ops[bit].name);
2807         }
2808
2809         fprintf(fp, "\n");
2810         return 0;
2811 }
2812
2813 static int do_write_feat(struct feat_fd *ff, int type,
2814                          struct perf_file_section **p,
2815                          struct perf_evlist *evlist)
2816 {
2817         int err;
2818         int ret = 0;
2819
2820         if (perf_header__has_feat(ff->ph, type)) {
2821                 if (!feat_ops[type].write)
2822                         return -1;
2823
2824                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2825                         return -1;
2826
2827                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2828
2829                 err = feat_ops[type].write(ff, evlist);
2830                 if (err < 0) {
2831                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2832
2833                         /* undo anything written */
2834                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2835
2836                         return -1;
2837                 }
2838                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2839                 (*p)++;
2840         }
2841         return ret;
2842 }
2843
2844 static int perf_header__adds_write(struct perf_header *header,
2845                                    struct perf_evlist *evlist, int fd)
2846 {
2847         int nr_sections;
2848         struct feat_fd ff;
2849         struct perf_file_section *feat_sec, *p;
2850         int sec_size;
2851         u64 sec_start;
2852         int feat;
2853         int err;
2854
2855         ff = (struct feat_fd){
2856                 .fd  = fd,
2857                 .ph = header,
2858         };
2859
2860         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2861         if (!nr_sections)
2862                 return 0;
2863
2864         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2865         if (feat_sec == NULL)
2866                 return -ENOMEM;
2867
2868         sec_size = sizeof(*feat_sec) * nr_sections;
2869
2870         sec_start = header->feat_offset;
2871         lseek(fd, sec_start + sec_size, SEEK_SET);
2872
2873         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2874                 if (do_write_feat(&ff, feat, &p, evlist))
2875                         perf_header__clear_feat(header, feat);
2876         }
2877
2878         lseek(fd, sec_start, SEEK_SET);
2879         /*
2880          * may write more than needed due to dropped feature, but
2881          * this is okay, reader will skip the missing entries
2882          */
2883         err = do_write(&ff, feat_sec, sec_size);
2884         if (err < 0)
2885                 pr_debug("failed to write feature section\n");
2886         free(feat_sec);
2887         return err;
2888 }
2889
2890 int perf_header__write_pipe(int fd)
2891 {
2892         struct perf_pipe_file_header f_header;
2893         struct feat_fd ff;
2894         int err;
2895
2896         ff = (struct feat_fd){ .fd = fd };
2897
2898         f_header = (struct perf_pipe_file_header){
2899                 .magic     = PERF_MAGIC,
2900                 .size      = sizeof(f_header),
2901         };
2902
2903         err = do_write(&ff, &f_header, sizeof(f_header));
2904         if (err < 0) {
2905                 pr_debug("failed to write perf pipe header\n");
2906                 return err;
2907         }
2908
2909         return 0;
2910 }
2911
2912 int perf_session__write_header(struct perf_session *session,
2913                                struct perf_evlist *evlist,
2914                                int fd, bool at_exit)
2915 {
2916         struct perf_file_header f_header;
2917         struct perf_file_attr   f_attr;
2918         struct perf_header *header = &session->header;
2919         struct perf_evsel *evsel;
2920         struct feat_fd ff;
2921         u64 attr_offset;
2922         int err;
2923
2924         ff = (struct feat_fd){ .fd = fd};
2925         lseek(fd, sizeof(f_header), SEEK_SET);
2926
2927         evlist__for_each_entry(session->evlist, evsel) {
2928                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2929                 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2930                 if (err < 0) {
2931                         pr_debug("failed to write perf header\n");
2932                         return err;
2933                 }
2934         }
2935
2936         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2937
2938         evlist__for_each_entry(evlist, evsel) {
2939                 f_attr = (struct perf_file_attr){
2940                         .attr = evsel->attr,
2941                         .ids  = {
2942                                 .offset = evsel->id_offset,
2943                                 .size   = evsel->ids * sizeof(u64),
2944                         }
2945                 };
2946                 err = do_write(&ff, &f_attr, sizeof(f_attr));
2947                 if (err < 0) {
2948                         pr_debug("failed to write perf header attribute\n");
2949                         return err;
2950                 }
2951         }
2952
2953         if (!header->data_offset)
2954                 header->data_offset = lseek(fd, 0, SEEK_CUR);
2955         header->feat_offset = header->data_offset + header->data_size;
2956
2957         if (at_exit) {
2958                 err = perf_header__adds_write(header, evlist, fd);
2959                 if (err < 0)
2960                         return err;
2961         }
2962
2963         f_header = (struct perf_file_header){
2964                 .magic     = PERF_MAGIC,
2965                 .size      = sizeof(f_header),
2966                 .attr_size = sizeof(f_attr),
2967                 .attrs = {
2968                         .offset = attr_offset,
2969                         .size   = evlist->nr_entries * sizeof(f_attr),
2970                 },
2971                 .data = {
2972                         .offset = header->data_offset,
2973                         .size   = header->data_size,
2974                 },
2975                 /* event_types is ignored, store zeros */
2976         };
2977
2978         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2979
2980         lseek(fd, 0, SEEK_SET);
2981         err = do_write(&ff, &f_header, sizeof(f_header));
2982         if (err < 0) {
2983                 pr_debug("failed to write perf header\n");
2984                 return err;
2985         }
2986         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2987
2988         return 0;
2989 }
2990
2991 static int perf_header__getbuffer64(struct perf_header *header,
2992                                     int fd, void *buf, size_t size)
2993 {
2994         if (readn(fd, buf, size) <= 0)
2995                 return -1;
2996
2997         if (header->needs_swap)
2998                 mem_bswap_64(buf, size);
2999
3000         return 0;
3001 }
3002
3003 int perf_header__process_sections(struct perf_header *header, int fd,
3004                                   void *data,
3005                                   int (*process)(struct perf_file_section *section,
3006                                                  struct perf_header *ph,
3007                                                  int feat, int fd, void *data))
3008 {
3009         struct perf_file_section *feat_sec, *sec;
3010         int nr_sections;
3011         int sec_size;
3012         int feat;
3013         int err;
3014
3015         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3016         if (!nr_sections)
3017                 return 0;
3018
3019         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3020         if (!feat_sec)
3021                 return -1;
3022
3023         sec_size = sizeof(*feat_sec) * nr_sections;
3024
3025         lseek(fd, header->feat_offset, SEEK_SET);
3026
3027         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3028         if (err < 0)
3029                 goto out_free;
3030
3031         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3032                 err = process(sec++, header, feat, fd, data);
3033                 if (err < 0)
3034                         goto out_free;
3035         }
3036         err = 0;
3037 out_free:
3038         free(feat_sec);
3039         return err;
3040 }
3041
3042 static const int attr_file_abi_sizes[] = {
3043         [0] = PERF_ATTR_SIZE_VER0,
3044         [1] = PERF_ATTR_SIZE_VER1,
3045         [2] = PERF_ATTR_SIZE_VER2,
3046         [3] = PERF_ATTR_SIZE_VER3,
3047         [4] = PERF_ATTR_SIZE_VER4,
3048         0,
3049 };
3050
3051 /*
3052  * In the legacy file format, the magic number is not used to encode endianness.
3053  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3054  * on ABI revisions, we need to try all combinations for all endianness to
3055  * detect the endianness.
3056  */
3057 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3058 {
3059         uint64_t ref_size, attr_size;
3060         int i;
3061
3062         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3063                 ref_size = attr_file_abi_sizes[i]
3064                          + sizeof(struct perf_file_section);
3065                 if (hdr_sz != ref_size) {
3066                         attr_size = bswap_64(hdr_sz);
3067                         if (attr_size != ref_size)
3068                                 continue;
3069
3070                         ph->needs_swap = true;
3071                 }
3072                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3073                          i,
3074                          ph->needs_swap);
3075                 return 0;
3076         }
3077         /* could not determine endianness */
3078         return -1;
3079 }
3080
3081 #define PERF_PIPE_HDR_VER0      16
3082
3083 static const size_t attr_pipe_abi_sizes[] = {
3084         [0] = PERF_PIPE_HDR_VER0,
3085         0,
3086 };
3087
3088 /*
3089  * In the legacy pipe format, there is an implicit assumption that endiannesss
3090  * between host recording the samples, and host parsing the samples is the
3091  * same. This is not always the case given that the pipe output may always be
3092  * redirected into a file and analyzed on a different machine with possibly a
3093  * different endianness and perf_event ABI revsions in the perf tool itself.
3094  */
3095 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3096 {
3097         u64 attr_size;
3098         int i;
3099
3100         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3101                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3102                         attr_size = bswap_64(hdr_sz);
3103                         if (attr_size != hdr_sz)
3104                                 continue;
3105
3106                         ph->needs_swap = true;
3107                 }
3108                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3109                 return 0;
3110         }
3111         return -1;
3112 }
3113
3114 bool is_perf_magic(u64 magic)
3115 {
3116         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3117                 || magic == __perf_magic2
3118                 || magic == __perf_magic2_sw)
3119                 return true;
3120
3121         return false;
3122 }
3123
3124 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3125                               bool is_pipe, struct perf_header *ph)
3126 {
3127         int ret;
3128
3129         /* check for legacy format */
3130         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3131         if (ret == 0) {
3132                 ph->version = PERF_HEADER_VERSION_1;
3133                 pr_debug("legacy perf.data format\n");
3134                 if (is_pipe)
3135                         return try_all_pipe_abis(hdr_sz, ph);
3136
3137                 return try_all_file_abis(hdr_sz, ph);
3138         }
3139         /*
3140          * the new magic number serves two purposes:
3141          * - unique number to identify actual perf.data files
3142          * - encode endianness of file
3143          */
3144         ph->version = PERF_HEADER_VERSION_2;
3145
3146         /* check magic number with one endianness */
3147         if (magic == __perf_magic2)
3148                 return 0;
3149
3150         /* check magic number with opposite endianness */
3151         if (magic != __perf_magic2_sw)
3152                 return -1;
3153
3154         ph->needs_swap = true;
3155
3156         return 0;
3157 }
3158
3159 int perf_file_header__read(struct perf_file_header *header,
3160                            struct perf_header *ph, int fd)
3161 {
3162         ssize_t ret;
3163
3164         lseek(fd, 0, SEEK_SET);
3165
3166         ret = readn(fd, header, sizeof(*header));
3167         if (ret <= 0)
3168                 return -1;
3169
3170         if (check_magic_endian(header->magic,
3171                                header->attr_size, false, ph) < 0) {
3172                 pr_debug("magic/endian check failed\n");
3173                 return -1;
3174         }
3175
3176         if (ph->needs_swap) {
3177                 mem_bswap_64(header, offsetof(struct perf_file_header,
3178                              adds_features));
3179         }
3180
3181         if (header->size != sizeof(*header)) {
3182                 /* Support the previous format */
3183                 if (header->size == offsetof(typeof(*header), adds_features))
3184                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3185                 else
3186                         return -1;
3187         } else if (ph->needs_swap) {
3188                 /*
3189                  * feature bitmap is declared as an array of unsigned longs --
3190                  * not good since its size can differ between the host that
3191                  * generated the data file and the host analyzing the file.
3192                  *
3193                  * We need to handle endianness, but we don't know the size of
3194                  * the unsigned long where the file was generated. Take a best
3195                  * guess at determining it: try 64-bit swap first (ie., file
3196                  * created on a 64-bit host), and check if the hostname feature
3197                  * bit is set (this feature bit is forced on as of fbe96f2).
3198                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3199                  * swap. If the hostname bit is still not set (e.g., older data
3200                  * file), punt and fallback to the original behavior --
3201                  * clearing all feature bits and setting buildid.
3202                  */
3203                 mem_bswap_64(&header->adds_features,
3204                             BITS_TO_U64(HEADER_FEAT_BITS));
3205
3206                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3207                         /* unswap as u64 */
3208                         mem_bswap_64(&header->adds_features,
3209                                     BITS_TO_U64(HEADER_FEAT_BITS));
3210
3211                         /* unswap as u32 */
3212                         mem_bswap_32(&header->adds_features,
3213                                     BITS_TO_U32(HEADER_FEAT_BITS));
3214                 }
3215
3216                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3217                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3218                         set_bit(HEADER_BUILD_ID, header->adds_features);
3219                 }
3220         }
3221
3222         memcpy(&ph->adds_features, &header->adds_features,
3223                sizeof(ph->adds_features));
3224
3225         ph->data_offset  = header->data.offset;
3226         ph->data_size    = header->data.size;
3227         ph->feat_offset  = header->data.offset + header->data.size;
3228         return 0;
3229 }
3230
3231 static int perf_file_section__process(struct perf_file_section *section,
3232                                       struct perf_header *ph,
3233                                       int feat, int fd, void *data)
3234 {
3235         struct feat_fd fdd = {
3236                 .fd     = fd,
3237                 .ph     = ph,
3238                 .size   = section->size,
3239                 .offset = section->offset,
3240         };
3241
3242         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3243                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3244                           "%d, continuing...\n", section->offset, feat);
3245                 return 0;
3246         }
3247
3248         if (feat >= HEADER_LAST_FEATURE) {
3249                 pr_debug("unknown feature %d, continuing...\n", feat);
3250                 return 0;
3251         }
3252
3253         if (!feat_ops[feat].process)
3254                 return 0;
3255
3256         return feat_ops[feat].process(&fdd, data);
3257 }
3258
3259 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3260                                        struct perf_header *ph, int fd,
3261                                        bool repipe)
3262 {
3263         struct feat_fd ff = {
3264                 .fd = STDOUT_FILENO,
3265                 .ph = ph,
3266         };
3267         ssize_t ret;
3268
3269         ret = readn(fd, header, sizeof(*header));
3270         if (ret <= 0)
3271                 return -1;
3272
3273         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3274                 pr_debug("endian/magic failed\n");
3275                 return -1;
3276         }
3277
3278         if (ph->needs_swap)
3279                 header->size = bswap_64(header->size);
3280
3281         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3282                 return -1;
3283
3284         return 0;
3285 }
3286
3287 static int perf_header__read_pipe(struct perf_session *session)
3288 {
3289         struct perf_header *header = &session->header;
3290         struct perf_pipe_file_header f_header;
3291
3292         if (perf_file_header__read_pipe(&f_header, header,
3293                                         perf_data__fd(session->data),
3294                                         session->repipe) < 0) {
3295                 pr_debug("incompatible file format\n");
3296                 return -EINVAL;
3297         }
3298
3299         return 0;
3300 }
3301
3302 static int read_attr(int fd, struct perf_header *ph,
3303                      struct perf_file_attr *f_attr)
3304 {
3305         struct perf_event_attr *attr = &f_attr->attr;
3306         size_t sz, left;
3307         size_t our_sz = sizeof(f_attr->attr);
3308         ssize_t ret;
3309
3310         memset(f_attr, 0, sizeof(*f_attr));
3311
3312         /* read minimal guaranteed structure */
3313         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3314         if (ret <= 0) {
3315                 pr_debug("cannot read %d bytes of header attr\n",
3316                          PERF_ATTR_SIZE_VER0);
3317                 return -1;
3318         }
3319
3320         /* on file perf_event_attr size */
3321         sz = attr->size;
3322
3323         if (ph->needs_swap)
3324                 sz = bswap_32(sz);
3325
3326         if (sz == 0) {
3327                 /* assume ABI0 */
3328                 sz =  PERF_ATTR_SIZE_VER0;
3329         } else if (sz > our_sz) {
3330                 pr_debug("file uses a more recent and unsupported ABI"
3331                          " (%zu bytes extra)\n", sz - our_sz);
3332                 return -1;
3333         }
3334         /* what we have not yet read and that we know about */
3335         left = sz - PERF_ATTR_SIZE_VER0;
3336         if (left) {
3337                 void *ptr = attr;
3338                 ptr += PERF_ATTR_SIZE_VER0;
3339
3340                 ret = readn(fd, ptr, left);
3341         }
3342         /* read perf_file_section, ids are read in caller */
3343         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3344
3345         return ret <= 0 ? -1 : 0;
3346 }
3347
3348 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3349                                                 struct tep_handle *pevent)
3350 {
3351         struct tep_event *event;
3352         char bf[128];
3353
3354         /* already prepared */
3355         if (evsel->tp_format)
3356                 return 0;
3357
3358         if (pevent == NULL) {
3359                 pr_debug("broken or missing trace data\n");
3360                 return -1;
3361         }
3362
3363         event = tep_find_event(pevent, evsel->attr.config);
3364         if (event == NULL) {
3365                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3366                 return -1;
3367         }
3368
3369         if (!evsel->name) {
3370                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3371                 evsel->name = strdup(bf);
3372                 if (evsel->name == NULL)
3373                         return -1;
3374         }
3375
3376         evsel->tp_format = event;
3377         return 0;
3378 }
3379
3380 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3381                                                   struct tep_handle *pevent)
3382 {
3383         struct perf_evsel *pos;
3384
3385         evlist__for_each_entry(evlist, pos) {
3386                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3387                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3388                         return -1;
3389         }
3390
3391         return 0;
3392 }
3393
3394 int perf_session__read_header(struct perf_session *session)
3395 {
3396         struct perf_data *data = session->data;
3397         struct perf_header *header = &session->header;
3398         struct perf_file_header f_header;
3399         struct perf_file_attr   f_attr;
3400         u64                     f_id;
3401         int nr_attrs, nr_ids, i, j;
3402         int fd = perf_data__fd(data);
3403
3404         session->evlist = perf_evlist__new();
3405         if (session->evlist == NULL)
3406                 return -ENOMEM;
3407
3408         session->evlist->env = &header->env;
3409         session->machines.host.env = &header->env;
3410         if (perf_data__is_pipe(data))
3411                 return perf_header__read_pipe(session);
3412
3413         if (perf_file_header__read(&f_header, header, fd) < 0)
3414                 return -EINVAL;
3415
3416         /*
3417          * Sanity check that perf.data was written cleanly; data size is
3418          * initialized to 0 and updated only if the on_exit function is run.
3419          * If data size is still 0 then the file contains only partial
3420          * information.  Just warn user and process it as much as it can.
3421          */
3422         if (f_header.data.size == 0) {
3423                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3424                            "Was the 'perf record' command properly terminated?\n",
3425                            data->file.path);
3426         }
3427
3428         nr_attrs = f_header.attrs.size / f_header.attr_size;
3429         lseek(fd, f_header.attrs.offset, SEEK_SET);
3430
3431         for (i = 0; i < nr_attrs; i++) {
3432                 struct perf_evsel *evsel;
3433                 off_t tmp;
3434
3435                 if (read_attr(fd, header, &f_attr) < 0)
3436                         goto out_errno;
3437
3438                 if (header->needs_swap) {
3439                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3440                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3441                         perf_event__attr_swap(&f_attr.attr);
3442                 }
3443
3444                 tmp = lseek(fd, 0, SEEK_CUR);
3445                 evsel = perf_evsel__new(&f_attr.attr);
3446
3447                 if (evsel == NULL)
3448                         goto out_delete_evlist;
3449
3450                 evsel->needs_swap = header->needs_swap;
3451                 /*
3452                  * Do it before so that if perf_evsel__alloc_id fails, this
3453                  * entry gets purged too at perf_evlist__delete().
3454                  */
3455                 perf_evlist__add(session->evlist, evsel);
3456
3457                 nr_ids = f_attr.ids.size / sizeof(u64);
3458                 /*
3459                  * We don't have the cpu and thread maps on the header, so
3460                  * for allocating the perf_sample_id table we fake 1 cpu and
3461                  * hattr->ids threads.
3462                  */
3463                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3464                         goto out_delete_evlist;
3465
3466                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3467
3468                 for (j = 0; j < nr_ids; j++) {
3469                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3470                                 goto out_errno;
3471
3472                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3473                 }
3474
3475                 lseek(fd, tmp, SEEK_SET);
3476         }
3477
3478         perf_header__process_sections(header, fd, &session->tevent,
3479                                       perf_file_section__process);
3480
3481         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3482                                                    session->tevent.pevent))
3483                 goto out_delete_evlist;
3484
3485         return 0;
3486 out_errno:
3487         return -errno;
3488
3489 out_delete_evlist:
3490         perf_evlist__delete(session->evlist);
3491         session->evlist = NULL;
3492         return -ENOMEM;
3493 }
3494
3495 int perf_event__synthesize_attr(struct perf_tool *tool,
3496                                 struct perf_event_attr *attr, u32 ids, u64 *id,
3497                                 perf_event__handler_t process)
3498 {
3499         union perf_event *ev;
3500         size_t size;
3501         int err;
3502
3503         size = sizeof(struct perf_event_attr);
3504         size = PERF_ALIGN(size, sizeof(u64));
3505         size += sizeof(struct perf_event_header);
3506         size += ids * sizeof(u64);
3507
3508         ev = malloc(size);
3509
3510         if (ev == NULL)
3511                 return -ENOMEM;
3512
3513         ev->attr.attr = *attr;
3514         memcpy(ev->attr.id, id, ids * sizeof(u64));
3515
3516         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3517         ev->attr.header.size = (u16)size;
3518
3519         if (ev->attr.header.size == size)
3520                 err = process(tool, ev, NULL, NULL);
3521         else
3522                 err = -E2BIG;
3523
3524         free(ev);
3525
3526         return err;
3527 }
3528
3529 int perf_event__synthesize_features(struct perf_tool *tool,
3530                                     struct perf_session *session,
3531                                     struct perf_evlist *evlist,
3532                                     perf_event__handler_t process)
3533 {
3534         struct perf_header *header = &session->header;
3535         struct feat_fd ff;
3536         struct feature_event *fe;
3537         size_t sz, sz_hdr;
3538         int feat, ret;
3539
3540         sz_hdr = sizeof(fe->header);
3541         sz = sizeof(union perf_event);
3542         /* get a nice alignment */
3543         sz = PERF_ALIGN(sz, page_size);
3544
3545         memset(&ff, 0, sizeof(ff));
3546
3547         ff.buf = malloc(sz);
3548         if (!ff.buf)
3549                 return -ENOMEM;
3550
3551         ff.size = sz - sz_hdr;
3552
3553         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3554                 if (!feat_ops[feat].synthesize) {
3555                         pr_debug("No record header feature for header :%d\n", feat);
3556                         continue;
3557                 }
3558
3559                 ff.offset = sizeof(*fe);
3560
3561                 ret = feat_ops[feat].write(&ff, evlist);
3562                 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3563                         pr_debug("Error writing feature\n");
3564                         continue;
3565                 }
3566                 /* ff.buf may have changed due to realloc in do_write() */
3567                 fe = ff.buf;
3568                 memset(fe, 0, sizeof(*fe));
3569
3570                 fe->feat_id = feat;
3571                 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3572                 fe->header.size = ff.offset;
3573
3574                 ret = process(tool, ff.buf, NULL, NULL);
3575                 if (ret) {
3576                         free(ff.buf);
3577                         return ret;
3578                 }
3579         }
3580
3581         /* Send HEADER_LAST_FEATURE mark. */
3582         fe = ff.buf;
3583         fe->feat_id     = HEADER_LAST_FEATURE;
3584         fe->header.type = PERF_RECORD_HEADER_FEATURE;
3585         fe->header.size = sizeof(*fe);
3586
3587         ret = process(tool, ff.buf, NULL, NULL);
3588
3589         free(ff.buf);
3590         return ret;
3591 }
3592
3593 int perf_event__process_feature(struct perf_session *session,
3594                                 union perf_event *event)
3595 {
3596         struct perf_tool *tool = session->tool;
3597         struct feat_fd ff = { .fd = 0 };
3598         struct feature_event *fe = (struct feature_event *)event;
3599         int type = fe->header.type;
3600         u64 feat = fe->feat_id;
3601
3602         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3603                 pr_warning("invalid record type %d in pipe-mode\n", type);
3604                 return 0;
3605         }
3606         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3607                 pr_warning("invalid record type %d in pipe-mode\n", type);
3608                 return -1;
3609         }
3610
3611         if (!feat_ops[feat].process)
3612                 return 0;
3613
3614         ff.buf  = (void *)fe->data;
3615         ff.size = event->header.size - sizeof(event->header);
3616         ff.ph = &session->header;
3617
3618         if (feat_ops[feat].process(&ff, NULL))
3619                 return -1;
3620
3621         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3622                 return 0;
3623
3624         if (!feat_ops[feat].full_only ||
3625             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3626                 feat_ops[feat].print(&ff, stdout);
3627         } else {
3628                 fprintf(stdout, "# %s info available, use -I to display\n",
3629                         feat_ops[feat].name);
3630         }
3631
3632         return 0;
3633 }
3634
3635 static struct event_update_event *
3636 event_update_event__new(size_t size, u64 type, u64 id)
3637 {
3638         struct event_update_event *ev;
3639
3640         size += sizeof(*ev);
3641         size  = PERF_ALIGN(size, sizeof(u64));
3642
3643         ev = zalloc(size);
3644         if (ev) {
3645                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3646                 ev->header.size = (u16)size;
3647                 ev->type = type;
3648                 ev->id = id;
3649         }
3650         return ev;
3651 }
3652
3653 int
3654 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3655                                          struct perf_evsel *evsel,
3656                                          perf_event__handler_t process)
3657 {
3658         struct event_update_event *ev;
3659         size_t size = strlen(evsel->unit);
3660         int err;
3661
3662         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3663         if (ev == NULL)
3664                 return -ENOMEM;
3665
3666         strlcpy(ev->data, evsel->unit, size + 1);
3667         err = process(tool, (union perf_event *)ev, NULL, NULL);
3668         free(ev);
3669         return err;
3670 }
3671
3672 int
3673 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3674                                           struct perf_evsel *evsel,
3675                                           perf_event__handler_t process)
3676 {
3677         struct event_update_event *ev;
3678         struct event_update_event_scale *ev_data;
3679         int err;
3680
3681         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3682         if (ev == NULL)
3683                 return -ENOMEM;
3684
3685         ev_data = (struct event_update_event_scale *) ev->data;
3686         ev_data->scale = evsel->scale;
3687         err = process(tool, (union perf_event*) ev, NULL, NULL);
3688         free(ev);
3689         return err;
3690 }
3691
3692 int
3693 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3694                                          struct perf_evsel *evsel,
3695                                          perf_event__handler_t process)
3696 {
3697         struct event_update_event *ev;
3698         size_t len = strlen(evsel->name);
3699         int err;
3700
3701         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3702         if (ev == NULL)
3703                 return -ENOMEM;
3704
3705         strlcpy(ev->data, evsel->name, len + 1);
3706         err = process(tool, (union perf_event*) ev, NULL, NULL);
3707         free(ev);
3708         return err;
3709 }
3710
3711 int
3712 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3713                                         struct perf_evsel *evsel,
3714                                         perf_event__handler_t process)
3715 {
3716         size_t size = sizeof(struct event_update_event);
3717         struct event_update_event *ev;
3718         int max, err;
3719         u16 type;
3720
3721         if (!evsel->own_cpus)
3722                 return 0;
3723
3724         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3725         if (!ev)
3726                 return -ENOMEM;
3727
3728         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3729         ev->header.size = (u16)size;
3730         ev->type = PERF_EVENT_UPDATE__CPUS;
3731         ev->id   = evsel->id[0];
3732
3733         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3734                                  evsel->own_cpus,
3735                                  type, max);
3736
3737         err = process(tool, (union perf_event*) ev, NULL, NULL);
3738         free(ev);
3739         return err;
3740 }
3741
3742 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3743 {
3744         struct event_update_event *ev = &event->event_update;
3745         struct event_update_event_scale *ev_scale;
3746         struct event_update_event_cpus *ev_cpus;
3747         struct cpu_map *map;
3748         size_t ret;
3749
3750         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3751
3752         switch (ev->type) {
3753         case PERF_EVENT_UPDATE__SCALE:
3754                 ev_scale = (struct event_update_event_scale *) ev->data;
3755                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3756                 break;
3757         case PERF_EVENT_UPDATE__UNIT:
3758                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3759                 break;
3760         case PERF_EVENT_UPDATE__NAME:
3761                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3762                 break;
3763         case PERF_EVENT_UPDATE__CPUS:
3764                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3765                 ret += fprintf(fp, "... ");
3766
3767                 map = cpu_map__new_data(&ev_cpus->cpus);
3768                 if (map)
3769                         ret += cpu_map__fprintf(map, fp);
3770                 else
3771                         ret += fprintf(fp, "failed to get cpus\n");
3772                 break;
3773         default:
3774                 ret += fprintf(fp, "... unknown type\n");
3775                 break;
3776         }
3777
3778         return ret;
3779 }
3780
3781 int perf_event__synthesize_attrs(struct perf_tool *tool,
3782                                  struct perf_evlist *evlist,
3783                                  perf_event__handler_t process)
3784 {
3785         struct perf_evsel *evsel;
3786         int err = 0;
3787
3788         evlist__for_each_entry(evlist, evsel) {
3789                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3790                                                   evsel->id, process);
3791                 if (err) {
3792                         pr_debug("failed to create perf header attribute\n");
3793                         return err;
3794                 }
3795         }
3796
3797         return err;
3798 }
3799
3800 static bool has_unit(struct perf_evsel *counter)
3801 {
3802         return counter->unit && *counter->unit;
3803 }
3804
3805 static bool has_scale(struct perf_evsel *counter)
3806 {
3807         return counter->scale != 1;
3808 }
3809
3810 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3811                                       struct perf_evlist *evsel_list,
3812                                       perf_event__handler_t process,
3813                                       bool is_pipe)
3814 {
3815         struct perf_evsel *counter;
3816         int err;
3817
3818         /*
3819          * Synthesize other events stuff not carried within
3820          * attr event - unit, scale, name
3821          */
3822         evlist__for_each_entry(evsel_list, counter) {
3823                 if (!counter->supported)
3824                         continue;
3825
3826                 /*
3827                  * Synthesize unit and scale only if it's defined.
3828                  */
3829                 if (has_unit(counter)) {
3830                         err = perf_event__synthesize_event_update_unit(tool, counter, process);
3831                         if (err < 0) {
3832                                 pr_err("Couldn't synthesize evsel unit.\n");
3833                                 return err;
3834                         }
3835                 }
3836
3837                 if (has_scale(counter)) {
3838                         err = perf_event__synthesize_event_update_scale(tool, counter, process);
3839                         if (err < 0) {
3840                                 pr_err("Couldn't synthesize evsel counter.\n");
3841                                 return err;
3842                         }
3843                 }
3844
3845                 if (counter->own_cpus) {
3846                         err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3847                         if (err < 0) {
3848                                 pr_err("Couldn't synthesize evsel cpus.\n");
3849                                 return err;
3850                         }
3851                 }
3852
3853                 /*
3854                  * Name is needed only for pipe output,
3855                  * perf.data carries event names.
3856                  */
3857                 if (is_pipe) {
3858                         err = perf_event__synthesize_event_update_name(tool, counter, process);
3859                         if (err < 0) {
3860                                 pr_err("Couldn't synthesize evsel name.\n");
3861                                 return err;
3862                         }
3863                 }
3864         }
3865         return 0;
3866 }
3867
3868 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3869                              union perf_event *event,
3870                              struct perf_evlist **pevlist)
3871 {
3872         u32 i, ids, n_ids;
3873         struct perf_evsel *evsel;
3874         struct perf_evlist *evlist = *pevlist;
3875
3876         if (evlist == NULL) {
3877                 *pevlist = evlist = perf_evlist__new();
3878                 if (evlist == NULL)
3879                         return -ENOMEM;
3880         }
3881
3882         evsel = perf_evsel__new(&event->attr.attr);
3883         if (evsel == NULL)
3884                 return -ENOMEM;
3885
3886         perf_evlist__add(evlist, evsel);
3887
3888         ids = event->header.size;
3889         ids -= (void *)&event->attr.id - (void *)event;
3890         n_ids = ids / sizeof(u64);
3891         /*
3892          * We don't have the cpu and thread maps on the header, so
3893          * for allocating the perf_sample_id table we fake 1 cpu and
3894          * hattr->ids threads.
3895          */
3896         if (perf_evsel__alloc_id(evsel, 1, n_ids))
3897                 return -ENOMEM;
3898
3899         for (i = 0; i < n_ids; i++) {
3900                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3901         }
3902
3903         return 0;
3904 }
3905
3906 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3907                                      union perf_event *event,
3908                                      struct perf_evlist **pevlist)
3909 {
3910         struct event_update_event *ev = &event->event_update;
3911         struct event_update_event_scale *ev_scale;
3912         struct event_update_event_cpus *ev_cpus;
3913         struct perf_evlist *evlist;
3914         struct perf_evsel *evsel;
3915         struct cpu_map *map;
3916
3917         if (!pevlist || *pevlist == NULL)
3918                 return -EINVAL;
3919
3920         evlist = *pevlist;
3921
3922         evsel = perf_evlist__id2evsel(evlist, ev->id);
3923         if (evsel == NULL)
3924                 return -EINVAL;
3925
3926         switch (ev->type) {
3927         case PERF_EVENT_UPDATE__UNIT:
3928                 evsel->unit = strdup(ev->data);
3929                 break;
3930         case PERF_EVENT_UPDATE__NAME:
3931                 evsel->name = strdup(ev->data);
3932                 break;
3933         case PERF_EVENT_UPDATE__SCALE:
3934                 ev_scale = (struct event_update_event_scale *) ev->data;
3935                 evsel->scale = ev_scale->scale;
3936                 break;
3937         case PERF_EVENT_UPDATE__CPUS:
3938                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3939
3940                 map = cpu_map__new_data(&ev_cpus->cpus);
3941                 if (map)
3942                         evsel->own_cpus = map;
3943                 else
3944                         pr_err("failed to get event_update cpus\n");
3945         default:
3946                 break;
3947         }
3948
3949         return 0;
3950 }
3951
3952 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3953                                         struct perf_evlist *evlist,
3954                                         perf_event__handler_t process)
3955 {
3956         union perf_event ev;
3957         struct tracing_data *tdata;
3958         ssize_t size = 0, aligned_size = 0, padding;
3959         struct feat_fd ff;
3960         int err __maybe_unused = 0;
3961
3962         /*
3963          * We are going to store the size of the data followed
3964          * by the data contents. Since the fd descriptor is a pipe,
3965          * we cannot seek back to store the size of the data once
3966          * we know it. Instead we:
3967          *
3968          * - write the tracing data to the temp file
3969          * - get/write the data size to pipe
3970          * - write the tracing data from the temp file
3971          *   to the pipe
3972          */
3973         tdata = tracing_data_get(&evlist->entries, fd, true);
3974         if (!tdata)
3975                 return -1;
3976
3977         memset(&ev, 0, sizeof(ev));
3978
3979         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3980         size = tdata->size;
3981         aligned_size = PERF_ALIGN(size, sizeof(u64));
3982         padding = aligned_size - size;
3983         ev.tracing_data.header.size = sizeof(ev.tracing_data);
3984         ev.tracing_data.size = aligned_size;
3985
3986         process(tool, &ev, NULL, NULL);
3987
3988         /*
3989          * The put function will copy all the tracing data
3990          * stored in temp file to the pipe.
3991          */
3992         tracing_data_put(tdata);
3993
3994         ff = (struct feat_fd){ .fd = fd };
3995         if (write_padded(&ff, NULL, 0, padding))
3996                 return -1;
3997
3998         return aligned_size;
3999 }
4000
4001 int perf_event__process_tracing_data(struct perf_session *session,
4002                                      union perf_event *event)
4003 {
4004         ssize_t size_read, padding, size = event->tracing_data.size;
4005         int fd = perf_data__fd(session->data);
4006         off_t offset = lseek(fd, 0, SEEK_CUR);
4007         char buf[BUFSIZ];
4008
4009         /* setup for reading amidst mmap */
4010         lseek(fd, offset + sizeof(struct tracing_data_event),
4011               SEEK_SET);
4012
4013         size_read = trace_report(fd, &session->tevent,
4014                                  session->repipe);
4015         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4016
4017         if (readn(fd, buf, padding) < 0) {
4018                 pr_err("%s: reading input file", __func__);
4019                 return -1;
4020         }
4021         if (session->repipe) {
4022                 int retw = write(STDOUT_FILENO, buf, padding);
4023                 if (retw <= 0 || retw != padding) {
4024                         pr_err("%s: repiping tracing data padding", __func__);
4025                         return -1;
4026                 }
4027         }
4028
4029         if (size_read + padding != size) {
4030                 pr_err("%s: tracing data size mismatch", __func__);
4031                 return -1;
4032         }
4033
4034         perf_evlist__prepare_tracepoint_events(session->evlist,
4035                                                session->tevent.pevent);
4036
4037         return size_read + padding;
4038 }
4039
4040 int perf_event__synthesize_build_id(struct perf_tool *tool,
4041                                     struct dso *pos, u16 misc,
4042                                     perf_event__handler_t process,
4043                                     struct machine *machine)
4044 {
4045         union perf_event ev;
4046         size_t len;
4047         int err = 0;
4048
4049         if (!pos->hit)
4050                 return err;
4051
4052         memset(&ev, 0, sizeof(ev));
4053
4054         len = pos->long_name_len + 1;
4055         len = PERF_ALIGN(len, NAME_ALIGN);
4056         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
4057         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
4058         ev.build_id.header.misc = misc;
4059         ev.build_id.pid = machine->pid;
4060         ev.build_id.header.size = sizeof(ev.build_id) + len;
4061         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
4062
4063         err = process(tool, &ev, NULL, machine);
4064
4065         return err;
4066 }
4067
4068 int perf_event__process_build_id(struct perf_session *session,
4069                                  union perf_event *event)
4070 {
4071         __event_process_build_id(&event->build_id,
4072                                  event->build_id.filename,
4073                                  session);
4074         return 0;
4075 }