]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/header.c
Merge branches 'for-4.20/upstream-fixes', 'for-4.21/core', 'for-4.21/hid-asus', ...
[linux.git] / tools / perf / util / header.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "util.h"
5 #include "string2.h"
6 #include <sys/param.h>
7 #include <sys/types.h>
8 #include <byteswap.h>
9 #include <unistd.h>
10 #include <stdio.h>
11 #include <stdlib.h>
12 #include <linux/compiler.h>
13 #include <linux/list.h>
14 #include <linux/kernel.h>
15 #include <linux/bitops.h>
16 #include <linux/stringify.h>
17 #include <sys/stat.h>
18 #include <sys/utsname.h>
19 #include <linux/time64.h>
20 #include <dirent.h>
21
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "header.h"
25 #include "memswap.h"
26 #include "../perf.h"
27 #include "trace-event.h"
28 #include "session.h"
29 #include "symbol.h"
30 #include "debug.h"
31 #include "cpumap.h"
32 #include "pmu.h"
33 #include "vdso.h"
34 #include "strbuf.h"
35 #include "build-id.h"
36 #include "data.h"
37 #include <api/fs/fs.h>
38 #include "asm/bug.h"
39 #include "tool.h"
40 #include "time-utils.h"
41 #include "units.h"
42
43 #include "sane_ctype.h"
44
45 /*
46  * magic2 = "PERFILE2"
47  * must be a numerical value to let the endianness
48  * determine the memory layout. That way we are able
49  * to detect endianness when reading the perf.data file
50  * back.
51  *
52  * we check for legacy (PERFFILE) format.
53  */
54 static const char *__perf_magic1 = "PERFFILE";
55 static const u64 __perf_magic2    = 0x32454c4946524550ULL;
56 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
57
58 #define PERF_MAGIC      __perf_magic2
59
60 const char perf_version_string[] = PERF_VERSION;
61
62 struct perf_file_attr {
63         struct perf_event_attr  attr;
64         struct perf_file_section        ids;
65 };
66
67 struct feat_fd {
68         struct perf_header      *ph;
69         int                     fd;
70         void                    *buf;   /* Either buf != NULL or fd >= 0 */
71         ssize_t                 offset;
72         size_t                  size;
73         struct perf_evsel       *events;
74 };
75
76 void perf_header__set_feat(struct perf_header *header, int feat)
77 {
78         set_bit(feat, header->adds_features);
79 }
80
81 void perf_header__clear_feat(struct perf_header *header, int feat)
82 {
83         clear_bit(feat, header->adds_features);
84 }
85
86 bool perf_header__has_feat(const struct perf_header *header, int feat)
87 {
88         return test_bit(feat, header->adds_features);
89 }
90
91 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
92 {
93         ssize_t ret = writen(ff->fd, buf, size);
94
95         if (ret != (ssize_t)size)
96                 return ret < 0 ? (int)ret : -1;
97         return 0;
98 }
99
100 static int __do_write_buf(struct feat_fd *ff,  const void *buf, size_t size)
101 {
102         /* struct perf_event_header::size is u16 */
103         const size_t max_size = 0xffff - sizeof(struct perf_event_header);
104         size_t new_size = ff->size;
105         void *addr;
106
107         if (size + ff->offset > max_size)
108                 return -E2BIG;
109
110         while (size > (new_size - ff->offset))
111                 new_size <<= 1;
112         new_size = min(max_size, new_size);
113
114         if (ff->size < new_size) {
115                 addr = realloc(ff->buf, new_size);
116                 if (!addr)
117                         return -ENOMEM;
118                 ff->buf = addr;
119                 ff->size = new_size;
120         }
121
122         memcpy(ff->buf + ff->offset, buf, size);
123         ff->offset += size;
124
125         return 0;
126 }
127
128 /* Return: 0 if succeded, -ERR if failed. */
129 int do_write(struct feat_fd *ff, const void *buf, size_t size)
130 {
131         if (!ff->buf)
132                 return __do_write_fd(ff, buf, size);
133         return __do_write_buf(ff, buf, size);
134 }
135
136 /* Return: 0 if succeded, -ERR if failed. */
137 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
138 {
139         u64 *p = (u64 *) set;
140         int i, ret;
141
142         ret = do_write(ff, &size, sizeof(size));
143         if (ret < 0)
144                 return ret;
145
146         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
147                 ret = do_write(ff, p + i, sizeof(*p));
148                 if (ret < 0)
149                         return ret;
150         }
151
152         return 0;
153 }
154
155 /* Return: 0 if succeded, -ERR if failed. */
156 int write_padded(struct feat_fd *ff, const void *bf,
157                  size_t count, size_t count_aligned)
158 {
159         static const char zero_buf[NAME_ALIGN];
160         int err = do_write(ff, bf, count);
161
162         if (!err)
163                 err = do_write(ff, zero_buf, count_aligned - count);
164
165         return err;
166 }
167
168 #define string_size(str)                                                \
169         (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
170
171 /* Return: 0 if succeded, -ERR if failed. */
172 static int do_write_string(struct feat_fd *ff, const char *str)
173 {
174         u32 len, olen;
175         int ret;
176
177         olen = strlen(str) + 1;
178         len = PERF_ALIGN(olen, NAME_ALIGN);
179
180         /* write len, incl. \0 */
181         ret = do_write(ff, &len, sizeof(len));
182         if (ret < 0)
183                 return ret;
184
185         return write_padded(ff, str, olen, len);
186 }
187
188 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
189 {
190         ssize_t ret = readn(ff->fd, addr, size);
191
192         if (ret != size)
193                 return ret < 0 ? (int)ret : -1;
194         return 0;
195 }
196
197 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
198 {
199         if (size > (ssize_t)ff->size - ff->offset)
200                 return -1;
201
202         memcpy(addr, ff->buf + ff->offset, size);
203         ff->offset += size;
204
205         return 0;
206
207 }
208
209 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
210 {
211         if (!ff->buf)
212                 return __do_read_fd(ff, addr, size);
213         return __do_read_buf(ff, addr, size);
214 }
215
216 static int do_read_u32(struct feat_fd *ff, u32 *addr)
217 {
218         int ret;
219
220         ret = __do_read(ff, addr, sizeof(*addr));
221         if (ret)
222                 return ret;
223
224         if (ff->ph->needs_swap)
225                 *addr = bswap_32(*addr);
226         return 0;
227 }
228
229 static int do_read_u64(struct feat_fd *ff, u64 *addr)
230 {
231         int ret;
232
233         ret = __do_read(ff, addr, sizeof(*addr));
234         if (ret)
235                 return ret;
236
237         if (ff->ph->needs_swap)
238                 *addr = bswap_64(*addr);
239         return 0;
240 }
241
242 static char *do_read_string(struct feat_fd *ff)
243 {
244         u32 len;
245         char *buf;
246
247         if (do_read_u32(ff, &len))
248                 return NULL;
249
250         buf = malloc(len);
251         if (!buf)
252                 return NULL;
253
254         if (!__do_read(ff, buf, len)) {
255                 /*
256                  * strings are padded by zeroes
257                  * thus the actual strlen of buf
258                  * may be less than len
259                  */
260                 return buf;
261         }
262
263         free(buf);
264         return NULL;
265 }
266
267 /* Return: 0 if succeded, -ERR if failed. */
268 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
269 {
270         unsigned long *set;
271         u64 size, *p;
272         int i, ret;
273
274         ret = do_read_u64(ff, &size);
275         if (ret)
276                 return ret;
277
278         set = bitmap_alloc(size);
279         if (!set)
280                 return -ENOMEM;
281
282         p = (u64 *) set;
283
284         for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
285                 ret = do_read_u64(ff, p + i);
286                 if (ret < 0) {
287                         free(set);
288                         return ret;
289                 }
290         }
291
292         *pset  = set;
293         *psize = size;
294         return 0;
295 }
296
297 static int write_tracing_data(struct feat_fd *ff,
298                               struct perf_evlist *evlist)
299 {
300         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
301                 return -1;
302
303         return read_tracing_data(ff->fd, &evlist->entries);
304 }
305
306 static int write_build_id(struct feat_fd *ff,
307                           struct perf_evlist *evlist __maybe_unused)
308 {
309         struct perf_session *session;
310         int err;
311
312         session = container_of(ff->ph, struct perf_session, header);
313
314         if (!perf_session__read_build_ids(session, true))
315                 return -1;
316
317         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
318                 return -1;
319
320         err = perf_session__write_buildid_table(session, ff);
321         if (err < 0) {
322                 pr_debug("failed to write buildid table\n");
323                 return err;
324         }
325         perf_session__cache_build_ids(session);
326
327         return 0;
328 }
329
330 static int write_hostname(struct feat_fd *ff,
331                           struct perf_evlist *evlist __maybe_unused)
332 {
333         struct utsname uts;
334         int ret;
335
336         ret = uname(&uts);
337         if (ret < 0)
338                 return -1;
339
340         return do_write_string(ff, uts.nodename);
341 }
342
343 static int write_osrelease(struct feat_fd *ff,
344                            struct perf_evlist *evlist __maybe_unused)
345 {
346         struct utsname uts;
347         int ret;
348
349         ret = uname(&uts);
350         if (ret < 0)
351                 return -1;
352
353         return do_write_string(ff, uts.release);
354 }
355
356 static int write_arch(struct feat_fd *ff,
357                       struct perf_evlist *evlist __maybe_unused)
358 {
359         struct utsname uts;
360         int ret;
361
362         ret = uname(&uts);
363         if (ret < 0)
364                 return -1;
365
366         return do_write_string(ff, uts.machine);
367 }
368
369 static int write_version(struct feat_fd *ff,
370                          struct perf_evlist *evlist __maybe_unused)
371 {
372         return do_write_string(ff, perf_version_string);
373 }
374
375 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
376 {
377         FILE *file;
378         char *buf = NULL;
379         char *s, *p;
380         const char *search = cpuinfo_proc;
381         size_t len = 0;
382         int ret = -1;
383
384         if (!search)
385                 return -1;
386
387         file = fopen("/proc/cpuinfo", "r");
388         if (!file)
389                 return -1;
390
391         while (getline(&buf, &len, file) > 0) {
392                 ret = strncmp(buf, search, strlen(search));
393                 if (!ret)
394                         break;
395         }
396
397         if (ret) {
398                 ret = -1;
399                 goto done;
400         }
401
402         s = buf;
403
404         p = strchr(buf, ':');
405         if (p && *(p+1) == ' ' && *(p+2))
406                 s = p + 2;
407         p = strchr(s, '\n');
408         if (p)
409                 *p = '\0';
410
411         /* squash extra space characters (branding string) */
412         p = s;
413         while (*p) {
414                 if (isspace(*p)) {
415                         char *r = p + 1;
416                         char *q = r;
417                         *p = ' ';
418                         while (*q && isspace(*q))
419                                 q++;
420                         if (q != (p+1))
421                                 while ((*r++ = *q++));
422                 }
423                 p++;
424         }
425         ret = do_write_string(ff, s);
426 done:
427         free(buf);
428         fclose(file);
429         return ret;
430 }
431
432 static int write_cpudesc(struct feat_fd *ff,
433                        struct perf_evlist *evlist __maybe_unused)
434 {
435         const char *cpuinfo_procs[] = CPUINFO_PROC;
436         unsigned int i;
437
438         for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
439                 int ret;
440                 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
441                 if (ret >= 0)
442                         return ret;
443         }
444         return -1;
445 }
446
447
448 static int write_nrcpus(struct feat_fd *ff,
449                         struct perf_evlist *evlist __maybe_unused)
450 {
451         long nr;
452         u32 nrc, nra;
453         int ret;
454
455         nrc = cpu__max_present_cpu();
456
457         nr = sysconf(_SC_NPROCESSORS_ONLN);
458         if (nr < 0)
459                 return -1;
460
461         nra = (u32)(nr & UINT_MAX);
462
463         ret = do_write(ff, &nrc, sizeof(nrc));
464         if (ret < 0)
465                 return ret;
466
467         return do_write(ff, &nra, sizeof(nra));
468 }
469
470 static int write_event_desc(struct feat_fd *ff,
471                             struct perf_evlist *evlist)
472 {
473         struct perf_evsel *evsel;
474         u32 nre, nri, sz;
475         int ret;
476
477         nre = evlist->nr_entries;
478
479         /*
480          * write number of events
481          */
482         ret = do_write(ff, &nre, sizeof(nre));
483         if (ret < 0)
484                 return ret;
485
486         /*
487          * size of perf_event_attr struct
488          */
489         sz = (u32)sizeof(evsel->attr);
490         ret = do_write(ff, &sz, sizeof(sz));
491         if (ret < 0)
492                 return ret;
493
494         evlist__for_each_entry(evlist, evsel) {
495                 ret = do_write(ff, &evsel->attr, sz);
496                 if (ret < 0)
497                         return ret;
498                 /*
499                  * write number of unique id per event
500                  * there is one id per instance of an event
501                  *
502                  * copy into an nri to be independent of the
503                  * type of ids,
504                  */
505                 nri = evsel->ids;
506                 ret = do_write(ff, &nri, sizeof(nri));
507                 if (ret < 0)
508                         return ret;
509
510                 /*
511                  * write event string as passed on cmdline
512                  */
513                 ret = do_write_string(ff, perf_evsel__name(evsel));
514                 if (ret < 0)
515                         return ret;
516                 /*
517                  * write unique ids for this event
518                  */
519                 ret = do_write(ff, evsel->id, evsel->ids * sizeof(u64));
520                 if (ret < 0)
521                         return ret;
522         }
523         return 0;
524 }
525
526 static int write_cmdline(struct feat_fd *ff,
527                          struct perf_evlist *evlist __maybe_unused)
528 {
529         char buf[MAXPATHLEN];
530         u32 n;
531         int i, ret;
532
533         /* actual path to perf binary */
534         ret = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
535         if (ret <= 0)
536                 return -1;
537
538         /* readlink() does not add null termination */
539         buf[ret] = '\0';
540
541         /* account for binary path */
542         n = perf_env.nr_cmdline + 1;
543
544         ret = do_write(ff, &n, sizeof(n));
545         if (ret < 0)
546                 return ret;
547
548         ret = do_write_string(ff, buf);
549         if (ret < 0)
550                 return ret;
551
552         for (i = 0 ; i < perf_env.nr_cmdline; i++) {
553                 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
554                 if (ret < 0)
555                         return ret;
556         }
557         return 0;
558 }
559
560 #define CORE_SIB_FMT \
561         "/sys/devices/system/cpu/cpu%d/topology/core_siblings_list"
562 #define THRD_SIB_FMT \
563         "/sys/devices/system/cpu/cpu%d/topology/thread_siblings_list"
564
565 struct cpu_topo {
566         u32 cpu_nr;
567         u32 core_sib;
568         u32 thread_sib;
569         char **core_siblings;
570         char **thread_siblings;
571 };
572
573 static int build_cpu_topo(struct cpu_topo *tp, int cpu)
574 {
575         FILE *fp;
576         char filename[MAXPATHLEN];
577         char *buf = NULL, *p;
578         size_t len = 0;
579         ssize_t sret;
580         u32 i = 0;
581         int ret = -1;
582
583         sprintf(filename, CORE_SIB_FMT, cpu);
584         fp = fopen(filename, "r");
585         if (!fp)
586                 goto try_threads;
587
588         sret = getline(&buf, &len, fp);
589         fclose(fp);
590         if (sret <= 0)
591                 goto try_threads;
592
593         p = strchr(buf, '\n');
594         if (p)
595                 *p = '\0';
596
597         for (i = 0; i < tp->core_sib; i++) {
598                 if (!strcmp(buf, tp->core_siblings[i]))
599                         break;
600         }
601         if (i == tp->core_sib) {
602                 tp->core_siblings[i] = buf;
603                 tp->core_sib++;
604                 buf = NULL;
605                 len = 0;
606         }
607         ret = 0;
608
609 try_threads:
610         sprintf(filename, THRD_SIB_FMT, cpu);
611         fp = fopen(filename, "r");
612         if (!fp)
613                 goto done;
614
615         if (getline(&buf, &len, fp) <= 0)
616                 goto done;
617
618         p = strchr(buf, '\n');
619         if (p)
620                 *p = '\0';
621
622         for (i = 0; i < tp->thread_sib; i++) {
623                 if (!strcmp(buf, tp->thread_siblings[i]))
624                         break;
625         }
626         if (i == tp->thread_sib) {
627                 tp->thread_siblings[i] = buf;
628                 tp->thread_sib++;
629                 buf = NULL;
630         }
631         ret = 0;
632 done:
633         if(fp)
634                 fclose(fp);
635         free(buf);
636         return ret;
637 }
638
639 static void free_cpu_topo(struct cpu_topo *tp)
640 {
641         u32 i;
642
643         if (!tp)
644                 return;
645
646         for (i = 0 ; i < tp->core_sib; i++)
647                 zfree(&tp->core_siblings[i]);
648
649         for (i = 0 ; i < tp->thread_sib; i++)
650                 zfree(&tp->thread_siblings[i]);
651
652         free(tp);
653 }
654
655 static struct cpu_topo *build_cpu_topology(void)
656 {
657         struct cpu_topo *tp = NULL;
658         void *addr;
659         u32 nr, i;
660         size_t sz;
661         long ncpus;
662         int ret = -1;
663         struct cpu_map *map;
664
665         ncpus = cpu__max_present_cpu();
666
667         /* build online CPU map */
668         map = cpu_map__new(NULL);
669         if (map == NULL) {
670                 pr_debug("failed to get system cpumap\n");
671                 return NULL;
672         }
673
674         nr = (u32)(ncpus & UINT_MAX);
675
676         sz = nr * sizeof(char *);
677         addr = calloc(1, sizeof(*tp) + 2 * sz);
678         if (!addr)
679                 goto out_free;
680
681         tp = addr;
682         tp->cpu_nr = nr;
683         addr += sizeof(*tp);
684         tp->core_siblings = addr;
685         addr += sz;
686         tp->thread_siblings = addr;
687
688         for (i = 0; i < nr; i++) {
689                 if (!cpu_map__has(map, i))
690                         continue;
691
692                 ret = build_cpu_topo(tp, i);
693                 if (ret < 0)
694                         break;
695         }
696
697 out_free:
698         cpu_map__put(map);
699         if (ret) {
700                 free_cpu_topo(tp);
701                 tp = NULL;
702         }
703         return tp;
704 }
705
706 static int write_cpu_topology(struct feat_fd *ff,
707                               struct perf_evlist *evlist __maybe_unused)
708 {
709         struct cpu_topo *tp;
710         u32 i;
711         int ret, j;
712
713         tp = build_cpu_topology();
714         if (!tp)
715                 return -1;
716
717         ret = do_write(ff, &tp->core_sib, sizeof(tp->core_sib));
718         if (ret < 0)
719                 goto done;
720
721         for (i = 0; i < tp->core_sib; i++) {
722                 ret = do_write_string(ff, tp->core_siblings[i]);
723                 if (ret < 0)
724                         goto done;
725         }
726         ret = do_write(ff, &tp->thread_sib, sizeof(tp->thread_sib));
727         if (ret < 0)
728                 goto done;
729
730         for (i = 0; i < tp->thread_sib; i++) {
731                 ret = do_write_string(ff, tp->thread_siblings[i]);
732                 if (ret < 0)
733                         break;
734         }
735
736         ret = perf_env__read_cpu_topology_map(&perf_env);
737         if (ret < 0)
738                 goto done;
739
740         for (j = 0; j < perf_env.nr_cpus_avail; j++) {
741                 ret = do_write(ff, &perf_env.cpu[j].core_id,
742                                sizeof(perf_env.cpu[j].core_id));
743                 if (ret < 0)
744                         return ret;
745                 ret = do_write(ff, &perf_env.cpu[j].socket_id,
746                                sizeof(perf_env.cpu[j].socket_id));
747                 if (ret < 0)
748                         return ret;
749         }
750 done:
751         free_cpu_topo(tp);
752         return ret;
753 }
754
755
756
757 static int write_total_mem(struct feat_fd *ff,
758                            struct perf_evlist *evlist __maybe_unused)
759 {
760         char *buf = NULL;
761         FILE *fp;
762         size_t len = 0;
763         int ret = -1, n;
764         uint64_t mem;
765
766         fp = fopen("/proc/meminfo", "r");
767         if (!fp)
768                 return -1;
769
770         while (getline(&buf, &len, fp) > 0) {
771                 ret = strncmp(buf, "MemTotal:", 9);
772                 if (!ret)
773                         break;
774         }
775         if (!ret) {
776                 n = sscanf(buf, "%*s %"PRIu64, &mem);
777                 if (n == 1)
778                         ret = do_write(ff, &mem, sizeof(mem));
779         } else
780                 ret = -1;
781         free(buf);
782         fclose(fp);
783         return ret;
784 }
785
786 static int write_topo_node(struct feat_fd *ff, int node)
787 {
788         char str[MAXPATHLEN];
789         char field[32];
790         char *buf = NULL, *p;
791         size_t len = 0;
792         FILE *fp;
793         u64 mem_total, mem_free, mem;
794         int ret = -1;
795
796         sprintf(str, "/sys/devices/system/node/node%d/meminfo", node);
797         fp = fopen(str, "r");
798         if (!fp)
799                 return -1;
800
801         while (getline(&buf, &len, fp) > 0) {
802                 /* skip over invalid lines */
803                 if (!strchr(buf, ':'))
804                         continue;
805                 if (sscanf(buf, "%*s %*d %31s %"PRIu64, field, &mem) != 2)
806                         goto done;
807                 if (!strcmp(field, "MemTotal:"))
808                         mem_total = mem;
809                 if (!strcmp(field, "MemFree:"))
810                         mem_free = mem;
811         }
812
813         fclose(fp);
814         fp = NULL;
815
816         ret = do_write(ff, &mem_total, sizeof(u64));
817         if (ret)
818                 goto done;
819
820         ret = do_write(ff, &mem_free, sizeof(u64));
821         if (ret)
822                 goto done;
823
824         ret = -1;
825         sprintf(str, "/sys/devices/system/node/node%d/cpulist", node);
826
827         fp = fopen(str, "r");
828         if (!fp)
829                 goto done;
830
831         if (getline(&buf, &len, fp) <= 0)
832                 goto done;
833
834         p = strchr(buf, '\n');
835         if (p)
836                 *p = '\0';
837
838         ret = do_write_string(ff, buf);
839 done:
840         free(buf);
841         if (fp)
842                 fclose(fp);
843         return ret;
844 }
845
846 static int write_numa_topology(struct feat_fd *ff,
847                                struct perf_evlist *evlist __maybe_unused)
848 {
849         char *buf = NULL;
850         size_t len = 0;
851         FILE *fp;
852         struct cpu_map *node_map = NULL;
853         char *c;
854         u32 nr, i, j;
855         int ret = -1;
856
857         fp = fopen("/sys/devices/system/node/online", "r");
858         if (!fp)
859                 return -1;
860
861         if (getline(&buf, &len, fp) <= 0)
862                 goto done;
863
864         c = strchr(buf, '\n');
865         if (c)
866                 *c = '\0';
867
868         node_map = cpu_map__new(buf);
869         if (!node_map)
870                 goto done;
871
872         nr = (u32)node_map->nr;
873
874         ret = do_write(ff, &nr, sizeof(nr));
875         if (ret < 0)
876                 goto done;
877
878         for (i = 0; i < nr; i++) {
879                 j = (u32)node_map->map[i];
880                 ret = do_write(ff, &j, sizeof(j));
881                 if (ret < 0)
882                         break;
883
884                 ret = write_topo_node(ff, i);
885                 if (ret < 0)
886                         break;
887         }
888 done:
889         free(buf);
890         fclose(fp);
891         cpu_map__put(node_map);
892         return ret;
893 }
894
895 /*
896  * File format:
897  *
898  * struct pmu_mappings {
899  *      u32     pmu_num;
900  *      struct pmu_map {
901  *              u32     type;
902  *              char    name[];
903  *      }[pmu_num];
904  * };
905  */
906
907 static int write_pmu_mappings(struct feat_fd *ff,
908                               struct perf_evlist *evlist __maybe_unused)
909 {
910         struct perf_pmu *pmu = NULL;
911         u32 pmu_num = 0;
912         int ret;
913
914         /*
915          * Do a first pass to count number of pmu to avoid lseek so this
916          * works in pipe mode as well.
917          */
918         while ((pmu = perf_pmu__scan(pmu))) {
919                 if (!pmu->name)
920                         continue;
921                 pmu_num++;
922         }
923
924         ret = do_write(ff, &pmu_num, sizeof(pmu_num));
925         if (ret < 0)
926                 return ret;
927
928         while ((pmu = perf_pmu__scan(pmu))) {
929                 if (!pmu->name)
930                         continue;
931
932                 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
933                 if (ret < 0)
934                         return ret;
935
936                 ret = do_write_string(ff, pmu->name);
937                 if (ret < 0)
938                         return ret;
939         }
940
941         return 0;
942 }
943
944 /*
945  * File format:
946  *
947  * struct group_descs {
948  *      u32     nr_groups;
949  *      struct group_desc {
950  *              char    name[];
951  *              u32     leader_idx;
952  *              u32     nr_members;
953  *      }[nr_groups];
954  * };
955  */
956 static int write_group_desc(struct feat_fd *ff,
957                             struct perf_evlist *evlist)
958 {
959         u32 nr_groups = evlist->nr_groups;
960         struct perf_evsel *evsel;
961         int ret;
962
963         ret = do_write(ff, &nr_groups, sizeof(nr_groups));
964         if (ret < 0)
965                 return ret;
966
967         evlist__for_each_entry(evlist, evsel) {
968                 if (perf_evsel__is_group_leader(evsel) &&
969                     evsel->nr_members > 1) {
970                         const char *name = evsel->group_name ?: "{anon_group}";
971                         u32 leader_idx = evsel->idx;
972                         u32 nr_members = evsel->nr_members;
973
974                         ret = do_write_string(ff, name);
975                         if (ret < 0)
976                                 return ret;
977
978                         ret = do_write(ff, &leader_idx, sizeof(leader_idx));
979                         if (ret < 0)
980                                 return ret;
981
982                         ret = do_write(ff, &nr_members, sizeof(nr_members));
983                         if (ret < 0)
984                                 return ret;
985                 }
986         }
987         return 0;
988 }
989
990 /*
991  * default get_cpuid(): nothing gets recorded
992  * actual implementation must be in arch/$(SRCARCH)/util/header.c
993  */
994 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
995 {
996         return -1;
997 }
998
999 static int write_cpuid(struct feat_fd *ff,
1000                        struct perf_evlist *evlist __maybe_unused)
1001 {
1002         char buffer[64];
1003         int ret;
1004
1005         ret = get_cpuid(buffer, sizeof(buffer));
1006         if (!ret)
1007                 goto write_it;
1008
1009         return -1;
1010 write_it:
1011         return do_write_string(ff, buffer);
1012 }
1013
1014 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
1015                               struct perf_evlist *evlist __maybe_unused)
1016 {
1017         return 0;
1018 }
1019
1020 static int write_auxtrace(struct feat_fd *ff,
1021                           struct perf_evlist *evlist __maybe_unused)
1022 {
1023         struct perf_session *session;
1024         int err;
1025
1026         if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
1027                 return -1;
1028
1029         session = container_of(ff->ph, struct perf_session, header);
1030
1031         err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
1032         if (err < 0)
1033                 pr_err("Failed to write auxtrace index\n");
1034         return err;
1035 }
1036
1037 static int write_clockid(struct feat_fd *ff,
1038                          struct perf_evlist *evlist __maybe_unused)
1039 {
1040         return do_write(ff, &ff->ph->env.clockid_res_ns,
1041                         sizeof(ff->ph->env.clockid_res_ns));
1042 }
1043
1044 static int cpu_cache_level__sort(const void *a, const void *b)
1045 {
1046         struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1047         struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1048
1049         return cache_a->level - cache_b->level;
1050 }
1051
1052 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1053 {
1054         if (a->level != b->level)
1055                 return false;
1056
1057         if (a->line_size != b->line_size)
1058                 return false;
1059
1060         if (a->sets != b->sets)
1061                 return false;
1062
1063         if (a->ways != b->ways)
1064                 return false;
1065
1066         if (strcmp(a->type, b->type))
1067                 return false;
1068
1069         if (strcmp(a->size, b->size))
1070                 return false;
1071
1072         if (strcmp(a->map, b->map))
1073                 return false;
1074
1075         return true;
1076 }
1077
1078 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1079 {
1080         char path[PATH_MAX], file[PATH_MAX];
1081         struct stat st;
1082         size_t len;
1083
1084         scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1085         scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1086
1087         if (stat(file, &st))
1088                 return 1;
1089
1090         scnprintf(file, PATH_MAX, "%s/level", path);
1091         if (sysfs__read_int(file, (int *) &cache->level))
1092                 return -1;
1093
1094         scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1095         if (sysfs__read_int(file, (int *) &cache->line_size))
1096                 return -1;
1097
1098         scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1099         if (sysfs__read_int(file, (int *) &cache->sets))
1100                 return -1;
1101
1102         scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1103         if (sysfs__read_int(file, (int *) &cache->ways))
1104                 return -1;
1105
1106         scnprintf(file, PATH_MAX, "%s/type", path);
1107         if (sysfs__read_str(file, &cache->type, &len))
1108                 return -1;
1109
1110         cache->type[len] = 0;
1111         cache->type = rtrim(cache->type);
1112
1113         scnprintf(file, PATH_MAX, "%s/size", path);
1114         if (sysfs__read_str(file, &cache->size, &len)) {
1115                 free(cache->type);
1116                 return -1;
1117         }
1118
1119         cache->size[len] = 0;
1120         cache->size = rtrim(cache->size);
1121
1122         scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1123         if (sysfs__read_str(file, &cache->map, &len)) {
1124                 free(cache->map);
1125                 free(cache->type);
1126                 return -1;
1127         }
1128
1129         cache->map[len] = 0;
1130         cache->map = rtrim(cache->map);
1131         return 0;
1132 }
1133
1134 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1135 {
1136         fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1137 }
1138
1139 static int build_caches(struct cpu_cache_level caches[], u32 size, u32 *cntp)
1140 {
1141         u32 i, cnt = 0;
1142         long ncpus;
1143         u32 nr, cpu;
1144         u16 level;
1145
1146         ncpus = sysconf(_SC_NPROCESSORS_CONF);
1147         if (ncpus < 0)
1148                 return -1;
1149
1150         nr = (u32)(ncpus & UINT_MAX);
1151
1152         for (cpu = 0; cpu < nr; cpu++) {
1153                 for (level = 0; level < 10; level++) {
1154                         struct cpu_cache_level c;
1155                         int err;
1156
1157                         err = cpu_cache_level__read(&c, cpu, level);
1158                         if (err < 0)
1159                                 return err;
1160
1161                         if (err == 1)
1162                                 break;
1163
1164                         for (i = 0; i < cnt; i++) {
1165                                 if (cpu_cache_level__cmp(&c, &caches[i]))
1166                                         break;
1167                         }
1168
1169                         if (i == cnt)
1170                                 caches[cnt++] = c;
1171                         else
1172                                 cpu_cache_level__free(&c);
1173
1174                         if (WARN_ONCE(cnt == size, "way too many cpu caches.."))
1175                                 goto out;
1176                 }
1177         }
1178  out:
1179         *cntp = cnt;
1180         return 0;
1181 }
1182
1183 #define MAX_CACHES 2000
1184
1185 static int write_cache(struct feat_fd *ff,
1186                        struct perf_evlist *evlist __maybe_unused)
1187 {
1188         struct cpu_cache_level caches[MAX_CACHES];
1189         u32 cnt = 0, i, version = 1;
1190         int ret;
1191
1192         ret = build_caches(caches, MAX_CACHES, &cnt);
1193         if (ret)
1194                 goto out;
1195
1196         qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1197
1198         ret = do_write(ff, &version, sizeof(u32));
1199         if (ret < 0)
1200                 goto out;
1201
1202         ret = do_write(ff, &cnt, sizeof(u32));
1203         if (ret < 0)
1204                 goto out;
1205
1206         for (i = 0; i < cnt; i++) {
1207                 struct cpu_cache_level *c = &caches[i];
1208
1209                 #define _W(v)                                   \
1210                         ret = do_write(ff, &c->v, sizeof(u32)); \
1211                         if (ret < 0)                            \
1212                                 goto out;
1213
1214                 _W(level)
1215                 _W(line_size)
1216                 _W(sets)
1217                 _W(ways)
1218                 #undef _W
1219
1220                 #define _W(v)                                           \
1221                         ret = do_write_string(ff, (const char *) c->v); \
1222                         if (ret < 0)                                    \
1223                                 goto out;
1224
1225                 _W(type)
1226                 _W(size)
1227                 _W(map)
1228                 #undef _W
1229         }
1230
1231 out:
1232         for (i = 0; i < cnt; i++)
1233                 cpu_cache_level__free(&caches[i]);
1234         return ret;
1235 }
1236
1237 static int write_stat(struct feat_fd *ff __maybe_unused,
1238                       struct perf_evlist *evlist __maybe_unused)
1239 {
1240         return 0;
1241 }
1242
1243 static int write_sample_time(struct feat_fd *ff,
1244                              struct perf_evlist *evlist)
1245 {
1246         int ret;
1247
1248         ret = do_write(ff, &evlist->first_sample_time,
1249                        sizeof(evlist->first_sample_time));
1250         if (ret < 0)
1251                 return ret;
1252
1253         return do_write(ff, &evlist->last_sample_time,
1254                         sizeof(evlist->last_sample_time));
1255 }
1256
1257
1258 static int memory_node__read(struct memory_node *n, unsigned long idx)
1259 {
1260         unsigned int phys, size = 0;
1261         char path[PATH_MAX];
1262         struct dirent *ent;
1263         DIR *dir;
1264
1265 #define for_each_memory(mem, dir)                                       \
1266         while ((ent = readdir(dir)))                                    \
1267                 if (strcmp(ent->d_name, ".") &&                         \
1268                     strcmp(ent->d_name, "..") &&                        \
1269                     sscanf(ent->d_name, "memory%u", &mem) == 1)
1270
1271         scnprintf(path, PATH_MAX,
1272                   "%s/devices/system/node/node%lu",
1273                   sysfs__mountpoint(), idx);
1274
1275         dir = opendir(path);
1276         if (!dir) {
1277                 pr_warning("failed: cant' open memory sysfs data\n");
1278                 return -1;
1279         }
1280
1281         for_each_memory(phys, dir) {
1282                 size = max(phys, size);
1283         }
1284
1285         size++;
1286
1287         n->set = bitmap_alloc(size);
1288         if (!n->set) {
1289                 closedir(dir);
1290                 return -ENOMEM;
1291         }
1292
1293         n->node = idx;
1294         n->size = size;
1295
1296         rewinddir(dir);
1297
1298         for_each_memory(phys, dir) {
1299                 set_bit(phys, n->set);
1300         }
1301
1302         closedir(dir);
1303         return 0;
1304 }
1305
1306 static int memory_node__sort(const void *a, const void *b)
1307 {
1308         const struct memory_node *na = a;
1309         const struct memory_node *nb = b;
1310
1311         return na->node - nb->node;
1312 }
1313
1314 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1315 {
1316         char path[PATH_MAX];
1317         struct dirent *ent;
1318         DIR *dir;
1319         u64 cnt = 0;
1320         int ret = 0;
1321
1322         scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1323                   sysfs__mountpoint());
1324
1325         dir = opendir(path);
1326         if (!dir) {
1327                 pr_debug2("%s: could't read %s, does this arch have topology information?\n",
1328                           __func__, path);
1329                 return -1;
1330         }
1331
1332         while (!ret && (ent = readdir(dir))) {
1333                 unsigned int idx;
1334                 int r;
1335
1336                 if (!strcmp(ent->d_name, ".") ||
1337                     !strcmp(ent->d_name, ".."))
1338                         continue;
1339
1340                 r = sscanf(ent->d_name, "node%u", &idx);
1341                 if (r != 1)
1342                         continue;
1343
1344                 if (WARN_ONCE(cnt >= size,
1345                               "failed to write MEM_TOPOLOGY, way too many nodes\n"))
1346                         return -1;
1347
1348                 ret = memory_node__read(&nodes[cnt++], idx);
1349         }
1350
1351         *cntp = cnt;
1352         closedir(dir);
1353
1354         if (!ret)
1355                 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1356
1357         return ret;
1358 }
1359
1360 #define MAX_MEMORY_NODES 2000
1361
1362 /*
1363  * The MEM_TOPOLOGY holds physical memory map for every
1364  * node in system. The format of data is as follows:
1365  *
1366  *  0 - version          | for future changes
1367  *  8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1368  * 16 - count            | number of nodes
1369  *
1370  * For each node we store map of physical indexes for
1371  * each node:
1372  *
1373  * 32 - node id          | node index
1374  * 40 - size             | size of bitmap
1375  * 48 - bitmap           | bitmap of memory indexes that belongs to node
1376  */
1377 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1378                               struct perf_evlist *evlist __maybe_unused)
1379 {
1380         static struct memory_node nodes[MAX_MEMORY_NODES];
1381         u64 bsize, version = 1, i, nr;
1382         int ret;
1383
1384         ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1385                               (unsigned long long *) &bsize);
1386         if (ret)
1387                 return ret;
1388
1389         ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1390         if (ret)
1391                 return ret;
1392
1393         ret = do_write(ff, &version, sizeof(version));
1394         if (ret < 0)
1395                 goto out;
1396
1397         ret = do_write(ff, &bsize, sizeof(bsize));
1398         if (ret < 0)
1399                 goto out;
1400
1401         ret = do_write(ff, &nr, sizeof(nr));
1402         if (ret < 0)
1403                 goto out;
1404
1405         for (i = 0; i < nr; i++) {
1406                 struct memory_node *n = &nodes[i];
1407
1408                 #define _W(v)                                           \
1409                         ret = do_write(ff, &n->v, sizeof(n->v));        \
1410                         if (ret < 0)                                    \
1411                                 goto out;
1412
1413                 _W(node)
1414                 _W(size)
1415
1416                 #undef _W
1417
1418                 ret = do_write_bitmap(ff, n->set, n->size);
1419                 if (ret < 0)
1420                         goto out;
1421         }
1422
1423 out:
1424         return ret;
1425 }
1426
1427 static void print_hostname(struct feat_fd *ff, FILE *fp)
1428 {
1429         fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1430 }
1431
1432 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1433 {
1434         fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1435 }
1436
1437 static void print_arch(struct feat_fd *ff, FILE *fp)
1438 {
1439         fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1440 }
1441
1442 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1443 {
1444         fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1445 }
1446
1447 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1448 {
1449         fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1450         fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1451 }
1452
1453 static void print_version(struct feat_fd *ff, FILE *fp)
1454 {
1455         fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1456 }
1457
1458 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1459 {
1460         int nr, i;
1461
1462         nr = ff->ph->env.nr_cmdline;
1463
1464         fprintf(fp, "# cmdline : ");
1465
1466         for (i = 0; i < nr; i++) {
1467                 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1468                 if (!argv_i) {
1469                         fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1470                 } else {
1471                         char *mem = argv_i;
1472                         do {
1473                                 char *quote = strchr(argv_i, '\'');
1474                                 if (!quote)
1475                                         break;
1476                                 *quote++ = '\0';
1477                                 fprintf(fp, "%s\\\'", argv_i);
1478                                 argv_i = quote;
1479                         } while (1);
1480                         fprintf(fp, "%s ", argv_i);
1481                         free(mem);
1482                 }
1483         }
1484         fputc('\n', fp);
1485 }
1486
1487 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1488 {
1489         struct perf_header *ph = ff->ph;
1490         int cpu_nr = ph->env.nr_cpus_avail;
1491         int nr, i;
1492         char *str;
1493
1494         nr = ph->env.nr_sibling_cores;
1495         str = ph->env.sibling_cores;
1496
1497         for (i = 0; i < nr; i++) {
1498                 fprintf(fp, "# sibling cores   : %s\n", str);
1499                 str += strlen(str) + 1;
1500         }
1501
1502         nr = ph->env.nr_sibling_threads;
1503         str = ph->env.sibling_threads;
1504
1505         for (i = 0; i < nr; i++) {
1506                 fprintf(fp, "# sibling threads : %s\n", str);
1507                 str += strlen(str) + 1;
1508         }
1509
1510         if (ph->env.cpu != NULL) {
1511                 for (i = 0; i < cpu_nr; i++)
1512                         fprintf(fp, "# CPU %d: Core ID %d, Socket ID %d\n", i,
1513                                 ph->env.cpu[i].core_id, ph->env.cpu[i].socket_id);
1514         } else
1515                 fprintf(fp, "# Core ID and Socket ID information is not available\n");
1516 }
1517
1518 static void print_clockid(struct feat_fd *ff, FILE *fp)
1519 {
1520         fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1521                 ff->ph->env.clockid_res_ns * 1000);
1522 }
1523
1524 static void free_event_desc(struct perf_evsel *events)
1525 {
1526         struct perf_evsel *evsel;
1527
1528         if (!events)
1529                 return;
1530
1531         for (evsel = events; evsel->attr.size; evsel++) {
1532                 zfree(&evsel->name);
1533                 zfree(&evsel->id);
1534         }
1535
1536         free(events);
1537 }
1538
1539 static struct perf_evsel *read_event_desc(struct feat_fd *ff)
1540 {
1541         struct perf_evsel *evsel, *events = NULL;
1542         u64 *id;
1543         void *buf = NULL;
1544         u32 nre, sz, nr, i, j;
1545         size_t msz;
1546
1547         /* number of events */
1548         if (do_read_u32(ff, &nre))
1549                 goto error;
1550
1551         if (do_read_u32(ff, &sz))
1552                 goto error;
1553
1554         /* buffer to hold on file attr struct */
1555         buf = malloc(sz);
1556         if (!buf)
1557                 goto error;
1558
1559         /* the last event terminates with evsel->attr.size == 0: */
1560         events = calloc(nre + 1, sizeof(*events));
1561         if (!events)
1562                 goto error;
1563
1564         msz = sizeof(evsel->attr);
1565         if (sz < msz)
1566                 msz = sz;
1567
1568         for (i = 0, evsel = events; i < nre; evsel++, i++) {
1569                 evsel->idx = i;
1570
1571                 /*
1572                  * must read entire on-file attr struct to
1573                  * sync up with layout.
1574                  */
1575                 if (__do_read(ff, buf, sz))
1576                         goto error;
1577
1578                 if (ff->ph->needs_swap)
1579                         perf_event__attr_swap(buf);
1580
1581                 memcpy(&evsel->attr, buf, msz);
1582
1583                 if (do_read_u32(ff, &nr))
1584                         goto error;
1585
1586                 if (ff->ph->needs_swap)
1587                         evsel->needs_swap = true;
1588
1589                 evsel->name = do_read_string(ff);
1590                 if (!evsel->name)
1591                         goto error;
1592
1593                 if (!nr)
1594                         continue;
1595
1596                 id = calloc(nr, sizeof(*id));
1597                 if (!id)
1598                         goto error;
1599                 evsel->ids = nr;
1600                 evsel->id = id;
1601
1602                 for (j = 0 ; j < nr; j++) {
1603                         if (do_read_u64(ff, id))
1604                                 goto error;
1605                         id++;
1606                 }
1607         }
1608 out:
1609         free(buf);
1610         return events;
1611 error:
1612         free_event_desc(events);
1613         events = NULL;
1614         goto out;
1615 }
1616
1617 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1618                                 void *priv __maybe_unused)
1619 {
1620         return fprintf(fp, ", %s = %s", name, val);
1621 }
1622
1623 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1624 {
1625         struct perf_evsel *evsel, *events;
1626         u32 j;
1627         u64 *id;
1628
1629         if (ff->events)
1630                 events = ff->events;
1631         else
1632                 events = read_event_desc(ff);
1633
1634         if (!events) {
1635                 fprintf(fp, "# event desc: not available or unable to read\n");
1636                 return;
1637         }
1638
1639         for (evsel = events; evsel->attr.size; evsel++) {
1640                 fprintf(fp, "# event : name = %s, ", evsel->name);
1641
1642                 if (evsel->ids) {
1643                         fprintf(fp, ", id = {");
1644                         for (j = 0, id = evsel->id; j < evsel->ids; j++, id++) {
1645                                 if (j)
1646                                         fputc(',', fp);
1647                                 fprintf(fp, " %"PRIu64, *id);
1648                         }
1649                         fprintf(fp, " }");
1650                 }
1651
1652                 perf_event_attr__fprintf(fp, &evsel->attr, __desc_attr__fprintf, NULL);
1653
1654                 fputc('\n', fp);
1655         }
1656
1657         free_event_desc(events);
1658         ff->events = NULL;
1659 }
1660
1661 static void print_total_mem(struct feat_fd *ff, FILE *fp)
1662 {
1663         fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
1664 }
1665
1666 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
1667 {
1668         int i;
1669         struct numa_node *n;
1670
1671         for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
1672                 n = &ff->ph->env.numa_nodes[i];
1673
1674                 fprintf(fp, "# node%u meminfo  : total = %"PRIu64" kB,"
1675                             " free = %"PRIu64" kB\n",
1676                         n->node, n->mem_total, n->mem_free);
1677
1678                 fprintf(fp, "# node%u cpu list : ", n->node);
1679                 cpu_map__fprintf(n->map, fp);
1680         }
1681 }
1682
1683 static void print_cpuid(struct feat_fd *ff, FILE *fp)
1684 {
1685         fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
1686 }
1687
1688 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
1689 {
1690         fprintf(fp, "# contains samples with branch stack\n");
1691 }
1692
1693 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
1694 {
1695         fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
1696 }
1697
1698 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
1699 {
1700         fprintf(fp, "# contains stat data\n");
1701 }
1702
1703 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
1704 {
1705         int i;
1706
1707         fprintf(fp, "# CPU cache info:\n");
1708         for (i = 0; i < ff->ph->env.caches_cnt; i++) {
1709                 fprintf(fp, "#  ");
1710                 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
1711         }
1712 }
1713
1714 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
1715 {
1716         const char *delimiter = "# pmu mappings: ";
1717         char *str, *tmp;
1718         u32 pmu_num;
1719         u32 type;
1720
1721         pmu_num = ff->ph->env.nr_pmu_mappings;
1722         if (!pmu_num) {
1723                 fprintf(fp, "# pmu mappings: not available\n");
1724                 return;
1725         }
1726
1727         str = ff->ph->env.pmu_mappings;
1728
1729         while (pmu_num) {
1730                 type = strtoul(str, &tmp, 0);
1731                 if (*tmp != ':')
1732                         goto error;
1733
1734                 str = tmp + 1;
1735                 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
1736
1737                 delimiter = ", ";
1738                 str += strlen(str) + 1;
1739                 pmu_num--;
1740         }
1741
1742         fprintf(fp, "\n");
1743
1744         if (!pmu_num)
1745                 return;
1746 error:
1747         fprintf(fp, "# pmu mappings: unable to read\n");
1748 }
1749
1750 static void print_group_desc(struct feat_fd *ff, FILE *fp)
1751 {
1752         struct perf_session *session;
1753         struct perf_evsel *evsel;
1754         u32 nr = 0;
1755
1756         session = container_of(ff->ph, struct perf_session, header);
1757
1758         evlist__for_each_entry(session->evlist, evsel) {
1759                 if (perf_evsel__is_group_leader(evsel) &&
1760                     evsel->nr_members > 1) {
1761                         fprintf(fp, "# group: %s{%s", evsel->group_name ?: "",
1762                                 perf_evsel__name(evsel));
1763
1764                         nr = evsel->nr_members - 1;
1765                 } else if (nr) {
1766                         fprintf(fp, ",%s", perf_evsel__name(evsel));
1767
1768                         if (--nr == 0)
1769                                 fprintf(fp, "}\n");
1770                 }
1771         }
1772 }
1773
1774 static void print_sample_time(struct feat_fd *ff, FILE *fp)
1775 {
1776         struct perf_session *session;
1777         char time_buf[32];
1778         double d;
1779
1780         session = container_of(ff->ph, struct perf_session, header);
1781
1782         timestamp__scnprintf_usec(session->evlist->first_sample_time,
1783                                   time_buf, sizeof(time_buf));
1784         fprintf(fp, "# time of first sample : %s\n", time_buf);
1785
1786         timestamp__scnprintf_usec(session->evlist->last_sample_time,
1787                                   time_buf, sizeof(time_buf));
1788         fprintf(fp, "# time of last sample : %s\n", time_buf);
1789
1790         d = (double)(session->evlist->last_sample_time -
1791                 session->evlist->first_sample_time) / NSEC_PER_MSEC;
1792
1793         fprintf(fp, "# sample duration : %10.3f ms\n", d);
1794 }
1795
1796 static void memory_node__fprintf(struct memory_node *n,
1797                                  unsigned long long bsize, FILE *fp)
1798 {
1799         char buf_map[100], buf_size[50];
1800         unsigned long long size;
1801
1802         size = bsize * bitmap_weight(n->set, n->size);
1803         unit_number__scnprintf(buf_size, 50, size);
1804
1805         bitmap_scnprintf(n->set, n->size, buf_map, 100);
1806         fprintf(fp, "#  %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
1807 }
1808
1809 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
1810 {
1811         struct memory_node *nodes;
1812         int i, nr;
1813
1814         nodes = ff->ph->env.memory_nodes;
1815         nr    = ff->ph->env.nr_memory_nodes;
1816
1817         fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
1818                 nr, ff->ph->env.memory_bsize);
1819
1820         for (i = 0; i < nr; i++) {
1821                 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
1822         }
1823 }
1824
1825 static int __event_process_build_id(struct build_id_event *bev,
1826                                     char *filename,
1827                                     struct perf_session *session)
1828 {
1829         int err = -1;
1830         struct machine *machine;
1831         u16 cpumode;
1832         struct dso *dso;
1833         enum dso_kernel_type dso_type;
1834
1835         machine = perf_session__findnew_machine(session, bev->pid);
1836         if (!machine)
1837                 goto out;
1838
1839         cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1840
1841         switch (cpumode) {
1842         case PERF_RECORD_MISC_KERNEL:
1843                 dso_type = DSO_TYPE_KERNEL;
1844                 break;
1845         case PERF_RECORD_MISC_GUEST_KERNEL:
1846                 dso_type = DSO_TYPE_GUEST_KERNEL;
1847                 break;
1848         case PERF_RECORD_MISC_USER:
1849         case PERF_RECORD_MISC_GUEST_USER:
1850                 dso_type = DSO_TYPE_USER;
1851                 break;
1852         default:
1853                 goto out;
1854         }
1855
1856         dso = machine__findnew_dso(machine, filename);
1857         if (dso != NULL) {
1858                 char sbuild_id[SBUILD_ID_SIZE];
1859
1860                 dso__set_build_id(dso, &bev->build_id);
1861
1862                 if (dso_type != DSO_TYPE_USER) {
1863                         struct kmod_path m = { .name = NULL, };
1864
1865                         if (!kmod_path__parse_name(&m, filename) && m.kmod)
1866                                 dso__set_module_info(dso, &m, machine);
1867                         else
1868                                 dso->kernel = dso_type;
1869
1870                         free(m.name);
1871                 }
1872
1873                 build_id__sprintf(dso->build_id, sizeof(dso->build_id),
1874                                   sbuild_id);
1875                 pr_debug("build id event received for %s: %s\n",
1876                          dso->long_name, sbuild_id);
1877                 dso__put(dso);
1878         }
1879
1880         err = 0;
1881 out:
1882         return err;
1883 }
1884
1885 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
1886                                                  int input, u64 offset, u64 size)
1887 {
1888         struct perf_session *session = container_of(header, struct perf_session, header);
1889         struct {
1890                 struct perf_event_header   header;
1891                 u8                         build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
1892                 char                       filename[0];
1893         } old_bev;
1894         struct build_id_event bev;
1895         char filename[PATH_MAX];
1896         u64 limit = offset + size;
1897
1898         while (offset < limit) {
1899                 ssize_t len;
1900
1901                 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
1902                         return -1;
1903
1904                 if (header->needs_swap)
1905                         perf_event_header__bswap(&old_bev.header);
1906
1907                 len = old_bev.header.size - sizeof(old_bev);
1908                 if (readn(input, filename, len) != len)
1909                         return -1;
1910
1911                 bev.header = old_bev.header;
1912
1913                 /*
1914                  * As the pid is the missing value, we need to fill
1915                  * it properly. The header.misc value give us nice hint.
1916                  */
1917                 bev.pid = HOST_KERNEL_ID;
1918                 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
1919                     bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
1920                         bev.pid = DEFAULT_GUEST_KERNEL_ID;
1921
1922                 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
1923                 __event_process_build_id(&bev, filename, session);
1924
1925                 offset += bev.header.size;
1926         }
1927
1928         return 0;
1929 }
1930
1931 static int perf_header__read_build_ids(struct perf_header *header,
1932                                        int input, u64 offset, u64 size)
1933 {
1934         struct perf_session *session = container_of(header, struct perf_session, header);
1935         struct build_id_event bev;
1936         char filename[PATH_MAX];
1937         u64 limit = offset + size, orig_offset = offset;
1938         int err = -1;
1939
1940         while (offset < limit) {
1941                 ssize_t len;
1942
1943                 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
1944                         goto out;
1945
1946                 if (header->needs_swap)
1947                         perf_event_header__bswap(&bev.header);
1948
1949                 len = bev.header.size - sizeof(bev);
1950                 if (readn(input, filename, len) != len)
1951                         goto out;
1952                 /*
1953                  * The a1645ce1 changeset:
1954                  *
1955                  * "perf: 'perf kvm' tool for monitoring guest performance from host"
1956                  *
1957                  * Added a field to struct build_id_event that broke the file
1958                  * format.
1959                  *
1960                  * Since the kernel build-id is the first entry, process the
1961                  * table using the old format if the well known
1962                  * '[kernel.kallsyms]' string for the kernel build-id has the
1963                  * first 4 characters chopped off (where the pid_t sits).
1964                  */
1965                 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
1966                         if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
1967                                 return -1;
1968                         return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
1969                 }
1970
1971                 __event_process_build_id(&bev, filename, session);
1972
1973                 offset += bev.header.size;
1974         }
1975         err = 0;
1976 out:
1977         return err;
1978 }
1979
1980 /* Macro for features that simply need to read and store a string. */
1981 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
1982 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
1983 {\
1984         ff->ph->env.__feat_env = do_read_string(ff); \
1985         return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
1986 }
1987
1988 FEAT_PROCESS_STR_FUN(hostname, hostname);
1989 FEAT_PROCESS_STR_FUN(osrelease, os_release);
1990 FEAT_PROCESS_STR_FUN(version, version);
1991 FEAT_PROCESS_STR_FUN(arch, arch);
1992 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
1993 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
1994
1995 static int process_tracing_data(struct feat_fd *ff, void *data)
1996 {
1997         ssize_t ret = trace_report(ff->fd, data, false);
1998
1999         return ret < 0 ? -1 : 0;
2000 }
2001
2002 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2003 {
2004         if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2005                 pr_debug("Failed to read buildids, continuing...\n");
2006         return 0;
2007 }
2008
2009 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2010 {
2011         int ret;
2012         u32 nr_cpus_avail, nr_cpus_online;
2013
2014         ret = do_read_u32(ff, &nr_cpus_avail);
2015         if (ret)
2016                 return ret;
2017
2018         ret = do_read_u32(ff, &nr_cpus_online);
2019         if (ret)
2020                 return ret;
2021         ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2022         ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2023         return 0;
2024 }
2025
2026 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2027 {
2028         u64 total_mem;
2029         int ret;
2030
2031         ret = do_read_u64(ff, &total_mem);
2032         if (ret)
2033                 return -1;
2034         ff->ph->env.total_mem = (unsigned long long)total_mem;
2035         return 0;
2036 }
2037
2038 static struct perf_evsel *
2039 perf_evlist__find_by_index(struct perf_evlist *evlist, int idx)
2040 {
2041         struct perf_evsel *evsel;
2042
2043         evlist__for_each_entry(evlist, evsel) {
2044                 if (evsel->idx == idx)
2045                         return evsel;
2046         }
2047
2048         return NULL;
2049 }
2050
2051 static void
2052 perf_evlist__set_event_name(struct perf_evlist *evlist,
2053                             struct perf_evsel *event)
2054 {
2055         struct perf_evsel *evsel;
2056
2057         if (!event->name)
2058                 return;
2059
2060         evsel = perf_evlist__find_by_index(evlist, event->idx);
2061         if (!evsel)
2062                 return;
2063
2064         if (evsel->name)
2065                 return;
2066
2067         evsel->name = strdup(event->name);
2068 }
2069
2070 static int
2071 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2072 {
2073         struct perf_session *session;
2074         struct perf_evsel *evsel, *events = read_event_desc(ff);
2075
2076         if (!events)
2077                 return 0;
2078
2079         session = container_of(ff->ph, struct perf_session, header);
2080
2081         if (session->data->is_pipe) {
2082                 /* Save events for reading later by print_event_desc,
2083                  * since they can't be read again in pipe mode. */
2084                 ff->events = events;
2085         }
2086
2087         for (evsel = events; evsel->attr.size; evsel++)
2088                 perf_evlist__set_event_name(session->evlist, evsel);
2089
2090         if (!session->data->is_pipe)
2091                 free_event_desc(events);
2092
2093         return 0;
2094 }
2095
2096 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2097 {
2098         char *str, *cmdline = NULL, **argv = NULL;
2099         u32 nr, i, len = 0;
2100
2101         if (do_read_u32(ff, &nr))
2102                 return -1;
2103
2104         ff->ph->env.nr_cmdline = nr;
2105
2106         cmdline = zalloc(ff->size + nr + 1);
2107         if (!cmdline)
2108                 return -1;
2109
2110         argv = zalloc(sizeof(char *) * (nr + 1));
2111         if (!argv)
2112                 goto error;
2113
2114         for (i = 0; i < nr; i++) {
2115                 str = do_read_string(ff);
2116                 if (!str)
2117                         goto error;
2118
2119                 argv[i] = cmdline + len;
2120                 memcpy(argv[i], str, strlen(str) + 1);
2121                 len += strlen(str) + 1;
2122                 free(str);
2123         }
2124         ff->ph->env.cmdline = cmdline;
2125         ff->ph->env.cmdline_argv = (const char **) argv;
2126         return 0;
2127
2128 error:
2129         free(argv);
2130         free(cmdline);
2131         return -1;
2132 }
2133
2134 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2135 {
2136         u32 nr, i;
2137         char *str;
2138         struct strbuf sb;
2139         int cpu_nr = ff->ph->env.nr_cpus_avail;
2140         u64 size = 0;
2141         struct perf_header *ph = ff->ph;
2142         bool do_core_id_test = true;
2143
2144         ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2145         if (!ph->env.cpu)
2146                 return -1;
2147
2148         if (do_read_u32(ff, &nr))
2149                 goto free_cpu;
2150
2151         ph->env.nr_sibling_cores = nr;
2152         size += sizeof(u32);
2153         if (strbuf_init(&sb, 128) < 0)
2154                 goto free_cpu;
2155
2156         for (i = 0; i < nr; i++) {
2157                 str = do_read_string(ff);
2158                 if (!str)
2159                         goto error;
2160
2161                 /* include a NULL character at the end */
2162                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2163                         goto error;
2164                 size += string_size(str);
2165                 free(str);
2166         }
2167         ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2168
2169         if (do_read_u32(ff, &nr))
2170                 return -1;
2171
2172         ph->env.nr_sibling_threads = nr;
2173         size += sizeof(u32);
2174
2175         for (i = 0; i < nr; i++) {
2176                 str = do_read_string(ff);
2177                 if (!str)
2178                         goto error;
2179
2180                 /* include a NULL character at the end */
2181                 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2182                         goto error;
2183                 size += string_size(str);
2184                 free(str);
2185         }
2186         ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2187
2188         /*
2189          * The header may be from old perf,
2190          * which doesn't include core id and socket id information.
2191          */
2192         if (ff->size <= size) {
2193                 zfree(&ph->env.cpu);
2194                 return 0;
2195         }
2196
2197         /* On s390 the socket_id number is not related to the numbers of cpus.
2198          * The socket_id number might be higher than the numbers of cpus.
2199          * This depends on the configuration.
2200          */
2201         if (ph->env.arch && !strncmp(ph->env.arch, "s390", 4))
2202                 do_core_id_test = false;
2203
2204         for (i = 0; i < (u32)cpu_nr; i++) {
2205                 if (do_read_u32(ff, &nr))
2206                         goto free_cpu;
2207
2208                 ph->env.cpu[i].core_id = nr;
2209
2210                 if (do_read_u32(ff, &nr))
2211                         goto free_cpu;
2212
2213                 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2214                         pr_debug("socket_id number is too big."
2215                                  "You may need to upgrade the perf tool.\n");
2216                         goto free_cpu;
2217                 }
2218
2219                 ph->env.cpu[i].socket_id = nr;
2220         }
2221
2222         return 0;
2223
2224 error:
2225         strbuf_release(&sb);
2226 free_cpu:
2227         zfree(&ph->env.cpu);
2228         return -1;
2229 }
2230
2231 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2232 {
2233         struct numa_node *nodes, *n;
2234         u32 nr, i;
2235         char *str;
2236
2237         /* nr nodes */
2238         if (do_read_u32(ff, &nr))
2239                 return -1;
2240
2241         nodes = zalloc(sizeof(*nodes) * nr);
2242         if (!nodes)
2243                 return -ENOMEM;
2244
2245         for (i = 0; i < nr; i++) {
2246                 n = &nodes[i];
2247
2248                 /* node number */
2249                 if (do_read_u32(ff, &n->node))
2250                         goto error;
2251
2252                 if (do_read_u64(ff, &n->mem_total))
2253                         goto error;
2254
2255                 if (do_read_u64(ff, &n->mem_free))
2256                         goto error;
2257
2258                 str = do_read_string(ff);
2259                 if (!str)
2260                         goto error;
2261
2262                 n->map = cpu_map__new(str);
2263                 if (!n->map)
2264                         goto error;
2265
2266                 free(str);
2267         }
2268         ff->ph->env.nr_numa_nodes = nr;
2269         ff->ph->env.numa_nodes = nodes;
2270         return 0;
2271
2272 error:
2273         free(nodes);
2274         return -1;
2275 }
2276
2277 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2278 {
2279         char *name;
2280         u32 pmu_num;
2281         u32 type;
2282         struct strbuf sb;
2283
2284         if (do_read_u32(ff, &pmu_num))
2285                 return -1;
2286
2287         if (!pmu_num) {
2288                 pr_debug("pmu mappings not available\n");
2289                 return 0;
2290         }
2291
2292         ff->ph->env.nr_pmu_mappings = pmu_num;
2293         if (strbuf_init(&sb, 128) < 0)
2294                 return -1;
2295
2296         while (pmu_num) {
2297                 if (do_read_u32(ff, &type))
2298                         goto error;
2299
2300                 name = do_read_string(ff);
2301                 if (!name)
2302                         goto error;
2303
2304                 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2305                         goto error;
2306                 /* include a NULL character at the end */
2307                 if (strbuf_add(&sb, "", 1) < 0)
2308                         goto error;
2309
2310                 if (!strcmp(name, "msr"))
2311                         ff->ph->env.msr_pmu_type = type;
2312
2313                 free(name);
2314                 pmu_num--;
2315         }
2316         ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2317         return 0;
2318
2319 error:
2320         strbuf_release(&sb);
2321         return -1;
2322 }
2323
2324 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2325 {
2326         size_t ret = -1;
2327         u32 i, nr, nr_groups;
2328         struct perf_session *session;
2329         struct perf_evsel *evsel, *leader = NULL;
2330         struct group_desc {
2331                 char *name;
2332                 u32 leader_idx;
2333                 u32 nr_members;
2334         } *desc;
2335
2336         if (do_read_u32(ff, &nr_groups))
2337                 return -1;
2338
2339         ff->ph->env.nr_groups = nr_groups;
2340         if (!nr_groups) {
2341                 pr_debug("group desc not available\n");
2342                 return 0;
2343         }
2344
2345         desc = calloc(nr_groups, sizeof(*desc));
2346         if (!desc)
2347                 return -1;
2348
2349         for (i = 0; i < nr_groups; i++) {
2350                 desc[i].name = do_read_string(ff);
2351                 if (!desc[i].name)
2352                         goto out_free;
2353
2354                 if (do_read_u32(ff, &desc[i].leader_idx))
2355                         goto out_free;
2356
2357                 if (do_read_u32(ff, &desc[i].nr_members))
2358                         goto out_free;
2359         }
2360
2361         /*
2362          * Rebuild group relationship based on the group_desc
2363          */
2364         session = container_of(ff->ph, struct perf_session, header);
2365         session->evlist->nr_groups = nr_groups;
2366
2367         i = nr = 0;
2368         evlist__for_each_entry(session->evlist, evsel) {
2369                 if (evsel->idx == (int) desc[i].leader_idx) {
2370                         evsel->leader = evsel;
2371                         /* {anon_group} is a dummy name */
2372                         if (strcmp(desc[i].name, "{anon_group}")) {
2373                                 evsel->group_name = desc[i].name;
2374                                 desc[i].name = NULL;
2375                         }
2376                         evsel->nr_members = desc[i].nr_members;
2377
2378                         if (i >= nr_groups || nr > 0) {
2379                                 pr_debug("invalid group desc\n");
2380                                 goto out_free;
2381                         }
2382
2383                         leader = evsel;
2384                         nr = evsel->nr_members - 1;
2385                         i++;
2386                 } else if (nr) {
2387                         /* This is a group member */
2388                         evsel->leader = leader;
2389
2390                         nr--;
2391                 }
2392         }
2393
2394         if (i != nr_groups || nr != 0) {
2395                 pr_debug("invalid group desc\n");
2396                 goto out_free;
2397         }
2398
2399         ret = 0;
2400 out_free:
2401         for (i = 0; i < nr_groups; i++)
2402                 zfree(&desc[i].name);
2403         free(desc);
2404
2405         return ret;
2406 }
2407
2408 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2409 {
2410         struct perf_session *session;
2411         int err;
2412
2413         session = container_of(ff->ph, struct perf_session, header);
2414
2415         err = auxtrace_index__process(ff->fd, ff->size, session,
2416                                       ff->ph->needs_swap);
2417         if (err < 0)
2418                 pr_err("Failed to process auxtrace index\n");
2419         return err;
2420 }
2421
2422 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2423 {
2424         struct cpu_cache_level *caches;
2425         u32 cnt, i, version;
2426
2427         if (do_read_u32(ff, &version))
2428                 return -1;
2429
2430         if (version != 1)
2431                 return -1;
2432
2433         if (do_read_u32(ff, &cnt))
2434                 return -1;
2435
2436         caches = zalloc(sizeof(*caches) * cnt);
2437         if (!caches)
2438                 return -1;
2439
2440         for (i = 0; i < cnt; i++) {
2441                 struct cpu_cache_level c;
2442
2443                 #define _R(v)                                           \
2444                         if (do_read_u32(ff, &c.v))\
2445                                 goto out_free_caches;                   \
2446
2447                 _R(level)
2448                 _R(line_size)
2449                 _R(sets)
2450                 _R(ways)
2451                 #undef _R
2452
2453                 #define _R(v)                                   \
2454                         c.v = do_read_string(ff);               \
2455                         if (!c.v)                               \
2456                                 goto out_free_caches;
2457
2458                 _R(type)
2459                 _R(size)
2460                 _R(map)
2461                 #undef _R
2462
2463                 caches[i] = c;
2464         }
2465
2466         ff->ph->env.caches = caches;
2467         ff->ph->env.caches_cnt = cnt;
2468         return 0;
2469 out_free_caches:
2470         free(caches);
2471         return -1;
2472 }
2473
2474 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2475 {
2476         struct perf_session *session;
2477         u64 first_sample_time, last_sample_time;
2478         int ret;
2479
2480         session = container_of(ff->ph, struct perf_session, header);
2481
2482         ret = do_read_u64(ff, &first_sample_time);
2483         if (ret)
2484                 return -1;
2485
2486         ret = do_read_u64(ff, &last_sample_time);
2487         if (ret)
2488                 return -1;
2489
2490         session->evlist->first_sample_time = first_sample_time;
2491         session->evlist->last_sample_time = last_sample_time;
2492         return 0;
2493 }
2494
2495 static int process_mem_topology(struct feat_fd *ff,
2496                                 void *data __maybe_unused)
2497 {
2498         struct memory_node *nodes;
2499         u64 version, i, nr, bsize;
2500         int ret = -1;
2501
2502         if (do_read_u64(ff, &version))
2503                 return -1;
2504
2505         if (version != 1)
2506                 return -1;
2507
2508         if (do_read_u64(ff, &bsize))
2509                 return -1;
2510
2511         if (do_read_u64(ff, &nr))
2512                 return -1;
2513
2514         nodes = zalloc(sizeof(*nodes) * nr);
2515         if (!nodes)
2516                 return -1;
2517
2518         for (i = 0; i < nr; i++) {
2519                 struct memory_node n;
2520
2521                 #define _R(v)                           \
2522                         if (do_read_u64(ff, &n.v))      \
2523                                 goto out;               \
2524
2525                 _R(node)
2526                 _R(size)
2527
2528                 #undef _R
2529
2530                 if (do_read_bitmap(ff, &n.set, &n.size))
2531                         goto out;
2532
2533                 nodes[i] = n;
2534         }
2535
2536         ff->ph->env.memory_bsize    = bsize;
2537         ff->ph->env.memory_nodes    = nodes;
2538         ff->ph->env.nr_memory_nodes = nr;
2539         ret = 0;
2540
2541 out:
2542         if (ret)
2543                 free(nodes);
2544         return ret;
2545 }
2546
2547 static int process_clockid(struct feat_fd *ff,
2548                            void *data __maybe_unused)
2549 {
2550         if (do_read_u64(ff, &ff->ph->env.clockid_res_ns))
2551                 return -1;
2552
2553         return 0;
2554 }
2555
2556 struct feature_ops {
2557         int (*write)(struct feat_fd *ff, struct perf_evlist *evlist);
2558         void (*print)(struct feat_fd *ff, FILE *fp);
2559         int (*process)(struct feat_fd *ff, void *data);
2560         const char *name;
2561         bool full_only;
2562         bool synthesize;
2563 };
2564
2565 #define FEAT_OPR(n, func, __full_only) \
2566         [HEADER_##n] = {                                        \
2567                 .name       = __stringify(n),                   \
2568                 .write      = write_##func,                     \
2569                 .print      = print_##func,                     \
2570                 .full_only  = __full_only,                      \
2571                 .process    = process_##func,                   \
2572                 .synthesize = true                              \
2573         }
2574
2575 #define FEAT_OPN(n, func, __full_only) \
2576         [HEADER_##n] = {                                        \
2577                 .name       = __stringify(n),                   \
2578                 .write      = write_##func,                     \
2579                 .print      = print_##func,                     \
2580                 .full_only  = __full_only,                      \
2581                 .process    = process_##func                    \
2582         }
2583
2584 /* feature_ops not implemented: */
2585 #define print_tracing_data      NULL
2586 #define print_build_id          NULL
2587
2588 #define process_branch_stack    NULL
2589 #define process_stat            NULL
2590
2591
2592 static const struct feature_ops feat_ops[HEADER_LAST_FEATURE] = {
2593         FEAT_OPN(TRACING_DATA,  tracing_data,   false),
2594         FEAT_OPN(BUILD_ID,      build_id,       false),
2595         FEAT_OPR(HOSTNAME,      hostname,       false),
2596         FEAT_OPR(OSRELEASE,     osrelease,      false),
2597         FEAT_OPR(VERSION,       version,        false),
2598         FEAT_OPR(ARCH,          arch,           false),
2599         FEAT_OPR(NRCPUS,        nrcpus,         false),
2600         FEAT_OPR(CPUDESC,       cpudesc,        false),
2601         FEAT_OPR(CPUID,         cpuid,          false),
2602         FEAT_OPR(TOTAL_MEM,     total_mem,      false),
2603         FEAT_OPR(EVENT_DESC,    event_desc,     false),
2604         FEAT_OPR(CMDLINE,       cmdline,        false),
2605         FEAT_OPR(CPU_TOPOLOGY,  cpu_topology,   true),
2606         FEAT_OPR(NUMA_TOPOLOGY, numa_topology,  true),
2607         FEAT_OPN(BRANCH_STACK,  branch_stack,   false),
2608         FEAT_OPR(PMU_MAPPINGS,  pmu_mappings,   false),
2609         FEAT_OPR(GROUP_DESC,    group_desc,     false),
2610         FEAT_OPN(AUXTRACE,      auxtrace,       false),
2611         FEAT_OPN(STAT,          stat,           false),
2612         FEAT_OPN(CACHE,         cache,          true),
2613         FEAT_OPR(SAMPLE_TIME,   sample_time,    false),
2614         FEAT_OPR(MEM_TOPOLOGY,  mem_topology,   true),
2615         FEAT_OPR(CLOCKID,       clockid,        false)
2616 };
2617
2618 struct header_print_data {
2619         FILE *fp;
2620         bool full; /* extended list of headers */
2621 };
2622
2623 static int perf_file_section__fprintf_info(struct perf_file_section *section,
2624                                            struct perf_header *ph,
2625                                            int feat, int fd, void *data)
2626 {
2627         struct header_print_data *hd = data;
2628         struct feat_fd ff;
2629
2630         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
2631                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
2632                                 "%d, continuing...\n", section->offset, feat);
2633                 return 0;
2634         }
2635         if (feat >= HEADER_LAST_FEATURE) {
2636                 pr_warning("unknown feature %d\n", feat);
2637                 return 0;
2638         }
2639         if (!feat_ops[feat].print)
2640                 return 0;
2641
2642         ff = (struct  feat_fd) {
2643                 .fd = fd,
2644                 .ph = ph,
2645         };
2646
2647         if (!feat_ops[feat].full_only || hd->full)
2648                 feat_ops[feat].print(&ff, hd->fp);
2649         else
2650                 fprintf(hd->fp, "# %s info available, use -I to display\n",
2651                         feat_ops[feat].name);
2652
2653         return 0;
2654 }
2655
2656 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
2657 {
2658         struct header_print_data hd;
2659         struct perf_header *header = &session->header;
2660         int fd = perf_data__fd(session->data);
2661         struct stat st;
2662         int ret, bit;
2663
2664         hd.fp = fp;
2665         hd.full = full;
2666
2667         ret = fstat(fd, &st);
2668         if (ret == -1)
2669                 return -1;
2670
2671         fprintf(fp, "# captured on    : %s", ctime(&st.st_ctime));
2672
2673         fprintf(fp, "# header version : %u\n", header->version);
2674         fprintf(fp, "# data offset    : %" PRIu64 "\n", header->data_offset);
2675         fprintf(fp, "# data size      : %" PRIu64 "\n", header->data_size);
2676         fprintf(fp, "# feat offset    : %" PRIu64 "\n", header->feat_offset);
2677
2678         perf_header__process_sections(header, fd, &hd,
2679                                       perf_file_section__fprintf_info);
2680
2681         if (session->data->is_pipe)
2682                 return 0;
2683
2684         fprintf(fp, "# missing features: ");
2685         for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
2686                 if (bit)
2687                         fprintf(fp, "%s ", feat_ops[bit].name);
2688         }
2689
2690         fprintf(fp, "\n");
2691         return 0;
2692 }
2693
2694 static int do_write_feat(struct feat_fd *ff, int type,
2695                          struct perf_file_section **p,
2696                          struct perf_evlist *evlist)
2697 {
2698         int err;
2699         int ret = 0;
2700
2701         if (perf_header__has_feat(ff->ph, type)) {
2702                 if (!feat_ops[type].write)
2703                         return -1;
2704
2705                 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
2706                         return -1;
2707
2708                 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
2709
2710                 err = feat_ops[type].write(ff, evlist);
2711                 if (err < 0) {
2712                         pr_debug("failed to write feature %s\n", feat_ops[type].name);
2713
2714                         /* undo anything written */
2715                         lseek(ff->fd, (*p)->offset, SEEK_SET);
2716
2717                         return -1;
2718                 }
2719                 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
2720                 (*p)++;
2721         }
2722         return ret;
2723 }
2724
2725 static int perf_header__adds_write(struct perf_header *header,
2726                                    struct perf_evlist *evlist, int fd)
2727 {
2728         int nr_sections;
2729         struct feat_fd ff;
2730         struct perf_file_section *feat_sec, *p;
2731         int sec_size;
2732         u64 sec_start;
2733         int feat;
2734         int err;
2735
2736         ff = (struct feat_fd){
2737                 .fd  = fd,
2738                 .ph = header,
2739         };
2740
2741         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2742         if (!nr_sections)
2743                 return 0;
2744
2745         feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
2746         if (feat_sec == NULL)
2747                 return -ENOMEM;
2748
2749         sec_size = sizeof(*feat_sec) * nr_sections;
2750
2751         sec_start = header->feat_offset;
2752         lseek(fd, sec_start + sec_size, SEEK_SET);
2753
2754         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
2755                 if (do_write_feat(&ff, feat, &p, evlist))
2756                         perf_header__clear_feat(header, feat);
2757         }
2758
2759         lseek(fd, sec_start, SEEK_SET);
2760         /*
2761          * may write more than needed due to dropped feature, but
2762          * this is okay, reader will skip the mising entries
2763          */
2764         err = do_write(&ff, feat_sec, sec_size);
2765         if (err < 0)
2766                 pr_debug("failed to write feature section\n");
2767         free(feat_sec);
2768         return err;
2769 }
2770
2771 int perf_header__write_pipe(int fd)
2772 {
2773         struct perf_pipe_file_header f_header;
2774         struct feat_fd ff;
2775         int err;
2776
2777         ff = (struct feat_fd){ .fd = fd };
2778
2779         f_header = (struct perf_pipe_file_header){
2780                 .magic     = PERF_MAGIC,
2781                 .size      = sizeof(f_header),
2782         };
2783
2784         err = do_write(&ff, &f_header, sizeof(f_header));
2785         if (err < 0) {
2786                 pr_debug("failed to write perf pipe header\n");
2787                 return err;
2788         }
2789
2790         return 0;
2791 }
2792
2793 int perf_session__write_header(struct perf_session *session,
2794                                struct perf_evlist *evlist,
2795                                int fd, bool at_exit)
2796 {
2797         struct perf_file_header f_header;
2798         struct perf_file_attr   f_attr;
2799         struct perf_header *header = &session->header;
2800         struct perf_evsel *evsel;
2801         struct feat_fd ff;
2802         u64 attr_offset;
2803         int err;
2804
2805         ff = (struct feat_fd){ .fd = fd};
2806         lseek(fd, sizeof(f_header), SEEK_SET);
2807
2808         evlist__for_each_entry(session->evlist, evsel) {
2809                 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
2810                 err = do_write(&ff, evsel->id, evsel->ids * sizeof(u64));
2811                 if (err < 0) {
2812                         pr_debug("failed to write perf header\n");
2813                         return err;
2814                 }
2815         }
2816
2817         attr_offset = lseek(ff.fd, 0, SEEK_CUR);
2818
2819         evlist__for_each_entry(evlist, evsel) {
2820                 f_attr = (struct perf_file_attr){
2821                         .attr = evsel->attr,
2822                         .ids  = {
2823                                 .offset = evsel->id_offset,
2824                                 .size   = evsel->ids * sizeof(u64),
2825                         }
2826                 };
2827                 err = do_write(&ff, &f_attr, sizeof(f_attr));
2828                 if (err < 0) {
2829                         pr_debug("failed to write perf header attribute\n");
2830                         return err;
2831                 }
2832         }
2833
2834         if (!header->data_offset)
2835                 header->data_offset = lseek(fd, 0, SEEK_CUR);
2836         header->feat_offset = header->data_offset + header->data_size;
2837
2838         if (at_exit) {
2839                 err = perf_header__adds_write(header, evlist, fd);
2840                 if (err < 0)
2841                         return err;
2842         }
2843
2844         f_header = (struct perf_file_header){
2845                 .magic     = PERF_MAGIC,
2846                 .size      = sizeof(f_header),
2847                 .attr_size = sizeof(f_attr),
2848                 .attrs = {
2849                         .offset = attr_offset,
2850                         .size   = evlist->nr_entries * sizeof(f_attr),
2851                 },
2852                 .data = {
2853                         .offset = header->data_offset,
2854                         .size   = header->data_size,
2855                 },
2856                 /* event_types is ignored, store zeros */
2857         };
2858
2859         memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
2860
2861         lseek(fd, 0, SEEK_SET);
2862         err = do_write(&ff, &f_header, sizeof(f_header));
2863         if (err < 0) {
2864                 pr_debug("failed to write perf header\n");
2865                 return err;
2866         }
2867         lseek(fd, header->data_offset + header->data_size, SEEK_SET);
2868
2869         return 0;
2870 }
2871
2872 static int perf_header__getbuffer64(struct perf_header *header,
2873                                     int fd, void *buf, size_t size)
2874 {
2875         if (readn(fd, buf, size) <= 0)
2876                 return -1;
2877
2878         if (header->needs_swap)
2879                 mem_bswap_64(buf, size);
2880
2881         return 0;
2882 }
2883
2884 int perf_header__process_sections(struct perf_header *header, int fd,
2885                                   void *data,
2886                                   int (*process)(struct perf_file_section *section,
2887                                                  struct perf_header *ph,
2888                                                  int feat, int fd, void *data))
2889 {
2890         struct perf_file_section *feat_sec, *sec;
2891         int nr_sections;
2892         int sec_size;
2893         int feat;
2894         int err;
2895
2896         nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
2897         if (!nr_sections)
2898                 return 0;
2899
2900         feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
2901         if (!feat_sec)
2902                 return -1;
2903
2904         sec_size = sizeof(*feat_sec) * nr_sections;
2905
2906         lseek(fd, header->feat_offset, SEEK_SET);
2907
2908         err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
2909         if (err < 0)
2910                 goto out_free;
2911
2912         for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
2913                 err = process(sec++, header, feat, fd, data);
2914                 if (err < 0)
2915                         goto out_free;
2916         }
2917         err = 0;
2918 out_free:
2919         free(feat_sec);
2920         return err;
2921 }
2922
2923 static const int attr_file_abi_sizes[] = {
2924         [0] = PERF_ATTR_SIZE_VER0,
2925         [1] = PERF_ATTR_SIZE_VER1,
2926         [2] = PERF_ATTR_SIZE_VER2,
2927         [3] = PERF_ATTR_SIZE_VER3,
2928         [4] = PERF_ATTR_SIZE_VER4,
2929         0,
2930 };
2931
2932 /*
2933  * In the legacy file format, the magic number is not used to encode endianness.
2934  * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
2935  * on ABI revisions, we need to try all combinations for all endianness to
2936  * detect the endianness.
2937  */
2938 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
2939 {
2940         uint64_t ref_size, attr_size;
2941         int i;
2942
2943         for (i = 0 ; attr_file_abi_sizes[i]; i++) {
2944                 ref_size = attr_file_abi_sizes[i]
2945                          + sizeof(struct perf_file_section);
2946                 if (hdr_sz != ref_size) {
2947                         attr_size = bswap_64(hdr_sz);
2948                         if (attr_size != ref_size)
2949                                 continue;
2950
2951                         ph->needs_swap = true;
2952                 }
2953                 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
2954                          i,
2955                          ph->needs_swap);
2956                 return 0;
2957         }
2958         /* could not determine endianness */
2959         return -1;
2960 }
2961
2962 #define PERF_PIPE_HDR_VER0      16
2963
2964 static const size_t attr_pipe_abi_sizes[] = {
2965         [0] = PERF_PIPE_HDR_VER0,
2966         0,
2967 };
2968
2969 /*
2970  * In the legacy pipe format, there is an implicit assumption that endiannesss
2971  * between host recording the samples, and host parsing the samples is the
2972  * same. This is not always the case given that the pipe output may always be
2973  * redirected into a file and analyzed on a different machine with possibly a
2974  * different endianness and perf_event ABI revsions in the perf tool itself.
2975  */
2976 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
2977 {
2978         u64 attr_size;
2979         int i;
2980
2981         for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
2982                 if (hdr_sz != attr_pipe_abi_sizes[i]) {
2983                         attr_size = bswap_64(hdr_sz);
2984                         if (attr_size != hdr_sz)
2985                                 continue;
2986
2987                         ph->needs_swap = true;
2988                 }
2989                 pr_debug("Pipe ABI%d perf.data file detected\n", i);
2990                 return 0;
2991         }
2992         return -1;
2993 }
2994
2995 bool is_perf_magic(u64 magic)
2996 {
2997         if (!memcmp(&magic, __perf_magic1, sizeof(magic))
2998                 || magic == __perf_magic2
2999                 || magic == __perf_magic2_sw)
3000                 return true;
3001
3002         return false;
3003 }
3004
3005 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3006                               bool is_pipe, struct perf_header *ph)
3007 {
3008         int ret;
3009
3010         /* check for legacy format */
3011         ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3012         if (ret == 0) {
3013                 ph->version = PERF_HEADER_VERSION_1;
3014                 pr_debug("legacy perf.data format\n");
3015                 if (is_pipe)
3016                         return try_all_pipe_abis(hdr_sz, ph);
3017
3018                 return try_all_file_abis(hdr_sz, ph);
3019         }
3020         /*
3021          * the new magic number serves two purposes:
3022          * - unique number to identify actual perf.data files
3023          * - encode endianness of file
3024          */
3025         ph->version = PERF_HEADER_VERSION_2;
3026
3027         /* check magic number with one endianness */
3028         if (magic == __perf_magic2)
3029                 return 0;
3030
3031         /* check magic number with opposite endianness */
3032         if (magic != __perf_magic2_sw)
3033                 return -1;
3034
3035         ph->needs_swap = true;
3036
3037         return 0;
3038 }
3039
3040 int perf_file_header__read(struct perf_file_header *header,
3041                            struct perf_header *ph, int fd)
3042 {
3043         ssize_t ret;
3044
3045         lseek(fd, 0, SEEK_SET);
3046
3047         ret = readn(fd, header, sizeof(*header));
3048         if (ret <= 0)
3049                 return -1;
3050
3051         if (check_magic_endian(header->magic,
3052                                header->attr_size, false, ph) < 0) {
3053                 pr_debug("magic/endian check failed\n");
3054                 return -1;
3055         }
3056
3057         if (ph->needs_swap) {
3058                 mem_bswap_64(header, offsetof(struct perf_file_header,
3059                              adds_features));
3060         }
3061
3062         if (header->size != sizeof(*header)) {
3063                 /* Support the previous format */
3064                 if (header->size == offsetof(typeof(*header), adds_features))
3065                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3066                 else
3067                         return -1;
3068         } else if (ph->needs_swap) {
3069                 /*
3070                  * feature bitmap is declared as an array of unsigned longs --
3071                  * not good since its size can differ between the host that
3072                  * generated the data file and the host analyzing the file.
3073                  *
3074                  * We need to handle endianness, but we don't know the size of
3075                  * the unsigned long where the file was generated. Take a best
3076                  * guess at determining it: try 64-bit swap first (ie., file
3077                  * created on a 64-bit host), and check if the hostname feature
3078                  * bit is set (this feature bit is forced on as of fbe96f2).
3079                  * If the bit is not, undo the 64-bit swap and try a 32-bit
3080                  * swap. If the hostname bit is still not set (e.g., older data
3081                  * file), punt and fallback to the original behavior --
3082                  * clearing all feature bits and setting buildid.
3083                  */
3084                 mem_bswap_64(&header->adds_features,
3085                             BITS_TO_U64(HEADER_FEAT_BITS));
3086
3087                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3088                         /* unswap as u64 */
3089                         mem_bswap_64(&header->adds_features,
3090                                     BITS_TO_U64(HEADER_FEAT_BITS));
3091
3092                         /* unswap as u32 */
3093                         mem_bswap_32(&header->adds_features,
3094                                     BITS_TO_U32(HEADER_FEAT_BITS));
3095                 }
3096
3097                 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3098                         bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3099                         set_bit(HEADER_BUILD_ID, header->adds_features);
3100                 }
3101         }
3102
3103         memcpy(&ph->adds_features, &header->adds_features,
3104                sizeof(ph->adds_features));
3105
3106         ph->data_offset  = header->data.offset;
3107         ph->data_size    = header->data.size;
3108         ph->feat_offset  = header->data.offset + header->data.size;
3109         return 0;
3110 }
3111
3112 static int perf_file_section__process(struct perf_file_section *section,
3113                                       struct perf_header *ph,
3114                                       int feat, int fd, void *data)
3115 {
3116         struct feat_fd fdd = {
3117                 .fd     = fd,
3118                 .ph     = ph,
3119                 .size   = section->size,
3120                 .offset = section->offset,
3121         };
3122
3123         if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3124                 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3125                           "%d, continuing...\n", section->offset, feat);
3126                 return 0;
3127         }
3128
3129         if (feat >= HEADER_LAST_FEATURE) {
3130                 pr_debug("unknown feature %d, continuing...\n", feat);
3131                 return 0;
3132         }
3133
3134         if (!feat_ops[feat].process)
3135                 return 0;
3136
3137         return feat_ops[feat].process(&fdd, data);
3138 }
3139
3140 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3141                                        struct perf_header *ph, int fd,
3142                                        bool repipe)
3143 {
3144         struct feat_fd ff = {
3145                 .fd = STDOUT_FILENO,
3146                 .ph = ph,
3147         };
3148         ssize_t ret;
3149
3150         ret = readn(fd, header, sizeof(*header));
3151         if (ret <= 0)
3152                 return -1;
3153
3154         if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
3155                 pr_debug("endian/magic failed\n");
3156                 return -1;
3157         }
3158
3159         if (ph->needs_swap)
3160                 header->size = bswap_64(header->size);
3161
3162         if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
3163                 return -1;
3164
3165         return 0;
3166 }
3167
3168 static int perf_header__read_pipe(struct perf_session *session)
3169 {
3170         struct perf_header *header = &session->header;
3171         struct perf_pipe_file_header f_header;
3172
3173         if (perf_file_header__read_pipe(&f_header, header,
3174                                         perf_data__fd(session->data),
3175                                         session->repipe) < 0) {
3176                 pr_debug("incompatible file format\n");
3177                 return -EINVAL;
3178         }
3179
3180         return 0;
3181 }
3182
3183 static int read_attr(int fd, struct perf_header *ph,
3184                      struct perf_file_attr *f_attr)
3185 {
3186         struct perf_event_attr *attr = &f_attr->attr;
3187         size_t sz, left;
3188         size_t our_sz = sizeof(f_attr->attr);
3189         ssize_t ret;
3190
3191         memset(f_attr, 0, sizeof(*f_attr));
3192
3193         /* read minimal guaranteed structure */
3194         ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
3195         if (ret <= 0) {
3196                 pr_debug("cannot read %d bytes of header attr\n",
3197                          PERF_ATTR_SIZE_VER0);
3198                 return -1;
3199         }
3200
3201         /* on file perf_event_attr size */
3202         sz = attr->size;
3203
3204         if (ph->needs_swap)
3205                 sz = bswap_32(sz);
3206
3207         if (sz == 0) {
3208                 /* assume ABI0 */
3209                 sz =  PERF_ATTR_SIZE_VER0;
3210         } else if (sz > our_sz) {
3211                 pr_debug("file uses a more recent and unsupported ABI"
3212                          " (%zu bytes extra)\n", sz - our_sz);
3213                 return -1;
3214         }
3215         /* what we have not yet read and that we know about */
3216         left = sz - PERF_ATTR_SIZE_VER0;
3217         if (left) {
3218                 void *ptr = attr;
3219                 ptr += PERF_ATTR_SIZE_VER0;
3220
3221                 ret = readn(fd, ptr, left);
3222         }
3223         /* read perf_file_section, ids are read in caller */
3224         ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
3225
3226         return ret <= 0 ? -1 : 0;
3227 }
3228
3229 static int perf_evsel__prepare_tracepoint_event(struct perf_evsel *evsel,
3230                                                 struct tep_handle *pevent)
3231 {
3232         struct tep_event_format *event;
3233         char bf[128];
3234
3235         /* already prepared */
3236         if (evsel->tp_format)
3237                 return 0;
3238
3239         if (pevent == NULL) {
3240                 pr_debug("broken or missing trace data\n");
3241                 return -1;
3242         }
3243
3244         event = tep_find_event(pevent, evsel->attr.config);
3245         if (event == NULL) {
3246                 pr_debug("cannot find event format for %d\n", (int)evsel->attr.config);
3247                 return -1;
3248         }
3249
3250         if (!evsel->name) {
3251                 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
3252                 evsel->name = strdup(bf);
3253                 if (evsel->name == NULL)
3254                         return -1;
3255         }
3256
3257         evsel->tp_format = event;
3258         return 0;
3259 }
3260
3261 static int perf_evlist__prepare_tracepoint_events(struct perf_evlist *evlist,
3262                                                   struct tep_handle *pevent)
3263 {
3264         struct perf_evsel *pos;
3265
3266         evlist__for_each_entry(evlist, pos) {
3267                 if (pos->attr.type == PERF_TYPE_TRACEPOINT &&
3268                     perf_evsel__prepare_tracepoint_event(pos, pevent))
3269                         return -1;
3270         }
3271
3272         return 0;
3273 }
3274
3275 int perf_session__read_header(struct perf_session *session)
3276 {
3277         struct perf_data *data = session->data;
3278         struct perf_header *header = &session->header;
3279         struct perf_file_header f_header;
3280         struct perf_file_attr   f_attr;
3281         u64                     f_id;
3282         int nr_attrs, nr_ids, i, j;
3283         int fd = perf_data__fd(data);
3284
3285         session->evlist = perf_evlist__new();
3286         if (session->evlist == NULL)
3287                 return -ENOMEM;
3288
3289         session->evlist->env = &header->env;
3290         session->machines.host.env = &header->env;
3291         if (perf_data__is_pipe(data))
3292                 return perf_header__read_pipe(session);
3293
3294         if (perf_file_header__read(&f_header, header, fd) < 0)
3295                 return -EINVAL;
3296
3297         /*
3298          * Sanity check that perf.data was written cleanly; data size is
3299          * initialized to 0 and updated only if the on_exit function is run.
3300          * If data size is still 0 then the file contains only partial
3301          * information.  Just warn user and process it as much as it can.
3302          */
3303         if (f_header.data.size == 0) {
3304                 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
3305                            "Was the 'perf record' command properly terminated?\n",
3306                            data->file.path);
3307         }
3308
3309         nr_attrs = f_header.attrs.size / f_header.attr_size;
3310         lseek(fd, f_header.attrs.offset, SEEK_SET);
3311
3312         for (i = 0; i < nr_attrs; i++) {
3313                 struct perf_evsel *evsel;
3314                 off_t tmp;
3315
3316                 if (read_attr(fd, header, &f_attr) < 0)
3317                         goto out_errno;
3318
3319                 if (header->needs_swap) {
3320                         f_attr.ids.size   = bswap_64(f_attr.ids.size);
3321                         f_attr.ids.offset = bswap_64(f_attr.ids.offset);
3322                         perf_event__attr_swap(&f_attr.attr);
3323                 }
3324
3325                 tmp = lseek(fd, 0, SEEK_CUR);
3326                 evsel = perf_evsel__new(&f_attr.attr);
3327
3328                 if (evsel == NULL)
3329                         goto out_delete_evlist;
3330
3331                 evsel->needs_swap = header->needs_swap;
3332                 /*
3333                  * Do it before so that if perf_evsel__alloc_id fails, this
3334                  * entry gets purged too at perf_evlist__delete().
3335                  */
3336                 perf_evlist__add(session->evlist, evsel);
3337
3338                 nr_ids = f_attr.ids.size / sizeof(u64);
3339                 /*
3340                  * We don't have the cpu and thread maps on the header, so
3341                  * for allocating the perf_sample_id table we fake 1 cpu and
3342                  * hattr->ids threads.
3343                  */
3344                 if (perf_evsel__alloc_id(evsel, 1, nr_ids))
3345                         goto out_delete_evlist;
3346
3347                 lseek(fd, f_attr.ids.offset, SEEK_SET);
3348
3349                 for (j = 0; j < nr_ids; j++) {
3350                         if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
3351                                 goto out_errno;
3352
3353                         perf_evlist__id_add(session->evlist, evsel, 0, j, f_id);
3354                 }
3355
3356                 lseek(fd, tmp, SEEK_SET);
3357         }
3358
3359         perf_header__process_sections(header, fd, &session->tevent,
3360                                       perf_file_section__process);
3361
3362         if (perf_evlist__prepare_tracepoint_events(session->evlist,
3363                                                    session->tevent.pevent))
3364                 goto out_delete_evlist;
3365
3366         return 0;
3367 out_errno:
3368         return -errno;
3369
3370 out_delete_evlist:
3371         perf_evlist__delete(session->evlist);
3372         session->evlist = NULL;
3373         return -ENOMEM;
3374 }
3375
3376 int perf_event__synthesize_attr(struct perf_tool *tool,
3377                                 struct perf_event_attr *attr, u32 ids, u64 *id,
3378                                 perf_event__handler_t process)
3379 {
3380         union perf_event *ev;
3381         size_t size;
3382         int err;
3383
3384         size = sizeof(struct perf_event_attr);
3385         size = PERF_ALIGN(size, sizeof(u64));
3386         size += sizeof(struct perf_event_header);
3387         size += ids * sizeof(u64);
3388
3389         ev = malloc(size);
3390
3391         if (ev == NULL)
3392                 return -ENOMEM;
3393
3394         ev->attr.attr = *attr;
3395         memcpy(ev->attr.id, id, ids * sizeof(u64));
3396
3397         ev->attr.header.type = PERF_RECORD_HEADER_ATTR;
3398         ev->attr.header.size = (u16)size;
3399
3400         if (ev->attr.header.size == size)
3401                 err = process(tool, ev, NULL, NULL);
3402         else
3403                 err = -E2BIG;
3404
3405         free(ev);
3406
3407         return err;
3408 }
3409
3410 int perf_event__synthesize_features(struct perf_tool *tool,
3411                                     struct perf_session *session,
3412                                     struct perf_evlist *evlist,
3413                                     perf_event__handler_t process)
3414 {
3415         struct perf_header *header = &session->header;
3416         struct feat_fd ff;
3417         struct feature_event *fe;
3418         size_t sz, sz_hdr;
3419         int feat, ret;
3420
3421         sz_hdr = sizeof(fe->header);
3422         sz = sizeof(union perf_event);
3423         /* get a nice alignment */
3424         sz = PERF_ALIGN(sz, page_size);
3425
3426         memset(&ff, 0, sizeof(ff));
3427
3428         ff.buf = malloc(sz);
3429         if (!ff.buf)
3430                 return -ENOMEM;
3431
3432         ff.size = sz - sz_hdr;
3433
3434         for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3435                 if (!feat_ops[feat].synthesize) {
3436                         pr_debug("No record header feature for header :%d\n", feat);
3437                         continue;
3438                 }
3439
3440                 ff.offset = sizeof(*fe);
3441
3442                 ret = feat_ops[feat].write(&ff, evlist);
3443                 if (ret || ff.offset <= (ssize_t)sizeof(*fe)) {
3444                         pr_debug("Error writing feature\n");
3445                         continue;
3446                 }
3447                 /* ff.buf may have changed due to realloc in do_write() */
3448                 fe = ff.buf;
3449                 memset(fe, 0, sizeof(*fe));
3450
3451                 fe->feat_id = feat;
3452                 fe->header.type = PERF_RECORD_HEADER_FEATURE;
3453                 fe->header.size = ff.offset;
3454
3455                 ret = process(tool, ff.buf, NULL, NULL);
3456                 if (ret) {
3457                         free(ff.buf);
3458                         return ret;
3459                 }
3460         }
3461
3462         /* Send HEADER_LAST_FEATURE mark. */
3463         fe = ff.buf;
3464         fe->feat_id     = HEADER_LAST_FEATURE;
3465         fe->header.type = PERF_RECORD_HEADER_FEATURE;
3466         fe->header.size = sizeof(*fe);
3467
3468         ret = process(tool, ff.buf, NULL, NULL);
3469
3470         free(ff.buf);
3471         return ret;
3472 }
3473
3474 int perf_event__process_feature(struct perf_session *session,
3475                                 union perf_event *event)
3476 {
3477         struct perf_tool *tool = session->tool;
3478         struct feat_fd ff = { .fd = 0 };
3479         struct feature_event *fe = (struct feature_event *)event;
3480         int type = fe->header.type;
3481         u64 feat = fe->feat_id;
3482
3483         if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
3484                 pr_warning("invalid record type %d in pipe-mode\n", type);
3485                 return 0;
3486         }
3487         if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
3488                 pr_warning("invalid record type %d in pipe-mode\n", type);
3489                 return -1;
3490         }
3491
3492         if (!feat_ops[feat].process)
3493                 return 0;
3494
3495         ff.buf  = (void *)fe->data;
3496         ff.size = event->header.size - sizeof(event->header);
3497         ff.ph = &session->header;
3498
3499         if (feat_ops[feat].process(&ff, NULL))
3500                 return -1;
3501
3502         if (!feat_ops[feat].print || !tool->show_feat_hdr)
3503                 return 0;
3504
3505         if (!feat_ops[feat].full_only ||
3506             tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
3507                 feat_ops[feat].print(&ff, stdout);
3508         } else {
3509                 fprintf(stdout, "# %s info available, use -I to display\n",
3510                         feat_ops[feat].name);
3511         }
3512
3513         return 0;
3514 }
3515
3516 static struct event_update_event *
3517 event_update_event__new(size_t size, u64 type, u64 id)
3518 {
3519         struct event_update_event *ev;
3520
3521         size += sizeof(*ev);
3522         size  = PERF_ALIGN(size, sizeof(u64));
3523
3524         ev = zalloc(size);
3525         if (ev) {
3526                 ev->header.type = PERF_RECORD_EVENT_UPDATE;
3527                 ev->header.size = (u16)size;
3528                 ev->type = type;
3529                 ev->id = id;
3530         }
3531         return ev;
3532 }
3533
3534 int
3535 perf_event__synthesize_event_update_unit(struct perf_tool *tool,
3536                                          struct perf_evsel *evsel,
3537                                          perf_event__handler_t process)
3538 {
3539         struct event_update_event *ev;
3540         size_t size = strlen(evsel->unit);
3541         int err;
3542
3543         ev = event_update_event__new(size + 1, PERF_EVENT_UPDATE__UNIT, evsel->id[0]);
3544         if (ev == NULL)
3545                 return -ENOMEM;
3546
3547         strncpy(ev->data, evsel->unit, size);
3548         err = process(tool, (union perf_event *)ev, NULL, NULL);
3549         free(ev);
3550         return err;
3551 }
3552
3553 int
3554 perf_event__synthesize_event_update_scale(struct perf_tool *tool,
3555                                           struct perf_evsel *evsel,
3556                                           perf_event__handler_t process)
3557 {
3558         struct event_update_event *ev;
3559         struct event_update_event_scale *ev_data;
3560         int err;
3561
3562         ev = event_update_event__new(sizeof(*ev_data), PERF_EVENT_UPDATE__SCALE, evsel->id[0]);
3563         if (ev == NULL)
3564                 return -ENOMEM;
3565
3566         ev_data = (struct event_update_event_scale *) ev->data;
3567         ev_data->scale = evsel->scale;
3568         err = process(tool, (union perf_event*) ev, NULL, NULL);
3569         free(ev);
3570         return err;
3571 }
3572
3573 int
3574 perf_event__synthesize_event_update_name(struct perf_tool *tool,
3575                                          struct perf_evsel *evsel,
3576                                          perf_event__handler_t process)
3577 {
3578         struct event_update_event *ev;
3579         size_t len = strlen(evsel->name);
3580         int err;
3581
3582         ev = event_update_event__new(len + 1, PERF_EVENT_UPDATE__NAME, evsel->id[0]);
3583         if (ev == NULL)
3584                 return -ENOMEM;
3585
3586         strncpy(ev->data, evsel->name, len);
3587         err = process(tool, (union perf_event*) ev, NULL, NULL);
3588         free(ev);
3589         return err;
3590 }
3591
3592 int
3593 perf_event__synthesize_event_update_cpus(struct perf_tool *tool,
3594                                         struct perf_evsel *evsel,
3595                                         perf_event__handler_t process)
3596 {
3597         size_t size = sizeof(struct event_update_event);
3598         struct event_update_event *ev;
3599         int max, err;
3600         u16 type;
3601
3602         if (!evsel->own_cpus)
3603                 return 0;
3604
3605         ev = cpu_map_data__alloc(evsel->own_cpus, &size, &type, &max);
3606         if (!ev)
3607                 return -ENOMEM;
3608
3609         ev->header.type = PERF_RECORD_EVENT_UPDATE;
3610         ev->header.size = (u16)size;
3611         ev->type = PERF_EVENT_UPDATE__CPUS;
3612         ev->id   = evsel->id[0];
3613
3614         cpu_map_data__synthesize((struct cpu_map_data *) ev->data,
3615                                  evsel->own_cpus,
3616                                  type, max);
3617
3618         err = process(tool, (union perf_event*) ev, NULL, NULL);
3619         free(ev);
3620         return err;
3621 }
3622
3623 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
3624 {
3625         struct event_update_event *ev = &event->event_update;
3626         struct event_update_event_scale *ev_scale;
3627         struct event_update_event_cpus *ev_cpus;
3628         struct cpu_map *map;
3629         size_t ret;
3630
3631         ret = fprintf(fp, "\n... id:    %" PRIu64 "\n", ev->id);
3632
3633         switch (ev->type) {
3634         case PERF_EVENT_UPDATE__SCALE:
3635                 ev_scale = (struct event_update_event_scale *) ev->data;
3636                 ret += fprintf(fp, "... scale: %f\n", ev_scale->scale);
3637                 break;
3638         case PERF_EVENT_UPDATE__UNIT:
3639                 ret += fprintf(fp, "... unit:  %s\n", ev->data);
3640                 break;
3641         case PERF_EVENT_UPDATE__NAME:
3642                 ret += fprintf(fp, "... name:  %s\n", ev->data);
3643                 break;
3644         case PERF_EVENT_UPDATE__CPUS:
3645                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3646                 ret += fprintf(fp, "... ");
3647
3648                 map = cpu_map__new_data(&ev_cpus->cpus);
3649                 if (map)
3650                         ret += cpu_map__fprintf(map, fp);
3651                 else
3652                         ret += fprintf(fp, "failed to get cpus\n");
3653                 break;
3654         default:
3655                 ret += fprintf(fp, "... unknown type\n");
3656                 break;
3657         }
3658
3659         return ret;
3660 }
3661
3662 int perf_event__synthesize_attrs(struct perf_tool *tool,
3663                                  struct perf_evlist *evlist,
3664                                  perf_event__handler_t process)
3665 {
3666         struct perf_evsel *evsel;
3667         int err = 0;
3668
3669         evlist__for_each_entry(evlist, evsel) {
3670                 err = perf_event__synthesize_attr(tool, &evsel->attr, evsel->ids,
3671                                                   evsel->id, process);
3672                 if (err) {
3673                         pr_debug("failed to create perf header attribute\n");
3674                         return err;
3675                 }
3676         }
3677
3678         return err;
3679 }
3680
3681 static bool has_unit(struct perf_evsel *counter)
3682 {
3683         return counter->unit && *counter->unit;
3684 }
3685
3686 static bool has_scale(struct perf_evsel *counter)
3687 {
3688         return counter->scale != 1;
3689 }
3690
3691 int perf_event__synthesize_extra_attr(struct perf_tool *tool,
3692                                       struct perf_evlist *evsel_list,
3693                                       perf_event__handler_t process,
3694                                       bool is_pipe)
3695 {
3696         struct perf_evsel *counter;
3697         int err;
3698
3699         /*
3700          * Synthesize other events stuff not carried within
3701          * attr event - unit, scale, name
3702          */
3703         evlist__for_each_entry(evsel_list, counter) {
3704                 if (!counter->supported)
3705                         continue;
3706
3707                 /*
3708                  * Synthesize unit and scale only if it's defined.
3709                  */
3710                 if (has_unit(counter)) {
3711                         err = perf_event__synthesize_event_update_unit(tool, counter, process);
3712                         if (err < 0) {
3713                                 pr_err("Couldn't synthesize evsel unit.\n");
3714                                 return err;
3715                         }
3716                 }
3717
3718                 if (has_scale(counter)) {
3719                         err = perf_event__synthesize_event_update_scale(tool, counter, process);
3720                         if (err < 0) {
3721                                 pr_err("Couldn't synthesize evsel counter.\n");
3722                                 return err;
3723                         }
3724                 }
3725
3726                 if (counter->own_cpus) {
3727                         err = perf_event__synthesize_event_update_cpus(tool, counter, process);
3728                         if (err < 0) {
3729                                 pr_err("Couldn't synthesize evsel cpus.\n");
3730                                 return err;
3731                         }
3732                 }
3733
3734                 /*
3735                  * Name is needed only for pipe output,
3736                  * perf.data carries event names.
3737                  */
3738                 if (is_pipe) {
3739                         err = perf_event__synthesize_event_update_name(tool, counter, process);
3740                         if (err < 0) {
3741                                 pr_err("Couldn't synthesize evsel name.\n");
3742                                 return err;
3743                         }
3744                 }
3745         }
3746         return 0;
3747 }
3748
3749 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
3750                              union perf_event *event,
3751                              struct perf_evlist **pevlist)
3752 {
3753         u32 i, ids, n_ids;
3754         struct perf_evsel *evsel;
3755         struct perf_evlist *evlist = *pevlist;
3756
3757         if (evlist == NULL) {
3758                 *pevlist = evlist = perf_evlist__new();
3759                 if (evlist == NULL)
3760                         return -ENOMEM;
3761         }
3762
3763         evsel = perf_evsel__new(&event->attr.attr);
3764         if (evsel == NULL)
3765                 return -ENOMEM;
3766
3767         perf_evlist__add(evlist, evsel);
3768
3769         ids = event->header.size;
3770         ids -= (void *)&event->attr.id - (void *)event;
3771         n_ids = ids / sizeof(u64);
3772         /*
3773          * We don't have the cpu and thread maps on the header, so
3774          * for allocating the perf_sample_id table we fake 1 cpu and
3775          * hattr->ids threads.
3776          */
3777         if (perf_evsel__alloc_id(evsel, 1, n_ids))
3778                 return -ENOMEM;
3779
3780         for (i = 0; i < n_ids; i++) {
3781                 perf_evlist__id_add(evlist, evsel, 0, i, event->attr.id[i]);
3782         }
3783
3784         return 0;
3785 }
3786
3787 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
3788                                      union perf_event *event,
3789                                      struct perf_evlist **pevlist)
3790 {
3791         struct event_update_event *ev = &event->event_update;
3792         struct event_update_event_scale *ev_scale;
3793         struct event_update_event_cpus *ev_cpus;
3794         struct perf_evlist *evlist;
3795         struct perf_evsel *evsel;
3796         struct cpu_map *map;
3797
3798         if (!pevlist || *pevlist == NULL)
3799                 return -EINVAL;
3800
3801         evlist = *pevlist;
3802
3803         evsel = perf_evlist__id2evsel(evlist, ev->id);
3804         if (evsel == NULL)
3805                 return -EINVAL;
3806
3807         switch (ev->type) {
3808         case PERF_EVENT_UPDATE__UNIT:
3809                 evsel->unit = strdup(ev->data);
3810                 break;
3811         case PERF_EVENT_UPDATE__NAME:
3812                 evsel->name = strdup(ev->data);
3813                 break;
3814         case PERF_EVENT_UPDATE__SCALE:
3815                 ev_scale = (struct event_update_event_scale *) ev->data;
3816                 evsel->scale = ev_scale->scale;
3817                 break;
3818         case PERF_EVENT_UPDATE__CPUS:
3819                 ev_cpus = (struct event_update_event_cpus *) ev->data;
3820
3821                 map = cpu_map__new_data(&ev_cpus->cpus);
3822                 if (map)
3823                         evsel->own_cpus = map;
3824                 else
3825                         pr_err("failed to get event_update cpus\n");
3826         default:
3827                 break;
3828         }
3829
3830         return 0;
3831 }
3832
3833 int perf_event__synthesize_tracing_data(struct perf_tool *tool, int fd,
3834                                         struct perf_evlist *evlist,
3835                                         perf_event__handler_t process)
3836 {
3837         union perf_event ev;
3838         struct tracing_data *tdata;
3839         ssize_t size = 0, aligned_size = 0, padding;
3840         struct feat_fd ff;
3841         int err __maybe_unused = 0;
3842
3843         /*
3844          * We are going to store the size of the data followed
3845          * by the data contents. Since the fd descriptor is a pipe,
3846          * we cannot seek back to store the size of the data once
3847          * we know it. Instead we:
3848          *
3849          * - write the tracing data to the temp file
3850          * - get/write the data size to pipe
3851          * - write the tracing data from the temp file
3852          *   to the pipe
3853          */
3854         tdata = tracing_data_get(&evlist->entries, fd, true);
3855         if (!tdata)
3856                 return -1;
3857
3858         memset(&ev, 0, sizeof(ev));
3859
3860         ev.tracing_data.header.type = PERF_RECORD_HEADER_TRACING_DATA;
3861         size = tdata->size;
3862         aligned_size = PERF_ALIGN(size, sizeof(u64));
3863         padding = aligned_size - size;
3864         ev.tracing_data.header.size = sizeof(ev.tracing_data);
3865         ev.tracing_data.size = aligned_size;
3866
3867         process(tool, &ev, NULL, NULL);
3868
3869         /*
3870          * The put function will copy all the tracing data
3871          * stored in temp file to the pipe.
3872          */
3873         tracing_data_put(tdata);
3874
3875         ff = (struct feat_fd){ .fd = fd };
3876         if (write_padded(&ff, NULL, 0, padding))
3877                 return -1;
3878
3879         return aligned_size;
3880 }
3881
3882 int perf_event__process_tracing_data(struct perf_session *session,
3883                                      union perf_event *event)
3884 {
3885         ssize_t size_read, padding, size = event->tracing_data.size;
3886         int fd = perf_data__fd(session->data);
3887         off_t offset = lseek(fd, 0, SEEK_CUR);
3888         char buf[BUFSIZ];
3889
3890         /* setup for reading amidst mmap */
3891         lseek(fd, offset + sizeof(struct tracing_data_event),
3892               SEEK_SET);
3893
3894         size_read = trace_report(fd, &session->tevent,
3895                                  session->repipe);
3896         padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
3897
3898         if (readn(fd, buf, padding) < 0) {
3899                 pr_err("%s: reading input file", __func__);
3900                 return -1;
3901         }
3902         if (session->repipe) {
3903                 int retw = write(STDOUT_FILENO, buf, padding);
3904                 if (retw <= 0 || retw != padding) {
3905                         pr_err("%s: repiping tracing data padding", __func__);
3906                         return -1;
3907                 }
3908         }
3909
3910         if (size_read + padding != size) {
3911                 pr_err("%s: tracing data size mismatch", __func__);
3912                 return -1;
3913         }
3914
3915         perf_evlist__prepare_tracepoint_events(session->evlist,
3916                                                session->tevent.pevent);
3917
3918         return size_read + padding;
3919 }
3920
3921 int perf_event__synthesize_build_id(struct perf_tool *tool,
3922                                     struct dso *pos, u16 misc,
3923                                     perf_event__handler_t process,
3924                                     struct machine *machine)
3925 {
3926         union perf_event ev;
3927         size_t len;
3928         int err = 0;
3929
3930         if (!pos->hit)
3931                 return err;
3932
3933         memset(&ev, 0, sizeof(ev));
3934
3935         len = pos->long_name_len + 1;
3936         len = PERF_ALIGN(len, NAME_ALIGN);
3937         memcpy(&ev.build_id.build_id, pos->build_id, sizeof(pos->build_id));
3938         ev.build_id.header.type = PERF_RECORD_HEADER_BUILD_ID;
3939         ev.build_id.header.misc = misc;
3940         ev.build_id.pid = machine->pid;
3941         ev.build_id.header.size = sizeof(ev.build_id) + len;
3942         memcpy(&ev.build_id.filename, pos->long_name, pos->long_name_len);
3943
3944         err = process(tool, &ev, NULL, machine);
3945
3946         return err;
3947 }
3948
3949 int perf_event__process_build_id(struct perf_session *session,
3950                                  union perf_event *event)
3951 {
3952         __event_process_build_id(&event->build_id,
3953                                  event->build_id.filename,
3954                                  session);
3955         return 0;
3956 }