]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/hist.c
52e8fda93a4723f8b19b8fcaf7e6635aae505a6e
[linux.git] / tools / perf / util / hist.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "util.h"
3 #include "build-id.h"
4 #include "hist.h"
5 #include "map.h"
6 #include "session.h"
7 #include "namespaces.h"
8 #include "sort.h"
9 #include "units.h"
10 #include "evlist.h"
11 #include "evsel.h"
12 #include "annotate.h"
13 #include "srcline.h"
14 #include "thread.h"
15 #include "ui/progress.h"
16 #include <errno.h>
17 #include <math.h>
18 #include <inttypes.h>
19 #include <sys/param.h>
20
21 static bool hists__filter_entry_by_dso(struct hists *hists,
22                                        struct hist_entry *he);
23 static bool hists__filter_entry_by_thread(struct hists *hists,
24                                           struct hist_entry *he);
25 static bool hists__filter_entry_by_symbol(struct hists *hists,
26                                           struct hist_entry *he);
27 static bool hists__filter_entry_by_socket(struct hists *hists,
28                                           struct hist_entry *he);
29
30 u16 hists__col_len(struct hists *hists, enum hist_column col)
31 {
32         return hists->col_len[col];
33 }
34
35 void hists__set_col_len(struct hists *hists, enum hist_column col, u16 len)
36 {
37         hists->col_len[col] = len;
38 }
39
40 bool hists__new_col_len(struct hists *hists, enum hist_column col, u16 len)
41 {
42         if (len > hists__col_len(hists, col)) {
43                 hists__set_col_len(hists, col, len);
44                 return true;
45         }
46         return false;
47 }
48
49 void hists__reset_col_len(struct hists *hists)
50 {
51         enum hist_column col;
52
53         for (col = 0; col < HISTC_NR_COLS; ++col)
54                 hists__set_col_len(hists, col, 0);
55 }
56
57 static void hists__set_unres_dso_col_len(struct hists *hists, int dso)
58 {
59         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
60
61         if (hists__col_len(hists, dso) < unresolved_col_width &&
62             !symbol_conf.col_width_list_str && !symbol_conf.field_sep &&
63             !symbol_conf.dso_list)
64                 hists__set_col_len(hists, dso, unresolved_col_width);
65 }
66
67 void hists__calc_col_len(struct hists *hists, struct hist_entry *h)
68 {
69         const unsigned int unresolved_col_width = BITS_PER_LONG / 4;
70         int symlen;
71         u16 len;
72
73         /*
74          * +4 accounts for '[x] ' priv level info
75          * +2 accounts for 0x prefix on raw addresses
76          * +3 accounts for ' y ' symtab origin info
77          */
78         if (h->ms.sym) {
79                 symlen = h->ms.sym->namelen + 4;
80                 if (verbose > 0)
81                         symlen += BITS_PER_LONG / 4 + 2 + 3;
82                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
83         } else {
84                 symlen = unresolved_col_width + 4 + 2;
85                 hists__new_col_len(hists, HISTC_SYMBOL, symlen);
86                 hists__set_unres_dso_col_len(hists, HISTC_DSO);
87         }
88
89         len = thread__comm_len(h->thread);
90         if (hists__new_col_len(hists, HISTC_COMM, len))
91                 hists__set_col_len(hists, HISTC_THREAD, len + 8);
92
93         if (h->ms.map) {
94                 len = dso__name_len(h->ms.map->dso);
95                 hists__new_col_len(hists, HISTC_DSO, len);
96         }
97
98         if (h->parent)
99                 hists__new_col_len(hists, HISTC_PARENT, h->parent->namelen);
100
101         if (h->branch_info) {
102                 if (h->branch_info->from.sym) {
103                         symlen = (int)h->branch_info->from.sym->namelen + 4;
104                         if (verbose > 0)
105                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
106                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
107
108                         symlen = dso__name_len(h->branch_info->from.map->dso);
109                         hists__new_col_len(hists, HISTC_DSO_FROM, symlen);
110                 } else {
111                         symlen = unresolved_col_width + 4 + 2;
112                         hists__new_col_len(hists, HISTC_SYMBOL_FROM, symlen);
113                         hists__set_unres_dso_col_len(hists, HISTC_DSO_FROM);
114                 }
115
116                 if (h->branch_info->to.sym) {
117                         symlen = (int)h->branch_info->to.sym->namelen + 4;
118                         if (verbose > 0)
119                                 symlen += BITS_PER_LONG / 4 + 2 + 3;
120                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
121
122                         symlen = dso__name_len(h->branch_info->to.map->dso);
123                         hists__new_col_len(hists, HISTC_DSO_TO, symlen);
124                 } else {
125                         symlen = unresolved_col_width + 4 + 2;
126                         hists__new_col_len(hists, HISTC_SYMBOL_TO, symlen);
127                         hists__set_unres_dso_col_len(hists, HISTC_DSO_TO);
128                 }
129
130                 if (h->branch_info->srcline_from)
131                         hists__new_col_len(hists, HISTC_SRCLINE_FROM,
132                                         strlen(h->branch_info->srcline_from));
133                 if (h->branch_info->srcline_to)
134                         hists__new_col_len(hists, HISTC_SRCLINE_TO,
135                                         strlen(h->branch_info->srcline_to));
136         }
137
138         if (h->mem_info) {
139                 if (h->mem_info->daddr.sym) {
140                         symlen = (int)h->mem_info->daddr.sym->namelen + 4
141                                + unresolved_col_width + 2;
142                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
143                                            symlen);
144                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
145                                            symlen + 1);
146                 } else {
147                         symlen = unresolved_col_width + 4 + 2;
148                         hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL,
149                                            symlen);
150                         hists__new_col_len(hists, HISTC_MEM_DCACHELINE,
151                                            symlen);
152                 }
153
154                 if (h->mem_info->iaddr.sym) {
155                         symlen = (int)h->mem_info->iaddr.sym->namelen + 4
156                                + unresolved_col_width + 2;
157                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
158                                            symlen);
159                 } else {
160                         symlen = unresolved_col_width + 4 + 2;
161                         hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL,
162                                            symlen);
163                 }
164
165                 if (h->mem_info->daddr.map) {
166                         symlen = dso__name_len(h->mem_info->daddr.map->dso);
167                         hists__new_col_len(hists, HISTC_MEM_DADDR_DSO,
168                                            symlen);
169                 } else {
170                         symlen = unresolved_col_width + 4 + 2;
171                         hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
172                 }
173
174                 hists__new_col_len(hists, HISTC_MEM_PHYS_DADDR,
175                                    unresolved_col_width + 4 + 2);
176
177         } else {
178                 symlen = unresolved_col_width + 4 + 2;
179                 hists__new_col_len(hists, HISTC_MEM_DADDR_SYMBOL, symlen);
180                 hists__new_col_len(hists, HISTC_MEM_IADDR_SYMBOL, symlen);
181                 hists__set_unres_dso_col_len(hists, HISTC_MEM_DADDR_DSO);
182         }
183
184         hists__new_col_len(hists, HISTC_CGROUP_ID, 20);
185         hists__new_col_len(hists, HISTC_CPU, 3);
186         hists__new_col_len(hists, HISTC_SOCKET, 6);
187         hists__new_col_len(hists, HISTC_MEM_LOCKED, 6);
188         hists__new_col_len(hists, HISTC_MEM_TLB, 22);
189         hists__new_col_len(hists, HISTC_MEM_SNOOP, 12);
190         hists__new_col_len(hists, HISTC_MEM_LVL, 21 + 3);
191         hists__new_col_len(hists, HISTC_LOCAL_WEIGHT, 12);
192         hists__new_col_len(hists, HISTC_GLOBAL_WEIGHT, 12);
193
194         if (h->srcline) {
195                 len = MAX(strlen(h->srcline), strlen(sort_srcline.se_header));
196                 hists__new_col_len(hists, HISTC_SRCLINE, len);
197         }
198
199         if (h->srcfile)
200                 hists__new_col_len(hists, HISTC_SRCFILE, strlen(h->srcfile));
201
202         if (h->transaction)
203                 hists__new_col_len(hists, HISTC_TRANSACTION,
204                                    hist_entry__transaction_len());
205
206         if (h->trace_output)
207                 hists__new_col_len(hists, HISTC_TRACE, strlen(h->trace_output));
208 }
209
210 void hists__output_recalc_col_len(struct hists *hists, int max_rows)
211 {
212         struct rb_node *next = rb_first(&hists->entries);
213         struct hist_entry *n;
214         int row = 0;
215
216         hists__reset_col_len(hists);
217
218         while (next && row++ < max_rows) {
219                 n = rb_entry(next, struct hist_entry, rb_node);
220                 if (!n->filtered)
221                         hists__calc_col_len(hists, n);
222                 next = rb_next(&n->rb_node);
223         }
224 }
225
226 static void he_stat__add_cpumode_period(struct he_stat *he_stat,
227                                         unsigned int cpumode, u64 period)
228 {
229         switch (cpumode) {
230         case PERF_RECORD_MISC_KERNEL:
231                 he_stat->period_sys += period;
232                 break;
233         case PERF_RECORD_MISC_USER:
234                 he_stat->period_us += period;
235                 break;
236         case PERF_RECORD_MISC_GUEST_KERNEL:
237                 he_stat->period_guest_sys += period;
238                 break;
239         case PERF_RECORD_MISC_GUEST_USER:
240                 he_stat->period_guest_us += period;
241                 break;
242         default:
243                 break;
244         }
245 }
246
247 static void he_stat__add_period(struct he_stat *he_stat, u64 period,
248                                 u64 weight)
249 {
250
251         he_stat->period         += period;
252         he_stat->weight         += weight;
253         he_stat->nr_events      += 1;
254 }
255
256 static void he_stat__add_stat(struct he_stat *dest, struct he_stat *src)
257 {
258         dest->period            += src->period;
259         dest->period_sys        += src->period_sys;
260         dest->period_us         += src->period_us;
261         dest->period_guest_sys  += src->period_guest_sys;
262         dest->period_guest_us   += src->period_guest_us;
263         dest->nr_events         += src->nr_events;
264         dest->weight            += src->weight;
265 }
266
267 static void he_stat__decay(struct he_stat *he_stat)
268 {
269         he_stat->period = (he_stat->period * 7) / 8;
270         he_stat->nr_events = (he_stat->nr_events * 7) / 8;
271         /* XXX need decay for weight too? */
272 }
273
274 static void hists__delete_entry(struct hists *hists, struct hist_entry *he);
275
276 static bool hists__decay_entry(struct hists *hists, struct hist_entry *he)
277 {
278         u64 prev_period = he->stat.period;
279         u64 diff;
280
281         if (prev_period == 0)
282                 return true;
283
284         he_stat__decay(&he->stat);
285         if (symbol_conf.cumulate_callchain)
286                 he_stat__decay(he->stat_acc);
287         decay_callchain(he->callchain);
288
289         diff = prev_period - he->stat.period;
290
291         if (!he->depth) {
292                 hists->stats.total_period -= diff;
293                 if (!he->filtered)
294                         hists->stats.total_non_filtered_period -= diff;
295         }
296
297         if (!he->leaf) {
298                 struct hist_entry *child;
299                 struct rb_node *node = rb_first(&he->hroot_out);
300                 while (node) {
301                         child = rb_entry(node, struct hist_entry, rb_node);
302                         node = rb_next(node);
303
304                         if (hists__decay_entry(hists, child))
305                                 hists__delete_entry(hists, child);
306                 }
307         }
308
309         return he->stat.period == 0;
310 }
311
312 static void hists__delete_entry(struct hists *hists, struct hist_entry *he)
313 {
314         struct rb_root *root_in;
315         struct rb_root *root_out;
316
317         if (he->parent_he) {
318                 root_in  = &he->parent_he->hroot_in;
319                 root_out = &he->parent_he->hroot_out;
320         } else {
321                 if (hists__has(hists, need_collapse))
322                         root_in = &hists->entries_collapsed;
323                 else
324                         root_in = hists->entries_in;
325                 root_out = &hists->entries;
326         }
327
328         rb_erase(&he->rb_node_in, root_in);
329         rb_erase(&he->rb_node, root_out);
330
331         --hists->nr_entries;
332         if (!he->filtered)
333                 --hists->nr_non_filtered_entries;
334
335         hist_entry__delete(he);
336 }
337
338 void hists__decay_entries(struct hists *hists, bool zap_user, bool zap_kernel)
339 {
340         struct rb_node *next = rb_first(&hists->entries);
341         struct hist_entry *n;
342
343         while (next) {
344                 n = rb_entry(next, struct hist_entry, rb_node);
345                 next = rb_next(&n->rb_node);
346                 if (((zap_user && n->level == '.') ||
347                      (zap_kernel && n->level != '.') ||
348                      hists__decay_entry(hists, n))) {
349                         hists__delete_entry(hists, n);
350                 }
351         }
352 }
353
354 void hists__delete_entries(struct hists *hists)
355 {
356         struct rb_node *next = rb_first(&hists->entries);
357         struct hist_entry *n;
358
359         while (next) {
360                 n = rb_entry(next, struct hist_entry, rb_node);
361                 next = rb_next(&n->rb_node);
362
363                 hists__delete_entry(hists, n);
364         }
365 }
366
367 /*
368  * histogram, sorted on item, collects periods
369  */
370
371 static int hist_entry__init(struct hist_entry *he,
372                             struct hist_entry *template,
373                             bool sample_self)
374 {
375         *he = *template;
376
377         if (symbol_conf.cumulate_callchain) {
378                 he->stat_acc = malloc(sizeof(he->stat));
379                 if (he->stat_acc == NULL)
380                         return -ENOMEM;
381                 memcpy(he->stat_acc, &he->stat, sizeof(he->stat));
382                 if (!sample_self)
383                         memset(&he->stat, 0, sizeof(he->stat));
384         }
385
386         map__get(he->ms.map);
387
388         if (he->branch_info) {
389                 /*
390                  * This branch info is (a part of) allocated from
391                  * sample__resolve_bstack() and will be freed after
392                  * adding new entries.  So we need to save a copy.
393                  */
394                 he->branch_info = malloc(sizeof(*he->branch_info));
395                 if (he->branch_info == NULL) {
396                         map__zput(he->ms.map);
397                         free(he->stat_acc);
398                         return -ENOMEM;
399                 }
400
401                 memcpy(he->branch_info, template->branch_info,
402                        sizeof(*he->branch_info));
403
404                 map__get(he->branch_info->from.map);
405                 map__get(he->branch_info->to.map);
406         }
407
408         if (he->mem_info) {
409                 map__get(he->mem_info->iaddr.map);
410                 map__get(he->mem_info->daddr.map);
411         }
412
413         if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
414                 callchain_init(he->callchain);
415
416         if (he->raw_data) {
417                 he->raw_data = memdup(he->raw_data, he->raw_size);
418
419                 if (he->raw_data == NULL) {
420                         map__put(he->ms.map);
421                         if (he->branch_info) {
422                                 map__put(he->branch_info->from.map);
423                                 map__put(he->branch_info->to.map);
424                                 free(he->branch_info);
425                         }
426                         if (he->mem_info) {
427                                 map__put(he->mem_info->iaddr.map);
428                                 map__put(he->mem_info->daddr.map);
429                         }
430                         free(he->stat_acc);
431                         return -ENOMEM;
432                 }
433         }
434         INIT_LIST_HEAD(&he->pairs.node);
435         thread__get(he->thread);
436         he->hroot_in  = RB_ROOT;
437         he->hroot_out = RB_ROOT;
438
439         if (!symbol_conf.report_hierarchy)
440                 he->leaf = true;
441
442         return 0;
443 }
444
445 static void *hist_entry__zalloc(size_t size)
446 {
447         return zalloc(size + sizeof(struct hist_entry));
448 }
449
450 static void hist_entry__free(void *ptr)
451 {
452         free(ptr);
453 }
454
455 static struct hist_entry_ops default_ops = {
456         .new    = hist_entry__zalloc,
457         .free   = hist_entry__free,
458 };
459
460 static struct hist_entry *hist_entry__new(struct hist_entry *template,
461                                           bool sample_self)
462 {
463         struct hist_entry_ops *ops = template->ops;
464         size_t callchain_size = 0;
465         struct hist_entry *he;
466         int err = 0;
467
468         if (!ops)
469                 ops = template->ops = &default_ops;
470
471         if (symbol_conf.use_callchain)
472                 callchain_size = sizeof(struct callchain_root);
473
474         he = ops->new(callchain_size);
475         if (he) {
476                 err = hist_entry__init(he, template, sample_self);
477                 if (err) {
478                         ops->free(he);
479                         he = NULL;
480                 }
481         }
482
483         return he;
484 }
485
486 static u8 symbol__parent_filter(const struct symbol *parent)
487 {
488         if (symbol_conf.exclude_other && parent == NULL)
489                 return 1 << HIST_FILTER__PARENT;
490         return 0;
491 }
492
493 static void hist_entry__add_callchain_period(struct hist_entry *he, u64 period)
494 {
495         if (!hist_entry__has_callchains(he) || !symbol_conf.use_callchain)
496                 return;
497
498         he->hists->callchain_period += period;
499         if (!he->filtered)
500                 he->hists->callchain_non_filtered_period += period;
501 }
502
503 static struct hist_entry *hists__findnew_entry(struct hists *hists,
504                                                struct hist_entry *entry,
505                                                struct addr_location *al,
506                                                bool sample_self)
507 {
508         struct rb_node **p;
509         struct rb_node *parent = NULL;
510         struct hist_entry *he;
511         int64_t cmp;
512         u64 period = entry->stat.period;
513         u64 weight = entry->stat.weight;
514
515         p = &hists->entries_in->rb_node;
516
517         while (*p != NULL) {
518                 parent = *p;
519                 he = rb_entry(parent, struct hist_entry, rb_node_in);
520
521                 /*
522                  * Make sure that it receives arguments in a same order as
523                  * hist_entry__collapse() so that we can use an appropriate
524                  * function when searching an entry regardless which sort
525                  * keys were used.
526                  */
527                 cmp = hist_entry__cmp(he, entry);
528
529                 if (!cmp) {
530                         if (sample_self) {
531                                 he_stat__add_period(&he->stat, period, weight);
532                                 hist_entry__add_callchain_period(he, period);
533                         }
534                         if (symbol_conf.cumulate_callchain)
535                                 he_stat__add_period(he->stat_acc, period, weight);
536
537                         /*
538                          * This mem info was allocated from sample__resolve_mem
539                          * and will not be used anymore.
540                          */
541                         mem_info__zput(entry->mem_info);
542
543                         /* If the map of an existing hist_entry has
544                          * become out-of-date due to an exec() or
545                          * similar, update it.  Otherwise we will
546                          * mis-adjust symbol addresses when computing
547                          * the history counter to increment.
548                          */
549                         if (he->ms.map != entry->ms.map) {
550                                 map__put(he->ms.map);
551                                 he->ms.map = map__get(entry->ms.map);
552                         }
553                         goto out;
554                 }
555
556                 if (cmp < 0)
557                         p = &(*p)->rb_left;
558                 else
559                         p = &(*p)->rb_right;
560         }
561
562         he = hist_entry__new(entry, sample_self);
563         if (!he)
564                 return NULL;
565
566         if (sample_self)
567                 hist_entry__add_callchain_period(he, period);
568         hists->nr_entries++;
569
570         rb_link_node(&he->rb_node_in, parent, p);
571         rb_insert_color(&he->rb_node_in, hists->entries_in);
572 out:
573         if (sample_self)
574                 he_stat__add_cpumode_period(&he->stat, al->cpumode, period);
575         if (symbol_conf.cumulate_callchain)
576                 he_stat__add_cpumode_period(he->stat_acc, al->cpumode, period);
577         return he;
578 }
579
580 static struct hist_entry*
581 __hists__add_entry(struct hists *hists,
582                    struct addr_location *al,
583                    struct symbol *sym_parent,
584                    struct branch_info *bi,
585                    struct mem_info *mi,
586                    struct perf_sample *sample,
587                    bool sample_self,
588                    struct hist_entry_ops *ops)
589 {
590         struct namespaces *ns = thread__namespaces(al->thread);
591         struct hist_entry entry = {
592                 .thread = al->thread,
593                 .comm = thread__comm(al->thread),
594                 .cgroup_id = {
595                         .dev = ns ? ns->link_info[CGROUP_NS_INDEX].dev : 0,
596                         .ino = ns ? ns->link_info[CGROUP_NS_INDEX].ino : 0,
597                 },
598                 .ms = {
599                         .map    = al->map,
600                         .sym    = al->sym,
601                 },
602                 .srcline = al->srcline ? strdup(al->srcline) : NULL,
603                 .socket  = al->socket,
604                 .cpu     = al->cpu,
605                 .cpumode = al->cpumode,
606                 .ip      = al->addr,
607                 .level   = al->level,
608                 .stat = {
609                         .nr_events = 1,
610                         .period = sample->period,
611                         .weight = sample->weight,
612                 },
613                 .parent = sym_parent,
614                 .filtered = symbol__parent_filter(sym_parent) | al->filtered,
615                 .hists  = hists,
616                 .branch_info = bi,
617                 .mem_info = mi,
618                 .transaction = sample->transaction,
619                 .raw_data = sample->raw_data,
620                 .raw_size = sample->raw_size,
621                 .ops = ops,
622         };
623
624         return hists__findnew_entry(hists, &entry, al, sample_self);
625 }
626
627 struct hist_entry *hists__add_entry(struct hists *hists,
628                                     struct addr_location *al,
629                                     struct symbol *sym_parent,
630                                     struct branch_info *bi,
631                                     struct mem_info *mi,
632                                     struct perf_sample *sample,
633                                     bool sample_self)
634 {
635         return __hists__add_entry(hists, al, sym_parent, bi, mi,
636                                   sample, sample_self, NULL);
637 }
638
639 struct hist_entry *hists__add_entry_ops(struct hists *hists,
640                                         struct hist_entry_ops *ops,
641                                         struct addr_location *al,
642                                         struct symbol *sym_parent,
643                                         struct branch_info *bi,
644                                         struct mem_info *mi,
645                                         struct perf_sample *sample,
646                                         bool sample_self)
647 {
648         return __hists__add_entry(hists, al, sym_parent, bi, mi,
649                                   sample, sample_self, ops);
650 }
651
652 static int
653 iter_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
654                     struct addr_location *al __maybe_unused)
655 {
656         return 0;
657 }
658
659 static int
660 iter_add_next_nop_entry(struct hist_entry_iter *iter __maybe_unused,
661                         struct addr_location *al __maybe_unused)
662 {
663         return 0;
664 }
665
666 static int
667 iter_prepare_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
668 {
669         struct perf_sample *sample = iter->sample;
670         struct mem_info *mi;
671
672         mi = sample__resolve_mem(sample, al);
673         if (mi == NULL)
674                 return -ENOMEM;
675
676         iter->priv = mi;
677         return 0;
678 }
679
680 static int
681 iter_add_single_mem_entry(struct hist_entry_iter *iter, struct addr_location *al)
682 {
683         u64 cost;
684         struct mem_info *mi = iter->priv;
685         struct hists *hists = evsel__hists(iter->evsel);
686         struct perf_sample *sample = iter->sample;
687         struct hist_entry *he;
688
689         if (mi == NULL)
690                 return -EINVAL;
691
692         cost = sample->weight;
693         if (!cost)
694                 cost = 1;
695
696         /*
697          * must pass period=weight in order to get the correct
698          * sorting from hists__collapse_resort() which is solely
699          * based on periods. We want sorting be done on nr_events * weight
700          * and this is indirectly achieved by passing period=weight here
701          * and the he_stat__add_period() function.
702          */
703         sample->period = cost;
704
705         he = hists__add_entry(hists, al, iter->parent, NULL, mi,
706                               sample, true);
707         if (!he)
708                 return -ENOMEM;
709
710         iter->he = he;
711         return 0;
712 }
713
714 static int
715 iter_finish_mem_entry(struct hist_entry_iter *iter,
716                       struct addr_location *al __maybe_unused)
717 {
718         struct perf_evsel *evsel = iter->evsel;
719         struct hists *hists = evsel__hists(evsel);
720         struct hist_entry *he = iter->he;
721         int err = -EINVAL;
722
723         if (he == NULL)
724                 goto out;
725
726         hists__inc_nr_samples(hists, he->filtered);
727
728         err = hist_entry__append_callchain(he, iter->sample);
729
730 out:
731         /*
732          * We don't need to free iter->priv (mem_info) here since the mem info
733          * was either already freed in hists__findnew_entry() or passed to a
734          * new hist entry by hist_entry__new().
735          */
736         iter->priv = NULL;
737
738         iter->he = NULL;
739         return err;
740 }
741
742 static int
743 iter_prepare_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
744 {
745         struct branch_info *bi;
746         struct perf_sample *sample = iter->sample;
747
748         bi = sample__resolve_bstack(sample, al);
749         if (!bi)
750                 return -ENOMEM;
751
752         iter->curr = 0;
753         iter->total = sample->branch_stack->nr;
754
755         iter->priv = bi;
756         return 0;
757 }
758
759 static int
760 iter_add_single_branch_entry(struct hist_entry_iter *iter __maybe_unused,
761                              struct addr_location *al __maybe_unused)
762 {
763         return 0;
764 }
765
766 static int
767 iter_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
768 {
769         struct branch_info *bi = iter->priv;
770         int i = iter->curr;
771
772         if (bi == NULL)
773                 return 0;
774
775         if (iter->curr >= iter->total)
776                 return 0;
777
778         al->map = bi[i].to.map;
779         al->sym = bi[i].to.sym;
780         al->addr = bi[i].to.addr;
781         return 1;
782 }
783
784 static int
785 iter_add_next_branch_entry(struct hist_entry_iter *iter, struct addr_location *al)
786 {
787         struct branch_info *bi;
788         struct perf_evsel *evsel = iter->evsel;
789         struct hists *hists = evsel__hists(evsel);
790         struct perf_sample *sample = iter->sample;
791         struct hist_entry *he = NULL;
792         int i = iter->curr;
793         int err = 0;
794
795         bi = iter->priv;
796
797         if (iter->hide_unresolved && !(bi[i].from.sym && bi[i].to.sym))
798                 goto out;
799
800         /*
801          * The report shows the percentage of total branches captured
802          * and not events sampled. Thus we use a pseudo period of 1.
803          */
804         sample->period = 1;
805         sample->weight = bi->flags.cycles ? bi->flags.cycles : 1;
806
807         he = hists__add_entry(hists, al, iter->parent, &bi[i], NULL,
808                               sample, true);
809         if (he == NULL)
810                 return -ENOMEM;
811
812         hists__inc_nr_samples(hists, he->filtered);
813
814 out:
815         iter->he = he;
816         iter->curr++;
817         return err;
818 }
819
820 static int
821 iter_finish_branch_entry(struct hist_entry_iter *iter,
822                          struct addr_location *al __maybe_unused)
823 {
824         zfree(&iter->priv);
825         iter->he = NULL;
826
827         return iter->curr >= iter->total ? 0 : -1;
828 }
829
830 static int
831 iter_prepare_normal_entry(struct hist_entry_iter *iter __maybe_unused,
832                           struct addr_location *al __maybe_unused)
833 {
834         return 0;
835 }
836
837 static int
838 iter_add_single_normal_entry(struct hist_entry_iter *iter, struct addr_location *al)
839 {
840         struct perf_evsel *evsel = iter->evsel;
841         struct perf_sample *sample = iter->sample;
842         struct hist_entry *he;
843
844         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
845                               sample, true);
846         if (he == NULL)
847                 return -ENOMEM;
848
849         iter->he = he;
850         return 0;
851 }
852
853 static int
854 iter_finish_normal_entry(struct hist_entry_iter *iter,
855                          struct addr_location *al __maybe_unused)
856 {
857         struct hist_entry *he = iter->he;
858         struct perf_evsel *evsel = iter->evsel;
859         struct perf_sample *sample = iter->sample;
860
861         if (he == NULL)
862                 return 0;
863
864         iter->he = NULL;
865
866         hists__inc_nr_samples(evsel__hists(evsel), he->filtered);
867
868         return hist_entry__append_callchain(he, sample);
869 }
870
871 static int
872 iter_prepare_cumulative_entry(struct hist_entry_iter *iter,
873                               struct addr_location *al __maybe_unused)
874 {
875         struct hist_entry **he_cache;
876
877         callchain_cursor_commit(&callchain_cursor);
878
879         /*
880          * This is for detecting cycles or recursions so that they're
881          * cumulated only one time to prevent entries more than 100%
882          * overhead.
883          */
884         he_cache = malloc(sizeof(*he_cache) * (callchain_cursor.nr + 1));
885         if (he_cache == NULL)
886                 return -ENOMEM;
887
888         iter->priv = he_cache;
889         iter->curr = 0;
890
891         return 0;
892 }
893
894 static int
895 iter_add_single_cumulative_entry(struct hist_entry_iter *iter,
896                                  struct addr_location *al)
897 {
898         struct perf_evsel *evsel = iter->evsel;
899         struct hists *hists = evsel__hists(evsel);
900         struct perf_sample *sample = iter->sample;
901         struct hist_entry **he_cache = iter->priv;
902         struct hist_entry *he;
903         int err = 0;
904
905         he = hists__add_entry(hists, al, iter->parent, NULL, NULL,
906                               sample, true);
907         if (he == NULL)
908                 return -ENOMEM;
909
910         iter->he = he;
911         he_cache[iter->curr++] = he;
912
913         hist_entry__append_callchain(he, sample);
914
915         /*
916          * We need to re-initialize the cursor since callchain_append()
917          * advanced the cursor to the end.
918          */
919         callchain_cursor_commit(&callchain_cursor);
920
921         hists__inc_nr_samples(hists, he->filtered);
922
923         return err;
924 }
925
926 static int
927 iter_next_cumulative_entry(struct hist_entry_iter *iter,
928                            struct addr_location *al)
929 {
930         struct callchain_cursor_node *node;
931
932         node = callchain_cursor_current(&callchain_cursor);
933         if (node == NULL)
934                 return 0;
935
936         return fill_callchain_info(al, node, iter->hide_unresolved);
937 }
938
939 static int
940 iter_add_next_cumulative_entry(struct hist_entry_iter *iter,
941                                struct addr_location *al)
942 {
943         struct perf_evsel *evsel = iter->evsel;
944         struct perf_sample *sample = iter->sample;
945         struct hist_entry **he_cache = iter->priv;
946         struct hist_entry *he;
947         struct hist_entry he_tmp = {
948                 .hists = evsel__hists(evsel),
949                 .cpu = al->cpu,
950                 .thread = al->thread,
951                 .comm = thread__comm(al->thread),
952                 .ip = al->addr,
953                 .ms = {
954                         .map = al->map,
955                         .sym = al->sym,
956                 },
957                 .srcline = al->srcline ? strdup(al->srcline) : NULL,
958                 .parent = iter->parent,
959                 .raw_data = sample->raw_data,
960                 .raw_size = sample->raw_size,
961         };
962         int i;
963         struct callchain_cursor cursor;
964
965         callchain_cursor_snapshot(&cursor, &callchain_cursor);
966
967         callchain_cursor_advance(&callchain_cursor);
968
969         /*
970          * Check if there's duplicate entries in the callchain.
971          * It's possible that it has cycles or recursive calls.
972          */
973         for (i = 0; i < iter->curr; i++) {
974                 if (hist_entry__cmp(he_cache[i], &he_tmp) == 0) {
975                         /* to avoid calling callback function */
976                         iter->he = NULL;
977                         return 0;
978                 }
979         }
980
981         he = hists__add_entry(evsel__hists(evsel), al, iter->parent, NULL, NULL,
982                               sample, false);
983         if (he == NULL)
984                 return -ENOMEM;
985
986         iter->he = he;
987         he_cache[iter->curr++] = he;
988
989         if (hist_entry__has_callchains(he) && symbol_conf.use_callchain)
990                 callchain_append(he->callchain, &cursor, sample->period);
991         return 0;
992 }
993
994 static int
995 iter_finish_cumulative_entry(struct hist_entry_iter *iter,
996                              struct addr_location *al __maybe_unused)
997 {
998         zfree(&iter->priv);
999         iter->he = NULL;
1000
1001         return 0;
1002 }
1003
1004 const struct hist_iter_ops hist_iter_mem = {
1005         .prepare_entry          = iter_prepare_mem_entry,
1006         .add_single_entry       = iter_add_single_mem_entry,
1007         .next_entry             = iter_next_nop_entry,
1008         .add_next_entry         = iter_add_next_nop_entry,
1009         .finish_entry           = iter_finish_mem_entry,
1010 };
1011
1012 const struct hist_iter_ops hist_iter_branch = {
1013         .prepare_entry          = iter_prepare_branch_entry,
1014         .add_single_entry       = iter_add_single_branch_entry,
1015         .next_entry             = iter_next_branch_entry,
1016         .add_next_entry         = iter_add_next_branch_entry,
1017         .finish_entry           = iter_finish_branch_entry,
1018 };
1019
1020 const struct hist_iter_ops hist_iter_normal = {
1021         .prepare_entry          = iter_prepare_normal_entry,
1022         .add_single_entry       = iter_add_single_normal_entry,
1023         .next_entry             = iter_next_nop_entry,
1024         .add_next_entry         = iter_add_next_nop_entry,
1025         .finish_entry           = iter_finish_normal_entry,
1026 };
1027
1028 const struct hist_iter_ops hist_iter_cumulative = {
1029         .prepare_entry          = iter_prepare_cumulative_entry,
1030         .add_single_entry       = iter_add_single_cumulative_entry,
1031         .next_entry             = iter_next_cumulative_entry,
1032         .add_next_entry         = iter_add_next_cumulative_entry,
1033         .finish_entry           = iter_finish_cumulative_entry,
1034 };
1035
1036 int hist_entry_iter__add(struct hist_entry_iter *iter, struct addr_location *al,
1037                          int max_stack_depth, void *arg)
1038 {
1039         int err, err2;
1040         struct map *alm = NULL;
1041
1042         if (al)
1043                 alm = map__get(al->map);
1044
1045         err = sample__resolve_callchain(iter->sample, &callchain_cursor, &iter->parent,
1046                                         iter->evsel, al, max_stack_depth);
1047         if (err)
1048                 return err;
1049
1050         err = iter->ops->prepare_entry(iter, al);
1051         if (err)
1052                 goto out;
1053
1054         err = iter->ops->add_single_entry(iter, al);
1055         if (err)
1056                 goto out;
1057
1058         if (iter->he && iter->add_entry_cb) {
1059                 err = iter->add_entry_cb(iter, al, true, arg);
1060                 if (err)
1061                         goto out;
1062         }
1063
1064         while (iter->ops->next_entry(iter, al)) {
1065                 err = iter->ops->add_next_entry(iter, al);
1066                 if (err)
1067                         break;
1068
1069                 if (iter->he && iter->add_entry_cb) {
1070                         err = iter->add_entry_cb(iter, al, false, arg);
1071                         if (err)
1072                                 goto out;
1073                 }
1074         }
1075
1076 out:
1077         err2 = iter->ops->finish_entry(iter, al);
1078         if (!err)
1079                 err = err2;
1080
1081         map__put(alm);
1082
1083         return err;
1084 }
1085
1086 int64_t
1087 hist_entry__cmp(struct hist_entry *left, struct hist_entry *right)
1088 {
1089         struct hists *hists = left->hists;
1090         struct perf_hpp_fmt *fmt;
1091         int64_t cmp = 0;
1092
1093         hists__for_each_sort_list(hists, fmt) {
1094                 if (perf_hpp__is_dynamic_entry(fmt) &&
1095                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1096                         continue;
1097
1098                 cmp = fmt->cmp(fmt, left, right);
1099                 if (cmp)
1100                         break;
1101         }
1102
1103         return cmp;
1104 }
1105
1106 int64_t
1107 hist_entry__collapse(struct hist_entry *left, struct hist_entry *right)
1108 {
1109         struct hists *hists = left->hists;
1110         struct perf_hpp_fmt *fmt;
1111         int64_t cmp = 0;
1112
1113         hists__for_each_sort_list(hists, fmt) {
1114                 if (perf_hpp__is_dynamic_entry(fmt) &&
1115                     !perf_hpp__defined_dynamic_entry(fmt, hists))
1116                         continue;
1117
1118                 cmp = fmt->collapse(fmt, left, right);
1119                 if (cmp)
1120                         break;
1121         }
1122
1123         return cmp;
1124 }
1125
1126 void hist_entry__delete(struct hist_entry *he)
1127 {
1128         struct hist_entry_ops *ops = he->ops;
1129
1130         thread__zput(he->thread);
1131         map__zput(he->ms.map);
1132
1133         if (he->branch_info) {
1134                 map__zput(he->branch_info->from.map);
1135                 map__zput(he->branch_info->to.map);
1136                 free_srcline(he->branch_info->srcline_from);
1137                 free_srcline(he->branch_info->srcline_to);
1138                 zfree(&he->branch_info);
1139         }
1140
1141         if (he->mem_info) {
1142                 map__zput(he->mem_info->iaddr.map);
1143                 map__zput(he->mem_info->daddr.map);
1144                 mem_info__zput(he->mem_info);
1145         }
1146
1147         zfree(&he->stat_acc);
1148         free_srcline(he->srcline);
1149         if (he->srcfile && he->srcfile[0])
1150                 free(he->srcfile);
1151         free_callchain(he->callchain);
1152         free(he->trace_output);
1153         free(he->raw_data);
1154         ops->free(he);
1155 }
1156
1157 /*
1158  * If this is not the last column, then we need to pad it according to the
1159  * pre-calculated max lenght for this column, otherwise don't bother adding
1160  * spaces because that would break viewing this with, for instance, 'less',
1161  * that would show tons of trailing spaces when a long C++ demangled method
1162  * names is sampled.
1163 */
1164 int hist_entry__snprintf_alignment(struct hist_entry *he, struct perf_hpp *hpp,
1165                                    struct perf_hpp_fmt *fmt, int printed)
1166 {
1167         if (!list_is_last(&fmt->list, &he->hists->hpp_list->fields)) {
1168                 const int width = fmt->width(fmt, hpp, he->hists);
1169                 if (printed < width) {
1170                         advance_hpp(hpp, printed);
1171                         printed = scnprintf(hpp->buf, hpp->size, "%-*s", width - printed, " ");
1172                 }
1173         }
1174
1175         return printed;
1176 }
1177
1178 /*
1179  * collapse the histogram
1180  */
1181
1182 static void hists__apply_filters(struct hists *hists, struct hist_entry *he);
1183 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *he,
1184                                        enum hist_filter type);
1185
1186 typedef bool (*fmt_chk_fn)(struct perf_hpp_fmt *fmt);
1187
1188 static bool check_thread_entry(struct perf_hpp_fmt *fmt)
1189 {
1190         return perf_hpp__is_thread_entry(fmt) || perf_hpp__is_comm_entry(fmt);
1191 }
1192
1193 static void hist_entry__check_and_remove_filter(struct hist_entry *he,
1194                                                 enum hist_filter type,
1195                                                 fmt_chk_fn check)
1196 {
1197         struct perf_hpp_fmt *fmt;
1198         bool type_match = false;
1199         struct hist_entry *parent = he->parent_he;
1200
1201         switch (type) {
1202         case HIST_FILTER__THREAD:
1203                 if (symbol_conf.comm_list == NULL &&
1204                     symbol_conf.pid_list == NULL &&
1205                     symbol_conf.tid_list == NULL)
1206                         return;
1207                 break;
1208         case HIST_FILTER__DSO:
1209                 if (symbol_conf.dso_list == NULL)
1210                         return;
1211                 break;
1212         case HIST_FILTER__SYMBOL:
1213                 if (symbol_conf.sym_list == NULL)
1214                         return;
1215                 break;
1216         case HIST_FILTER__PARENT:
1217         case HIST_FILTER__GUEST:
1218         case HIST_FILTER__HOST:
1219         case HIST_FILTER__SOCKET:
1220         case HIST_FILTER__C2C:
1221         default:
1222                 return;
1223         }
1224
1225         /* if it's filtered by own fmt, it has to have filter bits */
1226         perf_hpp_list__for_each_format(he->hpp_list, fmt) {
1227                 if (check(fmt)) {
1228                         type_match = true;
1229                         break;
1230                 }
1231         }
1232
1233         if (type_match) {
1234                 /*
1235                  * If the filter is for current level entry, propagate
1236                  * filter marker to parents.  The marker bit was
1237                  * already set by default so it only needs to clear
1238                  * non-filtered entries.
1239                  */
1240                 if (!(he->filtered & (1 << type))) {
1241                         while (parent) {
1242                                 parent->filtered &= ~(1 << type);
1243                                 parent = parent->parent_he;
1244                         }
1245                 }
1246         } else {
1247                 /*
1248                  * If current entry doesn't have matching formats, set
1249                  * filter marker for upper level entries.  it will be
1250                  * cleared if its lower level entries is not filtered.
1251                  *
1252                  * For lower-level entries, it inherits parent's
1253                  * filter bit so that lower level entries of a
1254                  * non-filtered entry won't set the filter marker.
1255                  */
1256                 if (parent == NULL)
1257                         he->filtered |= (1 << type);
1258                 else
1259                         he->filtered |= (parent->filtered & (1 << type));
1260         }
1261 }
1262
1263 static void hist_entry__apply_hierarchy_filters(struct hist_entry *he)
1264 {
1265         hist_entry__check_and_remove_filter(he, HIST_FILTER__THREAD,
1266                                             check_thread_entry);
1267
1268         hist_entry__check_and_remove_filter(he, HIST_FILTER__DSO,
1269                                             perf_hpp__is_dso_entry);
1270
1271         hist_entry__check_and_remove_filter(he, HIST_FILTER__SYMBOL,
1272                                             perf_hpp__is_sym_entry);
1273
1274         hists__apply_filters(he->hists, he);
1275 }
1276
1277 static struct hist_entry *hierarchy_insert_entry(struct hists *hists,
1278                                                  struct rb_root *root,
1279                                                  struct hist_entry *he,
1280                                                  struct hist_entry *parent_he,
1281                                                  struct perf_hpp_list *hpp_list)
1282 {
1283         struct rb_node **p = &root->rb_node;
1284         struct rb_node *parent = NULL;
1285         struct hist_entry *iter, *new;
1286         struct perf_hpp_fmt *fmt;
1287         int64_t cmp;
1288
1289         while (*p != NULL) {
1290                 parent = *p;
1291                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1292
1293                 cmp = 0;
1294                 perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1295                         cmp = fmt->collapse(fmt, iter, he);
1296                         if (cmp)
1297                                 break;
1298                 }
1299
1300                 if (!cmp) {
1301                         he_stat__add_stat(&iter->stat, &he->stat);
1302                         return iter;
1303                 }
1304
1305                 if (cmp < 0)
1306                         p = &parent->rb_left;
1307                 else
1308                         p = &parent->rb_right;
1309         }
1310
1311         new = hist_entry__new(he, true);
1312         if (new == NULL)
1313                 return NULL;
1314
1315         hists->nr_entries++;
1316
1317         /* save related format list for output */
1318         new->hpp_list = hpp_list;
1319         new->parent_he = parent_he;
1320
1321         hist_entry__apply_hierarchy_filters(new);
1322
1323         /* some fields are now passed to 'new' */
1324         perf_hpp_list__for_each_sort_list(hpp_list, fmt) {
1325                 if (perf_hpp__is_trace_entry(fmt) || perf_hpp__is_dynamic_entry(fmt))
1326                         he->trace_output = NULL;
1327                 else
1328                         new->trace_output = NULL;
1329
1330                 if (perf_hpp__is_srcline_entry(fmt))
1331                         he->srcline = NULL;
1332                 else
1333                         new->srcline = NULL;
1334
1335                 if (perf_hpp__is_srcfile_entry(fmt))
1336                         he->srcfile = NULL;
1337                 else
1338                         new->srcfile = NULL;
1339         }
1340
1341         rb_link_node(&new->rb_node_in, parent, p);
1342         rb_insert_color(&new->rb_node_in, root);
1343         return new;
1344 }
1345
1346 static int hists__hierarchy_insert_entry(struct hists *hists,
1347                                          struct rb_root *root,
1348                                          struct hist_entry *he)
1349 {
1350         struct perf_hpp_list_node *node;
1351         struct hist_entry *new_he = NULL;
1352         struct hist_entry *parent = NULL;
1353         int depth = 0;
1354         int ret = 0;
1355
1356         list_for_each_entry(node, &hists->hpp_formats, list) {
1357                 /* skip period (overhead) and elided columns */
1358                 if (node->level == 0 || node->skip)
1359                         continue;
1360
1361                 /* insert copy of 'he' for each fmt into the hierarchy */
1362                 new_he = hierarchy_insert_entry(hists, root, he, parent, &node->hpp);
1363                 if (new_he == NULL) {
1364                         ret = -1;
1365                         break;
1366                 }
1367
1368                 root = &new_he->hroot_in;
1369                 new_he->depth = depth++;
1370                 parent = new_he;
1371         }
1372
1373         if (new_he) {
1374                 new_he->leaf = true;
1375
1376                 if (hist_entry__has_callchains(new_he) &&
1377                     symbol_conf.use_callchain) {
1378                         callchain_cursor_reset(&callchain_cursor);
1379                         if (callchain_merge(&callchain_cursor,
1380                                             new_he->callchain,
1381                                             he->callchain) < 0)
1382                                 ret = -1;
1383                 }
1384         }
1385
1386         /* 'he' is no longer used */
1387         hist_entry__delete(he);
1388
1389         /* return 0 (or -1) since it already applied filters */
1390         return ret;
1391 }
1392
1393 static int hists__collapse_insert_entry(struct hists *hists,
1394                                         struct rb_root *root,
1395                                         struct hist_entry *he)
1396 {
1397         struct rb_node **p = &root->rb_node;
1398         struct rb_node *parent = NULL;
1399         struct hist_entry *iter;
1400         int64_t cmp;
1401
1402         if (symbol_conf.report_hierarchy)
1403                 return hists__hierarchy_insert_entry(hists, root, he);
1404
1405         while (*p != NULL) {
1406                 parent = *p;
1407                 iter = rb_entry(parent, struct hist_entry, rb_node_in);
1408
1409                 cmp = hist_entry__collapse(iter, he);
1410
1411                 if (!cmp) {
1412                         int ret = 0;
1413
1414                         he_stat__add_stat(&iter->stat, &he->stat);
1415                         if (symbol_conf.cumulate_callchain)
1416                                 he_stat__add_stat(iter->stat_acc, he->stat_acc);
1417
1418                         if (hist_entry__has_callchains(he) && symbol_conf.use_callchain) {
1419                                 callchain_cursor_reset(&callchain_cursor);
1420                                 if (callchain_merge(&callchain_cursor,
1421                                                     iter->callchain,
1422                                                     he->callchain) < 0)
1423                                         ret = -1;
1424                         }
1425                         hist_entry__delete(he);
1426                         return ret;
1427                 }
1428
1429                 if (cmp < 0)
1430                         p = &(*p)->rb_left;
1431                 else
1432                         p = &(*p)->rb_right;
1433         }
1434         hists->nr_entries++;
1435
1436         rb_link_node(&he->rb_node_in, parent, p);
1437         rb_insert_color(&he->rb_node_in, root);
1438         return 1;
1439 }
1440
1441 struct rb_root *hists__get_rotate_entries_in(struct hists *hists)
1442 {
1443         struct rb_root *root;
1444
1445         pthread_mutex_lock(&hists->lock);
1446
1447         root = hists->entries_in;
1448         if (++hists->entries_in > &hists->entries_in_array[1])
1449                 hists->entries_in = &hists->entries_in_array[0];
1450
1451         pthread_mutex_unlock(&hists->lock);
1452
1453         return root;
1454 }
1455
1456 static void hists__apply_filters(struct hists *hists, struct hist_entry *he)
1457 {
1458         hists__filter_entry_by_dso(hists, he);
1459         hists__filter_entry_by_thread(hists, he);
1460         hists__filter_entry_by_symbol(hists, he);
1461         hists__filter_entry_by_socket(hists, he);
1462 }
1463
1464 int hists__collapse_resort(struct hists *hists, struct ui_progress *prog)
1465 {
1466         struct rb_root *root;
1467         struct rb_node *next;
1468         struct hist_entry *n;
1469         int ret;
1470
1471         if (!hists__has(hists, need_collapse))
1472                 return 0;
1473
1474         hists->nr_entries = 0;
1475
1476         root = hists__get_rotate_entries_in(hists);
1477
1478         next = rb_first(root);
1479
1480         while (next) {
1481                 if (session_done())
1482                         break;
1483                 n = rb_entry(next, struct hist_entry, rb_node_in);
1484                 next = rb_next(&n->rb_node_in);
1485
1486                 rb_erase(&n->rb_node_in, root);
1487                 ret = hists__collapse_insert_entry(hists, &hists->entries_collapsed, n);
1488                 if (ret < 0)
1489                         return -1;
1490
1491                 if (ret) {
1492                         /*
1493                          * If it wasn't combined with one of the entries already
1494                          * collapsed, we need to apply the filters that may have
1495                          * been set by, say, the hist_browser.
1496                          */
1497                         hists__apply_filters(hists, n);
1498                 }
1499                 if (prog)
1500                         ui_progress__update(prog, 1);
1501         }
1502         return 0;
1503 }
1504
1505 static int hist_entry__sort(struct hist_entry *a, struct hist_entry *b)
1506 {
1507         struct hists *hists = a->hists;
1508         struct perf_hpp_fmt *fmt;
1509         int64_t cmp = 0;
1510
1511         hists__for_each_sort_list(hists, fmt) {
1512                 if (perf_hpp__should_skip(fmt, a->hists))
1513                         continue;
1514
1515                 cmp = fmt->sort(fmt, a, b);
1516                 if (cmp)
1517                         break;
1518         }
1519
1520         return cmp;
1521 }
1522
1523 static void hists__reset_filter_stats(struct hists *hists)
1524 {
1525         hists->nr_non_filtered_entries = 0;
1526         hists->stats.total_non_filtered_period = 0;
1527 }
1528
1529 void hists__reset_stats(struct hists *hists)
1530 {
1531         hists->nr_entries = 0;
1532         hists->stats.total_period = 0;
1533
1534         hists__reset_filter_stats(hists);
1535 }
1536
1537 static void hists__inc_filter_stats(struct hists *hists, struct hist_entry *h)
1538 {
1539         hists->nr_non_filtered_entries++;
1540         hists->stats.total_non_filtered_period += h->stat.period;
1541 }
1542
1543 void hists__inc_stats(struct hists *hists, struct hist_entry *h)
1544 {
1545         if (!h->filtered)
1546                 hists__inc_filter_stats(hists, h);
1547
1548         hists->nr_entries++;
1549         hists->stats.total_period += h->stat.period;
1550 }
1551
1552 static void hierarchy_recalc_total_periods(struct hists *hists)
1553 {
1554         struct rb_node *node;
1555         struct hist_entry *he;
1556
1557         node = rb_first(&hists->entries);
1558
1559         hists->stats.total_period = 0;
1560         hists->stats.total_non_filtered_period = 0;
1561
1562         /*
1563          * recalculate total period using top-level entries only
1564          * since lower level entries only see non-filtered entries
1565          * but upper level entries have sum of both entries.
1566          */
1567         while (node) {
1568                 he = rb_entry(node, struct hist_entry, rb_node);
1569                 node = rb_next(node);
1570
1571                 hists->stats.total_period += he->stat.period;
1572                 if (!he->filtered)
1573                         hists->stats.total_non_filtered_period += he->stat.period;
1574         }
1575 }
1576
1577 static void hierarchy_insert_output_entry(struct rb_root *root,
1578                                           struct hist_entry *he)
1579 {
1580         struct rb_node **p = &root->rb_node;
1581         struct rb_node *parent = NULL;
1582         struct hist_entry *iter;
1583         struct perf_hpp_fmt *fmt;
1584
1585         while (*p != NULL) {
1586                 parent = *p;
1587                 iter = rb_entry(parent, struct hist_entry, rb_node);
1588
1589                 if (hist_entry__sort(he, iter) > 0)
1590                         p = &parent->rb_left;
1591                 else
1592                         p = &parent->rb_right;
1593         }
1594
1595         rb_link_node(&he->rb_node, parent, p);
1596         rb_insert_color(&he->rb_node, root);
1597
1598         /* update column width of dynamic entry */
1599         perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
1600                 if (perf_hpp__is_dynamic_entry(fmt))
1601                         fmt->sort(fmt, he, NULL);
1602         }
1603 }
1604
1605 static void hists__hierarchy_output_resort(struct hists *hists,
1606                                            struct ui_progress *prog,
1607                                            struct rb_root *root_in,
1608                                            struct rb_root *root_out,
1609                                            u64 min_callchain_hits,
1610                                            bool use_callchain)
1611 {
1612         struct rb_node *node;
1613         struct hist_entry *he;
1614
1615         *root_out = RB_ROOT;
1616         node = rb_first(root_in);
1617
1618         while (node) {
1619                 he = rb_entry(node, struct hist_entry, rb_node_in);
1620                 node = rb_next(node);
1621
1622                 hierarchy_insert_output_entry(root_out, he);
1623
1624                 if (prog)
1625                         ui_progress__update(prog, 1);
1626
1627                 hists->nr_entries++;
1628                 if (!he->filtered) {
1629                         hists->nr_non_filtered_entries++;
1630                         hists__calc_col_len(hists, he);
1631                 }
1632
1633                 if (!he->leaf) {
1634                         hists__hierarchy_output_resort(hists, prog,
1635                                                        &he->hroot_in,
1636                                                        &he->hroot_out,
1637                                                        min_callchain_hits,
1638                                                        use_callchain);
1639                         continue;
1640                 }
1641
1642                 if (!use_callchain)
1643                         continue;
1644
1645                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1646                         u64 total = he->stat.period;
1647
1648                         if (symbol_conf.cumulate_callchain)
1649                                 total = he->stat_acc->period;
1650
1651                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1652                 }
1653
1654                 callchain_param.sort(&he->sorted_chain, he->callchain,
1655                                      min_callchain_hits, &callchain_param);
1656         }
1657 }
1658
1659 static void __hists__insert_output_entry(struct rb_root *entries,
1660                                          struct hist_entry *he,
1661                                          u64 min_callchain_hits,
1662                                          bool use_callchain)
1663 {
1664         struct rb_node **p = &entries->rb_node;
1665         struct rb_node *parent = NULL;
1666         struct hist_entry *iter;
1667         struct perf_hpp_fmt *fmt;
1668
1669         if (use_callchain) {
1670                 if (callchain_param.mode == CHAIN_GRAPH_REL) {
1671                         u64 total = he->stat.period;
1672
1673                         if (symbol_conf.cumulate_callchain)
1674                                 total = he->stat_acc->period;
1675
1676                         min_callchain_hits = total * (callchain_param.min_percent / 100);
1677                 }
1678                 callchain_param.sort(&he->sorted_chain, he->callchain,
1679                                       min_callchain_hits, &callchain_param);
1680         }
1681
1682         while (*p != NULL) {
1683                 parent = *p;
1684                 iter = rb_entry(parent, struct hist_entry, rb_node);
1685
1686                 if (hist_entry__sort(he, iter) > 0)
1687                         p = &(*p)->rb_left;
1688                 else
1689                         p = &(*p)->rb_right;
1690         }
1691
1692         rb_link_node(&he->rb_node, parent, p);
1693         rb_insert_color(&he->rb_node, entries);
1694
1695         perf_hpp_list__for_each_sort_list(&perf_hpp_list, fmt) {
1696                 if (perf_hpp__is_dynamic_entry(fmt) &&
1697                     perf_hpp__defined_dynamic_entry(fmt, he->hists))
1698                         fmt->sort(fmt, he, NULL);  /* update column width */
1699         }
1700 }
1701
1702 static void output_resort(struct hists *hists, struct ui_progress *prog,
1703                           bool use_callchain, hists__resort_cb_t cb)
1704 {
1705         struct rb_root *root;
1706         struct rb_node *next;
1707         struct hist_entry *n;
1708         u64 callchain_total;
1709         u64 min_callchain_hits;
1710
1711         callchain_total = hists->callchain_period;
1712         if (symbol_conf.filter_relative)
1713                 callchain_total = hists->callchain_non_filtered_period;
1714
1715         min_callchain_hits = callchain_total * (callchain_param.min_percent / 100);
1716
1717         hists__reset_stats(hists);
1718         hists__reset_col_len(hists);
1719
1720         if (symbol_conf.report_hierarchy) {
1721                 hists__hierarchy_output_resort(hists, prog,
1722                                                &hists->entries_collapsed,
1723                                                &hists->entries,
1724                                                min_callchain_hits,
1725                                                use_callchain);
1726                 hierarchy_recalc_total_periods(hists);
1727                 return;
1728         }
1729
1730         if (hists__has(hists, need_collapse))
1731                 root = &hists->entries_collapsed;
1732         else
1733                 root = hists->entries_in;
1734
1735         next = rb_first(root);
1736         hists->entries = RB_ROOT;
1737
1738         while (next) {
1739                 n = rb_entry(next, struct hist_entry, rb_node_in);
1740                 next = rb_next(&n->rb_node_in);
1741
1742                 if (cb && cb(n))
1743                         continue;
1744
1745                 __hists__insert_output_entry(&hists->entries, n, min_callchain_hits, use_callchain);
1746                 hists__inc_stats(hists, n);
1747
1748                 if (!n->filtered)
1749                         hists__calc_col_len(hists, n);
1750
1751                 if (prog)
1752                         ui_progress__update(prog, 1);
1753         }
1754 }
1755
1756 void perf_evsel__output_resort(struct perf_evsel *evsel, struct ui_progress *prog)
1757 {
1758         bool use_callchain;
1759
1760         if (evsel && symbol_conf.use_callchain && !symbol_conf.show_ref_callgraph)
1761                 use_callchain = evsel__has_callchain(evsel);
1762         else
1763                 use_callchain = symbol_conf.use_callchain;
1764
1765         use_callchain |= symbol_conf.show_branchflag_count;
1766
1767         output_resort(evsel__hists(evsel), prog, use_callchain, NULL);
1768 }
1769
1770 void hists__output_resort(struct hists *hists, struct ui_progress *prog)
1771 {
1772         output_resort(hists, prog, symbol_conf.use_callchain, NULL);
1773 }
1774
1775 void hists__output_resort_cb(struct hists *hists, struct ui_progress *prog,
1776                              hists__resort_cb_t cb)
1777 {
1778         output_resort(hists, prog, symbol_conf.use_callchain, cb);
1779 }
1780
1781 static bool can_goto_child(struct hist_entry *he, enum hierarchy_move_dir hmd)
1782 {
1783         if (he->leaf || hmd == HMD_FORCE_SIBLING)
1784                 return false;
1785
1786         if (he->unfolded || hmd == HMD_FORCE_CHILD)
1787                 return true;
1788
1789         return false;
1790 }
1791
1792 struct rb_node *rb_hierarchy_last(struct rb_node *node)
1793 {
1794         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1795
1796         while (can_goto_child(he, HMD_NORMAL)) {
1797                 node = rb_last(&he->hroot_out);
1798                 he = rb_entry(node, struct hist_entry, rb_node);
1799         }
1800         return node;
1801 }
1802
1803 struct rb_node *__rb_hierarchy_next(struct rb_node *node, enum hierarchy_move_dir hmd)
1804 {
1805         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1806
1807         if (can_goto_child(he, hmd))
1808                 node = rb_first(&he->hroot_out);
1809         else
1810                 node = rb_next(node);
1811
1812         while (node == NULL) {
1813                 he = he->parent_he;
1814                 if (he == NULL)
1815                         break;
1816
1817                 node = rb_next(&he->rb_node);
1818         }
1819         return node;
1820 }
1821
1822 struct rb_node *rb_hierarchy_prev(struct rb_node *node)
1823 {
1824         struct hist_entry *he = rb_entry(node, struct hist_entry, rb_node);
1825
1826         node = rb_prev(node);
1827         if (node)
1828                 return rb_hierarchy_last(node);
1829
1830         he = he->parent_he;
1831         if (he == NULL)
1832                 return NULL;
1833
1834         return &he->rb_node;
1835 }
1836
1837 bool hist_entry__has_hierarchy_children(struct hist_entry *he, float limit)
1838 {
1839         struct rb_node *node;
1840         struct hist_entry *child;
1841         float percent;
1842
1843         if (he->leaf)
1844                 return false;
1845
1846         node = rb_first(&he->hroot_out);
1847         child = rb_entry(node, struct hist_entry, rb_node);
1848
1849         while (node && child->filtered) {
1850                 node = rb_next(node);
1851                 child = rb_entry(node, struct hist_entry, rb_node);
1852         }
1853
1854         if (node)
1855                 percent = hist_entry__get_percent_limit(child);
1856         else
1857                 percent = 0;
1858
1859         return node && percent >= limit;
1860 }
1861
1862 static void hists__remove_entry_filter(struct hists *hists, struct hist_entry *h,
1863                                        enum hist_filter filter)
1864 {
1865         h->filtered &= ~(1 << filter);
1866
1867         if (symbol_conf.report_hierarchy) {
1868                 struct hist_entry *parent = h->parent_he;
1869
1870                 while (parent) {
1871                         he_stat__add_stat(&parent->stat, &h->stat);
1872
1873                         parent->filtered &= ~(1 << filter);
1874
1875                         if (parent->filtered)
1876                                 goto next;
1877
1878                         /* force fold unfiltered entry for simplicity */
1879                         parent->unfolded = false;
1880                         parent->has_no_entry = false;
1881                         parent->row_offset = 0;
1882                         parent->nr_rows = 0;
1883 next:
1884                         parent = parent->parent_he;
1885                 }
1886         }
1887
1888         if (h->filtered)
1889                 return;
1890
1891         /* force fold unfiltered entry for simplicity */
1892         h->unfolded = false;
1893         h->has_no_entry = false;
1894         h->row_offset = 0;
1895         h->nr_rows = 0;
1896
1897         hists->stats.nr_non_filtered_samples += h->stat.nr_events;
1898
1899         hists__inc_filter_stats(hists, h);
1900         hists__calc_col_len(hists, h);
1901 }
1902
1903
1904 static bool hists__filter_entry_by_dso(struct hists *hists,
1905                                        struct hist_entry *he)
1906 {
1907         if (hists->dso_filter != NULL &&
1908             (he->ms.map == NULL || he->ms.map->dso != hists->dso_filter)) {
1909                 he->filtered |= (1 << HIST_FILTER__DSO);
1910                 return true;
1911         }
1912
1913         return false;
1914 }
1915
1916 static bool hists__filter_entry_by_thread(struct hists *hists,
1917                                           struct hist_entry *he)
1918 {
1919         if (hists->thread_filter != NULL &&
1920             he->thread != hists->thread_filter) {
1921                 he->filtered |= (1 << HIST_FILTER__THREAD);
1922                 return true;
1923         }
1924
1925         return false;
1926 }
1927
1928 static bool hists__filter_entry_by_symbol(struct hists *hists,
1929                                           struct hist_entry *he)
1930 {
1931         if (hists->symbol_filter_str != NULL &&
1932             (!he->ms.sym || strstr(he->ms.sym->name,
1933                                    hists->symbol_filter_str) == NULL)) {
1934                 he->filtered |= (1 << HIST_FILTER__SYMBOL);
1935                 return true;
1936         }
1937
1938         return false;
1939 }
1940
1941 static bool hists__filter_entry_by_socket(struct hists *hists,
1942                                           struct hist_entry *he)
1943 {
1944         if ((hists->socket_filter > -1) &&
1945             (he->socket != hists->socket_filter)) {
1946                 he->filtered |= (1 << HIST_FILTER__SOCKET);
1947                 return true;
1948         }
1949
1950         return false;
1951 }
1952
1953 typedef bool (*filter_fn_t)(struct hists *hists, struct hist_entry *he);
1954
1955 static void hists__filter_by_type(struct hists *hists, int type, filter_fn_t filter)
1956 {
1957         struct rb_node *nd;
1958
1959         hists->stats.nr_non_filtered_samples = 0;
1960
1961         hists__reset_filter_stats(hists);
1962         hists__reset_col_len(hists);
1963
1964         for (nd = rb_first(&hists->entries); nd; nd = rb_next(nd)) {
1965                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
1966
1967                 if (filter(hists, h))
1968                         continue;
1969
1970                 hists__remove_entry_filter(hists, h, type);
1971         }
1972 }
1973
1974 static void resort_filtered_entry(struct rb_root *root, struct hist_entry *he)
1975 {
1976         struct rb_node **p = &root->rb_node;
1977         struct rb_node *parent = NULL;
1978         struct hist_entry *iter;
1979         struct rb_root new_root = RB_ROOT;
1980         struct rb_node *nd;
1981
1982         while (*p != NULL) {
1983                 parent = *p;
1984                 iter = rb_entry(parent, struct hist_entry, rb_node);
1985
1986                 if (hist_entry__sort(he, iter) > 0)
1987                         p = &(*p)->rb_left;
1988                 else
1989                         p = &(*p)->rb_right;
1990         }
1991
1992         rb_link_node(&he->rb_node, parent, p);
1993         rb_insert_color(&he->rb_node, root);
1994
1995         if (he->leaf || he->filtered)
1996                 return;
1997
1998         nd = rb_first(&he->hroot_out);
1999         while (nd) {
2000                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2001
2002                 nd = rb_next(nd);
2003                 rb_erase(&h->rb_node, &he->hroot_out);
2004
2005                 resort_filtered_entry(&new_root, h);
2006         }
2007
2008         he->hroot_out = new_root;
2009 }
2010
2011 static void hists__filter_hierarchy(struct hists *hists, int type, const void *arg)
2012 {
2013         struct rb_node *nd;
2014         struct rb_root new_root = RB_ROOT;
2015
2016         hists->stats.nr_non_filtered_samples = 0;
2017
2018         hists__reset_filter_stats(hists);
2019         hists__reset_col_len(hists);
2020
2021         nd = rb_first(&hists->entries);
2022         while (nd) {
2023                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2024                 int ret;
2025
2026                 ret = hist_entry__filter(h, type, arg);
2027
2028                 /*
2029                  * case 1. non-matching type
2030                  * zero out the period, set filter marker and move to child
2031                  */
2032                 if (ret < 0) {
2033                         memset(&h->stat, 0, sizeof(h->stat));
2034                         h->filtered |= (1 << type);
2035
2036                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_CHILD);
2037                 }
2038                 /*
2039                  * case 2. matched type (filter out)
2040                  * set filter marker and move to next
2041                  */
2042                 else if (ret == 1) {
2043                         h->filtered |= (1 << type);
2044
2045                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2046                 }
2047                 /*
2048                  * case 3. ok (not filtered)
2049                  * add period to hists and parents, erase the filter marker
2050                  * and move to next sibling
2051                  */
2052                 else {
2053                         hists__remove_entry_filter(hists, h, type);
2054
2055                         nd = __rb_hierarchy_next(&h->rb_node, HMD_FORCE_SIBLING);
2056                 }
2057         }
2058
2059         hierarchy_recalc_total_periods(hists);
2060
2061         /*
2062          * resort output after applying a new filter since filter in a lower
2063          * hierarchy can change periods in a upper hierarchy.
2064          */
2065         nd = rb_first(&hists->entries);
2066         while (nd) {
2067                 struct hist_entry *h = rb_entry(nd, struct hist_entry, rb_node);
2068
2069                 nd = rb_next(nd);
2070                 rb_erase(&h->rb_node, &hists->entries);
2071
2072                 resort_filtered_entry(&new_root, h);
2073         }
2074
2075         hists->entries = new_root;
2076 }
2077
2078 void hists__filter_by_thread(struct hists *hists)
2079 {
2080         if (symbol_conf.report_hierarchy)
2081                 hists__filter_hierarchy(hists, HIST_FILTER__THREAD,
2082                                         hists->thread_filter);
2083         else
2084                 hists__filter_by_type(hists, HIST_FILTER__THREAD,
2085                                       hists__filter_entry_by_thread);
2086 }
2087
2088 void hists__filter_by_dso(struct hists *hists)
2089 {
2090         if (symbol_conf.report_hierarchy)
2091                 hists__filter_hierarchy(hists, HIST_FILTER__DSO,
2092                                         hists->dso_filter);
2093         else
2094                 hists__filter_by_type(hists, HIST_FILTER__DSO,
2095                                       hists__filter_entry_by_dso);
2096 }
2097
2098 void hists__filter_by_symbol(struct hists *hists)
2099 {
2100         if (symbol_conf.report_hierarchy)
2101                 hists__filter_hierarchy(hists, HIST_FILTER__SYMBOL,
2102                                         hists->symbol_filter_str);
2103         else
2104                 hists__filter_by_type(hists, HIST_FILTER__SYMBOL,
2105                                       hists__filter_entry_by_symbol);
2106 }
2107
2108 void hists__filter_by_socket(struct hists *hists)
2109 {
2110         if (symbol_conf.report_hierarchy)
2111                 hists__filter_hierarchy(hists, HIST_FILTER__SOCKET,
2112                                         &hists->socket_filter);
2113         else
2114                 hists__filter_by_type(hists, HIST_FILTER__SOCKET,
2115                                       hists__filter_entry_by_socket);
2116 }
2117
2118 void events_stats__inc(struct events_stats *stats, u32 type)
2119 {
2120         ++stats->nr_events[0];
2121         ++stats->nr_events[type];
2122 }
2123
2124 void hists__inc_nr_events(struct hists *hists, u32 type)
2125 {
2126         events_stats__inc(&hists->stats, type);
2127 }
2128
2129 void hists__inc_nr_samples(struct hists *hists, bool filtered)
2130 {
2131         events_stats__inc(&hists->stats, PERF_RECORD_SAMPLE);
2132         if (!filtered)
2133                 hists->stats.nr_non_filtered_samples++;
2134 }
2135
2136 static struct hist_entry *hists__add_dummy_entry(struct hists *hists,
2137                                                  struct hist_entry *pair)
2138 {
2139         struct rb_root *root;
2140         struct rb_node **p;
2141         struct rb_node *parent = NULL;
2142         struct hist_entry *he;
2143         int64_t cmp;
2144
2145         if (hists__has(hists, need_collapse))
2146                 root = &hists->entries_collapsed;
2147         else
2148                 root = hists->entries_in;
2149
2150         p = &root->rb_node;
2151
2152         while (*p != NULL) {
2153                 parent = *p;
2154                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2155
2156                 cmp = hist_entry__collapse(he, pair);
2157
2158                 if (!cmp)
2159                         goto out;
2160
2161                 if (cmp < 0)
2162                         p = &(*p)->rb_left;
2163                 else
2164                         p = &(*p)->rb_right;
2165         }
2166
2167         he = hist_entry__new(pair, true);
2168         if (he) {
2169                 memset(&he->stat, 0, sizeof(he->stat));
2170                 he->hists = hists;
2171                 if (symbol_conf.cumulate_callchain)
2172                         memset(he->stat_acc, 0, sizeof(he->stat));
2173                 rb_link_node(&he->rb_node_in, parent, p);
2174                 rb_insert_color(&he->rb_node_in, root);
2175                 hists__inc_stats(hists, he);
2176                 he->dummy = true;
2177         }
2178 out:
2179         return he;
2180 }
2181
2182 static struct hist_entry *add_dummy_hierarchy_entry(struct hists *hists,
2183                                                     struct rb_root *root,
2184                                                     struct hist_entry *pair)
2185 {
2186         struct rb_node **p;
2187         struct rb_node *parent = NULL;
2188         struct hist_entry *he;
2189         struct perf_hpp_fmt *fmt;
2190
2191         p = &root->rb_node;
2192         while (*p != NULL) {
2193                 int64_t cmp = 0;
2194
2195                 parent = *p;
2196                 he = rb_entry(parent, struct hist_entry, rb_node_in);
2197
2198                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2199                         cmp = fmt->collapse(fmt, he, pair);
2200                         if (cmp)
2201                                 break;
2202                 }
2203                 if (!cmp)
2204                         goto out;
2205
2206                 if (cmp < 0)
2207                         p = &parent->rb_left;
2208                 else
2209                         p = &parent->rb_right;
2210         }
2211
2212         he = hist_entry__new(pair, true);
2213         if (he) {
2214                 rb_link_node(&he->rb_node_in, parent, p);
2215                 rb_insert_color(&he->rb_node_in, root);
2216
2217                 he->dummy = true;
2218                 he->hists = hists;
2219                 memset(&he->stat, 0, sizeof(he->stat));
2220                 hists__inc_stats(hists, he);
2221         }
2222 out:
2223         return he;
2224 }
2225
2226 static struct hist_entry *hists__find_entry(struct hists *hists,
2227                                             struct hist_entry *he)
2228 {
2229         struct rb_node *n;
2230
2231         if (hists__has(hists, need_collapse))
2232                 n = hists->entries_collapsed.rb_node;
2233         else
2234                 n = hists->entries_in->rb_node;
2235
2236         while (n) {
2237                 struct hist_entry *iter = rb_entry(n, struct hist_entry, rb_node_in);
2238                 int64_t cmp = hist_entry__collapse(iter, he);
2239
2240                 if (cmp < 0)
2241                         n = n->rb_left;
2242                 else if (cmp > 0)
2243                         n = n->rb_right;
2244                 else
2245                         return iter;
2246         }
2247
2248         return NULL;
2249 }
2250
2251 static struct hist_entry *hists__find_hierarchy_entry(struct rb_root *root,
2252                                                       struct hist_entry *he)
2253 {
2254         struct rb_node *n = root->rb_node;
2255
2256         while (n) {
2257                 struct hist_entry *iter;
2258                 struct perf_hpp_fmt *fmt;
2259                 int64_t cmp = 0;
2260
2261                 iter = rb_entry(n, struct hist_entry, rb_node_in);
2262                 perf_hpp_list__for_each_sort_list(he->hpp_list, fmt) {
2263                         cmp = fmt->collapse(fmt, iter, he);
2264                         if (cmp)
2265                                 break;
2266                 }
2267
2268                 if (cmp < 0)
2269                         n = n->rb_left;
2270                 else if (cmp > 0)
2271                         n = n->rb_right;
2272                 else
2273                         return iter;
2274         }
2275
2276         return NULL;
2277 }
2278
2279 static void hists__match_hierarchy(struct rb_root *leader_root,
2280                                    struct rb_root *other_root)
2281 {
2282         struct rb_node *nd;
2283         struct hist_entry *pos, *pair;
2284
2285         for (nd = rb_first(leader_root); nd; nd = rb_next(nd)) {
2286                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2287                 pair = hists__find_hierarchy_entry(other_root, pos);
2288
2289                 if (pair) {
2290                         hist_entry__add_pair(pair, pos);
2291                         hists__match_hierarchy(&pos->hroot_in, &pair->hroot_in);
2292                 }
2293         }
2294 }
2295
2296 /*
2297  * Look for pairs to link to the leader buckets (hist_entries):
2298  */
2299 void hists__match(struct hists *leader, struct hists *other)
2300 {
2301         struct rb_root *root;
2302         struct rb_node *nd;
2303         struct hist_entry *pos, *pair;
2304
2305         if (symbol_conf.report_hierarchy) {
2306                 /* hierarchy report always collapses entries */
2307                 return hists__match_hierarchy(&leader->entries_collapsed,
2308                                               &other->entries_collapsed);
2309         }
2310
2311         if (hists__has(leader, need_collapse))
2312                 root = &leader->entries_collapsed;
2313         else
2314                 root = leader->entries_in;
2315
2316         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2317                 pos  = rb_entry(nd, struct hist_entry, rb_node_in);
2318                 pair = hists__find_entry(other, pos);
2319
2320                 if (pair)
2321                         hist_entry__add_pair(pair, pos);
2322         }
2323 }
2324
2325 static int hists__link_hierarchy(struct hists *leader_hists,
2326                                  struct hist_entry *parent,
2327                                  struct rb_root *leader_root,
2328                                  struct rb_root *other_root)
2329 {
2330         struct rb_node *nd;
2331         struct hist_entry *pos, *leader;
2332
2333         for (nd = rb_first(other_root); nd; nd = rb_next(nd)) {
2334                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2335
2336                 if (hist_entry__has_pairs(pos)) {
2337                         bool found = false;
2338
2339                         list_for_each_entry(leader, &pos->pairs.head, pairs.node) {
2340                                 if (leader->hists == leader_hists) {
2341                                         found = true;
2342                                         break;
2343                                 }
2344                         }
2345                         if (!found)
2346                                 return -1;
2347                 } else {
2348                         leader = add_dummy_hierarchy_entry(leader_hists,
2349                                                            leader_root, pos);
2350                         if (leader == NULL)
2351                                 return -1;
2352
2353                         /* do not point parent in the pos */
2354                         leader->parent_he = parent;
2355
2356                         hist_entry__add_pair(pos, leader);
2357                 }
2358
2359                 if (!pos->leaf) {
2360                         if (hists__link_hierarchy(leader_hists, leader,
2361                                                   &leader->hroot_in,
2362                                                   &pos->hroot_in) < 0)
2363                                 return -1;
2364                 }
2365         }
2366         return 0;
2367 }
2368
2369 /*
2370  * Look for entries in the other hists that are not present in the leader, if
2371  * we find them, just add a dummy entry on the leader hists, with period=0,
2372  * nr_events=0, to serve as the list header.
2373  */
2374 int hists__link(struct hists *leader, struct hists *other)
2375 {
2376         struct rb_root *root;
2377         struct rb_node *nd;
2378         struct hist_entry *pos, *pair;
2379
2380         if (symbol_conf.report_hierarchy) {
2381                 /* hierarchy report always collapses entries */
2382                 return hists__link_hierarchy(leader, NULL,
2383                                              &leader->entries_collapsed,
2384                                              &other->entries_collapsed);
2385         }
2386
2387         if (hists__has(other, need_collapse))
2388                 root = &other->entries_collapsed;
2389         else
2390                 root = other->entries_in;
2391
2392         for (nd = rb_first(root); nd; nd = rb_next(nd)) {
2393                 pos = rb_entry(nd, struct hist_entry, rb_node_in);
2394
2395                 if (!hist_entry__has_pairs(pos)) {
2396                         pair = hists__add_dummy_entry(leader, pos);
2397                         if (pair == NULL)
2398                                 return -1;
2399                         hist_entry__add_pair(pos, pair);
2400                 }
2401         }
2402
2403         return 0;
2404 }
2405
2406 void hist__account_cycles(struct branch_stack *bs, struct addr_location *al,
2407                           struct perf_sample *sample, bool nonany_branch_mode)
2408 {
2409         struct branch_info *bi;
2410
2411         /* If we have branch cycles always annotate them. */
2412         if (bs && bs->nr && bs->entries[0].flags.cycles) {
2413                 int i;
2414
2415                 bi = sample__resolve_bstack(sample, al);
2416                 if (bi) {
2417                         struct addr_map_symbol *prev = NULL;
2418
2419                         /*
2420                          * Ignore errors, still want to process the
2421                          * other entries.
2422                          *
2423                          * For non standard branch modes always
2424                          * force no IPC (prev == NULL)
2425                          *
2426                          * Note that perf stores branches reversed from
2427                          * program order!
2428                          */
2429                         for (i = bs->nr - 1; i >= 0; i--) {
2430                                 addr_map_symbol__account_cycles(&bi[i].from,
2431                                         nonany_branch_mode ? NULL : prev,
2432                                         bi[i].flags.cycles);
2433                                 prev = &bi[i].to;
2434                         }
2435                         free(bi);
2436                 }
2437         }
2438 }
2439
2440 size_t perf_evlist__fprintf_nr_events(struct perf_evlist *evlist, FILE *fp)
2441 {
2442         struct perf_evsel *pos;
2443         size_t ret = 0;
2444
2445         evlist__for_each_entry(evlist, pos) {
2446                 ret += fprintf(fp, "%s stats:\n", perf_evsel__name(pos));
2447                 ret += events_stats__fprintf(&evsel__hists(pos)->stats, fp);
2448         }
2449
2450         return ret;
2451 }
2452
2453
2454 u64 hists__total_period(struct hists *hists)
2455 {
2456         return symbol_conf.filter_relative ? hists->stats.total_non_filtered_period :
2457                 hists->stats.total_period;
2458 }
2459
2460 int __hists__scnprintf_title(struct hists *hists, char *bf, size_t size, bool show_freq)
2461 {
2462         char unit;
2463         int printed;
2464         const struct dso *dso = hists->dso_filter;
2465         const struct thread *thread = hists->thread_filter;
2466         int socket_id = hists->socket_filter;
2467         unsigned long nr_samples = hists->stats.nr_events[PERF_RECORD_SAMPLE];
2468         u64 nr_events = hists->stats.total_period;
2469         struct perf_evsel *evsel = hists_to_evsel(hists);
2470         const char *ev_name = perf_evsel__name(evsel);
2471         char buf[512], sample_freq_str[64] = "";
2472         size_t buflen = sizeof(buf);
2473         char ref[30] = " show reference callgraph, ";
2474         bool enable_ref = false;
2475
2476         if (symbol_conf.filter_relative) {
2477                 nr_samples = hists->stats.nr_non_filtered_samples;
2478                 nr_events = hists->stats.total_non_filtered_period;
2479         }
2480
2481         if (perf_evsel__is_group_event(evsel)) {
2482                 struct perf_evsel *pos;
2483
2484                 perf_evsel__group_desc(evsel, buf, buflen);
2485                 ev_name = buf;
2486
2487                 for_each_group_member(pos, evsel) {
2488                         struct hists *pos_hists = evsel__hists(pos);
2489
2490                         if (symbol_conf.filter_relative) {
2491                                 nr_samples += pos_hists->stats.nr_non_filtered_samples;
2492                                 nr_events += pos_hists->stats.total_non_filtered_period;
2493                         } else {
2494                                 nr_samples += pos_hists->stats.nr_events[PERF_RECORD_SAMPLE];
2495                                 nr_events += pos_hists->stats.total_period;
2496                         }
2497                 }
2498         }
2499
2500         if (symbol_conf.show_ref_callgraph &&
2501             strstr(ev_name, "call-graph=no"))
2502                 enable_ref = true;
2503
2504         if (show_freq)
2505                 scnprintf(sample_freq_str, sizeof(sample_freq_str), " %d Hz,", evsel->attr.sample_freq);
2506
2507         nr_samples = convert_unit(nr_samples, &unit);
2508         printed = scnprintf(bf, size,
2509                            "Samples: %lu%c of event%s '%s',%s%sEvent count (approx.): %" PRIu64,
2510                            nr_samples, unit, evsel->nr_members > 1 ? "s" : "",
2511                            ev_name, sample_freq_str, enable_ref ? ref : " ", nr_events);
2512
2513
2514         if (hists->uid_filter_str)
2515                 printed += snprintf(bf + printed, size - printed,
2516                                     ", UID: %s", hists->uid_filter_str);
2517         if (thread) {
2518                 if (hists__has(hists, thread)) {
2519                         printed += scnprintf(bf + printed, size - printed,
2520                                     ", Thread: %s(%d)",
2521                                      (thread->comm_set ? thread__comm_str(thread) : ""),
2522                                     thread->tid);
2523                 } else {
2524                         printed += scnprintf(bf + printed, size - printed,
2525                                     ", Thread: %s",
2526                                      (thread->comm_set ? thread__comm_str(thread) : ""));
2527                 }
2528         }
2529         if (dso)
2530                 printed += scnprintf(bf + printed, size - printed,
2531                                     ", DSO: %s", dso->short_name);
2532         if (socket_id > -1)
2533                 printed += scnprintf(bf + printed, size - printed,
2534                                     ", Processor Socket: %d", socket_id);
2535
2536         return printed;
2537 }
2538
2539 int parse_filter_percentage(const struct option *opt __maybe_unused,
2540                             const char *arg, int unset __maybe_unused)
2541 {
2542         if (!strcmp(arg, "relative"))
2543                 symbol_conf.filter_relative = true;
2544         else if (!strcmp(arg, "absolute"))
2545                 symbol_conf.filter_relative = false;
2546         else {
2547                 pr_debug("Invalid percentage: %s\n", arg);
2548                 return -1;
2549         }
2550
2551         return 0;
2552 }
2553
2554 int perf_hist_config(const char *var, const char *value)
2555 {
2556         if (!strcmp(var, "hist.percentage"))
2557                 return parse_filter_percentage(NULL, value, 0);
2558
2559         return 0;
2560 }
2561
2562 int __hists__init(struct hists *hists, struct perf_hpp_list *hpp_list)
2563 {
2564         memset(hists, 0, sizeof(*hists));
2565         hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
2566         hists->entries_in = &hists->entries_in_array[0];
2567         hists->entries_collapsed = RB_ROOT;
2568         hists->entries = RB_ROOT;
2569         pthread_mutex_init(&hists->lock, NULL);
2570         hists->socket_filter = -1;
2571         hists->hpp_list = hpp_list;
2572         INIT_LIST_HEAD(&hists->hpp_formats);
2573         return 0;
2574 }
2575
2576 static void hists__delete_remaining_entries(struct rb_root *root)
2577 {
2578         struct rb_node *node;
2579         struct hist_entry *he;
2580
2581         while (!RB_EMPTY_ROOT(root)) {
2582                 node = rb_first(root);
2583                 rb_erase(node, root);
2584
2585                 he = rb_entry(node, struct hist_entry, rb_node_in);
2586                 hist_entry__delete(he);
2587         }
2588 }
2589
2590 static void hists__delete_all_entries(struct hists *hists)
2591 {
2592         hists__delete_entries(hists);
2593         hists__delete_remaining_entries(&hists->entries_in_array[0]);
2594         hists__delete_remaining_entries(&hists->entries_in_array[1]);
2595         hists__delete_remaining_entries(&hists->entries_collapsed);
2596 }
2597
2598 static void hists_evsel__exit(struct perf_evsel *evsel)
2599 {
2600         struct hists *hists = evsel__hists(evsel);
2601         struct perf_hpp_fmt *fmt, *pos;
2602         struct perf_hpp_list_node *node, *tmp;
2603
2604         hists__delete_all_entries(hists);
2605
2606         list_for_each_entry_safe(node, tmp, &hists->hpp_formats, list) {
2607                 perf_hpp_list__for_each_format_safe(&node->hpp, fmt, pos) {
2608                         list_del(&fmt->list);
2609                         free(fmt);
2610                 }
2611                 list_del(&node->list);
2612                 free(node);
2613         }
2614 }
2615
2616 static int hists_evsel__init(struct perf_evsel *evsel)
2617 {
2618         struct hists *hists = evsel__hists(evsel);
2619
2620         __hists__init(hists, &perf_hpp_list);
2621         return 0;
2622 }
2623
2624 /*
2625  * XXX We probably need a hists_evsel__exit() to free the hist_entries
2626  * stored in the rbtree...
2627  */
2628
2629 int hists__init(void)
2630 {
2631         int err = perf_evsel__object_config(sizeof(struct hists_evsel),
2632                                             hists_evsel__init,
2633                                             hists_evsel__exit);
2634         if (err)
2635                 fputs("FATAL ERROR: Couldn't setup hists class\n", stderr);
2636
2637         return err;
2638 }
2639
2640 void perf_hpp_list__init(struct perf_hpp_list *list)
2641 {
2642         INIT_LIST_HEAD(&list->fields);
2643         INIT_LIST_HEAD(&list->sorts);
2644 }