]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/machine.c
perf machine: Add machine__is() to identify machine arch
[linux.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include "callchain.h"
7 #include "debug.h"
8 #include "event.h"
9 #include "evsel.h"
10 #include "hist.h"
11 #include "machine.h"
12 #include "map.h"
13 #include "sort.h"
14 #include "strlist.h"
15 #include "thread.h"
16 #include "vdso.h"
17 #include <stdbool.h>
18 #include <sys/types.h>
19 #include <sys/stat.h>
20 #include <unistd.h>
21 #include "unwind.h"
22 #include "linux/hash.h"
23 #include "asm/bug.h"
24
25 #include "sane_ctype.h"
26 #include <symbol/kallsyms.h>
27 #include <linux/mman.h>
28
29 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
30
31 static void dsos__init(struct dsos *dsos)
32 {
33         INIT_LIST_HEAD(&dsos->head);
34         dsos->root = RB_ROOT;
35         init_rwsem(&dsos->lock);
36 }
37
38 static void machine__threads_init(struct machine *machine)
39 {
40         int i;
41
42         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
43                 struct threads *threads = &machine->threads[i];
44                 threads->entries = RB_ROOT;
45                 init_rwsem(&threads->lock);
46                 threads->nr = 0;
47                 INIT_LIST_HEAD(&threads->dead);
48                 threads->last_match = NULL;
49         }
50 }
51
52 static int machine__set_mmap_name(struct machine *machine)
53 {
54         if (machine__is_host(machine))
55                 machine->mmap_name = strdup("[kernel.kallsyms]");
56         else if (machine__is_default_guest(machine))
57                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
58         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
59                           machine->pid) < 0)
60                 machine->mmap_name = NULL;
61
62         return machine->mmap_name ? 0 : -ENOMEM;
63 }
64
65 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
66 {
67         int err = -ENOMEM;
68
69         memset(machine, 0, sizeof(*machine));
70         map_groups__init(&machine->kmaps, machine);
71         RB_CLEAR_NODE(&machine->rb_node);
72         dsos__init(&machine->dsos);
73
74         machine__threads_init(machine);
75
76         machine->vdso_info = NULL;
77         machine->env = NULL;
78
79         machine->pid = pid;
80
81         machine->id_hdr_size = 0;
82         machine->kptr_restrict_warned = false;
83         machine->comm_exec = false;
84         machine->kernel_start = 0;
85         machine->vmlinux_map = NULL;
86
87         machine->root_dir = strdup(root_dir);
88         if (machine->root_dir == NULL)
89                 return -ENOMEM;
90
91         if (machine__set_mmap_name(machine))
92                 goto out;
93
94         if (pid != HOST_KERNEL_ID) {
95                 struct thread *thread = machine__findnew_thread(machine, -1,
96                                                                 pid);
97                 char comm[64];
98
99                 if (thread == NULL)
100                         goto out;
101
102                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
103                 thread__set_comm(thread, comm, 0);
104                 thread__put(thread);
105         }
106
107         machine->current_tid = NULL;
108         err = 0;
109
110 out:
111         if (err) {
112                 zfree(&machine->root_dir);
113                 zfree(&machine->mmap_name);
114         }
115         return 0;
116 }
117
118 struct machine *machine__new_host(void)
119 {
120         struct machine *machine = malloc(sizeof(*machine));
121
122         if (machine != NULL) {
123                 machine__init(machine, "", HOST_KERNEL_ID);
124
125                 if (machine__create_kernel_maps(machine) < 0)
126                         goto out_delete;
127         }
128
129         return machine;
130 out_delete:
131         free(machine);
132         return NULL;
133 }
134
135 struct machine *machine__new_kallsyms(void)
136 {
137         struct machine *machine = machine__new_host();
138         /*
139          * FIXME:
140          * 1) We should switch to machine__load_kallsyms(), i.e. not explicitely
141          *    ask for not using the kcore parsing code, once this one is fixed
142          *    to create a map per module.
143          */
144         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
145                 machine__delete(machine);
146                 machine = NULL;
147         }
148
149         return machine;
150 }
151
152 static void dsos__purge(struct dsos *dsos)
153 {
154         struct dso *pos, *n;
155
156         down_write(&dsos->lock);
157
158         list_for_each_entry_safe(pos, n, &dsos->head, node) {
159                 RB_CLEAR_NODE(&pos->rb_node);
160                 pos->root = NULL;
161                 list_del_init(&pos->node);
162                 dso__put(pos);
163         }
164
165         up_write(&dsos->lock);
166 }
167
168 static void dsos__exit(struct dsos *dsos)
169 {
170         dsos__purge(dsos);
171         exit_rwsem(&dsos->lock);
172 }
173
174 void machine__delete_threads(struct machine *machine)
175 {
176         struct rb_node *nd;
177         int i;
178
179         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
180                 struct threads *threads = &machine->threads[i];
181                 down_write(&threads->lock);
182                 nd = rb_first(&threads->entries);
183                 while (nd) {
184                         struct thread *t = rb_entry(nd, struct thread, rb_node);
185
186                         nd = rb_next(nd);
187                         __machine__remove_thread(machine, t, false);
188                 }
189                 up_write(&threads->lock);
190         }
191 }
192
193 void machine__exit(struct machine *machine)
194 {
195         int i;
196
197         if (machine == NULL)
198                 return;
199
200         machine__destroy_kernel_maps(machine);
201         map_groups__exit(&machine->kmaps);
202         dsos__exit(&machine->dsos);
203         machine__exit_vdso(machine);
204         zfree(&machine->root_dir);
205         zfree(&machine->mmap_name);
206         zfree(&machine->current_tid);
207
208         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
209                 struct threads *threads = &machine->threads[i];
210                 exit_rwsem(&threads->lock);
211         }
212 }
213
214 void machine__delete(struct machine *machine)
215 {
216         if (machine) {
217                 machine__exit(machine);
218                 free(machine);
219         }
220 }
221
222 void machines__init(struct machines *machines)
223 {
224         machine__init(&machines->host, "", HOST_KERNEL_ID);
225         machines->guests = RB_ROOT;
226 }
227
228 void machines__exit(struct machines *machines)
229 {
230         machine__exit(&machines->host);
231         /* XXX exit guest */
232 }
233
234 struct machine *machines__add(struct machines *machines, pid_t pid,
235                               const char *root_dir)
236 {
237         struct rb_node **p = &machines->guests.rb_node;
238         struct rb_node *parent = NULL;
239         struct machine *pos, *machine = malloc(sizeof(*machine));
240
241         if (machine == NULL)
242                 return NULL;
243
244         if (machine__init(machine, root_dir, pid) != 0) {
245                 free(machine);
246                 return NULL;
247         }
248
249         while (*p != NULL) {
250                 parent = *p;
251                 pos = rb_entry(parent, struct machine, rb_node);
252                 if (pid < pos->pid)
253                         p = &(*p)->rb_left;
254                 else
255                         p = &(*p)->rb_right;
256         }
257
258         rb_link_node(&machine->rb_node, parent, p);
259         rb_insert_color(&machine->rb_node, &machines->guests);
260
261         return machine;
262 }
263
264 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
265 {
266         struct rb_node *nd;
267
268         machines->host.comm_exec = comm_exec;
269
270         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
271                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
272
273                 machine->comm_exec = comm_exec;
274         }
275 }
276
277 struct machine *machines__find(struct machines *machines, pid_t pid)
278 {
279         struct rb_node **p = &machines->guests.rb_node;
280         struct rb_node *parent = NULL;
281         struct machine *machine;
282         struct machine *default_machine = NULL;
283
284         if (pid == HOST_KERNEL_ID)
285                 return &machines->host;
286
287         while (*p != NULL) {
288                 parent = *p;
289                 machine = rb_entry(parent, struct machine, rb_node);
290                 if (pid < machine->pid)
291                         p = &(*p)->rb_left;
292                 else if (pid > machine->pid)
293                         p = &(*p)->rb_right;
294                 else
295                         return machine;
296                 if (!machine->pid)
297                         default_machine = machine;
298         }
299
300         return default_machine;
301 }
302
303 struct machine *machines__findnew(struct machines *machines, pid_t pid)
304 {
305         char path[PATH_MAX];
306         const char *root_dir = "";
307         struct machine *machine = machines__find(machines, pid);
308
309         if (machine && (machine->pid == pid))
310                 goto out;
311
312         if ((pid != HOST_KERNEL_ID) &&
313             (pid != DEFAULT_GUEST_KERNEL_ID) &&
314             (symbol_conf.guestmount)) {
315                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
316                 if (access(path, R_OK)) {
317                         static struct strlist *seen;
318
319                         if (!seen)
320                                 seen = strlist__new(NULL, NULL);
321
322                         if (!strlist__has_entry(seen, path)) {
323                                 pr_err("Can't access file %s\n", path);
324                                 strlist__add(seen, path);
325                         }
326                         machine = NULL;
327                         goto out;
328                 }
329                 root_dir = path;
330         }
331
332         machine = machines__add(machines, pid, root_dir);
333 out:
334         return machine;
335 }
336
337 void machines__process_guests(struct machines *machines,
338                               machine__process_t process, void *data)
339 {
340         struct rb_node *nd;
341
342         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
343                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
344                 process(pos, data);
345         }
346 }
347
348 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
349 {
350         struct rb_node *node;
351         struct machine *machine;
352
353         machines->host.id_hdr_size = id_hdr_size;
354
355         for (node = rb_first(&machines->guests); node; node = rb_next(node)) {
356                 machine = rb_entry(node, struct machine, rb_node);
357                 machine->id_hdr_size = id_hdr_size;
358         }
359
360         return;
361 }
362
363 static void machine__update_thread_pid(struct machine *machine,
364                                        struct thread *th, pid_t pid)
365 {
366         struct thread *leader;
367
368         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
369                 return;
370
371         th->pid_ = pid;
372
373         if (th->pid_ == th->tid)
374                 return;
375
376         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
377         if (!leader)
378                 goto out_err;
379
380         if (!leader->mg)
381                 leader->mg = map_groups__new(machine);
382
383         if (!leader->mg)
384                 goto out_err;
385
386         if (th->mg == leader->mg)
387                 return;
388
389         if (th->mg) {
390                 /*
391                  * Maps are created from MMAP events which provide the pid and
392                  * tid.  Consequently there never should be any maps on a thread
393                  * with an unknown pid.  Just print an error if there are.
394                  */
395                 if (!map_groups__empty(th->mg))
396                         pr_err("Discarding thread maps for %d:%d\n",
397                                th->pid_, th->tid);
398                 map_groups__put(th->mg);
399         }
400
401         th->mg = map_groups__get(leader->mg);
402 out_put:
403         thread__put(leader);
404         return;
405 out_err:
406         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
407         goto out_put;
408 }
409
410 /*
411  * Caller must eventually drop thread->refcnt returned with a successful
412  * lookup/new thread inserted.
413  */
414 static struct thread *____machine__findnew_thread(struct machine *machine,
415                                                   struct threads *threads,
416                                                   pid_t pid, pid_t tid,
417                                                   bool create)
418 {
419         struct rb_node **p = &threads->entries.rb_node;
420         struct rb_node *parent = NULL;
421         struct thread *th;
422
423         /*
424          * Front-end cache - TID lookups come in blocks,
425          * so most of the time we dont have to look up
426          * the full rbtree:
427          */
428         th = threads->last_match;
429         if (th != NULL) {
430                 if (th->tid == tid) {
431                         machine__update_thread_pid(machine, th, pid);
432                         return thread__get(th);
433                 }
434
435                 threads->last_match = NULL;
436         }
437
438         while (*p != NULL) {
439                 parent = *p;
440                 th = rb_entry(parent, struct thread, rb_node);
441
442                 if (th->tid == tid) {
443                         threads->last_match = th;
444                         machine__update_thread_pid(machine, th, pid);
445                         return thread__get(th);
446                 }
447
448                 if (tid < th->tid)
449                         p = &(*p)->rb_left;
450                 else
451                         p = &(*p)->rb_right;
452         }
453
454         if (!create)
455                 return NULL;
456
457         th = thread__new(pid, tid);
458         if (th != NULL) {
459                 rb_link_node(&th->rb_node, parent, p);
460                 rb_insert_color(&th->rb_node, &threads->entries);
461
462                 /*
463                  * We have to initialize map_groups separately
464                  * after rb tree is updated.
465                  *
466                  * The reason is that we call machine__findnew_thread
467                  * within thread__init_map_groups to find the thread
468                  * leader and that would screwed the rb tree.
469                  */
470                 if (thread__init_map_groups(th, machine)) {
471                         rb_erase_init(&th->rb_node, &threads->entries);
472                         RB_CLEAR_NODE(&th->rb_node);
473                         thread__put(th);
474                         return NULL;
475                 }
476                 /*
477                  * It is now in the rbtree, get a ref
478                  */
479                 thread__get(th);
480                 threads->last_match = th;
481                 ++threads->nr;
482         }
483
484         return th;
485 }
486
487 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
488 {
489         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
490 }
491
492 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
493                                        pid_t tid)
494 {
495         struct threads *threads = machine__threads(machine, tid);
496         struct thread *th;
497
498         down_write(&threads->lock);
499         th = __machine__findnew_thread(machine, pid, tid);
500         up_write(&threads->lock);
501         return th;
502 }
503
504 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
505                                     pid_t tid)
506 {
507         struct threads *threads = machine__threads(machine, tid);
508         struct thread *th;
509
510         down_read(&threads->lock);
511         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
512         up_read(&threads->lock);
513         return th;
514 }
515
516 struct comm *machine__thread_exec_comm(struct machine *machine,
517                                        struct thread *thread)
518 {
519         if (machine->comm_exec)
520                 return thread__exec_comm(thread);
521         else
522                 return thread__comm(thread);
523 }
524
525 int machine__process_comm_event(struct machine *machine, union perf_event *event,
526                                 struct perf_sample *sample)
527 {
528         struct thread *thread = machine__findnew_thread(machine,
529                                                         event->comm.pid,
530                                                         event->comm.tid);
531         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
532         int err = 0;
533
534         if (exec)
535                 machine->comm_exec = true;
536
537         if (dump_trace)
538                 perf_event__fprintf_comm(event, stdout);
539
540         if (thread == NULL ||
541             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
542                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
543                 err = -1;
544         }
545
546         thread__put(thread);
547
548         return err;
549 }
550
551 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
552                                       union perf_event *event,
553                                       struct perf_sample *sample __maybe_unused)
554 {
555         struct thread *thread = machine__findnew_thread(machine,
556                                                         event->namespaces.pid,
557                                                         event->namespaces.tid);
558         int err = 0;
559
560         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
561                   "\nWARNING: kernel seems to support more namespaces than perf"
562                   " tool.\nTry updating the perf tool..\n\n");
563
564         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
565                   "\nWARNING: perf tool seems to support more namespaces than"
566                   " the kernel.\nTry updating the kernel..\n\n");
567
568         if (dump_trace)
569                 perf_event__fprintf_namespaces(event, stdout);
570
571         if (thread == NULL ||
572             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
573                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
574                 err = -1;
575         }
576
577         thread__put(thread);
578
579         return err;
580 }
581
582 int machine__process_lost_event(struct machine *machine __maybe_unused,
583                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
584 {
585         dump_printf(": id:%" PRIu64 ": lost:%" PRIu64 "\n",
586                     event->lost.id, event->lost.lost);
587         return 0;
588 }
589
590 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
591                                         union perf_event *event, struct perf_sample *sample)
592 {
593         dump_printf(": id:%" PRIu64 ": lost samples :%" PRIu64 "\n",
594                     sample->id, event->lost_samples.lost);
595         return 0;
596 }
597
598 static struct dso *machine__findnew_module_dso(struct machine *machine,
599                                                struct kmod_path *m,
600                                                const char *filename)
601 {
602         struct dso *dso;
603
604         down_write(&machine->dsos.lock);
605
606         dso = __dsos__find(&machine->dsos, m->name, true);
607         if (!dso) {
608                 dso = __dsos__addnew(&machine->dsos, m->name);
609                 if (dso == NULL)
610                         goto out_unlock;
611
612                 dso__set_module_info(dso, m, machine);
613                 dso__set_long_name(dso, strdup(filename), true);
614         }
615
616         dso__get(dso);
617 out_unlock:
618         up_write(&machine->dsos.lock);
619         return dso;
620 }
621
622 int machine__process_aux_event(struct machine *machine __maybe_unused,
623                                union perf_event *event)
624 {
625         if (dump_trace)
626                 perf_event__fprintf_aux(event, stdout);
627         return 0;
628 }
629
630 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
631                                         union perf_event *event)
632 {
633         if (dump_trace)
634                 perf_event__fprintf_itrace_start(event, stdout);
635         return 0;
636 }
637
638 int machine__process_switch_event(struct machine *machine __maybe_unused,
639                                   union perf_event *event)
640 {
641         if (dump_trace)
642                 perf_event__fprintf_switch(event, stdout);
643         return 0;
644 }
645
646 static void dso__adjust_kmod_long_name(struct dso *dso, const char *filename)
647 {
648         const char *dup_filename;
649
650         if (!filename || !dso || !dso->long_name)
651                 return;
652         if (dso->long_name[0] != '[')
653                 return;
654         if (!strchr(filename, '/'))
655                 return;
656
657         dup_filename = strdup(filename);
658         if (!dup_filename)
659                 return;
660
661         dso__set_long_name(dso, dup_filename, true);
662 }
663
664 struct map *machine__findnew_module_map(struct machine *machine, u64 start,
665                                         const char *filename)
666 {
667         struct map *map = NULL;
668         struct dso *dso = NULL;
669         struct kmod_path m;
670
671         if (kmod_path__parse_name(&m, filename))
672                 return NULL;
673
674         map = map_groups__find_by_name(&machine->kmaps, m.name);
675         if (map) {
676                 /*
677                  * If the map's dso is an offline module, give dso__load()
678                  * a chance to find the file path of that module by fixing
679                  * long_name.
680                  */
681                 dso__adjust_kmod_long_name(map->dso, filename);
682                 goto out;
683         }
684
685         dso = machine__findnew_module_dso(machine, &m, filename);
686         if (dso == NULL)
687                 goto out;
688
689         map = map__new2(start, dso);
690         if (map == NULL)
691                 goto out;
692
693         map_groups__insert(&machine->kmaps, map);
694
695         /* Put the map here because map_groups__insert alread got it */
696         map__put(map);
697 out:
698         /* put the dso here, corresponding to  machine__findnew_module_dso */
699         dso__put(dso);
700         free(m.name);
701         return map;
702 }
703
704 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
705 {
706         struct rb_node *nd;
707         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
708
709         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
710                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
711                 ret += __dsos__fprintf(&pos->dsos.head, fp);
712         }
713
714         return ret;
715 }
716
717 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
718                                      bool (skip)(struct dso *dso, int parm), int parm)
719 {
720         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
721 }
722
723 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
724                                      bool (skip)(struct dso *dso, int parm), int parm)
725 {
726         struct rb_node *nd;
727         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
728
729         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
730                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
731                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
732         }
733         return ret;
734 }
735
736 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
737 {
738         int i;
739         size_t printed = 0;
740         struct dso *kdso = machine__kernel_map(machine)->dso;
741
742         if (kdso->has_build_id) {
743                 char filename[PATH_MAX];
744                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
745                                            false))
746                         printed += fprintf(fp, "[0] %s\n", filename);
747         }
748
749         for (i = 0; i < vmlinux_path__nr_entries; ++i)
750                 printed += fprintf(fp, "[%d] %s\n",
751                                    i + kdso->has_build_id, vmlinux_path[i]);
752
753         return printed;
754 }
755
756 size_t machine__fprintf(struct machine *machine, FILE *fp)
757 {
758         struct rb_node *nd;
759         size_t ret;
760         int i;
761
762         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
763                 struct threads *threads = &machine->threads[i];
764
765                 down_read(&threads->lock);
766
767                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
768
769                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
770                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
771
772                         ret += thread__fprintf(pos, fp);
773                 }
774
775                 up_read(&threads->lock);
776         }
777         return ret;
778 }
779
780 static struct dso *machine__get_kernel(struct machine *machine)
781 {
782         const char *vmlinux_name = machine->mmap_name;
783         struct dso *kernel;
784
785         if (machine__is_host(machine)) {
786                 if (symbol_conf.vmlinux_name)
787                         vmlinux_name = symbol_conf.vmlinux_name;
788
789                 kernel = machine__findnew_kernel(machine, vmlinux_name,
790                                                  "[kernel]", DSO_TYPE_KERNEL);
791         } else {
792                 if (symbol_conf.default_guest_vmlinux_name)
793                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
794
795                 kernel = machine__findnew_kernel(machine, vmlinux_name,
796                                                  "[guest.kernel]",
797                                                  DSO_TYPE_GUEST_KERNEL);
798         }
799
800         if (kernel != NULL && (!kernel->has_build_id))
801                 dso__read_running_kernel_build_id(kernel, machine);
802
803         return kernel;
804 }
805
806 struct process_args {
807         u64 start;
808 };
809
810 static void machine__get_kallsyms_filename(struct machine *machine, char *buf,
811                                            size_t bufsz)
812 {
813         if (machine__is_default_guest(machine))
814                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
815         else
816                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
817 }
818
819 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
820
821 /* Figure out the start address of kernel map from /proc/kallsyms.
822  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
823  * symbol_name if it's not that important.
824  */
825 static int machine__get_running_kernel_start(struct machine *machine,
826                                              const char **symbol_name, u64 *start)
827 {
828         char filename[PATH_MAX];
829         int i, err = -1;
830         const char *name;
831         u64 addr = 0;
832
833         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
834
835         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
836                 return 0;
837
838         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
839                 err = kallsyms__get_function_start(filename, name, &addr);
840                 if (!err)
841                         break;
842         }
843
844         if (err)
845                 return -1;
846
847         if (symbol_name)
848                 *symbol_name = name;
849
850         *start = addr;
851         return 0;
852 }
853
854 static int
855 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
856 {
857         struct kmap *kmap;
858         struct map *map;
859
860         /* In case of renewal the kernel map, destroy previous one */
861         machine__destroy_kernel_maps(machine);
862
863         machine->vmlinux_map = map__new2(0, kernel);
864         if (machine->vmlinux_map == NULL)
865                 return -1;
866
867         machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
868         map = machine__kernel_map(machine);
869         kmap = map__kmap(map);
870         if (!kmap)
871                 return -1;
872
873         kmap->kmaps = &machine->kmaps;
874         map_groups__insert(&machine->kmaps, map);
875
876         return 0;
877 }
878
879 void machine__destroy_kernel_maps(struct machine *machine)
880 {
881         struct kmap *kmap;
882         struct map *map = machine__kernel_map(machine);
883
884         if (map == NULL)
885                 return;
886
887         kmap = map__kmap(map);
888         map_groups__remove(&machine->kmaps, map);
889         if (kmap && kmap->ref_reloc_sym) {
890                 zfree((char **)&kmap->ref_reloc_sym->name);
891                 zfree(&kmap->ref_reloc_sym);
892         }
893
894         map__zput(machine->vmlinux_map);
895 }
896
897 int machines__create_guest_kernel_maps(struct machines *machines)
898 {
899         int ret = 0;
900         struct dirent **namelist = NULL;
901         int i, items = 0;
902         char path[PATH_MAX];
903         pid_t pid;
904         char *endp;
905
906         if (symbol_conf.default_guest_vmlinux_name ||
907             symbol_conf.default_guest_modules ||
908             symbol_conf.default_guest_kallsyms) {
909                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
910         }
911
912         if (symbol_conf.guestmount) {
913                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
914                 if (items <= 0)
915                         return -ENOENT;
916                 for (i = 0; i < items; i++) {
917                         if (!isdigit(namelist[i]->d_name[0])) {
918                                 /* Filter out . and .. */
919                                 continue;
920                         }
921                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
922                         if ((*endp != '\0') ||
923                             (endp == namelist[i]->d_name) ||
924                             (errno == ERANGE)) {
925                                 pr_debug("invalid directory (%s). Skipping.\n",
926                                          namelist[i]->d_name);
927                                 continue;
928                         }
929                         sprintf(path, "%s/%s/proc/kallsyms",
930                                 symbol_conf.guestmount,
931                                 namelist[i]->d_name);
932                         ret = access(path, R_OK);
933                         if (ret) {
934                                 pr_debug("Can't access file %s\n", path);
935                                 goto failure;
936                         }
937                         machines__create_kernel_maps(machines, pid);
938                 }
939 failure:
940                 free(namelist);
941         }
942
943         return ret;
944 }
945
946 void machines__destroy_kernel_maps(struct machines *machines)
947 {
948         struct rb_node *next = rb_first(&machines->guests);
949
950         machine__destroy_kernel_maps(&machines->host);
951
952         while (next) {
953                 struct machine *pos = rb_entry(next, struct machine, rb_node);
954
955                 next = rb_next(&pos->rb_node);
956                 rb_erase(&pos->rb_node, &machines->guests);
957                 machine__delete(pos);
958         }
959 }
960
961 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
962 {
963         struct machine *machine = machines__findnew(machines, pid);
964
965         if (machine == NULL)
966                 return -1;
967
968         return machine__create_kernel_maps(machine);
969 }
970
971 int machine__load_kallsyms(struct machine *machine, const char *filename)
972 {
973         struct map *map = machine__kernel_map(machine);
974         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
975
976         if (ret > 0) {
977                 dso__set_loaded(map->dso);
978                 /*
979                  * Since /proc/kallsyms will have multiple sessions for the
980                  * kernel, with modules between them, fixup the end of all
981                  * sections.
982                  */
983                 map_groups__fixup_end(&machine->kmaps);
984         }
985
986         return ret;
987 }
988
989 int machine__load_vmlinux_path(struct machine *machine)
990 {
991         struct map *map = machine__kernel_map(machine);
992         int ret = dso__load_vmlinux_path(map->dso, map);
993
994         if (ret > 0)
995                 dso__set_loaded(map->dso);
996
997         return ret;
998 }
999
1000 static char *get_kernel_version(const char *root_dir)
1001 {
1002         char version[PATH_MAX];
1003         FILE *file;
1004         char *name, *tmp;
1005         const char *prefix = "Linux version ";
1006
1007         sprintf(version, "%s/proc/version", root_dir);
1008         file = fopen(version, "r");
1009         if (!file)
1010                 return NULL;
1011
1012         version[0] = '\0';
1013         tmp = fgets(version, sizeof(version), file);
1014         fclose(file);
1015
1016         name = strstr(version, prefix);
1017         if (!name)
1018                 return NULL;
1019         name += strlen(prefix);
1020         tmp = strchr(name, ' ');
1021         if (tmp)
1022                 *tmp = '\0';
1023
1024         return strdup(name);
1025 }
1026
1027 static bool is_kmod_dso(struct dso *dso)
1028 {
1029         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1030                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1031 }
1032
1033 static int map_groups__set_module_path(struct map_groups *mg, const char *path,
1034                                        struct kmod_path *m)
1035 {
1036         char *long_name;
1037         struct map *map = map_groups__find_by_name(mg, m->name);
1038
1039         if (map == NULL)
1040                 return 0;
1041
1042         long_name = strdup(path);
1043         if (long_name == NULL)
1044                 return -ENOMEM;
1045
1046         dso__set_long_name(map->dso, long_name, true);
1047         dso__kernel_module_get_build_id(map->dso, "");
1048
1049         /*
1050          * Full name could reveal us kmod compression, so
1051          * we need to update the symtab_type if needed.
1052          */
1053         if (m->comp && is_kmod_dso(map->dso))
1054                 map->dso->symtab_type++;
1055
1056         return 0;
1057 }
1058
1059 static int map_groups__set_modules_path_dir(struct map_groups *mg,
1060                                 const char *dir_name, int depth)
1061 {
1062         struct dirent *dent;
1063         DIR *dir = opendir(dir_name);
1064         int ret = 0;
1065
1066         if (!dir) {
1067                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1068                 return -1;
1069         }
1070
1071         while ((dent = readdir(dir)) != NULL) {
1072                 char path[PATH_MAX];
1073                 struct stat st;
1074
1075                 /*sshfs might return bad dent->d_type, so we have to stat*/
1076                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1077                 if (stat(path, &st))
1078                         continue;
1079
1080                 if (S_ISDIR(st.st_mode)) {
1081                         if (!strcmp(dent->d_name, ".") ||
1082                             !strcmp(dent->d_name, ".."))
1083                                 continue;
1084
1085                         /* Do not follow top-level source and build symlinks */
1086                         if (depth == 0) {
1087                                 if (!strcmp(dent->d_name, "source") ||
1088                                     !strcmp(dent->d_name, "build"))
1089                                         continue;
1090                         }
1091
1092                         ret = map_groups__set_modules_path_dir(mg, path,
1093                                                                depth + 1);
1094                         if (ret < 0)
1095                                 goto out;
1096                 } else {
1097                         struct kmod_path m;
1098
1099                         ret = kmod_path__parse_name(&m, dent->d_name);
1100                         if (ret)
1101                                 goto out;
1102
1103                         if (m.kmod)
1104                                 ret = map_groups__set_module_path(mg, path, &m);
1105
1106                         free(m.name);
1107
1108                         if (ret)
1109                                 goto out;
1110                 }
1111         }
1112
1113 out:
1114         closedir(dir);
1115         return ret;
1116 }
1117
1118 static int machine__set_modules_path(struct machine *machine)
1119 {
1120         char *version;
1121         char modules_path[PATH_MAX];
1122
1123         version = get_kernel_version(machine->root_dir);
1124         if (!version)
1125                 return -1;
1126
1127         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1128                  machine->root_dir, version);
1129         free(version);
1130
1131         return map_groups__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1132 }
1133 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1134                                 const char *name __maybe_unused)
1135 {
1136         return 0;
1137 }
1138
1139 static int machine__create_module(void *arg, const char *name, u64 start,
1140                                   u64 size)
1141 {
1142         struct machine *machine = arg;
1143         struct map *map;
1144
1145         if (arch__fix_module_text_start(&start, name) < 0)
1146                 return -1;
1147
1148         map = machine__findnew_module_map(machine, start, name);
1149         if (map == NULL)
1150                 return -1;
1151         map->end = start + size;
1152
1153         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1154
1155         return 0;
1156 }
1157
1158 static int machine__create_modules(struct machine *machine)
1159 {
1160         const char *modules;
1161         char path[PATH_MAX];
1162
1163         if (machine__is_default_guest(machine)) {
1164                 modules = symbol_conf.default_guest_modules;
1165         } else {
1166                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1167                 modules = path;
1168         }
1169
1170         if (symbol__restricted_filename(modules, "/proc/modules"))
1171                 return -1;
1172
1173         if (modules__parse(modules, machine, machine__create_module))
1174                 return -1;
1175
1176         if (!machine__set_modules_path(machine))
1177                 return 0;
1178
1179         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1180
1181         return 0;
1182 }
1183
1184 static void machine__set_kernel_mmap(struct machine *machine,
1185                                      u64 start, u64 end)
1186 {
1187         machine->vmlinux_map->start = start;
1188         machine->vmlinux_map->end   = end;
1189         /*
1190          * Be a bit paranoid here, some perf.data file came with
1191          * a zero sized synthesized MMAP event for the kernel.
1192          */
1193         if (start == 0 && end == 0)
1194                 machine->vmlinux_map->end = ~0ULL;
1195 }
1196
1197 int machine__create_kernel_maps(struct machine *machine)
1198 {
1199         struct dso *kernel = machine__get_kernel(machine);
1200         const char *name = NULL;
1201         struct map *map;
1202         u64 addr = 0;
1203         int ret;
1204
1205         if (kernel == NULL)
1206                 return -1;
1207
1208         ret = __machine__create_kernel_maps(machine, kernel);
1209         dso__put(kernel);
1210         if (ret < 0)
1211                 return -1;
1212
1213         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1214                 if (machine__is_host(machine))
1215                         pr_debug("Problems creating module maps, "
1216                                  "continuing anyway...\n");
1217                 else
1218                         pr_debug("Problems creating module maps for guest %d, "
1219                                  "continuing anyway...\n", machine->pid);
1220         }
1221
1222         if (!machine__get_running_kernel_start(machine, &name, &addr)) {
1223                 if (name &&
1224                     map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, addr)) {
1225                         machine__destroy_kernel_maps(machine);
1226                         return -1;
1227                 }
1228
1229                 /* we have a real start address now, so re-order the kmaps */
1230                 map = machine__kernel_map(machine);
1231
1232                 map__get(map);
1233                 map_groups__remove(&machine->kmaps, map);
1234
1235                 /* assume it's the last in the kmaps */
1236                 machine__set_kernel_mmap(machine, addr, ~0ULL);
1237
1238                 map_groups__insert(&machine->kmaps, map);
1239                 map__put(map);
1240         }
1241
1242         /* update end address of the kernel map using adjacent module address */
1243         map = map__next(machine__kernel_map(machine));
1244         if (map)
1245                 machine__set_kernel_mmap(machine, addr, map->start);
1246
1247         return 0;
1248 }
1249
1250 static bool machine__uses_kcore(struct machine *machine)
1251 {
1252         struct dso *dso;
1253
1254         list_for_each_entry(dso, &machine->dsos.head, node) {
1255                 if (dso__is_kcore(dso))
1256                         return true;
1257         }
1258
1259         return false;
1260 }
1261
1262 static int machine__process_kernel_mmap_event(struct machine *machine,
1263                                               union perf_event *event)
1264 {
1265         struct map *map;
1266         enum dso_kernel_type kernel_type;
1267         bool is_kernel_mmap;
1268
1269         /* If we have maps from kcore then we do not need or want any others */
1270         if (machine__uses_kcore(machine))
1271                 return 0;
1272
1273         if (machine__is_host(machine))
1274                 kernel_type = DSO_TYPE_KERNEL;
1275         else
1276                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1277
1278         is_kernel_mmap = memcmp(event->mmap.filename,
1279                                 machine->mmap_name,
1280                                 strlen(machine->mmap_name) - 1) == 0;
1281         if (event->mmap.filename[0] == '/' ||
1282             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1283                 map = machine__findnew_module_map(machine, event->mmap.start,
1284                                                   event->mmap.filename);
1285                 if (map == NULL)
1286                         goto out_problem;
1287
1288                 map->end = map->start + event->mmap.len;
1289         } else if (is_kernel_mmap) {
1290                 const char *symbol_name = (event->mmap.filename +
1291                                 strlen(machine->mmap_name));
1292                 /*
1293                  * Should be there already, from the build-id table in
1294                  * the header.
1295                  */
1296                 struct dso *kernel = NULL;
1297                 struct dso *dso;
1298
1299                 down_read(&machine->dsos.lock);
1300
1301                 list_for_each_entry(dso, &machine->dsos.head, node) {
1302
1303                         /*
1304                          * The cpumode passed to is_kernel_module is not the
1305                          * cpumode of *this* event. If we insist on passing
1306                          * correct cpumode to is_kernel_module, we should
1307                          * record the cpumode when we adding this dso to the
1308                          * linked list.
1309                          *
1310                          * However we don't really need passing correct
1311                          * cpumode.  We know the correct cpumode must be kernel
1312                          * mode (if not, we should not link it onto kernel_dsos
1313                          * list).
1314                          *
1315                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1316                          * is_kernel_module() treats it as a kernel cpumode.
1317                          */
1318
1319                         if (!dso->kernel ||
1320                             is_kernel_module(dso->long_name,
1321                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1322                                 continue;
1323
1324
1325                         kernel = dso;
1326                         break;
1327                 }
1328
1329                 up_read(&machine->dsos.lock);
1330
1331                 if (kernel == NULL)
1332                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1333                 if (kernel == NULL)
1334                         goto out_problem;
1335
1336                 kernel->kernel = kernel_type;
1337                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1338                         dso__put(kernel);
1339                         goto out_problem;
1340                 }
1341
1342                 if (strstr(kernel->long_name, "vmlinux"))
1343                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1344
1345                 machine__set_kernel_mmap(machine, event->mmap.start,
1346                                          event->mmap.start + event->mmap.len);
1347
1348                 /*
1349                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1350                  * symbol. Effectively having zero here means that at record
1351                  * time /proc/sys/kernel/kptr_restrict was non zero.
1352                  */
1353                 if (event->mmap.pgoff != 0) {
1354                         map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1355                                                         symbol_name,
1356                                                         event->mmap.pgoff);
1357                 }
1358
1359                 if (machine__is_default_guest(machine)) {
1360                         /*
1361                          * preload dso of guest kernel and modules
1362                          */
1363                         dso__load(kernel, machine__kernel_map(machine));
1364                 }
1365         }
1366         return 0;
1367 out_problem:
1368         return -1;
1369 }
1370
1371 int machine__process_mmap2_event(struct machine *machine,
1372                                  union perf_event *event,
1373                                  struct perf_sample *sample)
1374 {
1375         struct thread *thread;
1376         struct map *map;
1377         int ret = 0;
1378
1379         if (dump_trace)
1380                 perf_event__fprintf_mmap2(event, stdout);
1381
1382         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1383             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1384                 ret = machine__process_kernel_mmap_event(machine, event);
1385                 if (ret < 0)
1386                         goto out_problem;
1387                 return 0;
1388         }
1389
1390         thread = machine__findnew_thread(machine, event->mmap2.pid,
1391                                         event->mmap2.tid);
1392         if (thread == NULL)
1393                 goto out_problem;
1394
1395         map = map__new(machine, event->mmap2.start,
1396                         event->mmap2.len, event->mmap2.pgoff,
1397                         event->mmap2.maj,
1398                         event->mmap2.min, event->mmap2.ino,
1399                         event->mmap2.ino_generation,
1400                         event->mmap2.prot,
1401                         event->mmap2.flags,
1402                         event->mmap2.filename, thread);
1403
1404         if (map == NULL)
1405                 goto out_problem_map;
1406
1407         ret = thread__insert_map(thread, map);
1408         if (ret)
1409                 goto out_problem_insert;
1410
1411         thread__put(thread);
1412         map__put(map);
1413         return 0;
1414
1415 out_problem_insert:
1416         map__put(map);
1417 out_problem_map:
1418         thread__put(thread);
1419 out_problem:
1420         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1421         return 0;
1422 }
1423
1424 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1425                                 struct perf_sample *sample)
1426 {
1427         struct thread *thread;
1428         struct map *map;
1429         u32 prot = 0;
1430         int ret = 0;
1431
1432         if (dump_trace)
1433                 perf_event__fprintf_mmap(event, stdout);
1434
1435         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1436             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1437                 ret = machine__process_kernel_mmap_event(machine, event);
1438                 if (ret < 0)
1439                         goto out_problem;
1440                 return 0;
1441         }
1442
1443         thread = machine__findnew_thread(machine, event->mmap.pid,
1444                                          event->mmap.tid);
1445         if (thread == NULL)
1446                 goto out_problem;
1447
1448         if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1449                 prot = PROT_EXEC;
1450
1451         map = map__new(machine, event->mmap.start,
1452                         event->mmap.len, event->mmap.pgoff,
1453                         0, 0, 0, 0, prot, 0,
1454                         event->mmap.filename,
1455                         thread);
1456
1457         if (map == NULL)
1458                 goto out_problem_map;
1459
1460         ret = thread__insert_map(thread, map);
1461         if (ret)
1462                 goto out_problem_insert;
1463
1464         thread__put(thread);
1465         map__put(map);
1466         return 0;
1467
1468 out_problem_insert:
1469         map__put(map);
1470 out_problem_map:
1471         thread__put(thread);
1472 out_problem:
1473         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1474         return 0;
1475 }
1476
1477 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1478 {
1479         struct threads *threads = machine__threads(machine, th->tid);
1480
1481         if (threads->last_match == th)
1482                 threads->last_match = NULL;
1483
1484         BUG_ON(refcount_read(&th->refcnt) == 0);
1485         if (lock)
1486                 down_write(&threads->lock);
1487         rb_erase_init(&th->rb_node, &threads->entries);
1488         RB_CLEAR_NODE(&th->rb_node);
1489         --threads->nr;
1490         /*
1491          * Move it first to the dead_threads list, then drop the reference,
1492          * if this is the last reference, then the thread__delete destructor
1493          * will be called and we will remove it from the dead_threads list.
1494          */
1495         list_add_tail(&th->node, &threads->dead);
1496         if (lock)
1497                 up_write(&threads->lock);
1498         thread__put(th);
1499 }
1500
1501 void machine__remove_thread(struct machine *machine, struct thread *th)
1502 {
1503         return __machine__remove_thread(machine, th, true);
1504 }
1505
1506 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1507                                 struct perf_sample *sample)
1508 {
1509         struct thread *thread = machine__find_thread(machine,
1510                                                      event->fork.pid,
1511                                                      event->fork.tid);
1512         struct thread *parent = machine__findnew_thread(machine,
1513                                                         event->fork.ppid,
1514                                                         event->fork.ptid);
1515         int err = 0;
1516
1517         if (dump_trace)
1518                 perf_event__fprintf_task(event, stdout);
1519
1520         /*
1521          * There may be an existing thread that is not actually the parent,
1522          * either because we are processing events out of order, or because the
1523          * (fork) event that would have removed the thread was lost. Assume the
1524          * latter case and continue on as best we can.
1525          */
1526         if (parent->pid_ != (pid_t)event->fork.ppid) {
1527                 dump_printf("removing erroneous parent thread %d/%d\n",
1528                             parent->pid_, parent->tid);
1529                 machine__remove_thread(machine, parent);
1530                 thread__put(parent);
1531                 parent = machine__findnew_thread(machine, event->fork.ppid,
1532                                                  event->fork.ptid);
1533         }
1534
1535         /* if a thread currently exists for the thread id remove it */
1536         if (thread != NULL) {
1537                 machine__remove_thread(machine, thread);
1538                 thread__put(thread);
1539         }
1540
1541         thread = machine__findnew_thread(machine, event->fork.pid,
1542                                          event->fork.tid);
1543
1544         if (thread == NULL || parent == NULL ||
1545             thread__fork(thread, parent, sample->time) < 0) {
1546                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1547                 err = -1;
1548         }
1549         thread__put(thread);
1550         thread__put(parent);
1551
1552         return err;
1553 }
1554
1555 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1556                                 struct perf_sample *sample __maybe_unused)
1557 {
1558         struct thread *thread = machine__find_thread(machine,
1559                                                      event->fork.pid,
1560                                                      event->fork.tid);
1561
1562         if (dump_trace)
1563                 perf_event__fprintf_task(event, stdout);
1564
1565         if (thread != NULL) {
1566                 thread__exited(thread);
1567                 thread__put(thread);
1568         }
1569
1570         return 0;
1571 }
1572
1573 int machine__process_event(struct machine *machine, union perf_event *event,
1574                            struct perf_sample *sample)
1575 {
1576         int ret;
1577
1578         switch (event->header.type) {
1579         case PERF_RECORD_COMM:
1580                 ret = machine__process_comm_event(machine, event, sample); break;
1581         case PERF_RECORD_MMAP:
1582                 ret = machine__process_mmap_event(machine, event, sample); break;
1583         case PERF_RECORD_NAMESPACES:
1584                 ret = machine__process_namespaces_event(machine, event, sample); break;
1585         case PERF_RECORD_MMAP2:
1586                 ret = machine__process_mmap2_event(machine, event, sample); break;
1587         case PERF_RECORD_FORK:
1588                 ret = machine__process_fork_event(machine, event, sample); break;
1589         case PERF_RECORD_EXIT:
1590                 ret = machine__process_exit_event(machine, event, sample); break;
1591         case PERF_RECORD_LOST:
1592                 ret = machine__process_lost_event(machine, event, sample); break;
1593         case PERF_RECORD_AUX:
1594                 ret = machine__process_aux_event(machine, event); break;
1595         case PERF_RECORD_ITRACE_START:
1596                 ret = machine__process_itrace_start_event(machine, event); break;
1597         case PERF_RECORD_LOST_SAMPLES:
1598                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1599         case PERF_RECORD_SWITCH:
1600         case PERF_RECORD_SWITCH_CPU_WIDE:
1601                 ret = machine__process_switch_event(machine, event); break;
1602         default:
1603                 ret = -1;
1604                 break;
1605         }
1606
1607         return ret;
1608 }
1609
1610 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1611 {
1612         if (!regexec(regex, sym->name, 0, NULL, 0))
1613                 return 1;
1614         return 0;
1615 }
1616
1617 static void ip__resolve_ams(struct thread *thread,
1618                             struct addr_map_symbol *ams,
1619                             u64 ip)
1620 {
1621         struct addr_location al;
1622
1623         memset(&al, 0, sizeof(al));
1624         /*
1625          * We cannot use the header.misc hint to determine whether a
1626          * branch stack address is user, kernel, guest, hypervisor.
1627          * Branches may straddle the kernel/user/hypervisor boundaries.
1628          * Thus, we have to try consecutively until we find a match
1629          * or else, the symbol is unknown
1630          */
1631         thread__find_cpumode_addr_location(thread, ip, &al);
1632
1633         ams->addr = ip;
1634         ams->al_addr = al.addr;
1635         ams->sym = al.sym;
1636         ams->map = al.map;
1637         ams->phys_addr = 0;
1638 }
1639
1640 static void ip__resolve_data(struct thread *thread,
1641                              u8 m, struct addr_map_symbol *ams,
1642                              u64 addr, u64 phys_addr)
1643 {
1644         struct addr_location al;
1645
1646         memset(&al, 0, sizeof(al));
1647
1648         thread__find_symbol(thread, m, addr, &al);
1649
1650         ams->addr = addr;
1651         ams->al_addr = al.addr;
1652         ams->sym = al.sym;
1653         ams->map = al.map;
1654         ams->phys_addr = phys_addr;
1655 }
1656
1657 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1658                                      struct addr_location *al)
1659 {
1660         struct mem_info *mi = mem_info__new();
1661
1662         if (!mi)
1663                 return NULL;
1664
1665         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1666         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1667                          sample->addr, sample->phys_addr);
1668         mi->data_src.val = sample->data_src;
1669
1670         return mi;
1671 }
1672
1673 static char *callchain_srcline(struct map *map, struct symbol *sym, u64 ip)
1674 {
1675         char *srcline = NULL;
1676
1677         if (!map || callchain_param.key == CCKEY_FUNCTION)
1678                 return srcline;
1679
1680         srcline = srcline__tree_find(&map->dso->srclines, ip);
1681         if (!srcline) {
1682                 bool show_sym = false;
1683                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1684
1685                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1686                                       sym, show_sym, show_addr, ip);
1687                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1688         }
1689
1690         return srcline;
1691 }
1692
1693 struct iterations {
1694         int nr_loop_iter;
1695         u64 cycles;
1696 };
1697
1698 static int add_callchain_ip(struct thread *thread,
1699                             struct callchain_cursor *cursor,
1700                             struct symbol **parent,
1701                             struct addr_location *root_al,
1702                             u8 *cpumode,
1703                             u64 ip,
1704                             bool branch,
1705                             struct branch_flags *flags,
1706                             struct iterations *iter,
1707                             u64 branch_from)
1708 {
1709         struct addr_location al;
1710         int nr_loop_iter = 0;
1711         u64 iter_cycles = 0;
1712         const char *srcline = NULL;
1713
1714         al.filtered = 0;
1715         al.sym = NULL;
1716         if (!cpumode) {
1717                 thread__find_cpumode_addr_location(thread, ip, &al);
1718         } else {
1719                 if (ip >= PERF_CONTEXT_MAX) {
1720                         switch (ip) {
1721                         case PERF_CONTEXT_HV:
1722                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
1723                                 break;
1724                         case PERF_CONTEXT_KERNEL:
1725                                 *cpumode = PERF_RECORD_MISC_KERNEL;
1726                                 break;
1727                         case PERF_CONTEXT_USER:
1728                                 *cpumode = PERF_RECORD_MISC_USER;
1729                                 break;
1730                         default:
1731                                 pr_debug("invalid callchain context: "
1732                                          "%"PRId64"\n", (s64) ip);
1733                                 /*
1734                                  * It seems the callchain is corrupted.
1735                                  * Discard all.
1736                                  */
1737                                 callchain_cursor_reset(cursor);
1738                                 return 1;
1739                         }
1740                         return 0;
1741                 }
1742                 thread__find_symbol(thread, *cpumode, ip, &al);
1743         }
1744
1745         if (al.sym != NULL) {
1746                 if (perf_hpp_list.parent && !*parent &&
1747                     symbol__match_regex(al.sym, &parent_regex))
1748                         *parent = al.sym;
1749                 else if (have_ignore_callees && root_al &&
1750                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
1751                         /* Treat this symbol as the root,
1752                            forgetting its callees. */
1753                         *root_al = al;
1754                         callchain_cursor_reset(cursor);
1755                 }
1756         }
1757
1758         if (symbol_conf.hide_unresolved && al.sym == NULL)
1759                 return 0;
1760
1761         if (iter) {
1762                 nr_loop_iter = iter->nr_loop_iter;
1763                 iter_cycles = iter->cycles;
1764         }
1765
1766         srcline = callchain_srcline(al.map, al.sym, al.addr);
1767         return callchain_cursor_append(cursor, ip, al.map, al.sym,
1768                                        branch, flags, nr_loop_iter,
1769                                        iter_cycles, branch_from, srcline);
1770 }
1771
1772 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
1773                                            struct addr_location *al)
1774 {
1775         unsigned int i;
1776         const struct branch_stack *bs = sample->branch_stack;
1777         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
1778
1779         if (!bi)
1780                 return NULL;
1781
1782         for (i = 0; i < bs->nr; i++) {
1783                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
1784                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
1785                 bi[i].flags = bs->entries[i].flags;
1786         }
1787         return bi;
1788 }
1789
1790 static void save_iterations(struct iterations *iter,
1791                             struct branch_entry *be, int nr)
1792 {
1793         int i;
1794
1795         iter->nr_loop_iter = nr;
1796         iter->cycles = 0;
1797
1798         for (i = 0; i < nr; i++)
1799                 iter->cycles += be[i].flags.cycles;
1800 }
1801
1802 #define CHASHSZ 127
1803 #define CHASHBITS 7
1804 #define NO_ENTRY 0xff
1805
1806 #define PERF_MAX_BRANCH_DEPTH 127
1807
1808 /* Remove loops. */
1809 static int remove_loops(struct branch_entry *l, int nr,
1810                         struct iterations *iter)
1811 {
1812         int i, j, off;
1813         unsigned char chash[CHASHSZ];
1814
1815         memset(chash, NO_ENTRY, sizeof(chash));
1816
1817         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
1818
1819         for (i = 0; i < nr; i++) {
1820                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
1821
1822                 /* no collision handling for now */
1823                 if (chash[h] == NO_ENTRY) {
1824                         chash[h] = i;
1825                 } else if (l[chash[h]].from == l[i].from) {
1826                         bool is_loop = true;
1827                         /* check if it is a real loop */
1828                         off = 0;
1829                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
1830                                 if (l[j].from != l[i + off].from) {
1831                                         is_loop = false;
1832                                         break;
1833                                 }
1834                         if (is_loop) {
1835                                 j = nr - (i + off);
1836                                 if (j > 0) {
1837                                         save_iterations(iter + i + off,
1838                                                 l + i, off);
1839
1840                                         memmove(iter + i, iter + i + off,
1841                                                 j * sizeof(*iter));
1842
1843                                         memmove(l + i, l + i + off,
1844                                                 j * sizeof(*l));
1845                                 }
1846
1847                                 nr -= off;
1848                         }
1849                 }
1850         }
1851         return nr;
1852 }
1853
1854 /*
1855  * Recolve LBR callstack chain sample
1856  * Return:
1857  * 1 on success get LBR callchain information
1858  * 0 no available LBR callchain information, should try fp
1859  * negative error code on other errors.
1860  */
1861 static int resolve_lbr_callchain_sample(struct thread *thread,
1862                                         struct callchain_cursor *cursor,
1863                                         struct perf_sample *sample,
1864                                         struct symbol **parent,
1865                                         struct addr_location *root_al,
1866                                         int max_stack)
1867 {
1868         struct ip_callchain *chain = sample->callchain;
1869         int chain_nr = min(max_stack, (int)chain->nr), i;
1870         u8 cpumode = PERF_RECORD_MISC_USER;
1871         u64 ip, branch_from = 0;
1872
1873         for (i = 0; i < chain_nr; i++) {
1874                 if (chain->ips[i] == PERF_CONTEXT_USER)
1875                         break;
1876         }
1877
1878         /* LBR only affects the user callchain */
1879         if (i != chain_nr) {
1880                 struct branch_stack *lbr_stack = sample->branch_stack;
1881                 int lbr_nr = lbr_stack->nr, j, k;
1882                 bool branch;
1883                 struct branch_flags *flags;
1884                 /*
1885                  * LBR callstack can only get user call chain.
1886                  * The mix_chain_nr is kernel call chain
1887                  * number plus LBR user call chain number.
1888                  * i is kernel call chain number,
1889                  * 1 is PERF_CONTEXT_USER,
1890                  * lbr_nr + 1 is the user call chain number.
1891                  * For details, please refer to the comments
1892                  * in callchain__printf
1893                  */
1894                 int mix_chain_nr = i + 1 + lbr_nr + 1;
1895
1896                 for (j = 0; j < mix_chain_nr; j++) {
1897                         int err;
1898                         branch = false;
1899                         flags = NULL;
1900
1901                         if (callchain_param.order == ORDER_CALLEE) {
1902                                 if (j < i + 1)
1903                                         ip = chain->ips[j];
1904                                 else if (j > i + 1) {
1905                                         k = j - i - 2;
1906                                         ip = lbr_stack->entries[k].from;
1907                                         branch = true;
1908                                         flags = &lbr_stack->entries[k].flags;
1909                                 } else {
1910                                         ip = lbr_stack->entries[0].to;
1911                                         branch = true;
1912                                         flags = &lbr_stack->entries[0].flags;
1913                                         branch_from =
1914                                                 lbr_stack->entries[0].from;
1915                                 }
1916                         } else {
1917                                 if (j < lbr_nr) {
1918                                         k = lbr_nr - j - 1;
1919                                         ip = lbr_stack->entries[k].from;
1920                                         branch = true;
1921                                         flags = &lbr_stack->entries[k].flags;
1922                                 }
1923                                 else if (j > lbr_nr)
1924                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
1925                                 else {
1926                                         ip = lbr_stack->entries[0].to;
1927                                         branch = true;
1928                                         flags = &lbr_stack->entries[0].flags;
1929                                         branch_from =
1930                                                 lbr_stack->entries[0].from;
1931                                 }
1932                         }
1933
1934                         err = add_callchain_ip(thread, cursor, parent,
1935                                                root_al, &cpumode, ip,
1936                                                branch, flags, NULL,
1937                                                branch_from);
1938                         if (err)
1939                                 return (err < 0) ? err : 0;
1940                 }
1941                 return 1;
1942         }
1943
1944         return 0;
1945 }
1946
1947 static int thread__resolve_callchain_sample(struct thread *thread,
1948                                             struct callchain_cursor *cursor,
1949                                             struct perf_evsel *evsel,
1950                                             struct perf_sample *sample,
1951                                             struct symbol **parent,
1952                                             struct addr_location *root_al,
1953                                             int max_stack)
1954 {
1955         struct branch_stack *branch = sample->branch_stack;
1956         struct ip_callchain *chain = sample->callchain;
1957         int chain_nr = 0;
1958         u8 cpumode = PERF_RECORD_MISC_USER;
1959         int i, j, err, nr_entries;
1960         int skip_idx = -1;
1961         int first_call = 0;
1962
1963         if (chain)
1964                 chain_nr = chain->nr;
1965
1966         if (perf_evsel__has_branch_callstack(evsel)) {
1967                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
1968                                                    root_al, max_stack);
1969                 if (err)
1970                         return (err < 0) ? err : 0;
1971         }
1972
1973         /*
1974          * Based on DWARF debug information, some architectures skip
1975          * a callchain entry saved by the kernel.
1976          */
1977         skip_idx = arch_skip_callchain_idx(thread, chain);
1978
1979         /*
1980          * Add branches to call stack for easier browsing. This gives
1981          * more context for a sample than just the callers.
1982          *
1983          * This uses individual histograms of paths compared to the
1984          * aggregated histograms the normal LBR mode uses.
1985          *
1986          * Limitations for now:
1987          * - No extra filters
1988          * - No annotations (should annotate somehow)
1989          */
1990
1991         if (branch && callchain_param.branch_callstack) {
1992                 int nr = min(max_stack, (int)branch->nr);
1993                 struct branch_entry be[nr];
1994                 struct iterations iter[nr];
1995
1996                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
1997                         pr_warning("corrupted branch chain. skipping...\n");
1998                         goto check_calls;
1999                 }
2000
2001                 for (i = 0; i < nr; i++) {
2002                         if (callchain_param.order == ORDER_CALLEE) {
2003                                 be[i] = branch->entries[i];
2004
2005                                 if (chain == NULL)
2006                                         continue;
2007
2008                                 /*
2009                                  * Check for overlap into the callchain.
2010                                  * The return address is one off compared to
2011                                  * the branch entry. To adjust for this
2012                                  * assume the calling instruction is not longer
2013                                  * than 8 bytes.
2014                                  */
2015                                 if (i == skip_idx ||
2016                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2017                                         first_call++;
2018                                 else if (be[i].from < chain->ips[first_call] &&
2019                                     be[i].from >= chain->ips[first_call] - 8)
2020                                         first_call++;
2021                         } else
2022                                 be[i] = branch->entries[branch->nr - i - 1];
2023                 }
2024
2025                 memset(iter, 0, sizeof(struct iterations) * nr);
2026                 nr = remove_loops(be, nr, iter);
2027
2028                 for (i = 0; i < nr; i++) {
2029                         err = add_callchain_ip(thread, cursor, parent,
2030                                                root_al,
2031                                                NULL, be[i].to,
2032                                                true, &be[i].flags,
2033                                                NULL, be[i].from);
2034
2035                         if (!err)
2036                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2037                                                        NULL, be[i].from,
2038                                                        true, &be[i].flags,
2039                                                        &iter[i], 0);
2040                         if (err == -EINVAL)
2041                                 break;
2042                         if (err)
2043                                 return err;
2044                 }
2045
2046                 if (chain_nr == 0)
2047                         return 0;
2048
2049                 chain_nr -= nr;
2050         }
2051
2052 check_calls:
2053         for (i = first_call, nr_entries = 0;
2054              i < chain_nr && nr_entries < max_stack; i++) {
2055                 u64 ip;
2056
2057                 if (callchain_param.order == ORDER_CALLEE)
2058                         j = i;
2059                 else
2060                         j = chain->nr - i - 1;
2061
2062 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2063                 if (j == skip_idx)
2064                         continue;
2065 #endif
2066                 ip = chain->ips[j];
2067
2068                 if (ip < PERF_CONTEXT_MAX)
2069                        ++nr_entries;
2070
2071                 err = add_callchain_ip(thread, cursor, parent,
2072                                        root_al, &cpumode, ip,
2073                                        false, NULL, NULL, 0);
2074
2075                 if (err)
2076                         return (err < 0) ? err : 0;
2077         }
2078
2079         return 0;
2080 }
2081
2082 static int append_inlines(struct callchain_cursor *cursor,
2083                           struct map *map, struct symbol *sym, u64 ip)
2084 {
2085         struct inline_node *inline_node;
2086         struct inline_list *ilist;
2087         u64 addr;
2088         int ret = 1;
2089
2090         if (!symbol_conf.inline_name || !map || !sym)
2091                 return ret;
2092
2093         addr = map__rip_2objdump(map, ip);
2094
2095         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2096         if (!inline_node) {
2097                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2098                 if (!inline_node)
2099                         return ret;
2100                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2101         }
2102
2103         list_for_each_entry(ilist, &inline_node->val, list) {
2104                 ret = callchain_cursor_append(cursor, ip, map,
2105                                               ilist->symbol, false,
2106                                               NULL, 0, 0, 0, ilist->srcline);
2107
2108                 if (ret != 0)
2109                         return ret;
2110         }
2111
2112         return ret;
2113 }
2114
2115 static int unwind_entry(struct unwind_entry *entry, void *arg)
2116 {
2117         struct callchain_cursor *cursor = arg;
2118         const char *srcline = NULL;
2119
2120         if (symbol_conf.hide_unresolved && entry->sym == NULL)
2121                 return 0;
2122
2123         if (append_inlines(cursor, entry->map, entry->sym, entry->ip) == 0)
2124                 return 0;
2125
2126         srcline = callchain_srcline(entry->map, entry->sym, entry->ip);
2127         return callchain_cursor_append(cursor, entry->ip,
2128                                        entry->map, entry->sym,
2129                                        false, NULL, 0, 0, 0, srcline);
2130 }
2131
2132 static int thread__resolve_callchain_unwind(struct thread *thread,
2133                                             struct callchain_cursor *cursor,
2134                                             struct perf_evsel *evsel,
2135                                             struct perf_sample *sample,
2136                                             int max_stack)
2137 {
2138         /* Can we do dwarf post unwind? */
2139         if (!((evsel->attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2140               (evsel->attr.sample_type & PERF_SAMPLE_STACK_USER)))
2141                 return 0;
2142
2143         /* Bail out if nothing was captured. */
2144         if ((!sample->user_regs.regs) ||
2145             (!sample->user_stack.size))
2146                 return 0;
2147
2148         return unwind__get_entries(unwind_entry, cursor,
2149                                    thread, sample, max_stack);
2150 }
2151
2152 int thread__resolve_callchain(struct thread *thread,
2153                               struct callchain_cursor *cursor,
2154                               struct perf_evsel *evsel,
2155                               struct perf_sample *sample,
2156                               struct symbol **parent,
2157                               struct addr_location *root_al,
2158                               int max_stack)
2159 {
2160         int ret = 0;
2161
2162         callchain_cursor_reset(cursor);
2163
2164         if (callchain_param.order == ORDER_CALLEE) {
2165                 ret = thread__resolve_callchain_sample(thread, cursor,
2166                                                        evsel, sample,
2167                                                        parent, root_al,
2168                                                        max_stack);
2169                 if (ret)
2170                         return ret;
2171                 ret = thread__resolve_callchain_unwind(thread, cursor,
2172                                                        evsel, sample,
2173                                                        max_stack);
2174         } else {
2175                 ret = thread__resolve_callchain_unwind(thread, cursor,
2176                                                        evsel, sample,
2177                                                        max_stack);
2178                 if (ret)
2179                         return ret;
2180                 ret = thread__resolve_callchain_sample(thread, cursor,
2181                                                        evsel, sample,
2182                                                        parent, root_al,
2183                                                        max_stack);
2184         }
2185
2186         return ret;
2187 }
2188
2189 int machine__for_each_thread(struct machine *machine,
2190                              int (*fn)(struct thread *thread, void *p),
2191                              void *priv)
2192 {
2193         struct threads *threads;
2194         struct rb_node *nd;
2195         struct thread *thread;
2196         int rc = 0;
2197         int i;
2198
2199         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2200                 threads = &machine->threads[i];
2201                 for (nd = rb_first(&threads->entries); nd; nd = rb_next(nd)) {
2202                         thread = rb_entry(nd, struct thread, rb_node);
2203                         rc = fn(thread, priv);
2204                         if (rc != 0)
2205                                 return rc;
2206                 }
2207
2208                 list_for_each_entry(thread, &threads->dead, node) {
2209                         rc = fn(thread, priv);
2210                         if (rc != 0)
2211                                 return rc;
2212                 }
2213         }
2214         return rc;
2215 }
2216
2217 int machines__for_each_thread(struct machines *machines,
2218                               int (*fn)(struct thread *thread, void *p),
2219                               void *priv)
2220 {
2221         struct rb_node *nd;
2222         int rc = 0;
2223
2224         rc = machine__for_each_thread(&machines->host, fn, priv);
2225         if (rc != 0)
2226                 return rc;
2227
2228         for (nd = rb_first(&machines->guests); nd; nd = rb_next(nd)) {
2229                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2230
2231                 rc = machine__for_each_thread(machine, fn, priv);
2232                 if (rc != 0)
2233                         return rc;
2234         }
2235         return rc;
2236 }
2237
2238 int __machine__synthesize_threads(struct machine *machine, struct perf_tool *tool,
2239                                   struct target *target, struct thread_map *threads,
2240                                   perf_event__handler_t process, bool data_mmap,
2241                                   unsigned int proc_map_timeout,
2242                                   unsigned int nr_threads_synthesize)
2243 {
2244         if (target__has_task(target))
2245                 return perf_event__synthesize_thread_map(tool, threads, process, machine, data_mmap, proc_map_timeout);
2246         else if (target__has_cpu(target))
2247                 return perf_event__synthesize_threads(tool, process,
2248                                                       machine, data_mmap,
2249                                                       proc_map_timeout,
2250                                                       nr_threads_synthesize);
2251         /* command specified */
2252         return 0;
2253 }
2254
2255 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2256 {
2257         if (cpu < 0 || cpu >= MAX_NR_CPUS || !machine->current_tid)
2258                 return -1;
2259
2260         return machine->current_tid[cpu];
2261 }
2262
2263 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2264                              pid_t tid)
2265 {
2266         struct thread *thread;
2267
2268         if (cpu < 0)
2269                 return -EINVAL;
2270
2271         if (!machine->current_tid) {
2272                 int i;
2273
2274                 machine->current_tid = calloc(MAX_NR_CPUS, sizeof(pid_t));
2275                 if (!machine->current_tid)
2276                         return -ENOMEM;
2277                 for (i = 0; i < MAX_NR_CPUS; i++)
2278                         machine->current_tid[i] = -1;
2279         }
2280
2281         if (cpu >= MAX_NR_CPUS) {
2282                 pr_err("Requested CPU %d too large. ", cpu);
2283                 pr_err("Consider raising MAX_NR_CPUS\n");
2284                 return -EINVAL;
2285         }
2286
2287         machine->current_tid[cpu] = tid;
2288
2289         thread = machine__findnew_thread(machine, pid, tid);
2290         if (!thread)
2291                 return -ENOMEM;
2292
2293         thread->cpu = cpu;
2294         thread__put(thread);
2295
2296         return 0;
2297 }
2298
2299 /*
2300  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2301  * normalized arch is needed.
2302  */
2303 bool machine__is(struct machine *machine, const char *arch)
2304 {
2305         return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2306 }
2307
2308 int machine__get_kernel_start(struct machine *machine)
2309 {
2310         struct map *map = machine__kernel_map(machine);
2311         int err = 0;
2312
2313         /*
2314          * The only addresses above 2^63 are kernel addresses of a 64-bit
2315          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2316          * all addresses including kernel addresses are less than 2^32.  In
2317          * that case (32-bit system), if the kernel mapping is unknown, all
2318          * addresses will be assumed to be in user space - see
2319          * machine__kernel_ip().
2320          */
2321         machine->kernel_start = 1ULL << 63;
2322         if (map) {
2323                 err = map__load(map);
2324                 if (!err)
2325                         machine->kernel_start = map->start;
2326         }
2327         return err;
2328 }
2329
2330 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2331 {
2332         return dsos__findnew(&machine->dsos, filename);
2333 }
2334
2335 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2336 {
2337         struct machine *machine = vmachine;
2338         struct map *map;
2339         struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2340
2341         if (sym == NULL)
2342                 return NULL;
2343
2344         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2345         *addrp = map->unmap_ip(map, sym->start);
2346         return sym->name;
2347 }