]> asedeno.scripts.mit.edu Git - linux.git/blob - tools/perf/util/machine.c
Merge tag 'arm-soc/for-5.6/defconfig-fixes' of https://github.com/Broadcom/stblinux...
[linux.git] / tools / perf / util / machine.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <dirent.h>
3 #include <errno.h>
4 #include <inttypes.h>
5 #include <regex.h>
6 #include <stdlib.h>
7 #include "callchain.h"
8 #include "debug.h"
9 #include "dso.h"
10 #include "env.h"
11 #include "event.h"
12 #include "evsel.h"
13 #include "hist.h"
14 #include "machine.h"
15 #include "map.h"
16 #include "map_symbol.h"
17 #include "branch.h"
18 #include "mem-events.h"
19 #include "srcline.h"
20 #include "symbol.h"
21 #include "sort.h"
22 #include "strlist.h"
23 #include "target.h"
24 #include "thread.h"
25 #include "util.h"
26 #include "vdso.h"
27 #include <stdbool.h>
28 #include <sys/types.h>
29 #include <sys/stat.h>
30 #include <unistd.h>
31 #include "unwind.h"
32 #include "linux/hash.h"
33 #include "asm/bug.h"
34 #include "bpf-event.h"
35 #include <internal/lib.h> // page_size
36
37 #include <linux/ctype.h>
38 #include <symbol/kallsyms.h>
39 #include <linux/mman.h>
40 #include <linux/string.h>
41 #include <linux/zalloc.h>
42
43 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock);
44
45 static struct dso *machine__kernel_dso(struct machine *machine)
46 {
47         return machine->vmlinux_map->dso;
48 }
49
50 static void dsos__init(struct dsos *dsos)
51 {
52         INIT_LIST_HEAD(&dsos->head);
53         dsos->root = RB_ROOT;
54         init_rwsem(&dsos->lock);
55 }
56
57 static void machine__threads_init(struct machine *machine)
58 {
59         int i;
60
61         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
62                 struct threads *threads = &machine->threads[i];
63                 threads->entries = RB_ROOT_CACHED;
64                 init_rwsem(&threads->lock);
65                 threads->nr = 0;
66                 INIT_LIST_HEAD(&threads->dead);
67                 threads->last_match = NULL;
68         }
69 }
70
71 static int machine__set_mmap_name(struct machine *machine)
72 {
73         if (machine__is_host(machine))
74                 machine->mmap_name = strdup("[kernel.kallsyms]");
75         else if (machine__is_default_guest(machine))
76                 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
77         else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
78                           machine->pid) < 0)
79                 machine->mmap_name = NULL;
80
81         return machine->mmap_name ? 0 : -ENOMEM;
82 }
83
84 int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
85 {
86         int err = -ENOMEM;
87
88         memset(machine, 0, sizeof(*machine));
89         maps__init(&machine->kmaps, machine);
90         RB_CLEAR_NODE(&machine->rb_node);
91         dsos__init(&machine->dsos);
92
93         machine__threads_init(machine);
94
95         machine->vdso_info = NULL;
96         machine->env = NULL;
97
98         machine->pid = pid;
99
100         machine->id_hdr_size = 0;
101         machine->kptr_restrict_warned = false;
102         machine->comm_exec = false;
103         machine->kernel_start = 0;
104         machine->vmlinux_map = NULL;
105
106         machine->root_dir = strdup(root_dir);
107         if (machine->root_dir == NULL)
108                 return -ENOMEM;
109
110         if (machine__set_mmap_name(machine))
111                 goto out;
112
113         if (pid != HOST_KERNEL_ID) {
114                 struct thread *thread = machine__findnew_thread(machine, -1,
115                                                                 pid);
116                 char comm[64];
117
118                 if (thread == NULL)
119                         goto out;
120
121                 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
122                 thread__set_comm(thread, comm, 0);
123                 thread__put(thread);
124         }
125
126         machine->current_tid = NULL;
127         err = 0;
128
129 out:
130         if (err) {
131                 zfree(&machine->root_dir);
132                 zfree(&machine->mmap_name);
133         }
134         return 0;
135 }
136
137 struct machine *machine__new_host(void)
138 {
139         struct machine *machine = malloc(sizeof(*machine));
140
141         if (machine != NULL) {
142                 machine__init(machine, "", HOST_KERNEL_ID);
143
144                 if (machine__create_kernel_maps(machine) < 0)
145                         goto out_delete;
146         }
147
148         return machine;
149 out_delete:
150         free(machine);
151         return NULL;
152 }
153
154 struct machine *machine__new_kallsyms(void)
155 {
156         struct machine *machine = machine__new_host();
157         /*
158          * FIXME:
159          * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
160          *    ask for not using the kcore parsing code, once this one is fixed
161          *    to create a map per module.
162          */
163         if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
164                 machine__delete(machine);
165                 machine = NULL;
166         }
167
168         return machine;
169 }
170
171 static void dsos__purge(struct dsos *dsos)
172 {
173         struct dso *pos, *n;
174
175         down_write(&dsos->lock);
176
177         list_for_each_entry_safe(pos, n, &dsos->head, node) {
178                 RB_CLEAR_NODE(&pos->rb_node);
179                 pos->root = NULL;
180                 list_del_init(&pos->node);
181                 dso__put(pos);
182         }
183
184         up_write(&dsos->lock);
185 }
186
187 static void dsos__exit(struct dsos *dsos)
188 {
189         dsos__purge(dsos);
190         exit_rwsem(&dsos->lock);
191 }
192
193 void machine__delete_threads(struct machine *machine)
194 {
195         struct rb_node *nd;
196         int i;
197
198         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
199                 struct threads *threads = &machine->threads[i];
200                 down_write(&threads->lock);
201                 nd = rb_first_cached(&threads->entries);
202                 while (nd) {
203                         struct thread *t = rb_entry(nd, struct thread, rb_node);
204
205                         nd = rb_next(nd);
206                         __machine__remove_thread(machine, t, false);
207                 }
208                 up_write(&threads->lock);
209         }
210 }
211
212 void machine__exit(struct machine *machine)
213 {
214         int i;
215
216         if (machine == NULL)
217                 return;
218
219         machine__destroy_kernel_maps(machine);
220         maps__exit(&machine->kmaps);
221         dsos__exit(&machine->dsos);
222         machine__exit_vdso(machine);
223         zfree(&machine->root_dir);
224         zfree(&machine->mmap_name);
225         zfree(&machine->current_tid);
226
227         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
228                 struct threads *threads = &machine->threads[i];
229                 struct thread *thread, *n;
230                 /*
231                  * Forget about the dead, at this point whatever threads were
232                  * left in the dead lists better have a reference count taken
233                  * by who is using them, and then, when they drop those references
234                  * and it finally hits zero, thread__put() will check and see that
235                  * its not in the dead threads list and will not try to remove it
236                  * from there, just calling thread__delete() straight away.
237                  */
238                 list_for_each_entry_safe(thread, n, &threads->dead, node)
239                         list_del_init(&thread->node);
240
241                 exit_rwsem(&threads->lock);
242         }
243 }
244
245 void machine__delete(struct machine *machine)
246 {
247         if (machine) {
248                 machine__exit(machine);
249                 free(machine);
250         }
251 }
252
253 void machines__init(struct machines *machines)
254 {
255         machine__init(&machines->host, "", HOST_KERNEL_ID);
256         machines->guests = RB_ROOT_CACHED;
257 }
258
259 void machines__exit(struct machines *machines)
260 {
261         machine__exit(&machines->host);
262         /* XXX exit guest */
263 }
264
265 struct machine *machines__add(struct machines *machines, pid_t pid,
266                               const char *root_dir)
267 {
268         struct rb_node **p = &machines->guests.rb_root.rb_node;
269         struct rb_node *parent = NULL;
270         struct machine *pos, *machine = malloc(sizeof(*machine));
271         bool leftmost = true;
272
273         if (machine == NULL)
274                 return NULL;
275
276         if (machine__init(machine, root_dir, pid) != 0) {
277                 free(machine);
278                 return NULL;
279         }
280
281         while (*p != NULL) {
282                 parent = *p;
283                 pos = rb_entry(parent, struct machine, rb_node);
284                 if (pid < pos->pid)
285                         p = &(*p)->rb_left;
286                 else {
287                         p = &(*p)->rb_right;
288                         leftmost = false;
289                 }
290         }
291
292         rb_link_node(&machine->rb_node, parent, p);
293         rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
294
295         return machine;
296 }
297
298 void machines__set_comm_exec(struct machines *machines, bool comm_exec)
299 {
300         struct rb_node *nd;
301
302         machines->host.comm_exec = comm_exec;
303
304         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
305                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
306
307                 machine->comm_exec = comm_exec;
308         }
309 }
310
311 struct machine *machines__find(struct machines *machines, pid_t pid)
312 {
313         struct rb_node **p = &machines->guests.rb_root.rb_node;
314         struct rb_node *parent = NULL;
315         struct machine *machine;
316         struct machine *default_machine = NULL;
317
318         if (pid == HOST_KERNEL_ID)
319                 return &machines->host;
320
321         while (*p != NULL) {
322                 parent = *p;
323                 machine = rb_entry(parent, struct machine, rb_node);
324                 if (pid < machine->pid)
325                         p = &(*p)->rb_left;
326                 else if (pid > machine->pid)
327                         p = &(*p)->rb_right;
328                 else
329                         return machine;
330                 if (!machine->pid)
331                         default_machine = machine;
332         }
333
334         return default_machine;
335 }
336
337 struct machine *machines__findnew(struct machines *machines, pid_t pid)
338 {
339         char path[PATH_MAX];
340         const char *root_dir = "";
341         struct machine *machine = machines__find(machines, pid);
342
343         if (machine && (machine->pid == pid))
344                 goto out;
345
346         if ((pid != HOST_KERNEL_ID) &&
347             (pid != DEFAULT_GUEST_KERNEL_ID) &&
348             (symbol_conf.guestmount)) {
349                 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
350                 if (access(path, R_OK)) {
351                         static struct strlist *seen;
352
353                         if (!seen)
354                                 seen = strlist__new(NULL, NULL);
355
356                         if (!strlist__has_entry(seen, path)) {
357                                 pr_err("Can't access file %s\n", path);
358                                 strlist__add(seen, path);
359                         }
360                         machine = NULL;
361                         goto out;
362                 }
363                 root_dir = path;
364         }
365
366         machine = machines__add(machines, pid, root_dir);
367 out:
368         return machine;
369 }
370
371 void machines__process_guests(struct machines *machines,
372                               machine__process_t process, void *data)
373 {
374         struct rb_node *nd;
375
376         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
377                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
378                 process(pos, data);
379         }
380 }
381
382 void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
383 {
384         struct rb_node *node;
385         struct machine *machine;
386
387         machines->host.id_hdr_size = id_hdr_size;
388
389         for (node = rb_first_cached(&machines->guests); node;
390              node = rb_next(node)) {
391                 machine = rb_entry(node, struct machine, rb_node);
392                 machine->id_hdr_size = id_hdr_size;
393         }
394
395         return;
396 }
397
398 static void machine__update_thread_pid(struct machine *machine,
399                                        struct thread *th, pid_t pid)
400 {
401         struct thread *leader;
402
403         if (pid == th->pid_ || pid == -1 || th->pid_ != -1)
404                 return;
405
406         th->pid_ = pid;
407
408         if (th->pid_ == th->tid)
409                 return;
410
411         leader = __machine__findnew_thread(machine, th->pid_, th->pid_);
412         if (!leader)
413                 goto out_err;
414
415         if (!leader->maps)
416                 leader->maps = maps__new(machine);
417
418         if (!leader->maps)
419                 goto out_err;
420
421         if (th->maps == leader->maps)
422                 return;
423
424         if (th->maps) {
425                 /*
426                  * Maps are created from MMAP events which provide the pid and
427                  * tid.  Consequently there never should be any maps on a thread
428                  * with an unknown pid.  Just print an error if there are.
429                  */
430                 if (!maps__empty(th->maps))
431                         pr_err("Discarding thread maps for %d:%d\n",
432                                th->pid_, th->tid);
433                 maps__put(th->maps);
434         }
435
436         th->maps = maps__get(leader->maps);
437 out_put:
438         thread__put(leader);
439         return;
440 out_err:
441         pr_err("Failed to join map groups for %d:%d\n", th->pid_, th->tid);
442         goto out_put;
443 }
444
445 /*
446  * Front-end cache - TID lookups come in blocks,
447  * so most of the time we dont have to look up
448  * the full rbtree:
449  */
450 static struct thread*
451 __threads__get_last_match(struct threads *threads, struct machine *machine,
452                           int pid, int tid)
453 {
454         struct thread *th;
455
456         th = threads->last_match;
457         if (th != NULL) {
458                 if (th->tid == tid) {
459                         machine__update_thread_pid(machine, th, pid);
460                         return thread__get(th);
461                 }
462
463                 threads->last_match = NULL;
464         }
465
466         return NULL;
467 }
468
469 static struct thread*
470 threads__get_last_match(struct threads *threads, struct machine *machine,
471                         int pid, int tid)
472 {
473         struct thread *th = NULL;
474
475         if (perf_singlethreaded)
476                 th = __threads__get_last_match(threads, machine, pid, tid);
477
478         return th;
479 }
480
481 static void
482 __threads__set_last_match(struct threads *threads, struct thread *th)
483 {
484         threads->last_match = th;
485 }
486
487 static void
488 threads__set_last_match(struct threads *threads, struct thread *th)
489 {
490         if (perf_singlethreaded)
491                 __threads__set_last_match(threads, th);
492 }
493
494 /*
495  * Caller must eventually drop thread->refcnt returned with a successful
496  * lookup/new thread inserted.
497  */
498 static struct thread *____machine__findnew_thread(struct machine *machine,
499                                                   struct threads *threads,
500                                                   pid_t pid, pid_t tid,
501                                                   bool create)
502 {
503         struct rb_node **p = &threads->entries.rb_root.rb_node;
504         struct rb_node *parent = NULL;
505         struct thread *th;
506         bool leftmost = true;
507
508         th = threads__get_last_match(threads, machine, pid, tid);
509         if (th)
510                 return th;
511
512         while (*p != NULL) {
513                 parent = *p;
514                 th = rb_entry(parent, struct thread, rb_node);
515
516                 if (th->tid == tid) {
517                         threads__set_last_match(threads, th);
518                         machine__update_thread_pid(machine, th, pid);
519                         return thread__get(th);
520                 }
521
522                 if (tid < th->tid)
523                         p = &(*p)->rb_left;
524                 else {
525                         p = &(*p)->rb_right;
526                         leftmost = false;
527                 }
528         }
529
530         if (!create)
531                 return NULL;
532
533         th = thread__new(pid, tid);
534         if (th != NULL) {
535                 rb_link_node(&th->rb_node, parent, p);
536                 rb_insert_color_cached(&th->rb_node, &threads->entries, leftmost);
537
538                 /*
539                  * We have to initialize maps separately after rb tree is updated.
540                  *
541                  * The reason is that we call machine__findnew_thread
542                  * within thread__init_maps to find the thread
543                  * leader and that would screwed the rb tree.
544                  */
545                 if (thread__init_maps(th, machine)) {
546                         rb_erase_cached(&th->rb_node, &threads->entries);
547                         RB_CLEAR_NODE(&th->rb_node);
548                         thread__put(th);
549                         return NULL;
550                 }
551                 /*
552                  * It is now in the rbtree, get a ref
553                  */
554                 thread__get(th);
555                 threads__set_last_match(threads, th);
556                 ++threads->nr;
557         }
558
559         return th;
560 }
561
562 struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
563 {
564         return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
565 }
566
567 struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
568                                        pid_t tid)
569 {
570         struct threads *threads = machine__threads(machine, tid);
571         struct thread *th;
572
573         down_write(&threads->lock);
574         th = __machine__findnew_thread(machine, pid, tid);
575         up_write(&threads->lock);
576         return th;
577 }
578
579 struct thread *machine__find_thread(struct machine *machine, pid_t pid,
580                                     pid_t tid)
581 {
582         struct threads *threads = machine__threads(machine, tid);
583         struct thread *th;
584
585         down_read(&threads->lock);
586         th =  ____machine__findnew_thread(machine, threads, pid, tid, false);
587         up_read(&threads->lock);
588         return th;
589 }
590
591 struct comm *machine__thread_exec_comm(struct machine *machine,
592                                        struct thread *thread)
593 {
594         if (machine->comm_exec)
595                 return thread__exec_comm(thread);
596         else
597                 return thread__comm(thread);
598 }
599
600 int machine__process_comm_event(struct machine *machine, union perf_event *event,
601                                 struct perf_sample *sample)
602 {
603         struct thread *thread = machine__findnew_thread(machine,
604                                                         event->comm.pid,
605                                                         event->comm.tid);
606         bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
607         int err = 0;
608
609         if (exec)
610                 machine->comm_exec = true;
611
612         if (dump_trace)
613                 perf_event__fprintf_comm(event, stdout);
614
615         if (thread == NULL ||
616             __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
617                 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
618                 err = -1;
619         }
620
621         thread__put(thread);
622
623         return err;
624 }
625
626 int machine__process_namespaces_event(struct machine *machine __maybe_unused,
627                                       union perf_event *event,
628                                       struct perf_sample *sample __maybe_unused)
629 {
630         struct thread *thread = machine__findnew_thread(machine,
631                                                         event->namespaces.pid,
632                                                         event->namespaces.tid);
633         int err = 0;
634
635         WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
636                   "\nWARNING: kernel seems to support more namespaces than perf"
637                   " tool.\nTry updating the perf tool..\n\n");
638
639         WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
640                   "\nWARNING: perf tool seems to support more namespaces than"
641                   " the kernel.\nTry updating the kernel..\n\n");
642
643         if (dump_trace)
644                 perf_event__fprintf_namespaces(event, stdout);
645
646         if (thread == NULL ||
647             thread__set_namespaces(thread, sample->time, &event->namespaces)) {
648                 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
649                 err = -1;
650         }
651
652         thread__put(thread);
653
654         return err;
655 }
656
657 int machine__process_lost_event(struct machine *machine __maybe_unused,
658                                 union perf_event *event, struct perf_sample *sample __maybe_unused)
659 {
660         dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
661                     event->lost.id, event->lost.lost);
662         return 0;
663 }
664
665 int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
666                                         union perf_event *event, struct perf_sample *sample)
667 {
668         dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
669                     sample->id, event->lost_samples.lost);
670         return 0;
671 }
672
673 static struct dso *machine__findnew_module_dso(struct machine *machine,
674                                                struct kmod_path *m,
675                                                const char *filename)
676 {
677         struct dso *dso;
678
679         down_write(&machine->dsos.lock);
680
681         dso = __dsos__find(&machine->dsos, m->name, true);
682         if (!dso) {
683                 dso = __dsos__addnew(&machine->dsos, m->name);
684                 if (dso == NULL)
685                         goto out_unlock;
686
687                 dso__set_module_info(dso, m, machine);
688                 dso__set_long_name(dso, strdup(filename), true);
689                 dso->kernel = DSO_TYPE_KERNEL;
690         }
691
692         dso__get(dso);
693 out_unlock:
694         up_write(&machine->dsos.lock);
695         return dso;
696 }
697
698 int machine__process_aux_event(struct machine *machine __maybe_unused,
699                                union perf_event *event)
700 {
701         if (dump_trace)
702                 perf_event__fprintf_aux(event, stdout);
703         return 0;
704 }
705
706 int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
707                                         union perf_event *event)
708 {
709         if (dump_trace)
710                 perf_event__fprintf_itrace_start(event, stdout);
711         return 0;
712 }
713
714 int machine__process_switch_event(struct machine *machine __maybe_unused,
715                                   union perf_event *event)
716 {
717         if (dump_trace)
718                 perf_event__fprintf_switch(event, stdout);
719         return 0;
720 }
721
722 static int machine__process_ksymbol_register(struct machine *machine,
723                                              union perf_event *event,
724                                              struct perf_sample *sample __maybe_unused)
725 {
726         struct symbol *sym;
727         struct map *map = maps__find(&machine->kmaps, event->ksymbol.addr);
728
729         if (!map) {
730                 struct dso *dso = dso__new(event->ksymbol.name);
731
732                 if (dso) {
733                         dso->kernel = DSO_TYPE_KERNEL;
734                         map = map__new2(0, dso);
735                 }
736
737                 if (!dso || !map) {
738                         dso__put(dso);
739                         return -ENOMEM;
740                 }
741
742                 map->start = event->ksymbol.addr;
743                 map->end = map->start + event->ksymbol.len;
744                 maps__insert(&machine->kmaps, map);
745         }
746
747         sym = symbol__new(map->map_ip(map, map->start),
748                           event->ksymbol.len,
749                           0, 0, event->ksymbol.name);
750         if (!sym)
751                 return -ENOMEM;
752         dso__insert_symbol(map->dso, sym);
753         return 0;
754 }
755
756 static int machine__process_ksymbol_unregister(struct machine *machine,
757                                                union perf_event *event,
758                                                struct perf_sample *sample __maybe_unused)
759 {
760         struct map *map;
761
762         map = maps__find(&machine->kmaps, event->ksymbol.addr);
763         if (map)
764                 maps__remove(&machine->kmaps, map);
765
766         return 0;
767 }
768
769 int machine__process_ksymbol(struct machine *machine __maybe_unused,
770                              union perf_event *event,
771                              struct perf_sample *sample)
772 {
773         if (dump_trace)
774                 perf_event__fprintf_ksymbol(event, stdout);
775
776         if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
777                 return machine__process_ksymbol_unregister(machine, event,
778                                                            sample);
779         return machine__process_ksymbol_register(machine, event, sample);
780 }
781
782 static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
783                                               const char *filename)
784 {
785         struct map *map = NULL;
786         struct kmod_path m;
787         struct dso *dso;
788
789         if (kmod_path__parse_name(&m, filename))
790                 return NULL;
791
792         dso = machine__findnew_module_dso(machine, &m, filename);
793         if (dso == NULL)
794                 goto out;
795
796         map = map__new2(start, dso);
797         if (map == NULL)
798                 goto out;
799
800         maps__insert(&machine->kmaps, map);
801
802         /* Put the map here because maps__insert alread got it */
803         map__put(map);
804 out:
805         /* put the dso here, corresponding to  machine__findnew_module_dso */
806         dso__put(dso);
807         zfree(&m.name);
808         return map;
809 }
810
811 size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
812 {
813         struct rb_node *nd;
814         size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
815
816         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
817                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
818                 ret += __dsos__fprintf(&pos->dsos.head, fp);
819         }
820
821         return ret;
822 }
823
824 size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
825                                      bool (skip)(struct dso *dso, int parm), int parm)
826 {
827         return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
828 }
829
830 size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
831                                      bool (skip)(struct dso *dso, int parm), int parm)
832 {
833         struct rb_node *nd;
834         size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
835
836         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
837                 struct machine *pos = rb_entry(nd, struct machine, rb_node);
838                 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
839         }
840         return ret;
841 }
842
843 size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
844 {
845         int i;
846         size_t printed = 0;
847         struct dso *kdso = machine__kernel_dso(machine);
848
849         if (kdso->has_build_id) {
850                 char filename[PATH_MAX];
851                 if (dso__build_id_filename(kdso, filename, sizeof(filename),
852                                            false))
853                         printed += fprintf(fp, "[0] %s\n", filename);
854         }
855
856         for (i = 0; i < vmlinux_path__nr_entries; ++i)
857                 printed += fprintf(fp, "[%d] %s\n",
858                                    i + kdso->has_build_id, vmlinux_path[i]);
859
860         return printed;
861 }
862
863 size_t machine__fprintf(struct machine *machine, FILE *fp)
864 {
865         struct rb_node *nd;
866         size_t ret;
867         int i;
868
869         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
870                 struct threads *threads = &machine->threads[i];
871
872                 down_read(&threads->lock);
873
874                 ret = fprintf(fp, "Threads: %u\n", threads->nr);
875
876                 for (nd = rb_first_cached(&threads->entries); nd;
877                      nd = rb_next(nd)) {
878                         struct thread *pos = rb_entry(nd, struct thread, rb_node);
879
880                         ret += thread__fprintf(pos, fp);
881                 }
882
883                 up_read(&threads->lock);
884         }
885         return ret;
886 }
887
888 static struct dso *machine__get_kernel(struct machine *machine)
889 {
890         const char *vmlinux_name = machine->mmap_name;
891         struct dso *kernel;
892
893         if (machine__is_host(machine)) {
894                 if (symbol_conf.vmlinux_name)
895                         vmlinux_name = symbol_conf.vmlinux_name;
896
897                 kernel = machine__findnew_kernel(machine, vmlinux_name,
898                                                  "[kernel]", DSO_TYPE_KERNEL);
899         } else {
900                 if (symbol_conf.default_guest_vmlinux_name)
901                         vmlinux_name = symbol_conf.default_guest_vmlinux_name;
902
903                 kernel = machine__findnew_kernel(machine, vmlinux_name,
904                                                  "[guest.kernel]",
905                                                  DSO_TYPE_GUEST_KERNEL);
906         }
907
908         if (kernel != NULL && (!kernel->has_build_id))
909                 dso__read_running_kernel_build_id(kernel, machine);
910
911         return kernel;
912 }
913
914 struct process_args {
915         u64 start;
916 };
917
918 void machine__get_kallsyms_filename(struct machine *machine, char *buf,
919                                     size_t bufsz)
920 {
921         if (machine__is_default_guest(machine))
922                 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
923         else
924                 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
925 }
926
927 const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
928
929 /* Figure out the start address of kernel map from /proc/kallsyms.
930  * Returns the name of the start symbol in *symbol_name. Pass in NULL as
931  * symbol_name if it's not that important.
932  */
933 static int machine__get_running_kernel_start(struct machine *machine,
934                                              const char **symbol_name,
935                                              u64 *start, u64 *end)
936 {
937         char filename[PATH_MAX];
938         int i, err = -1;
939         const char *name;
940         u64 addr = 0;
941
942         machine__get_kallsyms_filename(machine, filename, PATH_MAX);
943
944         if (symbol__restricted_filename(filename, "/proc/kallsyms"))
945                 return 0;
946
947         for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
948                 err = kallsyms__get_function_start(filename, name, &addr);
949                 if (!err)
950                         break;
951         }
952
953         if (err)
954                 return -1;
955
956         if (symbol_name)
957                 *symbol_name = name;
958
959         *start = addr;
960
961         err = kallsyms__get_function_start(filename, "_etext", &addr);
962         if (!err)
963                 *end = addr;
964
965         return 0;
966 }
967
968 int machine__create_extra_kernel_map(struct machine *machine,
969                                      struct dso *kernel,
970                                      struct extra_kernel_map *xm)
971 {
972         struct kmap *kmap;
973         struct map *map;
974
975         map = map__new2(xm->start, kernel);
976         if (!map)
977                 return -1;
978
979         map->end   = xm->end;
980         map->pgoff = xm->pgoff;
981
982         kmap = map__kmap(map);
983
984         strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
985
986         maps__insert(&machine->kmaps, map);
987
988         pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
989                   kmap->name, map->start, map->end);
990
991         map__put(map);
992
993         return 0;
994 }
995
996 static u64 find_entry_trampoline(struct dso *dso)
997 {
998         /* Duplicates are removed so lookup all aliases */
999         const char *syms[] = {
1000                 "_entry_trampoline",
1001                 "__entry_trampoline_start",
1002                 "entry_SYSCALL_64_trampoline",
1003         };
1004         struct symbol *sym = dso__first_symbol(dso);
1005         unsigned int i;
1006
1007         for (; sym; sym = dso__next_symbol(sym)) {
1008                 if (sym->binding != STB_GLOBAL)
1009                         continue;
1010                 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1011                         if (!strcmp(sym->name, syms[i]))
1012                                 return sym->start;
1013                 }
1014         }
1015
1016         return 0;
1017 }
1018
1019 /*
1020  * These values can be used for kernels that do not have symbols for the entry
1021  * trampolines in kallsyms.
1022  */
1023 #define X86_64_CPU_ENTRY_AREA_PER_CPU   0xfffffe0000000000ULL
1024 #define X86_64_CPU_ENTRY_AREA_SIZE      0x2c000
1025 #define X86_64_ENTRY_TRAMPOLINE         0x6000
1026
1027 /* Map x86_64 PTI entry trampolines */
1028 int machine__map_x86_64_entry_trampolines(struct machine *machine,
1029                                           struct dso *kernel)
1030 {
1031         struct maps *kmaps = &machine->kmaps;
1032         int nr_cpus_avail, cpu;
1033         bool found = false;
1034         struct map *map;
1035         u64 pgoff;
1036
1037         /*
1038          * In the vmlinux case, pgoff is a virtual address which must now be
1039          * mapped to a vmlinux offset.
1040          */
1041         maps__for_each_entry(kmaps, map) {
1042                 struct kmap *kmap = __map__kmap(map);
1043                 struct map *dest_map;
1044
1045                 if (!kmap || !is_entry_trampoline(kmap->name))
1046                         continue;
1047
1048                 dest_map = maps__find(kmaps, map->pgoff);
1049                 if (dest_map != map)
1050                         map->pgoff = dest_map->map_ip(dest_map, map->pgoff);
1051                 found = true;
1052         }
1053         if (found || machine->trampolines_mapped)
1054                 return 0;
1055
1056         pgoff = find_entry_trampoline(kernel);
1057         if (!pgoff)
1058                 return 0;
1059
1060         nr_cpus_avail = machine__nr_cpus_avail(machine);
1061
1062         /* Add a 1 page map for each CPU's entry trampoline */
1063         for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1064                 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1065                          cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1066                          X86_64_ENTRY_TRAMPOLINE;
1067                 struct extra_kernel_map xm = {
1068                         .start = va,
1069                         .end   = va + page_size,
1070                         .pgoff = pgoff,
1071                 };
1072
1073                 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1074
1075                 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1076                         return -1;
1077         }
1078
1079         machine->trampolines_mapped = nr_cpus_avail;
1080
1081         return 0;
1082 }
1083
1084 int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1085                                              struct dso *kernel __maybe_unused)
1086 {
1087         return 0;
1088 }
1089
1090 static int
1091 __machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1092 {
1093         /* In case of renewal the kernel map, destroy previous one */
1094         machine__destroy_kernel_maps(machine);
1095
1096         machine->vmlinux_map = map__new2(0, kernel);
1097         if (machine->vmlinux_map == NULL)
1098                 return -1;
1099
1100         machine->vmlinux_map->map_ip = machine->vmlinux_map->unmap_ip = identity__map_ip;
1101         maps__insert(&machine->kmaps, machine->vmlinux_map);
1102         return 0;
1103 }
1104
1105 void machine__destroy_kernel_maps(struct machine *machine)
1106 {
1107         struct kmap *kmap;
1108         struct map *map = machine__kernel_map(machine);
1109
1110         if (map == NULL)
1111                 return;
1112
1113         kmap = map__kmap(map);
1114         maps__remove(&machine->kmaps, map);
1115         if (kmap && kmap->ref_reloc_sym) {
1116                 zfree((char **)&kmap->ref_reloc_sym->name);
1117                 zfree(&kmap->ref_reloc_sym);
1118         }
1119
1120         map__zput(machine->vmlinux_map);
1121 }
1122
1123 int machines__create_guest_kernel_maps(struct machines *machines)
1124 {
1125         int ret = 0;
1126         struct dirent **namelist = NULL;
1127         int i, items = 0;
1128         char path[PATH_MAX];
1129         pid_t pid;
1130         char *endp;
1131
1132         if (symbol_conf.default_guest_vmlinux_name ||
1133             symbol_conf.default_guest_modules ||
1134             symbol_conf.default_guest_kallsyms) {
1135                 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1136         }
1137
1138         if (symbol_conf.guestmount) {
1139                 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1140                 if (items <= 0)
1141                         return -ENOENT;
1142                 for (i = 0; i < items; i++) {
1143                         if (!isdigit(namelist[i]->d_name[0])) {
1144                                 /* Filter out . and .. */
1145                                 continue;
1146                         }
1147                         pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1148                         if ((*endp != '\0') ||
1149                             (endp == namelist[i]->d_name) ||
1150                             (errno == ERANGE)) {
1151                                 pr_debug("invalid directory (%s). Skipping.\n",
1152                                          namelist[i]->d_name);
1153                                 continue;
1154                         }
1155                         sprintf(path, "%s/%s/proc/kallsyms",
1156                                 symbol_conf.guestmount,
1157                                 namelist[i]->d_name);
1158                         ret = access(path, R_OK);
1159                         if (ret) {
1160                                 pr_debug("Can't access file %s\n", path);
1161                                 goto failure;
1162                         }
1163                         machines__create_kernel_maps(machines, pid);
1164                 }
1165 failure:
1166                 free(namelist);
1167         }
1168
1169         return ret;
1170 }
1171
1172 void machines__destroy_kernel_maps(struct machines *machines)
1173 {
1174         struct rb_node *next = rb_first_cached(&machines->guests);
1175
1176         machine__destroy_kernel_maps(&machines->host);
1177
1178         while (next) {
1179                 struct machine *pos = rb_entry(next, struct machine, rb_node);
1180
1181                 next = rb_next(&pos->rb_node);
1182                 rb_erase_cached(&pos->rb_node, &machines->guests);
1183                 machine__delete(pos);
1184         }
1185 }
1186
1187 int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1188 {
1189         struct machine *machine = machines__findnew(machines, pid);
1190
1191         if (machine == NULL)
1192                 return -1;
1193
1194         return machine__create_kernel_maps(machine);
1195 }
1196
1197 int machine__load_kallsyms(struct machine *machine, const char *filename)
1198 {
1199         struct map *map = machine__kernel_map(machine);
1200         int ret = __dso__load_kallsyms(map->dso, filename, map, true);
1201
1202         if (ret > 0) {
1203                 dso__set_loaded(map->dso);
1204                 /*
1205                  * Since /proc/kallsyms will have multiple sessions for the
1206                  * kernel, with modules between them, fixup the end of all
1207                  * sections.
1208                  */
1209                 maps__fixup_end(&machine->kmaps);
1210         }
1211
1212         return ret;
1213 }
1214
1215 int machine__load_vmlinux_path(struct machine *machine)
1216 {
1217         struct map *map = machine__kernel_map(machine);
1218         int ret = dso__load_vmlinux_path(map->dso, map);
1219
1220         if (ret > 0)
1221                 dso__set_loaded(map->dso);
1222
1223         return ret;
1224 }
1225
1226 static char *get_kernel_version(const char *root_dir)
1227 {
1228         char version[PATH_MAX];
1229         FILE *file;
1230         char *name, *tmp;
1231         const char *prefix = "Linux version ";
1232
1233         sprintf(version, "%s/proc/version", root_dir);
1234         file = fopen(version, "r");
1235         if (!file)
1236                 return NULL;
1237
1238         tmp = fgets(version, sizeof(version), file);
1239         fclose(file);
1240         if (!tmp)
1241                 return NULL;
1242
1243         name = strstr(version, prefix);
1244         if (!name)
1245                 return NULL;
1246         name += strlen(prefix);
1247         tmp = strchr(name, ' ');
1248         if (tmp)
1249                 *tmp = '\0';
1250
1251         return strdup(name);
1252 }
1253
1254 static bool is_kmod_dso(struct dso *dso)
1255 {
1256         return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1257                dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1258 }
1259
1260 static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1261 {
1262         char *long_name;
1263         struct map *map = maps__find_by_name(maps, m->name);
1264
1265         if (map == NULL)
1266                 return 0;
1267
1268         long_name = strdup(path);
1269         if (long_name == NULL)
1270                 return -ENOMEM;
1271
1272         dso__set_long_name(map->dso, long_name, true);
1273         dso__kernel_module_get_build_id(map->dso, "");
1274
1275         /*
1276          * Full name could reveal us kmod compression, so
1277          * we need to update the symtab_type if needed.
1278          */
1279         if (m->comp && is_kmod_dso(map->dso)) {
1280                 map->dso->symtab_type++;
1281                 map->dso->comp = m->comp;
1282         }
1283
1284         return 0;
1285 }
1286
1287 static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1288 {
1289         struct dirent *dent;
1290         DIR *dir = opendir(dir_name);
1291         int ret = 0;
1292
1293         if (!dir) {
1294                 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1295                 return -1;
1296         }
1297
1298         while ((dent = readdir(dir)) != NULL) {
1299                 char path[PATH_MAX];
1300                 struct stat st;
1301
1302                 /*sshfs might return bad dent->d_type, so we have to stat*/
1303                 snprintf(path, sizeof(path), "%s/%s", dir_name, dent->d_name);
1304                 if (stat(path, &st))
1305                         continue;
1306
1307                 if (S_ISDIR(st.st_mode)) {
1308                         if (!strcmp(dent->d_name, ".") ||
1309                             !strcmp(dent->d_name, ".."))
1310                                 continue;
1311
1312                         /* Do not follow top-level source and build symlinks */
1313                         if (depth == 0) {
1314                                 if (!strcmp(dent->d_name, "source") ||
1315                                     !strcmp(dent->d_name, "build"))
1316                                         continue;
1317                         }
1318
1319                         ret = maps__set_modules_path_dir(maps, path, depth + 1);
1320                         if (ret < 0)
1321                                 goto out;
1322                 } else {
1323                         struct kmod_path m;
1324
1325                         ret = kmod_path__parse_name(&m, dent->d_name);
1326                         if (ret)
1327                                 goto out;
1328
1329                         if (m.kmod)
1330                                 ret = maps__set_module_path(maps, path, &m);
1331
1332                         zfree(&m.name);
1333
1334                         if (ret)
1335                                 goto out;
1336                 }
1337         }
1338
1339 out:
1340         closedir(dir);
1341         return ret;
1342 }
1343
1344 static int machine__set_modules_path(struct machine *machine)
1345 {
1346         char *version;
1347         char modules_path[PATH_MAX];
1348
1349         version = get_kernel_version(machine->root_dir);
1350         if (!version)
1351                 return -1;
1352
1353         snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1354                  machine->root_dir, version);
1355         free(version);
1356
1357         return maps__set_modules_path_dir(&machine->kmaps, modules_path, 0);
1358 }
1359 int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1360                                 u64 *size __maybe_unused,
1361                                 const char *name __maybe_unused)
1362 {
1363         return 0;
1364 }
1365
1366 static int machine__create_module(void *arg, const char *name, u64 start,
1367                                   u64 size)
1368 {
1369         struct machine *machine = arg;
1370         struct map *map;
1371
1372         if (arch__fix_module_text_start(&start, &size, name) < 0)
1373                 return -1;
1374
1375         map = machine__addnew_module_map(machine, start, name);
1376         if (map == NULL)
1377                 return -1;
1378         map->end = start + size;
1379
1380         dso__kernel_module_get_build_id(map->dso, machine->root_dir);
1381
1382         return 0;
1383 }
1384
1385 static int machine__create_modules(struct machine *machine)
1386 {
1387         const char *modules;
1388         char path[PATH_MAX];
1389
1390         if (machine__is_default_guest(machine)) {
1391                 modules = symbol_conf.default_guest_modules;
1392         } else {
1393                 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1394                 modules = path;
1395         }
1396
1397         if (symbol__restricted_filename(modules, "/proc/modules"))
1398                 return -1;
1399
1400         if (modules__parse(modules, machine, machine__create_module))
1401                 return -1;
1402
1403         if (!machine__set_modules_path(machine))
1404                 return 0;
1405
1406         pr_debug("Problems setting modules path maps, continuing anyway...\n");
1407
1408         return 0;
1409 }
1410
1411 static void machine__set_kernel_mmap(struct machine *machine,
1412                                      u64 start, u64 end)
1413 {
1414         machine->vmlinux_map->start = start;
1415         machine->vmlinux_map->end   = end;
1416         /*
1417          * Be a bit paranoid here, some perf.data file came with
1418          * a zero sized synthesized MMAP event for the kernel.
1419          */
1420         if (start == 0 && end == 0)
1421                 machine->vmlinux_map->end = ~0ULL;
1422 }
1423
1424 static void machine__update_kernel_mmap(struct machine *machine,
1425                                      u64 start, u64 end)
1426 {
1427         struct map *map = machine__kernel_map(machine);
1428
1429         map__get(map);
1430         maps__remove(&machine->kmaps, map);
1431
1432         machine__set_kernel_mmap(machine, start, end);
1433
1434         maps__insert(&machine->kmaps, map);
1435         map__put(map);
1436 }
1437
1438 int machine__create_kernel_maps(struct machine *machine)
1439 {
1440         struct dso *kernel = machine__get_kernel(machine);
1441         const char *name = NULL;
1442         struct map *map;
1443         u64 start = 0, end = ~0ULL;
1444         int ret;
1445
1446         if (kernel == NULL)
1447                 return -1;
1448
1449         ret = __machine__create_kernel_maps(machine, kernel);
1450         if (ret < 0)
1451                 goto out_put;
1452
1453         if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1454                 if (machine__is_host(machine))
1455                         pr_debug("Problems creating module maps, "
1456                                  "continuing anyway...\n");
1457                 else
1458                         pr_debug("Problems creating module maps for guest %d, "
1459                                  "continuing anyway...\n", machine->pid);
1460         }
1461
1462         if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1463                 if (name &&
1464                     map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1465                         machine__destroy_kernel_maps(machine);
1466                         ret = -1;
1467                         goto out_put;
1468                 }
1469
1470                 /*
1471                  * we have a real start address now, so re-order the kmaps
1472                  * assume it's the last in the kmaps
1473                  */
1474                 machine__update_kernel_mmap(machine, start, end);
1475         }
1476
1477         if (machine__create_extra_kernel_maps(machine, kernel))
1478                 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1479
1480         if (end == ~0ULL) {
1481                 /* update end address of the kernel map using adjacent module address */
1482                 map = map__next(machine__kernel_map(machine));
1483                 if (map)
1484                         machine__set_kernel_mmap(machine, start, map->start);
1485         }
1486
1487 out_put:
1488         dso__put(kernel);
1489         return ret;
1490 }
1491
1492 static bool machine__uses_kcore(struct machine *machine)
1493 {
1494         struct dso *dso;
1495
1496         list_for_each_entry(dso, &machine->dsos.head, node) {
1497                 if (dso__is_kcore(dso))
1498                         return true;
1499         }
1500
1501         return false;
1502 }
1503
1504 static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1505                                              union perf_event *event)
1506 {
1507         return machine__is(machine, "x86_64") &&
1508                is_entry_trampoline(event->mmap.filename);
1509 }
1510
1511 static int machine__process_extra_kernel_map(struct machine *machine,
1512                                              union perf_event *event)
1513 {
1514         struct dso *kernel = machine__kernel_dso(machine);
1515         struct extra_kernel_map xm = {
1516                 .start = event->mmap.start,
1517                 .end   = event->mmap.start + event->mmap.len,
1518                 .pgoff = event->mmap.pgoff,
1519         };
1520
1521         if (kernel == NULL)
1522                 return -1;
1523
1524         strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
1525
1526         return machine__create_extra_kernel_map(machine, kernel, &xm);
1527 }
1528
1529 static int machine__process_kernel_mmap_event(struct machine *machine,
1530                                               union perf_event *event)
1531 {
1532         struct map *map;
1533         enum dso_kernel_type kernel_type;
1534         bool is_kernel_mmap;
1535
1536         /* If we have maps from kcore then we do not need or want any others */
1537         if (machine__uses_kcore(machine))
1538                 return 0;
1539
1540         if (machine__is_host(machine))
1541                 kernel_type = DSO_TYPE_KERNEL;
1542         else
1543                 kernel_type = DSO_TYPE_GUEST_KERNEL;
1544
1545         is_kernel_mmap = memcmp(event->mmap.filename,
1546                                 machine->mmap_name,
1547                                 strlen(machine->mmap_name) - 1) == 0;
1548         if (event->mmap.filename[0] == '/' ||
1549             (!is_kernel_mmap && event->mmap.filename[0] == '[')) {
1550                 map = machine__addnew_module_map(machine, event->mmap.start,
1551                                                  event->mmap.filename);
1552                 if (map == NULL)
1553                         goto out_problem;
1554
1555                 map->end = map->start + event->mmap.len;
1556         } else if (is_kernel_mmap) {
1557                 const char *symbol_name = (event->mmap.filename +
1558                                 strlen(machine->mmap_name));
1559                 /*
1560                  * Should be there already, from the build-id table in
1561                  * the header.
1562                  */
1563                 struct dso *kernel = NULL;
1564                 struct dso *dso;
1565
1566                 down_read(&machine->dsos.lock);
1567
1568                 list_for_each_entry(dso, &machine->dsos.head, node) {
1569
1570                         /*
1571                          * The cpumode passed to is_kernel_module is not the
1572                          * cpumode of *this* event. If we insist on passing
1573                          * correct cpumode to is_kernel_module, we should
1574                          * record the cpumode when we adding this dso to the
1575                          * linked list.
1576                          *
1577                          * However we don't really need passing correct
1578                          * cpumode.  We know the correct cpumode must be kernel
1579                          * mode (if not, we should not link it onto kernel_dsos
1580                          * list).
1581                          *
1582                          * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1583                          * is_kernel_module() treats it as a kernel cpumode.
1584                          */
1585
1586                         if (!dso->kernel ||
1587                             is_kernel_module(dso->long_name,
1588                                              PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1589                                 continue;
1590
1591
1592                         kernel = dso;
1593                         break;
1594                 }
1595
1596                 up_read(&machine->dsos.lock);
1597
1598                 if (kernel == NULL)
1599                         kernel = machine__findnew_dso(machine, machine->mmap_name);
1600                 if (kernel == NULL)
1601                         goto out_problem;
1602
1603                 kernel->kernel = kernel_type;
1604                 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1605                         dso__put(kernel);
1606                         goto out_problem;
1607                 }
1608
1609                 if (strstr(kernel->long_name, "vmlinux"))
1610                         dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1611
1612                 machine__update_kernel_mmap(machine, event->mmap.start,
1613                                          event->mmap.start + event->mmap.len);
1614
1615                 /*
1616                  * Avoid using a zero address (kptr_restrict) for the ref reloc
1617                  * symbol. Effectively having zero here means that at record
1618                  * time /proc/sys/kernel/kptr_restrict was non zero.
1619                  */
1620                 if (event->mmap.pgoff != 0) {
1621                         map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1622                                                         symbol_name,
1623                                                         event->mmap.pgoff);
1624                 }
1625
1626                 if (machine__is_default_guest(machine)) {
1627                         /*
1628                          * preload dso of guest kernel and modules
1629                          */
1630                         dso__load(kernel, machine__kernel_map(machine));
1631                 }
1632         } else if (perf_event__is_extra_kernel_mmap(machine, event)) {
1633                 return machine__process_extra_kernel_map(machine, event);
1634         }
1635         return 0;
1636 out_problem:
1637         return -1;
1638 }
1639
1640 int machine__process_mmap2_event(struct machine *machine,
1641                                  union perf_event *event,
1642                                  struct perf_sample *sample)
1643 {
1644         struct thread *thread;
1645         struct map *map;
1646         struct dso_id dso_id = {
1647                 .maj = event->mmap2.maj,
1648                 .min = event->mmap2.min,
1649                 .ino = event->mmap2.ino,
1650                 .ino_generation = event->mmap2.ino_generation,
1651         };
1652         int ret = 0;
1653
1654         if (dump_trace)
1655                 perf_event__fprintf_mmap2(event, stdout);
1656
1657         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1658             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1659                 ret = machine__process_kernel_mmap_event(machine, event);
1660                 if (ret < 0)
1661                         goto out_problem;
1662                 return 0;
1663         }
1664
1665         thread = machine__findnew_thread(machine, event->mmap2.pid,
1666                                         event->mmap2.tid);
1667         if (thread == NULL)
1668                 goto out_problem;
1669
1670         map = map__new(machine, event->mmap2.start,
1671                         event->mmap2.len, event->mmap2.pgoff,
1672                         &dso_id, event->mmap2.prot,
1673                         event->mmap2.flags,
1674                         event->mmap2.filename, thread);
1675
1676         if (map == NULL)
1677                 goto out_problem_map;
1678
1679         ret = thread__insert_map(thread, map);
1680         if (ret)
1681                 goto out_problem_insert;
1682
1683         thread__put(thread);
1684         map__put(map);
1685         return 0;
1686
1687 out_problem_insert:
1688         map__put(map);
1689 out_problem_map:
1690         thread__put(thread);
1691 out_problem:
1692         dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1693         return 0;
1694 }
1695
1696 int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1697                                 struct perf_sample *sample)
1698 {
1699         struct thread *thread;
1700         struct map *map;
1701         u32 prot = 0;
1702         int ret = 0;
1703
1704         if (dump_trace)
1705                 perf_event__fprintf_mmap(event, stdout);
1706
1707         if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1708             sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1709                 ret = machine__process_kernel_mmap_event(machine, event);
1710                 if (ret < 0)
1711                         goto out_problem;
1712                 return 0;
1713         }
1714
1715         thread = machine__findnew_thread(machine, event->mmap.pid,
1716                                          event->mmap.tid);
1717         if (thread == NULL)
1718                 goto out_problem;
1719
1720         if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
1721                 prot = PROT_EXEC;
1722
1723         map = map__new(machine, event->mmap.start,
1724                         event->mmap.len, event->mmap.pgoff,
1725                         NULL, prot, 0, event->mmap.filename, thread);
1726
1727         if (map == NULL)
1728                 goto out_problem_map;
1729
1730         ret = thread__insert_map(thread, map);
1731         if (ret)
1732                 goto out_problem_insert;
1733
1734         thread__put(thread);
1735         map__put(map);
1736         return 0;
1737
1738 out_problem_insert:
1739         map__put(map);
1740 out_problem_map:
1741         thread__put(thread);
1742 out_problem:
1743         dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
1744         return 0;
1745 }
1746
1747 static void __machine__remove_thread(struct machine *machine, struct thread *th, bool lock)
1748 {
1749         struct threads *threads = machine__threads(machine, th->tid);
1750
1751         if (threads->last_match == th)
1752                 threads__set_last_match(threads, NULL);
1753
1754         if (lock)
1755                 down_write(&threads->lock);
1756
1757         BUG_ON(refcount_read(&th->refcnt) == 0);
1758
1759         rb_erase_cached(&th->rb_node, &threads->entries);
1760         RB_CLEAR_NODE(&th->rb_node);
1761         --threads->nr;
1762         /*
1763          * Move it first to the dead_threads list, then drop the reference,
1764          * if this is the last reference, then the thread__delete destructor
1765          * will be called and we will remove it from the dead_threads list.
1766          */
1767         list_add_tail(&th->node, &threads->dead);
1768
1769         /*
1770          * We need to do the put here because if this is the last refcount,
1771          * then we will be touching the threads->dead head when removing the
1772          * thread.
1773          */
1774         thread__put(th);
1775
1776         if (lock)
1777                 up_write(&threads->lock);
1778 }
1779
1780 void machine__remove_thread(struct machine *machine, struct thread *th)
1781 {
1782         return __machine__remove_thread(machine, th, true);
1783 }
1784
1785 int machine__process_fork_event(struct machine *machine, union perf_event *event,
1786                                 struct perf_sample *sample)
1787 {
1788         struct thread *thread = machine__find_thread(machine,
1789                                                      event->fork.pid,
1790                                                      event->fork.tid);
1791         struct thread *parent = machine__findnew_thread(machine,
1792                                                         event->fork.ppid,
1793                                                         event->fork.ptid);
1794         bool do_maps_clone = true;
1795         int err = 0;
1796
1797         if (dump_trace)
1798                 perf_event__fprintf_task(event, stdout);
1799
1800         /*
1801          * There may be an existing thread that is not actually the parent,
1802          * either because we are processing events out of order, or because the
1803          * (fork) event that would have removed the thread was lost. Assume the
1804          * latter case and continue on as best we can.
1805          */
1806         if (parent->pid_ != (pid_t)event->fork.ppid) {
1807                 dump_printf("removing erroneous parent thread %d/%d\n",
1808                             parent->pid_, parent->tid);
1809                 machine__remove_thread(machine, parent);
1810                 thread__put(parent);
1811                 parent = machine__findnew_thread(machine, event->fork.ppid,
1812                                                  event->fork.ptid);
1813         }
1814
1815         /* if a thread currently exists for the thread id remove it */
1816         if (thread != NULL) {
1817                 machine__remove_thread(machine, thread);
1818                 thread__put(thread);
1819         }
1820
1821         thread = machine__findnew_thread(machine, event->fork.pid,
1822                                          event->fork.tid);
1823         /*
1824          * When synthesizing FORK events, we are trying to create thread
1825          * objects for the already running tasks on the machine.
1826          *
1827          * Normally, for a kernel FORK event, we want to clone the parent's
1828          * maps because that is what the kernel just did.
1829          *
1830          * But when synthesizing, this should not be done.  If we do, we end up
1831          * with overlapping maps as we process the sythesized MMAP2 events that
1832          * get delivered shortly thereafter.
1833          *
1834          * Use the FORK event misc flags in an internal way to signal this
1835          * situation, so we can elide the map clone when appropriate.
1836          */
1837         if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
1838                 do_maps_clone = false;
1839
1840         if (thread == NULL || parent == NULL ||
1841             thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
1842                 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
1843                 err = -1;
1844         }
1845         thread__put(thread);
1846         thread__put(parent);
1847
1848         return err;
1849 }
1850
1851 int machine__process_exit_event(struct machine *machine, union perf_event *event,
1852                                 struct perf_sample *sample __maybe_unused)
1853 {
1854         struct thread *thread = machine__find_thread(machine,
1855                                                      event->fork.pid,
1856                                                      event->fork.tid);
1857
1858         if (dump_trace)
1859                 perf_event__fprintf_task(event, stdout);
1860
1861         if (thread != NULL) {
1862                 thread__exited(thread);
1863                 thread__put(thread);
1864         }
1865
1866         return 0;
1867 }
1868
1869 int machine__process_event(struct machine *machine, union perf_event *event,
1870                            struct perf_sample *sample)
1871 {
1872         int ret;
1873
1874         switch (event->header.type) {
1875         case PERF_RECORD_COMM:
1876                 ret = machine__process_comm_event(machine, event, sample); break;
1877         case PERF_RECORD_MMAP:
1878                 ret = machine__process_mmap_event(machine, event, sample); break;
1879         case PERF_RECORD_NAMESPACES:
1880                 ret = machine__process_namespaces_event(machine, event, sample); break;
1881         case PERF_RECORD_MMAP2:
1882                 ret = machine__process_mmap2_event(machine, event, sample); break;
1883         case PERF_RECORD_FORK:
1884                 ret = machine__process_fork_event(machine, event, sample); break;
1885         case PERF_RECORD_EXIT:
1886                 ret = machine__process_exit_event(machine, event, sample); break;
1887         case PERF_RECORD_LOST:
1888                 ret = machine__process_lost_event(machine, event, sample); break;
1889         case PERF_RECORD_AUX:
1890                 ret = machine__process_aux_event(machine, event); break;
1891         case PERF_RECORD_ITRACE_START:
1892                 ret = machine__process_itrace_start_event(machine, event); break;
1893         case PERF_RECORD_LOST_SAMPLES:
1894                 ret = machine__process_lost_samples_event(machine, event, sample); break;
1895         case PERF_RECORD_SWITCH:
1896         case PERF_RECORD_SWITCH_CPU_WIDE:
1897                 ret = machine__process_switch_event(machine, event); break;
1898         case PERF_RECORD_KSYMBOL:
1899                 ret = machine__process_ksymbol(machine, event, sample); break;
1900         case PERF_RECORD_BPF_EVENT:
1901                 ret = machine__process_bpf(machine, event, sample); break;
1902         default:
1903                 ret = -1;
1904                 break;
1905         }
1906
1907         return ret;
1908 }
1909
1910 static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
1911 {
1912         if (!regexec(regex, sym->name, 0, NULL, 0))
1913                 return 1;
1914         return 0;
1915 }
1916
1917 static void ip__resolve_ams(struct thread *thread,
1918                             struct addr_map_symbol *ams,
1919                             u64 ip)
1920 {
1921         struct addr_location al;
1922
1923         memset(&al, 0, sizeof(al));
1924         /*
1925          * We cannot use the header.misc hint to determine whether a
1926          * branch stack address is user, kernel, guest, hypervisor.
1927          * Branches may straddle the kernel/user/hypervisor boundaries.
1928          * Thus, we have to try consecutively until we find a match
1929          * or else, the symbol is unknown
1930          */
1931         thread__find_cpumode_addr_location(thread, ip, &al);
1932
1933         ams->addr = ip;
1934         ams->al_addr = al.addr;
1935         ams->ms.maps = al.maps;
1936         ams->ms.sym = al.sym;
1937         ams->ms.map = al.map;
1938         ams->phys_addr = 0;
1939 }
1940
1941 static void ip__resolve_data(struct thread *thread,
1942                              u8 m, struct addr_map_symbol *ams,
1943                              u64 addr, u64 phys_addr)
1944 {
1945         struct addr_location al;
1946
1947         memset(&al, 0, sizeof(al));
1948
1949         thread__find_symbol(thread, m, addr, &al);
1950
1951         ams->addr = addr;
1952         ams->al_addr = al.addr;
1953         ams->ms.maps = al.maps;
1954         ams->ms.sym = al.sym;
1955         ams->ms.map = al.map;
1956         ams->phys_addr = phys_addr;
1957 }
1958
1959 struct mem_info *sample__resolve_mem(struct perf_sample *sample,
1960                                      struct addr_location *al)
1961 {
1962         struct mem_info *mi = mem_info__new();
1963
1964         if (!mi)
1965                 return NULL;
1966
1967         ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
1968         ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
1969                          sample->addr, sample->phys_addr);
1970         mi->data_src.val = sample->data_src;
1971
1972         return mi;
1973 }
1974
1975 static char *callchain_srcline(struct map_symbol *ms, u64 ip)
1976 {
1977         struct map *map = ms->map;
1978         char *srcline = NULL;
1979
1980         if (!map || callchain_param.key == CCKEY_FUNCTION)
1981                 return srcline;
1982
1983         srcline = srcline__tree_find(&map->dso->srclines, ip);
1984         if (!srcline) {
1985                 bool show_sym = false;
1986                 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
1987
1988                 srcline = get_srcline(map->dso, map__rip_2objdump(map, ip),
1989                                       ms->sym, show_sym, show_addr, ip);
1990                 srcline__tree_insert(&map->dso->srclines, ip, srcline);
1991         }
1992
1993         return srcline;
1994 }
1995
1996 struct iterations {
1997         int nr_loop_iter;
1998         u64 cycles;
1999 };
2000
2001 static int add_callchain_ip(struct thread *thread,
2002                             struct callchain_cursor *cursor,
2003                             struct symbol **parent,
2004                             struct addr_location *root_al,
2005                             u8 *cpumode,
2006                             u64 ip,
2007                             bool branch,
2008                             struct branch_flags *flags,
2009                             struct iterations *iter,
2010                             u64 branch_from)
2011 {
2012         struct map_symbol ms;
2013         struct addr_location al;
2014         int nr_loop_iter = 0;
2015         u64 iter_cycles = 0;
2016         const char *srcline = NULL;
2017
2018         al.filtered = 0;
2019         al.sym = NULL;
2020         if (!cpumode) {
2021                 thread__find_cpumode_addr_location(thread, ip, &al);
2022         } else {
2023                 if (ip >= PERF_CONTEXT_MAX) {
2024                         switch (ip) {
2025                         case PERF_CONTEXT_HV:
2026                                 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2027                                 break;
2028                         case PERF_CONTEXT_KERNEL:
2029                                 *cpumode = PERF_RECORD_MISC_KERNEL;
2030                                 break;
2031                         case PERF_CONTEXT_USER:
2032                                 *cpumode = PERF_RECORD_MISC_USER;
2033                                 break;
2034                         default:
2035                                 pr_debug("invalid callchain context: "
2036                                          "%"PRId64"\n", (s64) ip);
2037                                 /*
2038                                  * It seems the callchain is corrupted.
2039                                  * Discard all.
2040                                  */
2041                                 callchain_cursor_reset(cursor);
2042                                 return 1;
2043                         }
2044                         return 0;
2045                 }
2046                 thread__find_symbol(thread, *cpumode, ip, &al);
2047         }
2048
2049         if (al.sym != NULL) {
2050                 if (perf_hpp_list.parent && !*parent &&
2051                     symbol__match_regex(al.sym, &parent_regex))
2052                         *parent = al.sym;
2053                 else if (have_ignore_callees && root_al &&
2054                   symbol__match_regex(al.sym, &ignore_callees_regex)) {
2055                         /* Treat this symbol as the root,
2056                            forgetting its callees. */
2057                         *root_al = al;
2058                         callchain_cursor_reset(cursor);
2059                 }
2060         }
2061
2062         if (symbol_conf.hide_unresolved && al.sym == NULL)
2063                 return 0;
2064
2065         if (iter) {
2066                 nr_loop_iter = iter->nr_loop_iter;
2067                 iter_cycles = iter->cycles;
2068         }
2069
2070         ms.maps = al.maps;
2071         ms.map = al.map;
2072         ms.sym = al.sym;
2073         srcline = callchain_srcline(&ms, al.addr);
2074         return callchain_cursor_append(cursor, ip, &ms,
2075                                        branch, flags, nr_loop_iter,
2076                                        iter_cycles, branch_from, srcline);
2077 }
2078
2079 struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2080                                            struct addr_location *al)
2081 {
2082         unsigned int i;
2083         const struct branch_stack *bs = sample->branch_stack;
2084         struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2085
2086         if (!bi)
2087                 return NULL;
2088
2089         for (i = 0; i < bs->nr; i++) {
2090                 ip__resolve_ams(al->thread, &bi[i].to, bs->entries[i].to);
2091                 ip__resolve_ams(al->thread, &bi[i].from, bs->entries[i].from);
2092                 bi[i].flags = bs->entries[i].flags;
2093         }
2094         return bi;
2095 }
2096
2097 static void save_iterations(struct iterations *iter,
2098                             struct branch_entry *be, int nr)
2099 {
2100         int i;
2101
2102         iter->nr_loop_iter++;
2103         iter->cycles = 0;
2104
2105         for (i = 0; i < nr; i++)
2106                 iter->cycles += be[i].flags.cycles;
2107 }
2108
2109 #define CHASHSZ 127
2110 #define CHASHBITS 7
2111 #define NO_ENTRY 0xff
2112
2113 #define PERF_MAX_BRANCH_DEPTH 127
2114
2115 /* Remove loops. */
2116 static int remove_loops(struct branch_entry *l, int nr,
2117                         struct iterations *iter)
2118 {
2119         int i, j, off;
2120         unsigned char chash[CHASHSZ];
2121
2122         memset(chash, NO_ENTRY, sizeof(chash));
2123
2124         BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2125
2126         for (i = 0; i < nr; i++) {
2127                 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2128
2129                 /* no collision handling for now */
2130                 if (chash[h] == NO_ENTRY) {
2131                         chash[h] = i;
2132                 } else if (l[chash[h]].from == l[i].from) {
2133                         bool is_loop = true;
2134                         /* check if it is a real loop */
2135                         off = 0;
2136                         for (j = chash[h]; j < i && i + off < nr; j++, off++)
2137                                 if (l[j].from != l[i + off].from) {
2138                                         is_loop = false;
2139                                         break;
2140                                 }
2141                         if (is_loop) {
2142                                 j = nr - (i + off);
2143                                 if (j > 0) {
2144                                         save_iterations(iter + i + off,
2145                                                 l + i, off);
2146
2147                                         memmove(iter + i, iter + i + off,
2148                                                 j * sizeof(*iter));
2149
2150                                         memmove(l + i, l + i + off,
2151                                                 j * sizeof(*l));
2152                                 }
2153
2154                                 nr -= off;
2155                         }
2156                 }
2157         }
2158         return nr;
2159 }
2160
2161 /*
2162  * Recolve LBR callstack chain sample
2163  * Return:
2164  * 1 on success get LBR callchain information
2165  * 0 no available LBR callchain information, should try fp
2166  * negative error code on other errors.
2167  */
2168 static int resolve_lbr_callchain_sample(struct thread *thread,
2169                                         struct callchain_cursor *cursor,
2170                                         struct perf_sample *sample,
2171                                         struct symbol **parent,
2172                                         struct addr_location *root_al,
2173                                         int max_stack)
2174 {
2175         struct ip_callchain *chain = sample->callchain;
2176         int chain_nr = min(max_stack, (int)chain->nr), i;
2177         u8 cpumode = PERF_RECORD_MISC_USER;
2178         u64 ip, branch_from = 0;
2179
2180         for (i = 0; i < chain_nr; i++) {
2181                 if (chain->ips[i] == PERF_CONTEXT_USER)
2182                         break;
2183         }
2184
2185         /* LBR only affects the user callchain */
2186         if (i != chain_nr) {
2187                 struct branch_stack *lbr_stack = sample->branch_stack;
2188                 int lbr_nr = lbr_stack->nr, j, k;
2189                 bool branch;
2190                 struct branch_flags *flags;
2191                 /*
2192                  * LBR callstack can only get user call chain.
2193                  * The mix_chain_nr is kernel call chain
2194                  * number plus LBR user call chain number.
2195                  * i is kernel call chain number,
2196                  * 1 is PERF_CONTEXT_USER,
2197                  * lbr_nr + 1 is the user call chain number.
2198                  * For details, please refer to the comments
2199                  * in callchain__printf
2200                  */
2201                 int mix_chain_nr = i + 1 + lbr_nr + 1;
2202
2203                 for (j = 0; j < mix_chain_nr; j++) {
2204                         int err;
2205                         branch = false;
2206                         flags = NULL;
2207
2208                         if (callchain_param.order == ORDER_CALLEE) {
2209                                 if (j < i + 1)
2210                                         ip = chain->ips[j];
2211                                 else if (j > i + 1) {
2212                                         k = j - i - 2;
2213                                         ip = lbr_stack->entries[k].from;
2214                                         branch = true;
2215                                         flags = &lbr_stack->entries[k].flags;
2216                                 } else {
2217                                         ip = lbr_stack->entries[0].to;
2218                                         branch = true;
2219                                         flags = &lbr_stack->entries[0].flags;
2220                                         branch_from =
2221                                                 lbr_stack->entries[0].from;
2222                                 }
2223                         } else {
2224                                 if (j < lbr_nr) {
2225                                         k = lbr_nr - j - 1;
2226                                         ip = lbr_stack->entries[k].from;
2227                                         branch = true;
2228                                         flags = &lbr_stack->entries[k].flags;
2229                                 }
2230                                 else if (j > lbr_nr)
2231                                         ip = chain->ips[i + 1 - (j - lbr_nr)];
2232                                 else {
2233                                         ip = lbr_stack->entries[0].to;
2234                                         branch = true;
2235                                         flags = &lbr_stack->entries[0].flags;
2236                                         branch_from =
2237                                                 lbr_stack->entries[0].from;
2238                                 }
2239                         }
2240
2241                         err = add_callchain_ip(thread, cursor, parent,
2242                                                root_al, &cpumode, ip,
2243                                                branch, flags, NULL,
2244                                                branch_from);
2245                         if (err)
2246                                 return (err < 0) ? err : 0;
2247                 }
2248                 return 1;
2249         }
2250
2251         return 0;
2252 }
2253
2254 static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2255                              struct callchain_cursor *cursor,
2256                              struct symbol **parent,
2257                              struct addr_location *root_al,
2258                              u8 *cpumode, int ent)
2259 {
2260         int err = 0;
2261
2262         while (--ent >= 0) {
2263                 u64 ip = chain->ips[ent];
2264
2265                 if (ip >= PERF_CONTEXT_MAX) {
2266                         err = add_callchain_ip(thread, cursor, parent,
2267                                                root_al, cpumode, ip,
2268                                                false, NULL, NULL, 0);
2269                         break;
2270                 }
2271         }
2272         return err;
2273 }
2274
2275 static int thread__resolve_callchain_sample(struct thread *thread,
2276                                             struct callchain_cursor *cursor,
2277                                             struct evsel *evsel,
2278                                             struct perf_sample *sample,
2279                                             struct symbol **parent,
2280                                             struct addr_location *root_al,
2281                                             int max_stack)
2282 {
2283         struct branch_stack *branch = sample->branch_stack;
2284         struct ip_callchain *chain = sample->callchain;
2285         int chain_nr = 0;
2286         u8 cpumode = PERF_RECORD_MISC_USER;
2287         int i, j, err, nr_entries;
2288         int skip_idx = -1;
2289         int first_call = 0;
2290
2291         if (chain)
2292                 chain_nr = chain->nr;
2293
2294         if (perf_evsel__has_branch_callstack(evsel)) {
2295                 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2296                                                    root_al, max_stack);
2297                 if (err)
2298                         return (err < 0) ? err : 0;
2299         }
2300
2301         /*
2302          * Based on DWARF debug information, some architectures skip
2303          * a callchain entry saved by the kernel.
2304          */
2305         skip_idx = arch_skip_callchain_idx(thread, chain);
2306
2307         /*
2308          * Add branches to call stack for easier browsing. This gives
2309          * more context for a sample than just the callers.
2310          *
2311          * This uses individual histograms of paths compared to the
2312          * aggregated histograms the normal LBR mode uses.
2313          *
2314          * Limitations for now:
2315          * - No extra filters
2316          * - No annotations (should annotate somehow)
2317          */
2318
2319         if (branch && callchain_param.branch_callstack) {
2320                 int nr = min(max_stack, (int)branch->nr);
2321                 struct branch_entry be[nr];
2322                 struct iterations iter[nr];
2323
2324                 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2325                         pr_warning("corrupted branch chain. skipping...\n");
2326                         goto check_calls;
2327                 }
2328
2329                 for (i = 0; i < nr; i++) {
2330                         if (callchain_param.order == ORDER_CALLEE) {
2331                                 be[i] = branch->entries[i];
2332
2333                                 if (chain == NULL)
2334                                         continue;
2335
2336                                 /*
2337                                  * Check for overlap into the callchain.
2338                                  * The return address is one off compared to
2339                                  * the branch entry. To adjust for this
2340                                  * assume the calling instruction is not longer
2341                                  * than 8 bytes.
2342                                  */
2343                                 if (i == skip_idx ||
2344                                     chain->ips[first_call] >= PERF_CONTEXT_MAX)
2345                                         first_call++;
2346                                 else if (be[i].from < chain->ips[first_call] &&
2347                                     be[i].from >= chain->ips[first_call] - 8)
2348                                         first_call++;
2349                         } else
2350                                 be[i] = branch->entries[branch->nr - i - 1];
2351                 }
2352
2353                 memset(iter, 0, sizeof(struct iterations) * nr);
2354                 nr = remove_loops(be, nr, iter);
2355
2356                 for (i = 0; i < nr; i++) {
2357                         err = add_callchain_ip(thread, cursor, parent,
2358                                                root_al,
2359                                                NULL, be[i].to,
2360                                                true, &be[i].flags,
2361                                                NULL, be[i].from);
2362
2363                         if (!err)
2364                                 err = add_callchain_ip(thread, cursor, parent, root_al,
2365                                                        NULL, be[i].from,
2366                                                        true, &be[i].flags,
2367                                                        &iter[i], 0);
2368                         if (err == -EINVAL)
2369                                 break;
2370                         if (err)
2371                                 return err;
2372                 }
2373
2374                 if (chain_nr == 0)
2375                         return 0;
2376
2377                 chain_nr -= nr;
2378         }
2379
2380 check_calls:
2381         if (chain && callchain_param.order != ORDER_CALLEE) {
2382                 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
2383                                         &cpumode, chain->nr - first_call);
2384                 if (err)
2385                         return (err < 0) ? err : 0;
2386         }
2387         for (i = first_call, nr_entries = 0;
2388              i < chain_nr && nr_entries < max_stack; i++) {
2389                 u64 ip;
2390
2391                 if (callchain_param.order == ORDER_CALLEE)
2392                         j = i;
2393                 else
2394                         j = chain->nr - i - 1;
2395
2396 #ifdef HAVE_SKIP_CALLCHAIN_IDX
2397                 if (j == skip_idx)
2398                         continue;
2399 #endif
2400                 ip = chain->ips[j];
2401                 if (ip < PERF_CONTEXT_MAX)
2402                        ++nr_entries;
2403                 else if (callchain_param.order != ORDER_CALLEE) {
2404                         err = find_prev_cpumode(chain, thread, cursor, parent,
2405                                                 root_al, &cpumode, j);
2406                         if (err)
2407                                 return (err < 0) ? err : 0;
2408                         continue;
2409                 }
2410
2411                 err = add_callchain_ip(thread, cursor, parent,
2412                                        root_al, &cpumode, ip,
2413                                        false, NULL, NULL, 0);
2414
2415                 if (err)
2416                         return (err < 0) ? err : 0;
2417         }
2418
2419         return 0;
2420 }
2421
2422 static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
2423 {
2424         struct symbol *sym = ms->sym;
2425         struct map *map = ms->map;
2426         struct inline_node *inline_node;
2427         struct inline_list *ilist;
2428         u64 addr;
2429         int ret = 1;
2430
2431         if (!symbol_conf.inline_name || !map || !sym)
2432                 return ret;
2433
2434         addr = map__map_ip(map, ip);
2435         addr = map__rip_2objdump(map, addr);
2436
2437         inline_node = inlines__tree_find(&map->dso->inlined_nodes, addr);
2438         if (!inline_node) {
2439                 inline_node = dso__parse_addr_inlines(map->dso, addr, sym);
2440                 if (!inline_node)
2441                         return ret;
2442                 inlines__tree_insert(&map->dso->inlined_nodes, inline_node);
2443         }
2444
2445         list_for_each_entry(ilist, &inline_node->val, list) {
2446                 struct map_symbol ilist_ms = {
2447                         .maps = ms->maps,
2448                         .map = map,
2449                         .sym = ilist->symbol,
2450                 };
2451                 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
2452                                               NULL, 0, 0, 0, ilist->srcline);
2453
2454                 if (ret != 0)
2455                         return ret;
2456         }
2457
2458         return ret;
2459 }
2460
2461 static int unwind_entry(struct unwind_entry *entry, void *arg)
2462 {
2463         struct callchain_cursor *cursor = arg;
2464         const char *srcline = NULL;
2465         u64 addr = entry->ip;
2466
2467         if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
2468                 return 0;
2469
2470         if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
2471                 return 0;
2472
2473         /*
2474          * Convert entry->ip from a virtual address to an offset in
2475          * its corresponding binary.
2476          */
2477         if (entry->ms.map)
2478                 addr = map__map_ip(entry->ms.map, entry->ip);
2479
2480         srcline = callchain_srcline(&entry->ms, addr);
2481         return callchain_cursor_append(cursor, entry->ip, &entry->ms,
2482                                        false, NULL, 0, 0, 0, srcline);
2483 }
2484
2485 static int thread__resolve_callchain_unwind(struct thread *thread,
2486                                             struct callchain_cursor *cursor,
2487                                             struct evsel *evsel,
2488                                             struct perf_sample *sample,
2489                                             int max_stack)
2490 {
2491         /* Can we do dwarf post unwind? */
2492         if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
2493               (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
2494                 return 0;
2495
2496         /* Bail out if nothing was captured. */
2497         if ((!sample->user_regs.regs) ||
2498             (!sample->user_stack.size))
2499                 return 0;
2500
2501         return unwind__get_entries(unwind_entry, cursor,
2502                                    thread, sample, max_stack);
2503 }
2504
2505 int thread__resolve_callchain(struct thread *thread,
2506                               struct callchain_cursor *cursor,
2507                               struct evsel *evsel,
2508                               struct perf_sample *sample,
2509                               struct symbol **parent,
2510                               struct addr_location *root_al,
2511                               int max_stack)
2512 {
2513         int ret = 0;
2514
2515         callchain_cursor_reset(cursor);
2516
2517         if (callchain_param.order == ORDER_CALLEE) {
2518                 ret = thread__resolve_callchain_sample(thread, cursor,
2519                                                        evsel, sample,
2520                                                        parent, root_al,
2521                                                        max_stack);
2522                 if (ret)
2523                         return ret;
2524                 ret = thread__resolve_callchain_unwind(thread, cursor,
2525                                                        evsel, sample,
2526                                                        max_stack);
2527         } else {
2528                 ret = thread__resolve_callchain_unwind(thread, cursor,
2529                                                        evsel, sample,
2530                                                        max_stack);
2531                 if (ret)
2532                         return ret;
2533                 ret = thread__resolve_callchain_sample(thread, cursor,
2534                                                        evsel, sample,
2535                                                        parent, root_al,
2536                                                        max_stack);
2537         }
2538
2539         return ret;
2540 }
2541
2542 int machine__for_each_thread(struct machine *machine,
2543                              int (*fn)(struct thread *thread, void *p),
2544                              void *priv)
2545 {
2546         struct threads *threads;
2547         struct rb_node *nd;
2548         struct thread *thread;
2549         int rc = 0;
2550         int i;
2551
2552         for (i = 0; i < THREADS__TABLE_SIZE; i++) {
2553                 threads = &machine->threads[i];
2554                 for (nd = rb_first_cached(&threads->entries); nd;
2555                      nd = rb_next(nd)) {
2556                         thread = rb_entry(nd, struct thread, rb_node);
2557                         rc = fn(thread, priv);
2558                         if (rc != 0)
2559                                 return rc;
2560                 }
2561
2562                 list_for_each_entry(thread, &threads->dead, node) {
2563                         rc = fn(thread, priv);
2564                         if (rc != 0)
2565                                 return rc;
2566                 }
2567         }
2568         return rc;
2569 }
2570
2571 int machines__for_each_thread(struct machines *machines,
2572                               int (*fn)(struct thread *thread, void *p),
2573                               void *priv)
2574 {
2575         struct rb_node *nd;
2576         int rc = 0;
2577
2578         rc = machine__for_each_thread(&machines->host, fn, priv);
2579         if (rc != 0)
2580                 return rc;
2581
2582         for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
2583                 struct machine *machine = rb_entry(nd, struct machine, rb_node);
2584
2585                 rc = machine__for_each_thread(machine, fn, priv);
2586                 if (rc != 0)
2587                         return rc;
2588         }
2589         return rc;
2590 }
2591
2592 pid_t machine__get_current_tid(struct machine *machine, int cpu)
2593 {
2594         int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2595
2596         if (cpu < 0 || cpu >= nr_cpus || !machine->current_tid)
2597                 return -1;
2598
2599         return machine->current_tid[cpu];
2600 }
2601
2602 int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
2603                              pid_t tid)
2604 {
2605         struct thread *thread;
2606         int nr_cpus = min(machine->env->nr_cpus_online, MAX_NR_CPUS);
2607
2608         if (cpu < 0)
2609                 return -EINVAL;
2610
2611         if (!machine->current_tid) {
2612                 int i;
2613
2614                 machine->current_tid = calloc(nr_cpus, sizeof(pid_t));
2615                 if (!machine->current_tid)
2616                         return -ENOMEM;
2617                 for (i = 0; i < nr_cpus; i++)
2618                         machine->current_tid[i] = -1;
2619         }
2620
2621         if (cpu >= nr_cpus) {
2622                 pr_err("Requested CPU %d too large. ", cpu);
2623                 pr_err("Consider raising MAX_NR_CPUS\n");
2624                 return -EINVAL;
2625         }
2626
2627         machine->current_tid[cpu] = tid;
2628
2629         thread = machine__findnew_thread(machine, pid, tid);
2630         if (!thread)
2631                 return -ENOMEM;
2632
2633         thread->cpu = cpu;
2634         thread__put(thread);
2635
2636         return 0;
2637 }
2638
2639 /*
2640  * Compares the raw arch string. N.B. see instead perf_env__arch() if a
2641  * normalized arch is needed.
2642  */
2643 bool machine__is(struct machine *machine, const char *arch)
2644 {
2645         return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
2646 }
2647
2648 int machine__nr_cpus_avail(struct machine *machine)
2649 {
2650         return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
2651 }
2652
2653 int machine__get_kernel_start(struct machine *machine)
2654 {
2655         struct map *map = machine__kernel_map(machine);
2656         int err = 0;
2657
2658         /*
2659          * The only addresses above 2^63 are kernel addresses of a 64-bit
2660          * kernel.  Note that addresses are unsigned so that on a 32-bit system
2661          * all addresses including kernel addresses are less than 2^32.  In
2662          * that case (32-bit system), if the kernel mapping is unknown, all
2663          * addresses will be assumed to be in user space - see
2664          * machine__kernel_ip().
2665          */
2666         machine->kernel_start = 1ULL << 63;
2667         if (map) {
2668                 err = map__load(map);
2669                 /*
2670                  * On x86_64, PTI entry trampolines are less than the
2671                  * start of kernel text, but still above 2^63. So leave
2672                  * kernel_start = 1ULL << 63 for x86_64.
2673                  */
2674                 if (!err && !machine__is(machine, "x86_64"))
2675                         machine->kernel_start = map->start;
2676         }
2677         return err;
2678 }
2679
2680 u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
2681 {
2682         u8 addr_cpumode = cpumode;
2683         bool kernel_ip;
2684
2685         if (!machine->single_address_space)
2686                 goto out;
2687
2688         kernel_ip = machine__kernel_ip(machine, addr);
2689         switch (cpumode) {
2690         case PERF_RECORD_MISC_KERNEL:
2691         case PERF_RECORD_MISC_USER:
2692                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
2693                                            PERF_RECORD_MISC_USER;
2694                 break;
2695         case PERF_RECORD_MISC_GUEST_KERNEL:
2696         case PERF_RECORD_MISC_GUEST_USER:
2697                 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
2698                                            PERF_RECORD_MISC_GUEST_USER;
2699                 break;
2700         default:
2701                 break;
2702         }
2703 out:
2704         return addr_cpumode;
2705 }
2706
2707 struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
2708 {
2709         return dsos__findnew_id(&machine->dsos, filename, id);
2710 }
2711
2712 struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
2713 {
2714         return machine__findnew_dso_id(machine, filename, NULL);
2715 }
2716
2717 char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
2718 {
2719         struct machine *machine = vmachine;
2720         struct map *map;
2721         struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
2722
2723         if (sym == NULL)
2724                 return NULL;
2725
2726         *modp = __map__is_kmodule(map) ? (char *)map->dso->short_name : NULL;
2727         *addrp = map->unmap_ip(map, sym->start);
2728         return sym->name;
2729 }