]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/arm/arm.c
14f8fad1c7aeccb1dbf1dcdd1d071ea75f95099a
[linux.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/bug.h>
20 #include <linux/cpu_pm.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/list.h>
25 #include <linux/module.h>
26 #include <linux/vmalloc.h>
27 #include <linux/fs.h>
28 #include <linux/mman.h>
29 #include <linux/sched.h>
30 #include <linux/kvm.h>
31 #include <linux/kvm_irqfd.h>
32 #include <linux/irqbypass.h>
33 #include <linux/sched/stat.h>
34 #include <trace/events/kvm.h>
35 #include <kvm/arm_pmu.h>
36 #include <kvm/arm_psci.h>
37
38 #define CREATE_TRACE_POINTS
39 #include "trace.h"
40
41 #include <linux/uaccess.h>
42 #include <asm/ptrace.h>
43 #include <asm/mman.h>
44 #include <asm/tlbflush.h>
45 #include <asm/cacheflush.h>
46 #include <asm/cpufeature.h>
47 #include <asm/virt.h>
48 #include <asm/kvm_arm.h>
49 #include <asm/kvm_asm.h>
50 #include <asm/kvm_mmu.h>
51 #include <asm/kvm_emulate.h>
52 #include <asm/kvm_coproc.h>
53 #include <asm/sections.h>
54
55 #ifdef REQUIRES_VIRT
56 __asm__(".arch_extension        virt");
57 #endif
58
59 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
60 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
61
62 /* Per-CPU variable containing the currently running vcpu. */
63 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
64
65 /* The VMID used in the VTTBR */
66 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
67 static u32 kvm_next_vmid;
68 static unsigned int kvm_vmid_bits __read_mostly;
69 static DEFINE_RWLOCK(kvm_vmid_lock);
70
71 static bool vgic_present;
72
73 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
74
75 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
76 {
77         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
78 }
79
80 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
81
82 /**
83  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
84  * Must be called from non-preemptible context
85  */
86 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
87 {
88         return __this_cpu_read(kvm_arm_running_vcpu);
89 }
90
91 /**
92  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
93  */
94 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
95 {
96         return &kvm_arm_running_vcpu;
97 }
98
99 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
100 {
101         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
102 }
103
104 int kvm_arch_hardware_setup(void)
105 {
106         return 0;
107 }
108
109 void kvm_arch_check_processor_compat(void *rtn)
110 {
111         *(int *)rtn = 0;
112 }
113
114
115 /**
116  * kvm_arch_init_vm - initializes a VM data structure
117  * @kvm:        pointer to the KVM struct
118  */
119 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
120 {
121         int ret, cpu;
122
123         if (type)
124                 return -EINVAL;
125
126         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
127         if (!kvm->arch.last_vcpu_ran)
128                 return -ENOMEM;
129
130         for_each_possible_cpu(cpu)
131                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
132
133         ret = kvm_alloc_stage2_pgd(kvm);
134         if (ret)
135                 goto out_fail_alloc;
136
137         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
138         if (ret)
139                 goto out_free_stage2_pgd;
140
141         kvm_vgic_early_init(kvm);
142
143         /* Mark the initial VMID generation invalid */
144         kvm->arch.vmid_gen = 0;
145
146         /* The maximum number of VCPUs is limited by the host's GIC model */
147         kvm->arch.max_vcpus = vgic_present ?
148                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
149
150         return ret;
151 out_free_stage2_pgd:
152         kvm_free_stage2_pgd(kvm);
153 out_fail_alloc:
154         free_percpu(kvm->arch.last_vcpu_ran);
155         kvm->arch.last_vcpu_ran = NULL;
156         return ret;
157 }
158
159 bool kvm_arch_has_vcpu_debugfs(void)
160 {
161         return false;
162 }
163
164 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
165 {
166         return 0;
167 }
168
169 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
170 {
171         return VM_FAULT_SIGBUS;
172 }
173
174
175 /**
176  * kvm_arch_destroy_vm - destroy the VM data structure
177  * @kvm:        pointer to the KVM struct
178  */
179 void kvm_arch_destroy_vm(struct kvm *kvm)
180 {
181         int i;
182
183         kvm_vgic_destroy(kvm);
184
185         free_percpu(kvm->arch.last_vcpu_ran);
186         kvm->arch.last_vcpu_ran = NULL;
187
188         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
189                 if (kvm->vcpus[i]) {
190                         kvm_arch_vcpu_free(kvm->vcpus[i]);
191                         kvm->vcpus[i] = NULL;
192                 }
193         }
194         atomic_set(&kvm->online_vcpus, 0);
195 }
196
197 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
198 {
199         int r;
200         switch (ext) {
201         case KVM_CAP_IRQCHIP:
202                 r = vgic_present;
203                 break;
204         case KVM_CAP_IOEVENTFD:
205         case KVM_CAP_DEVICE_CTRL:
206         case KVM_CAP_USER_MEMORY:
207         case KVM_CAP_SYNC_MMU:
208         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
209         case KVM_CAP_ONE_REG:
210         case KVM_CAP_ARM_PSCI:
211         case KVM_CAP_ARM_PSCI_0_2:
212         case KVM_CAP_READONLY_MEM:
213         case KVM_CAP_MP_STATE:
214         case KVM_CAP_IMMEDIATE_EXIT:
215                 r = 1;
216                 break;
217         case KVM_CAP_ARM_SET_DEVICE_ADDR:
218                 r = 1;
219                 break;
220         case KVM_CAP_NR_VCPUS:
221                 r = num_online_cpus();
222                 break;
223         case KVM_CAP_MAX_VCPUS:
224                 r = KVM_MAX_VCPUS;
225                 break;
226         case KVM_CAP_NR_MEMSLOTS:
227                 r = KVM_USER_MEM_SLOTS;
228                 break;
229         case KVM_CAP_MSI_DEVID:
230                 if (!kvm)
231                         r = -EINVAL;
232                 else
233                         r = kvm->arch.vgic.msis_require_devid;
234                 break;
235         case KVM_CAP_ARM_USER_IRQ:
236                 /*
237                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
238                  * (bump this number if adding more devices)
239                  */
240                 r = 1;
241                 break;
242         default:
243                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
244                 break;
245         }
246         return r;
247 }
248
249 long kvm_arch_dev_ioctl(struct file *filp,
250                         unsigned int ioctl, unsigned long arg)
251 {
252         return -EINVAL;
253 }
254
255 struct kvm *kvm_arch_alloc_vm(void)
256 {
257         if (!has_vhe())
258                 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
259
260         return vzalloc(sizeof(struct kvm));
261 }
262
263 void kvm_arch_free_vm(struct kvm *kvm)
264 {
265         if (!has_vhe())
266                 kfree(kvm);
267         else
268                 vfree(kvm);
269 }
270
271 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
272 {
273         int err;
274         struct kvm_vcpu *vcpu;
275
276         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
277                 err = -EBUSY;
278                 goto out;
279         }
280
281         if (id >= kvm->arch.max_vcpus) {
282                 err = -EINVAL;
283                 goto out;
284         }
285
286         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
287         if (!vcpu) {
288                 err = -ENOMEM;
289                 goto out;
290         }
291
292         err = kvm_vcpu_init(vcpu, kvm, id);
293         if (err)
294                 goto free_vcpu;
295
296         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
297         if (err)
298                 goto vcpu_uninit;
299
300         return vcpu;
301 vcpu_uninit:
302         kvm_vcpu_uninit(vcpu);
303 free_vcpu:
304         kmem_cache_free(kvm_vcpu_cache, vcpu);
305 out:
306         return ERR_PTR(err);
307 }
308
309 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
310 {
311 }
312
313 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
314 {
315         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
316                 static_branch_dec(&userspace_irqchip_in_use);
317
318         kvm_mmu_free_memory_caches(vcpu);
319         kvm_timer_vcpu_terminate(vcpu);
320         kvm_pmu_vcpu_destroy(vcpu);
321         kvm_vcpu_uninit(vcpu);
322         kmem_cache_free(kvm_vcpu_cache, vcpu);
323 }
324
325 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
326 {
327         kvm_arch_vcpu_free(vcpu);
328 }
329
330 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
331 {
332         return kvm_timer_is_pending(vcpu);
333 }
334
335 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
336 {
337         kvm_timer_schedule(vcpu);
338         kvm_vgic_v4_enable_doorbell(vcpu);
339 }
340
341 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
342 {
343         kvm_timer_unschedule(vcpu);
344         kvm_vgic_v4_disable_doorbell(vcpu);
345 }
346
347 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
348 {
349         /* Force users to call KVM_ARM_VCPU_INIT */
350         vcpu->arch.target = -1;
351         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
352
353         /* Set up the timer */
354         kvm_timer_vcpu_init(vcpu);
355
356         kvm_arm_reset_debug_ptr(vcpu);
357
358         return kvm_vgic_vcpu_init(vcpu);
359 }
360
361 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
362 {
363         int *last_ran;
364
365         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
366
367         /*
368          * We might get preempted before the vCPU actually runs, but
369          * over-invalidation doesn't affect correctness.
370          */
371         if (*last_ran != vcpu->vcpu_id) {
372                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
373                 *last_ran = vcpu->vcpu_id;
374         }
375
376         vcpu->cpu = cpu;
377         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
378
379         kvm_arm_set_running_vcpu(vcpu);
380         kvm_vgic_load(vcpu);
381         kvm_timer_vcpu_load(vcpu);
382         kvm_vcpu_load_sysregs(vcpu);
383         kvm_arch_vcpu_load_fp(vcpu);
384
385         if (single_task_running())
386                 vcpu_clear_wfe_traps(vcpu);
387         else
388                 vcpu_set_wfe_traps(vcpu);
389 }
390
391 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
392 {
393         kvm_arch_vcpu_put_fp(vcpu);
394         kvm_vcpu_put_sysregs(vcpu);
395         kvm_timer_vcpu_put(vcpu);
396         kvm_vgic_put(vcpu);
397
398         vcpu->cpu = -1;
399
400         kvm_arm_set_running_vcpu(NULL);
401 }
402
403 static void vcpu_power_off(struct kvm_vcpu *vcpu)
404 {
405         vcpu->arch.power_off = true;
406         kvm_make_request(KVM_REQ_SLEEP, vcpu);
407         kvm_vcpu_kick(vcpu);
408 }
409
410 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
411                                     struct kvm_mp_state *mp_state)
412 {
413         if (vcpu->arch.power_off)
414                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
415         else
416                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
417
418         return 0;
419 }
420
421 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
422                                     struct kvm_mp_state *mp_state)
423 {
424         int ret = 0;
425
426         switch (mp_state->mp_state) {
427         case KVM_MP_STATE_RUNNABLE:
428                 vcpu->arch.power_off = false;
429                 break;
430         case KVM_MP_STATE_STOPPED:
431                 vcpu_power_off(vcpu);
432                 break;
433         default:
434                 ret = -EINVAL;
435         }
436
437         return ret;
438 }
439
440 /**
441  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
442  * @v:          The VCPU pointer
443  *
444  * If the guest CPU is not waiting for interrupts or an interrupt line is
445  * asserted, the CPU is by definition runnable.
446  */
447 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
448 {
449         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
450         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
451                 && !v->arch.power_off && !v->arch.pause);
452 }
453
454 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
455 {
456         return vcpu_mode_priv(vcpu);
457 }
458
459 /* Just ensure a guest exit from a particular CPU */
460 static void exit_vm_noop(void *info)
461 {
462 }
463
464 void force_vm_exit(const cpumask_t *mask)
465 {
466         preempt_disable();
467         smp_call_function_many(mask, exit_vm_noop, NULL, true);
468         preempt_enable();
469 }
470
471 /**
472  * need_new_vmid_gen - check that the VMID is still valid
473  * @kvm: The VM's VMID to check
474  *
475  * return true if there is a new generation of VMIDs being used
476  *
477  * The hardware supports only 256 values with the value zero reserved for the
478  * host, so we check if an assigned value belongs to a previous generation,
479  * which which requires us to assign a new value. If we're the first to use a
480  * VMID for the new generation, we must flush necessary caches and TLBs on all
481  * CPUs.
482  */
483 static bool need_new_vmid_gen(struct kvm *kvm)
484 {
485         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
486 }
487
488 /**
489  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
490  * @kvm The guest that we are about to run
491  *
492  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
493  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
494  * caches and TLBs.
495  */
496 static void update_vttbr(struct kvm *kvm)
497 {
498         phys_addr_t pgd_phys;
499         u64 vmid;
500         bool new_gen;
501
502         read_lock(&kvm_vmid_lock);
503         new_gen = need_new_vmid_gen(kvm);
504         read_unlock(&kvm_vmid_lock);
505
506         if (!new_gen)
507                 return;
508
509         write_lock(&kvm_vmid_lock);
510
511         /*
512          * We need to re-check the vmid_gen here to ensure that if another vcpu
513          * already allocated a valid vmid for this vm, then this vcpu should
514          * use the same vmid.
515          */
516         if (!need_new_vmid_gen(kvm)) {
517                 write_unlock(&kvm_vmid_lock);
518                 return;
519         }
520
521         /* First user of a new VMID generation? */
522         if (unlikely(kvm_next_vmid == 0)) {
523                 atomic64_inc(&kvm_vmid_gen);
524                 kvm_next_vmid = 1;
525
526                 /*
527                  * On SMP we know no other CPUs can use this CPU's or each
528                  * other's VMID after force_vm_exit returns since the
529                  * kvm_vmid_lock blocks them from reentry to the guest.
530                  */
531                 force_vm_exit(cpu_all_mask);
532                 /*
533                  * Now broadcast TLB + ICACHE invalidation over the inner
534                  * shareable domain to make sure all data structures are
535                  * clean.
536                  */
537                 kvm_call_hyp(__kvm_flush_vm_context);
538         }
539
540         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
541         kvm->arch.vmid = kvm_next_vmid;
542         kvm_next_vmid++;
543         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
544
545         /* update vttbr to be used with the new vmid */
546         pgd_phys = virt_to_phys(kvm->arch.pgd);
547         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
548         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
549         kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
550
551         write_unlock(&kvm_vmid_lock);
552 }
553
554 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
555 {
556         struct kvm *kvm = vcpu->kvm;
557         int ret = 0;
558
559         if (likely(vcpu->arch.has_run_once))
560                 return 0;
561
562         vcpu->arch.has_run_once = true;
563
564         if (likely(irqchip_in_kernel(kvm))) {
565                 /*
566                  * Map the VGIC hardware resources before running a vcpu the
567                  * first time on this VM.
568                  */
569                 if (unlikely(!vgic_ready(kvm))) {
570                         ret = kvm_vgic_map_resources(kvm);
571                         if (ret)
572                                 return ret;
573                 }
574         } else {
575                 /*
576                  * Tell the rest of the code that there are userspace irqchip
577                  * VMs in the wild.
578                  */
579                 static_branch_inc(&userspace_irqchip_in_use);
580         }
581
582         ret = kvm_timer_enable(vcpu);
583         if (ret)
584                 return ret;
585
586         ret = kvm_arm_pmu_v3_enable(vcpu);
587
588         return ret;
589 }
590
591 bool kvm_arch_intc_initialized(struct kvm *kvm)
592 {
593         return vgic_initialized(kvm);
594 }
595
596 void kvm_arm_halt_guest(struct kvm *kvm)
597 {
598         int i;
599         struct kvm_vcpu *vcpu;
600
601         kvm_for_each_vcpu(i, vcpu, kvm)
602                 vcpu->arch.pause = true;
603         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
604 }
605
606 void kvm_arm_resume_guest(struct kvm *kvm)
607 {
608         int i;
609         struct kvm_vcpu *vcpu;
610
611         kvm_for_each_vcpu(i, vcpu, kvm) {
612                 vcpu->arch.pause = false;
613                 swake_up(kvm_arch_vcpu_wq(vcpu));
614         }
615 }
616
617 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
618 {
619         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
620
621         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
622                                        (!vcpu->arch.pause)));
623
624         if (vcpu->arch.power_off || vcpu->arch.pause) {
625                 /* Awaken to handle a signal, request we sleep again later. */
626                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
627         }
628 }
629
630 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
631 {
632         return vcpu->arch.target >= 0;
633 }
634
635 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
636 {
637         if (kvm_request_pending(vcpu)) {
638                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
639                         vcpu_req_sleep(vcpu);
640
641                 /*
642                  * Clear IRQ_PENDING requests that were made to guarantee
643                  * that a VCPU sees new virtual interrupts.
644                  */
645                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
646         }
647 }
648
649 /**
650  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
651  * @vcpu:       The VCPU pointer
652  * @run:        The kvm_run structure pointer used for userspace state exchange
653  *
654  * This function is called through the VCPU_RUN ioctl called from user space. It
655  * will execute VM code in a loop until the time slice for the process is used
656  * or some emulation is needed from user space in which case the function will
657  * return with return value 0 and with the kvm_run structure filled in with the
658  * required data for the requested emulation.
659  */
660 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
661 {
662         int ret;
663
664         if (unlikely(!kvm_vcpu_initialized(vcpu)))
665                 return -ENOEXEC;
666
667         ret = kvm_vcpu_first_run_init(vcpu);
668         if (ret)
669                 return ret;
670
671         if (run->exit_reason == KVM_EXIT_MMIO) {
672                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
673                 if (ret)
674                         return ret;
675                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
676                         return 0;
677         }
678
679         if (run->immediate_exit)
680                 return -EINTR;
681
682         vcpu_load(vcpu);
683
684         kvm_sigset_activate(vcpu);
685
686         ret = 1;
687         run->exit_reason = KVM_EXIT_UNKNOWN;
688         while (ret > 0) {
689                 /*
690                  * Check conditions before entering the guest
691                  */
692                 cond_resched();
693
694                 update_vttbr(vcpu->kvm);
695
696                 check_vcpu_requests(vcpu);
697
698                 /*
699                  * Preparing the interrupts to be injected also
700                  * involves poking the GIC, which must be done in a
701                  * non-preemptible context.
702                  */
703                 preempt_disable();
704
705                 kvm_pmu_flush_hwstate(vcpu);
706
707                 local_irq_disable();
708
709                 kvm_vgic_flush_hwstate(vcpu);
710
711                 /*
712                  * Exit if we have a signal pending so that we can deliver the
713                  * signal to user space.
714                  */
715                 if (signal_pending(current)) {
716                         ret = -EINTR;
717                         run->exit_reason = KVM_EXIT_INTR;
718                 }
719
720                 /*
721                  * If we're using a userspace irqchip, then check if we need
722                  * to tell a userspace irqchip about timer or PMU level
723                  * changes and if so, exit to userspace (the actual level
724                  * state gets updated in kvm_timer_update_run and
725                  * kvm_pmu_update_run below).
726                  */
727                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
728                         if (kvm_timer_should_notify_user(vcpu) ||
729                             kvm_pmu_should_notify_user(vcpu)) {
730                                 ret = -EINTR;
731                                 run->exit_reason = KVM_EXIT_INTR;
732                         }
733                 }
734
735                 /*
736                  * Ensure we set mode to IN_GUEST_MODE after we disable
737                  * interrupts and before the final VCPU requests check.
738                  * See the comment in kvm_vcpu_exiting_guest_mode() and
739                  * Documentation/virtual/kvm/vcpu-requests.rst
740                  */
741                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
742
743                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
744                     kvm_request_pending(vcpu)) {
745                         vcpu->mode = OUTSIDE_GUEST_MODE;
746                         isb(); /* Ensure work in x_flush_hwstate is committed */
747                         kvm_pmu_sync_hwstate(vcpu);
748                         if (static_branch_unlikely(&userspace_irqchip_in_use))
749                                 kvm_timer_sync_hwstate(vcpu);
750                         kvm_vgic_sync_hwstate(vcpu);
751                         local_irq_enable();
752                         preempt_enable();
753                         continue;
754                 }
755
756                 kvm_arm_setup_debug(vcpu);
757
758                 /**************************************************************
759                  * Enter the guest
760                  */
761                 trace_kvm_entry(*vcpu_pc(vcpu));
762                 guest_enter_irqoff();
763
764                 if (has_vhe()) {
765                         kvm_arm_vhe_guest_enter();
766                         ret = kvm_vcpu_run_vhe(vcpu);
767                         kvm_arm_vhe_guest_exit();
768                 } else {
769                         ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
770                 }
771
772                 vcpu->mode = OUTSIDE_GUEST_MODE;
773                 vcpu->stat.exits++;
774                 /*
775                  * Back from guest
776                  *************************************************************/
777
778                 kvm_arm_clear_debug(vcpu);
779
780                 /*
781                  * We must sync the PMU state before the vgic state so
782                  * that the vgic can properly sample the updated state of the
783                  * interrupt line.
784                  */
785                 kvm_pmu_sync_hwstate(vcpu);
786
787                 /*
788                  * Sync the vgic state before syncing the timer state because
789                  * the timer code needs to know if the virtual timer
790                  * interrupts are active.
791                  */
792                 kvm_vgic_sync_hwstate(vcpu);
793
794                 /*
795                  * Sync the timer hardware state before enabling interrupts as
796                  * we don't want vtimer interrupts to race with syncing the
797                  * timer virtual interrupt state.
798                  */
799                 if (static_branch_unlikely(&userspace_irqchip_in_use))
800                         kvm_timer_sync_hwstate(vcpu);
801
802                 kvm_arch_vcpu_ctxsync_fp(vcpu);
803
804                 /*
805                  * We may have taken a host interrupt in HYP mode (ie
806                  * while executing the guest). This interrupt is still
807                  * pending, as we haven't serviced it yet!
808                  *
809                  * We're now back in SVC mode, with interrupts
810                  * disabled.  Enabling the interrupts now will have
811                  * the effect of taking the interrupt again, in SVC
812                  * mode this time.
813                  */
814                 local_irq_enable();
815
816                 /*
817                  * We do local_irq_enable() before calling guest_exit() so
818                  * that if a timer interrupt hits while running the guest we
819                  * account that tick as being spent in the guest.  We enable
820                  * preemption after calling guest_exit() so that if we get
821                  * preempted we make sure ticks after that is not counted as
822                  * guest time.
823                  */
824                 guest_exit();
825                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
826
827                 /* Exit types that need handling before we can be preempted */
828                 handle_exit_early(vcpu, run, ret);
829
830                 preempt_enable();
831
832                 ret = handle_exit(vcpu, run, ret);
833         }
834
835         /* Tell userspace about in-kernel device output levels */
836         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
837                 kvm_timer_update_run(vcpu);
838                 kvm_pmu_update_run(vcpu);
839         }
840
841         kvm_sigset_deactivate(vcpu);
842
843         vcpu_put(vcpu);
844         return ret;
845 }
846
847 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
848 {
849         int bit_index;
850         bool set;
851         unsigned long *hcr;
852
853         if (number == KVM_ARM_IRQ_CPU_IRQ)
854                 bit_index = __ffs(HCR_VI);
855         else /* KVM_ARM_IRQ_CPU_FIQ */
856                 bit_index = __ffs(HCR_VF);
857
858         hcr = vcpu_hcr(vcpu);
859         if (level)
860                 set = test_and_set_bit(bit_index, hcr);
861         else
862                 set = test_and_clear_bit(bit_index, hcr);
863
864         /*
865          * If we didn't change anything, no need to wake up or kick other CPUs
866          */
867         if (set == level)
868                 return 0;
869
870         /*
871          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
872          * trigger a world-switch round on the running physical CPU to set the
873          * virtual IRQ/FIQ fields in the HCR appropriately.
874          */
875         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
876         kvm_vcpu_kick(vcpu);
877
878         return 0;
879 }
880
881 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
882                           bool line_status)
883 {
884         u32 irq = irq_level->irq;
885         unsigned int irq_type, vcpu_idx, irq_num;
886         int nrcpus = atomic_read(&kvm->online_vcpus);
887         struct kvm_vcpu *vcpu = NULL;
888         bool level = irq_level->level;
889
890         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
891         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
892         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
893
894         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
895
896         switch (irq_type) {
897         case KVM_ARM_IRQ_TYPE_CPU:
898                 if (irqchip_in_kernel(kvm))
899                         return -ENXIO;
900
901                 if (vcpu_idx >= nrcpus)
902                         return -EINVAL;
903
904                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
905                 if (!vcpu)
906                         return -EINVAL;
907
908                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
909                         return -EINVAL;
910
911                 return vcpu_interrupt_line(vcpu, irq_num, level);
912         case KVM_ARM_IRQ_TYPE_PPI:
913                 if (!irqchip_in_kernel(kvm))
914                         return -ENXIO;
915
916                 if (vcpu_idx >= nrcpus)
917                         return -EINVAL;
918
919                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
920                 if (!vcpu)
921                         return -EINVAL;
922
923                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
924                         return -EINVAL;
925
926                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
927         case KVM_ARM_IRQ_TYPE_SPI:
928                 if (!irqchip_in_kernel(kvm))
929                         return -ENXIO;
930
931                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
932                         return -EINVAL;
933
934                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
935         }
936
937         return -EINVAL;
938 }
939
940 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
941                                const struct kvm_vcpu_init *init)
942 {
943         unsigned int i;
944         int phys_target = kvm_target_cpu();
945
946         if (init->target != phys_target)
947                 return -EINVAL;
948
949         /*
950          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
951          * use the same target.
952          */
953         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
954                 return -EINVAL;
955
956         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
957         for (i = 0; i < sizeof(init->features) * 8; i++) {
958                 bool set = (init->features[i / 32] & (1 << (i % 32)));
959
960                 if (set && i >= KVM_VCPU_MAX_FEATURES)
961                         return -ENOENT;
962
963                 /*
964                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
965                  * use the same feature set.
966                  */
967                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
968                     test_bit(i, vcpu->arch.features) != set)
969                         return -EINVAL;
970
971                 if (set)
972                         set_bit(i, vcpu->arch.features);
973         }
974
975         vcpu->arch.target = phys_target;
976
977         /* Now we know what it is, we can reset it. */
978         return kvm_reset_vcpu(vcpu);
979 }
980
981
982 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
983                                          struct kvm_vcpu_init *init)
984 {
985         int ret;
986
987         ret = kvm_vcpu_set_target(vcpu, init);
988         if (ret)
989                 return ret;
990
991         /*
992          * Ensure a rebooted VM will fault in RAM pages and detect if the
993          * guest MMU is turned off and flush the caches as needed.
994          */
995         if (vcpu->arch.has_run_once)
996                 stage2_unmap_vm(vcpu->kvm);
997
998         vcpu_reset_hcr(vcpu);
999
1000         /*
1001          * Handle the "start in power-off" case.
1002          */
1003         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
1004                 vcpu_power_off(vcpu);
1005         else
1006                 vcpu->arch.power_off = false;
1007
1008         return 0;
1009 }
1010
1011 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
1012                                  struct kvm_device_attr *attr)
1013 {
1014         int ret = -ENXIO;
1015
1016         switch (attr->group) {
1017         default:
1018                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
1019                 break;
1020         }
1021
1022         return ret;
1023 }
1024
1025 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1026                                  struct kvm_device_attr *attr)
1027 {
1028         int ret = -ENXIO;
1029
1030         switch (attr->group) {
1031         default:
1032                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1033                 break;
1034         }
1035
1036         return ret;
1037 }
1038
1039 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1040                                  struct kvm_device_attr *attr)
1041 {
1042         int ret = -ENXIO;
1043
1044         switch (attr->group) {
1045         default:
1046                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1047                 break;
1048         }
1049
1050         return ret;
1051 }
1052
1053 #ifdef __KVM_HAVE_VCPU_EVENTS   /* temporary: until 32bit is wired up */
1054 static int kvm_arm_vcpu_get_events(struct kvm_vcpu *vcpu,
1055                                    struct kvm_vcpu_events *events)
1056 {
1057         memset(events, 0, sizeof(*events));
1058
1059         return __kvm_arm_vcpu_get_events(vcpu, events);
1060 }
1061
1062 static int kvm_arm_vcpu_set_events(struct kvm_vcpu *vcpu,
1063                                    struct kvm_vcpu_events *events)
1064 {
1065         int i;
1066
1067         /* check whether the reserved field is zero */
1068         for (i = 0; i < ARRAY_SIZE(events->reserved); i++)
1069                 if (events->reserved[i])
1070                         return -EINVAL;
1071
1072         /* check whether the pad field is zero */
1073         for (i = 0; i < ARRAY_SIZE(events->exception.pad); i++)
1074                 if (events->exception.pad[i])
1075                         return -EINVAL;
1076
1077         return __kvm_arm_vcpu_set_events(vcpu, events);
1078 }
1079 #endif /* __KVM_HAVE_VCPU_EVENTS */
1080
1081 long kvm_arch_vcpu_ioctl(struct file *filp,
1082                          unsigned int ioctl, unsigned long arg)
1083 {
1084         struct kvm_vcpu *vcpu = filp->private_data;
1085         void __user *argp = (void __user *)arg;
1086         struct kvm_device_attr attr;
1087         long r;
1088
1089         switch (ioctl) {
1090         case KVM_ARM_VCPU_INIT: {
1091                 struct kvm_vcpu_init init;
1092
1093                 r = -EFAULT;
1094                 if (copy_from_user(&init, argp, sizeof(init)))
1095                         break;
1096
1097                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1098                 break;
1099         }
1100         case KVM_SET_ONE_REG:
1101         case KVM_GET_ONE_REG: {
1102                 struct kvm_one_reg reg;
1103
1104                 r = -ENOEXEC;
1105                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1106                         break;
1107
1108                 r = -EFAULT;
1109                 if (copy_from_user(&reg, argp, sizeof(reg)))
1110                         break;
1111
1112                 if (ioctl == KVM_SET_ONE_REG)
1113                         r = kvm_arm_set_reg(vcpu, &reg);
1114                 else
1115                         r = kvm_arm_get_reg(vcpu, &reg);
1116                 break;
1117         }
1118         case KVM_GET_REG_LIST: {
1119                 struct kvm_reg_list __user *user_list = argp;
1120                 struct kvm_reg_list reg_list;
1121                 unsigned n;
1122
1123                 r = -ENOEXEC;
1124                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1125                         break;
1126
1127                 r = -EFAULT;
1128                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1129                         break;
1130                 n = reg_list.n;
1131                 reg_list.n = kvm_arm_num_regs(vcpu);
1132                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1133                         break;
1134                 r = -E2BIG;
1135                 if (n < reg_list.n)
1136                         break;
1137                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1138                 break;
1139         }
1140         case KVM_SET_DEVICE_ATTR: {
1141                 r = -EFAULT;
1142                 if (copy_from_user(&attr, argp, sizeof(attr)))
1143                         break;
1144                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1145                 break;
1146         }
1147         case KVM_GET_DEVICE_ATTR: {
1148                 r = -EFAULT;
1149                 if (copy_from_user(&attr, argp, sizeof(attr)))
1150                         break;
1151                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1152                 break;
1153         }
1154         case KVM_HAS_DEVICE_ATTR: {
1155                 r = -EFAULT;
1156                 if (copy_from_user(&attr, argp, sizeof(attr)))
1157                         break;
1158                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1159                 break;
1160         }
1161 #ifdef __KVM_HAVE_VCPU_EVENTS
1162         case KVM_GET_VCPU_EVENTS: {
1163                 struct kvm_vcpu_events events;
1164
1165                 if (kvm_arm_vcpu_get_events(vcpu, &events))
1166                         return -EINVAL;
1167
1168                 if (copy_to_user(argp, &events, sizeof(events)))
1169                         return -EFAULT;
1170
1171                 return 0;
1172         }
1173         case KVM_SET_VCPU_EVENTS: {
1174                 struct kvm_vcpu_events events;
1175
1176                 if (copy_from_user(&events, argp, sizeof(events)))
1177                         return -EFAULT;
1178
1179                 return kvm_arm_vcpu_set_events(vcpu, &events);
1180         }
1181 #endif
1182         default:
1183                 r = -EINVAL;
1184         }
1185
1186         return r;
1187 }
1188
1189 /**
1190  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1191  * @kvm: kvm instance
1192  * @log: slot id and address to which we copy the log
1193  *
1194  * Steps 1-4 below provide general overview of dirty page logging. See
1195  * kvm_get_dirty_log_protect() function description for additional details.
1196  *
1197  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1198  * always flush the TLB (step 4) even if previous step failed  and the dirty
1199  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1200  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1201  * writes will be marked dirty for next log read.
1202  *
1203  *   1. Take a snapshot of the bit and clear it if needed.
1204  *   2. Write protect the corresponding page.
1205  *   3. Copy the snapshot to the userspace.
1206  *   4. Flush TLB's if needed.
1207  */
1208 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1209 {
1210         bool is_dirty = false;
1211         int r;
1212
1213         mutex_lock(&kvm->slots_lock);
1214
1215         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1216
1217         if (is_dirty)
1218                 kvm_flush_remote_tlbs(kvm);
1219
1220         mutex_unlock(&kvm->slots_lock);
1221         return r;
1222 }
1223
1224 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1225                                         struct kvm_arm_device_addr *dev_addr)
1226 {
1227         unsigned long dev_id, type;
1228
1229         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1230                 KVM_ARM_DEVICE_ID_SHIFT;
1231         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1232                 KVM_ARM_DEVICE_TYPE_SHIFT;
1233
1234         switch (dev_id) {
1235         case KVM_ARM_DEVICE_VGIC_V2:
1236                 if (!vgic_present)
1237                         return -ENXIO;
1238                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1239         default:
1240                 return -ENODEV;
1241         }
1242 }
1243
1244 long kvm_arch_vm_ioctl(struct file *filp,
1245                        unsigned int ioctl, unsigned long arg)
1246 {
1247         struct kvm *kvm = filp->private_data;
1248         void __user *argp = (void __user *)arg;
1249
1250         switch (ioctl) {
1251         case KVM_CREATE_IRQCHIP: {
1252                 int ret;
1253                 if (!vgic_present)
1254                         return -ENXIO;
1255                 mutex_lock(&kvm->lock);
1256                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1257                 mutex_unlock(&kvm->lock);
1258                 return ret;
1259         }
1260         case KVM_ARM_SET_DEVICE_ADDR: {
1261                 struct kvm_arm_device_addr dev_addr;
1262
1263                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1264                         return -EFAULT;
1265                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1266         }
1267         case KVM_ARM_PREFERRED_TARGET: {
1268                 int err;
1269                 struct kvm_vcpu_init init;
1270
1271                 err = kvm_vcpu_preferred_target(&init);
1272                 if (err)
1273                         return err;
1274
1275                 if (copy_to_user(argp, &init, sizeof(init)))
1276                         return -EFAULT;
1277
1278                 return 0;
1279         }
1280         default:
1281                 return -EINVAL;
1282         }
1283 }
1284
1285 static void cpu_init_hyp_mode(void *dummy)
1286 {
1287         phys_addr_t pgd_ptr;
1288         unsigned long hyp_stack_ptr;
1289         unsigned long stack_page;
1290         unsigned long vector_ptr;
1291
1292         /* Switch from the HYP stub to our own HYP init vector */
1293         __hyp_set_vectors(kvm_get_idmap_vector());
1294
1295         pgd_ptr = kvm_mmu_get_httbr();
1296         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1297         hyp_stack_ptr = stack_page + PAGE_SIZE;
1298         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1299
1300         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1301         __cpu_init_stage2();
1302
1303         kvm_arm_init_debug();
1304 }
1305
1306 static void cpu_hyp_reset(void)
1307 {
1308         if (!is_kernel_in_hyp_mode())
1309                 __hyp_reset_vectors();
1310 }
1311
1312 static void cpu_hyp_reinit(void)
1313 {
1314         cpu_hyp_reset();
1315
1316         if (is_kernel_in_hyp_mode()) {
1317                 /*
1318                  * __cpu_init_stage2() is safe to call even if the PM
1319                  * event was cancelled before the CPU was reset.
1320                  */
1321                 __cpu_init_stage2();
1322                 kvm_timer_init_vhe();
1323         } else {
1324                 cpu_init_hyp_mode(NULL);
1325         }
1326
1327         if (vgic_present)
1328                 kvm_vgic_init_cpu_hardware();
1329 }
1330
1331 static void _kvm_arch_hardware_enable(void *discard)
1332 {
1333         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1334                 cpu_hyp_reinit();
1335                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1336         }
1337 }
1338
1339 int kvm_arch_hardware_enable(void)
1340 {
1341         _kvm_arch_hardware_enable(NULL);
1342         return 0;
1343 }
1344
1345 static void _kvm_arch_hardware_disable(void *discard)
1346 {
1347         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1348                 cpu_hyp_reset();
1349                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1350         }
1351 }
1352
1353 void kvm_arch_hardware_disable(void)
1354 {
1355         _kvm_arch_hardware_disable(NULL);
1356 }
1357
1358 #ifdef CONFIG_CPU_PM
1359 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1360                                     unsigned long cmd,
1361                                     void *v)
1362 {
1363         /*
1364          * kvm_arm_hardware_enabled is left with its old value over
1365          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1366          * re-enable hyp.
1367          */
1368         switch (cmd) {
1369         case CPU_PM_ENTER:
1370                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1371                         /*
1372                          * don't update kvm_arm_hardware_enabled here
1373                          * so that the hardware will be re-enabled
1374                          * when we resume. See below.
1375                          */
1376                         cpu_hyp_reset();
1377
1378                 return NOTIFY_OK;
1379         case CPU_PM_ENTER_FAILED:
1380         case CPU_PM_EXIT:
1381                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1382                         /* The hardware was enabled before suspend. */
1383                         cpu_hyp_reinit();
1384
1385                 return NOTIFY_OK;
1386
1387         default:
1388                 return NOTIFY_DONE;
1389         }
1390 }
1391
1392 static struct notifier_block hyp_init_cpu_pm_nb = {
1393         .notifier_call = hyp_init_cpu_pm_notifier,
1394 };
1395
1396 static void __init hyp_cpu_pm_init(void)
1397 {
1398         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1399 }
1400 static void __init hyp_cpu_pm_exit(void)
1401 {
1402         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1403 }
1404 #else
1405 static inline void hyp_cpu_pm_init(void)
1406 {
1407 }
1408 static inline void hyp_cpu_pm_exit(void)
1409 {
1410 }
1411 #endif
1412
1413 static int init_common_resources(void)
1414 {
1415         /* set size of VMID supported by CPU */
1416         kvm_vmid_bits = kvm_get_vmid_bits();
1417         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1418
1419         return 0;
1420 }
1421
1422 static int init_subsystems(void)
1423 {
1424         int err = 0;
1425
1426         /*
1427          * Enable hardware so that subsystem initialisation can access EL2.
1428          */
1429         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1430
1431         /*
1432          * Register CPU lower-power notifier
1433          */
1434         hyp_cpu_pm_init();
1435
1436         /*
1437          * Init HYP view of VGIC
1438          */
1439         err = kvm_vgic_hyp_init();
1440         switch (err) {
1441         case 0:
1442                 vgic_present = true;
1443                 break;
1444         case -ENODEV:
1445         case -ENXIO:
1446                 vgic_present = false;
1447                 err = 0;
1448                 break;
1449         default:
1450                 goto out;
1451         }
1452
1453         /*
1454          * Init HYP architected timer support
1455          */
1456         err = kvm_timer_hyp_init(vgic_present);
1457         if (err)
1458                 goto out;
1459
1460         kvm_perf_init();
1461         kvm_coproc_table_init();
1462
1463 out:
1464         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1465
1466         return err;
1467 }
1468
1469 static void teardown_hyp_mode(void)
1470 {
1471         int cpu;
1472
1473         free_hyp_pgds();
1474         for_each_possible_cpu(cpu)
1475                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1476         hyp_cpu_pm_exit();
1477 }
1478
1479 /**
1480  * Inits Hyp-mode on all online CPUs
1481  */
1482 static int init_hyp_mode(void)
1483 {
1484         int cpu;
1485         int err = 0;
1486
1487         /*
1488          * Allocate Hyp PGD and setup Hyp identity mapping
1489          */
1490         err = kvm_mmu_init();
1491         if (err)
1492                 goto out_err;
1493
1494         /*
1495          * Allocate stack pages for Hypervisor-mode
1496          */
1497         for_each_possible_cpu(cpu) {
1498                 unsigned long stack_page;
1499
1500                 stack_page = __get_free_page(GFP_KERNEL);
1501                 if (!stack_page) {
1502                         err = -ENOMEM;
1503                         goto out_err;
1504                 }
1505
1506                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1507         }
1508
1509         /*
1510          * Map the Hyp-code called directly from the host
1511          */
1512         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1513                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1514         if (err) {
1515                 kvm_err("Cannot map world-switch code\n");
1516                 goto out_err;
1517         }
1518
1519         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1520                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1521         if (err) {
1522                 kvm_err("Cannot map rodata section\n");
1523                 goto out_err;
1524         }
1525
1526         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1527                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1528         if (err) {
1529                 kvm_err("Cannot map bss section\n");
1530                 goto out_err;
1531         }
1532
1533         err = kvm_map_vectors();
1534         if (err) {
1535                 kvm_err("Cannot map vectors\n");
1536                 goto out_err;
1537         }
1538
1539         /*
1540          * Map the Hyp stack pages
1541          */
1542         for_each_possible_cpu(cpu) {
1543                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1544                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1545                                           PAGE_HYP);
1546
1547                 if (err) {
1548                         kvm_err("Cannot map hyp stack\n");
1549                         goto out_err;
1550                 }
1551         }
1552
1553         for_each_possible_cpu(cpu) {
1554                 kvm_cpu_context_t *cpu_ctxt;
1555
1556                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1557                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1558
1559                 if (err) {
1560                         kvm_err("Cannot map host CPU state: %d\n", err);
1561                         goto out_err;
1562                 }
1563         }
1564
1565         err = hyp_map_aux_data();
1566         if (err)
1567                 kvm_err("Cannot map host auxilary data: %d\n", err);
1568
1569         return 0;
1570
1571 out_err:
1572         teardown_hyp_mode();
1573         kvm_err("error initializing Hyp mode: %d\n", err);
1574         return err;
1575 }
1576
1577 static void check_kvm_target_cpu(void *ret)
1578 {
1579         *(int *)ret = kvm_target_cpu();
1580 }
1581
1582 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1583 {
1584         struct kvm_vcpu *vcpu;
1585         int i;
1586
1587         mpidr &= MPIDR_HWID_BITMASK;
1588         kvm_for_each_vcpu(i, vcpu, kvm) {
1589                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1590                         return vcpu;
1591         }
1592         return NULL;
1593 }
1594
1595 bool kvm_arch_has_irq_bypass(void)
1596 {
1597         return true;
1598 }
1599
1600 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1601                                       struct irq_bypass_producer *prod)
1602 {
1603         struct kvm_kernel_irqfd *irqfd =
1604                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1605
1606         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1607                                           &irqfd->irq_entry);
1608 }
1609 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1610                                       struct irq_bypass_producer *prod)
1611 {
1612         struct kvm_kernel_irqfd *irqfd =
1613                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1614
1615         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1616                                      &irqfd->irq_entry);
1617 }
1618
1619 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1620 {
1621         struct kvm_kernel_irqfd *irqfd =
1622                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1623
1624         kvm_arm_halt_guest(irqfd->kvm);
1625 }
1626
1627 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1628 {
1629         struct kvm_kernel_irqfd *irqfd =
1630                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1631
1632         kvm_arm_resume_guest(irqfd->kvm);
1633 }
1634
1635 /**
1636  * Initialize Hyp-mode and memory mappings on all CPUs.
1637  */
1638 int kvm_arch_init(void *opaque)
1639 {
1640         int err;
1641         int ret, cpu;
1642         bool in_hyp_mode;
1643
1644         if (!is_hyp_mode_available()) {
1645                 kvm_info("HYP mode not available\n");
1646                 return -ENODEV;
1647         }
1648
1649         if (!kvm_arch_check_sve_has_vhe()) {
1650                 kvm_pr_unimpl("SVE system without VHE unsupported.  Broken cpu?");
1651                 return -ENODEV;
1652         }
1653
1654         for_each_online_cpu(cpu) {
1655                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1656                 if (ret < 0) {
1657                         kvm_err("Error, CPU %d not supported!\n", cpu);
1658                         return -ENODEV;
1659                 }
1660         }
1661
1662         err = init_common_resources();
1663         if (err)
1664                 return err;
1665
1666         in_hyp_mode = is_kernel_in_hyp_mode();
1667
1668         if (!in_hyp_mode) {
1669                 err = init_hyp_mode();
1670                 if (err)
1671                         goto out_err;
1672         }
1673
1674         err = init_subsystems();
1675         if (err)
1676                 goto out_hyp;
1677
1678         if (in_hyp_mode)
1679                 kvm_info("VHE mode initialized successfully\n");
1680         else
1681                 kvm_info("Hyp mode initialized successfully\n");
1682
1683         return 0;
1684
1685 out_hyp:
1686         if (!in_hyp_mode)
1687                 teardown_hyp_mode();
1688 out_err:
1689         return err;
1690 }
1691
1692 /* NOP: Compiling as a module not supported */
1693 void kvm_arch_exit(void)
1694 {
1695         kvm_perf_teardown();
1696 }
1697
1698 static int arm_init(void)
1699 {
1700         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1701         return rc;
1702 }
1703
1704 module_init(arm_init);