]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/arm/arm.c
9379b1d75ad3fd09d4921dc4476f9b3f19b7c1b7
[linux.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <trace/events/kvm.h>
31 #include <kvm/arm_pmu.h>
32
33 #define CREATE_TRACE_POINTS
34 #include "trace.h"
35
36 #include <linux/uaccess.h>
37 #include <asm/ptrace.h>
38 #include <asm/mman.h>
39 #include <asm/tlbflush.h>
40 #include <asm/cacheflush.h>
41 #include <asm/virt.h>
42 #include <asm/kvm_arm.h>
43 #include <asm/kvm_asm.h>
44 #include <asm/kvm_mmu.h>
45 #include <asm/kvm_emulate.h>
46 #include <asm/kvm_coproc.h>
47 #include <asm/kvm_psci.h>
48 #include <asm/sections.h>
49
50 #ifdef REQUIRES_VIRT
51 __asm__(".arch_extension        virt");
52 #endif
53
54 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
55 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u32 kvm_next_vmid;
63 static unsigned int kvm_vmid_bits __read_mostly;
64 static DEFINE_SPINLOCK(kvm_vmid_lock);
65
66 static bool vgic_present;
67
68 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
69
70 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
71 {
72         BUG_ON(preemptible());
73         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
74 }
75
76 /**
77  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
78  * Must be called from non-preemptible context
79  */
80 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
81 {
82         BUG_ON(preemptible());
83         return __this_cpu_read(kvm_arm_running_vcpu);
84 }
85
86 /**
87  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
88  */
89 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
90 {
91         return &kvm_arm_running_vcpu;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 int kvm_arch_hardware_setup(void)
100 {
101         return 0;
102 }
103
104 void kvm_arch_check_processor_compat(void *rtn)
105 {
106         *(int *)rtn = 0;
107 }
108
109
110 /**
111  * kvm_arch_init_vm - initializes a VM data structure
112  * @kvm:        pointer to the KVM struct
113  */
114 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
115 {
116         int ret, cpu;
117
118         if (type)
119                 return -EINVAL;
120
121         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
122         if (!kvm->arch.last_vcpu_ran)
123                 return -ENOMEM;
124
125         for_each_possible_cpu(cpu)
126                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
127
128         ret = kvm_alloc_stage2_pgd(kvm);
129         if (ret)
130                 goto out_fail_alloc;
131
132         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
133         if (ret)
134                 goto out_free_stage2_pgd;
135
136         kvm_vgic_early_init(kvm);
137
138         /* Mark the initial VMID generation invalid */
139         kvm->arch.vmid_gen = 0;
140
141         /* The maximum number of VCPUs is limited by the host's GIC model */
142         kvm->arch.max_vcpus = vgic_present ?
143                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
144
145         return ret;
146 out_free_stage2_pgd:
147         kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149         free_percpu(kvm->arch.last_vcpu_ran);
150         kvm->arch.last_vcpu_ran = NULL;
151         return ret;
152 }
153
154 bool kvm_arch_has_vcpu_debugfs(void)
155 {
156         return false;
157 }
158
159 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
160 {
161         return 0;
162 }
163
164 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
165 {
166         return VM_FAULT_SIGBUS;
167 }
168
169
170 /**
171  * kvm_arch_destroy_vm - destroy the VM data structure
172  * @kvm:        pointer to the KVM struct
173  */
174 void kvm_arch_destroy_vm(struct kvm *kvm)
175 {
176         int i;
177
178         free_percpu(kvm->arch.last_vcpu_ran);
179         kvm->arch.last_vcpu_ran = NULL;
180
181         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
182                 if (kvm->vcpus[i]) {
183                         kvm_arch_vcpu_free(kvm->vcpus[i]);
184                         kvm->vcpus[i] = NULL;
185                 }
186         }
187
188         kvm_vgic_destroy(kvm);
189 }
190
191 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
192 {
193         int r;
194         switch (ext) {
195         case KVM_CAP_IRQCHIP:
196                 r = vgic_present;
197                 break;
198         case KVM_CAP_IOEVENTFD:
199         case KVM_CAP_DEVICE_CTRL:
200         case KVM_CAP_USER_MEMORY:
201         case KVM_CAP_SYNC_MMU:
202         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
203         case KVM_CAP_ONE_REG:
204         case KVM_CAP_ARM_PSCI:
205         case KVM_CAP_ARM_PSCI_0_2:
206         case KVM_CAP_READONLY_MEM:
207         case KVM_CAP_MP_STATE:
208         case KVM_CAP_IMMEDIATE_EXIT:
209                 r = 1;
210                 break;
211         case KVM_CAP_ARM_SET_DEVICE_ADDR:
212                 r = 1;
213                 break;
214         case KVM_CAP_NR_VCPUS:
215                 r = num_online_cpus();
216                 break;
217         case KVM_CAP_MAX_VCPUS:
218                 r = KVM_MAX_VCPUS;
219                 break;
220         case KVM_CAP_NR_MEMSLOTS:
221                 r = KVM_USER_MEM_SLOTS;
222                 break;
223         case KVM_CAP_MSI_DEVID:
224                 if (!kvm)
225                         r = -EINVAL;
226                 else
227                         r = kvm->arch.vgic.msis_require_devid;
228                 break;
229         case KVM_CAP_ARM_USER_IRQ:
230                 /*
231                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
232                  * (bump this number if adding more devices)
233                  */
234                 r = 1;
235                 break;
236         default:
237                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
238                 break;
239         }
240         return r;
241 }
242
243 long kvm_arch_dev_ioctl(struct file *filp,
244                         unsigned int ioctl, unsigned long arg)
245 {
246         return -EINVAL;
247 }
248
249
250 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
251 {
252         int err;
253         struct kvm_vcpu *vcpu;
254
255         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
256                 err = -EBUSY;
257                 goto out;
258         }
259
260         if (id >= kvm->arch.max_vcpus) {
261                 err = -EINVAL;
262                 goto out;
263         }
264
265         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
266         if (!vcpu) {
267                 err = -ENOMEM;
268                 goto out;
269         }
270
271         err = kvm_vcpu_init(vcpu, kvm, id);
272         if (err)
273                 goto free_vcpu;
274
275         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
276         if (err)
277                 goto vcpu_uninit;
278
279         return vcpu;
280 vcpu_uninit:
281         kvm_vcpu_uninit(vcpu);
282 free_vcpu:
283         kmem_cache_free(kvm_vcpu_cache, vcpu);
284 out:
285         return ERR_PTR(err);
286 }
287
288 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
289 {
290         kvm_vgic_vcpu_early_init(vcpu);
291 }
292
293 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
294 {
295         kvm_mmu_free_memory_caches(vcpu);
296         kvm_timer_vcpu_terminate(vcpu);
297         kvm_vgic_vcpu_destroy(vcpu);
298         kvm_pmu_vcpu_destroy(vcpu);
299         kvm_vcpu_uninit(vcpu);
300         kmem_cache_free(kvm_vcpu_cache, vcpu);
301 }
302
303 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
304 {
305         kvm_arch_vcpu_free(vcpu);
306 }
307
308 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
309 {
310         return kvm_timer_should_fire(vcpu_vtimer(vcpu)) ||
311                kvm_timer_should_fire(vcpu_ptimer(vcpu));
312 }
313
314 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
315 {
316         kvm_timer_schedule(vcpu);
317 }
318
319 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
320 {
321         kvm_timer_unschedule(vcpu);
322 }
323
324 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
325 {
326         /* Force users to call KVM_ARM_VCPU_INIT */
327         vcpu->arch.target = -1;
328         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
329
330         /* Set up the timer */
331         kvm_timer_vcpu_init(vcpu);
332
333         kvm_arm_reset_debug_ptr(vcpu);
334
335         return kvm_vgic_vcpu_init(vcpu);
336 }
337
338 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
339 {
340         int *last_ran;
341
342         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
343
344         /*
345          * We might get preempted before the vCPU actually runs, but
346          * over-invalidation doesn't affect correctness.
347          */
348         if (*last_ran != vcpu->vcpu_id) {
349                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
350                 *last_ran = vcpu->vcpu_id;
351         }
352
353         vcpu->cpu = cpu;
354         vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
355
356         kvm_arm_set_running_vcpu(vcpu);
357
358         kvm_vgic_load(vcpu);
359 }
360
361 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
362 {
363         kvm_vgic_put(vcpu);
364
365         vcpu->cpu = -1;
366
367         kvm_arm_set_running_vcpu(NULL);
368         kvm_timer_vcpu_put(vcpu);
369 }
370
371 static void vcpu_power_off(struct kvm_vcpu *vcpu)
372 {
373         vcpu->arch.power_off = true;
374         kvm_make_request(KVM_REQ_VCPU_EXIT, vcpu);
375         kvm_vcpu_kick(vcpu);
376 }
377
378 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
379                                     struct kvm_mp_state *mp_state)
380 {
381         if (vcpu->arch.power_off)
382                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
383         else
384                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
385
386         return 0;
387 }
388
389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
390                                     struct kvm_mp_state *mp_state)
391 {
392         switch (mp_state->mp_state) {
393         case KVM_MP_STATE_RUNNABLE:
394                 vcpu->arch.power_off = false;
395                 break;
396         case KVM_MP_STATE_STOPPED:
397                 vcpu_power_off(vcpu);
398                 break;
399         default:
400                 return -EINVAL;
401         }
402
403         return 0;
404 }
405
406 /**
407  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
408  * @v:          The VCPU pointer
409  *
410  * If the guest CPU is not waiting for interrupts or an interrupt line is
411  * asserted, the CPU is by definition runnable.
412  */
413 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
414 {
415         return ((!!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v))
416                 && !v->arch.power_off && !v->arch.pause);
417 }
418
419 /* Just ensure a guest exit from a particular CPU */
420 static void exit_vm_noop(void *info)
421 {
422 }
423
424 void force_vm_exit(const cpumask_t *mask)
425 {
426         preempt_disable();
427         smp_call_function_many(mask, exit_vm_noop, NULL, true);
428         preempt_enable();
429 }
430
431 /**
432  * need_new_vmid_gen - check that the VMID is still valid
433  * @kvm: The VM's VMID to check
434  *
435  * return true if there is a new generation of VMIDs being used
436  *
437  * The hardware supports only 256 values with the value zero reserved for the
438  * host, so we check if an assigned value belongs to a previous generation,
439  * which which requires us to assign a new value. If we're the first to use a
440  * VMID for the new generation, we must flush necessary caches and TLBs on all
441  * CPUs.
442  */
443 static bool need_new_vmid_gen(struct kvm *kvm)
444 {
445         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
446 }
447
448 /**
449  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
450  * @kvm The guest that we are about to run
451  *
452  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
453  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
454  * caches and TLBs.
455  */
456 static void update_vttbr(struct kvm *kvm)
457 {
458         phys_addr_t pgd_phys;
459         u64 vmid;
460
461         if (!need_new_vmid_gen(kvm))
462                 return;
463
464         spin_lock(&kvm_vmid_lock);
465
466         /*
467          * We need to re-check the vmid_gen here to ensure that if another vcpu
468          * already allocated a valid vmid for this vm, then this vcpu should
469          * use the same vmid.
470          */
471         if (!need_new_vmid_gen(kvm)) {
472                 spin_unlock(&kvm_vmid_lock);
473                 return;
474         }
475
476         /* First user of a new VMID generation? */
477         if (unlikely(kvm_next_vmid == 0)) {
478                 atomic64_inc(&kvm_vmid_gen);
479                 kvm_next_vmid = 1;
480
481                 /*
482                  * On SMP we know no other CPUs can use this CPU's or each
483                  * other's VMID after force_vm_exit returns since the
484                  * kvm_vmid_lock blocks them from reentry to the guest.
485                  */
486                 force_vm_exit(cpu_all_mask);
487                 /*
488                  * Now broadcast TLB + ICACHE invalidation over the inner
489                  * shareable domain to make sure all data structures are
490                  * clean.
491                  */
492                 kvm_call_hyp(__kvm_flush_vm_context);
493         }
494
495         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
496         kvm->arch.vmid = kvm_next_vmid;
497         kvm_next_vmid++;
498         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
499
500         /* update vttbr to be used with the new vmid */
501         pgd_phys = virt_to_phys(kvm->arch.pgd);
502         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
503         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
504         kvm->arch.vttbr = pgd_phys | vmid;
505
506         spin_unlock(&kvm_vmid_lock);
507 }
508
509 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
510 {
511         struct kvm *kvm = vcpu->kvm;
512         int ret = 0;
513
514         if (likely(vcpu->arch.has_run_once))
515                 return 0;
516
517         vcpu->arch.has_run_once = true;
518
519         /*
520          * Map the VGIC hardware resources before running a vcpu the first
521          * time on this VM.
522          */
523         if (unlikely(irqchip_in_kernel(kvm) && !vgic_ready(kvm))) {
524                 ret = kvm_vgic_map_resources(kvm);
525                 if (ret)
526                         return ret;
527         }
528
529         ret = kvm_timer_enable(vcpu);
530
531         return ret;
532 }
533
534 bool kvm_arch_intc_initialized(struct kvm *kvm)
535 {
536         return vgic_initialized(kvm);
537 }
538
539 void kvm_arm_halt_guest(struct kvm *kvm)
540 {
541         int i;
542         struct kvm_vcpu *vcpu;
543
544         kvm_for_each_vcpu(i, vcpu, kvm)
545                 vcpu->arch.pause = true;
546         kvm_make_all_cpus_request(kvm, KVM_REQ_VCPU_EXIT);
547 }
548
549 void kvm_arm_resume_guest(struct kvm *kvm)
550 {
551         int i;
552         struct kvm_vcpu *vcpu;
553
554         kvm_for_each_vcpu(i, vcpu, kvm) {
555                 vcpu->arch.pause = false;
556                 swake_up(kvm_arch_vcpu_wq(vcpu));
557         }
558 }
559
560 static void vcpu_sleep(struct kvm_vcpu *vcpu)
561 {
562         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
563
564         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
565                                        (!vcpu->arch.pause)));
566
567         if (vcpu->arch.power_off || vcpu->arch.pause) {
568                 /* Awaken to handle a signal, request we sleep again later. */
569                 kvm_make_request(KVM_REQ_VCPU_EXIT, vcpu);
570         }
571 }
572
573 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
574 {
575         return vcpu->arch.target >= 0;
576 }
577
578 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
579 {
580         if (kvm_request_pending(vcpu)) {
581                 if (kvm_check_request(KVM_REQ_VCPU_EXIT, vcpu))
582                         vcpu_sleep(vcpu);
583         }
584 }
585
586 /**
587  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
588  * @vcpu:       The VCPU pointer
589  * @run:        The kvm_run structure pointer used for userspace state exchange
590  *
591  * This function is called through the VCPU_RUN ioctl called from user space. It
592  * will execute VM code in a loop until the time slice for the process is used
593  * or some emulation is needed from user space in which case the function will
594  * return with return value 0 and with the kvm_run structure filled in with the
595  * required data for the requested emulation.
596  */
597 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
598 {
599         int ret;
600         sigset_t sigsaved;
601
602         if (unlikely(!kvm_vcpu_initialized(vcpu)))
603                 return -ENOEXEC;
604
605         ret = kvm_vcpu_first_run_init(vcpu);
606         if (ret)
607                 return ret;
608
609         if (run->exit_reason == KVM_EXIT_MMIO) {
610                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
611                 if (ret)
612                         return ret;
613         }
614
615         if (run->immediate_exit)
616                 return -EINTR;
617
618         if (vcpu->sigset_active)
619                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
620
621         ret = 1;
622         run->exit_reason = KVM_EXIT_UNKNOWN;
623         while (ret > 0) {
624                 /*
625                  * Check conditions before entering the guest
626                  */
627                 cond_resched();
628
629                 update_vttbr(vcpu->kvm);
630
631                 check_vcpu_requests(vcpu);
632
633                 /*
634                  * Preparing the interrupts to be injected also
635                  * involves poking the GIC, which must be done in a
636                  * non-preemptible context.
637                  */
638                 preempt_disable();
639
640                 kvm_pmu_flush_hwstate(vcpu);
641
642                 kvm_timer_flush_hwstate(vcpu);
643                 kvm_vgic_flush_hwstate(vcpu);
644
645                 local_irq_disable();
646
647                 /*
648                  * If we have a singal pending, or need to notify a userspace
649                  * irqchip about timer or PMU level changes, then we exit (and
650                  * update the timer level state in kvm_timer_update_run
651                  * below).
652                  */
653                 if (signal_pending(current) ||
654                     kvm_timer_should_notify_user(vcpu) ||
655                     kvm_pmu_should_notify_user(vcpu)) {
656                         ret = -EINTR;
657                         run->exit_reason = KVM_EXIT_INTR;
658                 }
659
660                 /*
661                  * Ensure we set mode to IN_GUEST_MODE after we disable
662                  * interrupts and before the final VCPU requests check.
663                  * See the comment in kvm_vcpu_exiting_guest_mode() and
664                  * Documentation/virtual/kvm/vcpu-requests.rst
665                  */
666                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
667
668                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
669                     kvm_request_pending(vcpu)) {
670                         vcpu->mode = OUTSIDE_GUEST_MODE;
671                         local_irq_enable();
672                         kvm_pmu_sync_hwstate(vcpu);
673                         kvm_timer_sync_hwstate(vcpu);
674                         kvm_vgic_sync_hwstate(vcpu);
675                         preempt_enable();
676                         continue;
677                 }
678
679                 kvm_arm_setup_debug(vcpu);
680
681                 /**************************************************************
682                  * Enter the guest
683                  */
684                 trace_kvm_entry(*vcpu_pc(vcpu));
685                 guest_enter_irqoff();
686
687                 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
688
689                 vcpu->mode = OUTSIDE_GUEST_MODE;
690                 vcpu->stat.exits++;
691                 /*
692                  * Back from guest
693                  *************************************************************/
694
695                 kvm_arm_clear_debug(vcpu);
696
697                 /*
698                  * We may have taken a host interrupt in HYP mode (ie
699                  * while executing the guest). This interrupt is still
700                  * pending, as we haven't serviced it yet!
701                  *
702                  * We're now back in SVC mode, with interrupts
703                  * disabled.  Enabling the interrupts now will have
704                  * the effect of taking the interrupt again, in SVC
705                  * mode this time.
706                  */
707                 local_irq_enable();
708
709                 /*
710                  * We do local_irq_enable() before calling guest_exit() so
711                  * that if a timer interrupt hits while running the guest we
712                  * account that tick as being spent in the guest.  We enable
713                  * preemption after calling guest_exit() so that if we get
714                  * preempted we make sure ticks after that is not counted as
715                  * guest time.
716                  */
717                 guest_exit();
718                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
719
720                 /*
721                  * We must sync the PMU and timer state before the vgic state so
722                  * that the vgic can properly sample the updated state of the
723                  * interrupt line.
724                  */
725                 kvm_pmu_sync_hwstate(vcpu);
726                 kvm_timer_sync_hwstate(vcpu);
727
728                 kvm_vgic_sync_hwstate(vcpu);
729
730                 preempt_enable();
731
732                 ret = handle_exit(vcpu, run, ret);
733         }
734
735         /* Tell userspace about in-kernel device output levels */
736         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
737                 kvm_timer_update_run(vcpu);
738                 kvm_pmu_update_run(vcpu);
739         }
740
741         if (vcpu->sigset_active)
742                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
743         return ret;
744 }
745
746 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
747 {
748         int bit_index;
749         bool set;
750         unsigned long *ptr;
751
752         if (number == KVM_ARM_IRQ_CPU_IRQ)
753                 bit_index = __ffs(HCR_VI);
754         else /* KVM_ARM_IRQ_CPU_FIQ */
755                 bit_index = __ffs(HCR_VF);
756
757         ptr = (unsigned long *)&vcpu->arch.irq_lines;
758         if (level)
759                 set = test_and_set_bit(bit_index, ptr);
760         else
761                 set = test_and_clear_bit(bit_index, ptr);
762
763         /*
764          * If we didn't change anything, no need to wake up or kick other CPUs
765          */
766         if (set == level)
767                 return 0;
768
769         /*
770          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
771          * trigger a world-switch round on the running physical CPU to set the
772          * virtual IRQ/FIQ fields in the HCR appropriately.
773          */
774         kvm_vcpu_kick(vcpu);
775
776         return 0;
777 }
778
779 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
780                           bool line_status)
781 {
782         u32 irq = irq_level->irq;
783         unsigned int irq_type, vcpu_idx, irq_num;
784         int nrcpus = atomic_read(&kvm->online_vcpus);
785         struct kvm_vcpu *vcpu = NULL;
786         bool level = irq_level->level;
787
788         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
789         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
790         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
791
792         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
793
794         switch (irq_type) {
795         case KVM_ARM_IRQ_TYPE_CPU:
796                 if (irqchip_in_kernel(kvm))
797                         return -ENXIO;
798
799                 if (vcpu_idx >= nrcpus)
800                         return -EINVAL;
801
802                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
803                 if (!vcpu)
804                         return -EINVAL;
805
806                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
807                         return -EINVAL;
808
809                 return vcpu_interrupt_line(vcpu, irq_num, level);
810         case KVM_ARM_IRQ_TYPE_PPI:
811                 if (!irqchip_in_kernel(kvm))
812                         return -ENXIO;
813
814                 if (vcpu_idx >= nrcpus)
815                         return -EINVAL;
816
817                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
818                 if (!vcpu)
819                         return -EINVAL;
820
821                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
822                         return -EINVAL;
823
824                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
825         case KVM_ARM_IRQ_TYPE_SPI:
826                 if (!irqchip_in_kernel(kvm))
827                         return -ENXIO;
828
829                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
830                         return -EINVAL;
831
832                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
833         }
834
835         return -EINVAL;
836 }
837
838 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
839                                const struct kvm_vcpu_init *init)
840 {
841         unsigned int i;
842         int phys_target = kvm_target_cpu();
843
844         if (init->target != phys_target)
845                 return -EINVAL;
846
847         /*
848          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
849          * use the same target.
850          */
851         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
852                 return -EINVAL;
853
854         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
855         for (i = 0; i < sizeof(init->features) * 8; i++) {
856                 bool set = (init->features[i / 32] & (1 << (i % 32)));
857
858                 if (set && i >= KVM_VCPU_MAX_FEATURES)
859                         return -ENOENT;
860
861                 /*
862                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
863                  * use the same feature set.
864                  */
865                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
866                     test_bit(i, vcpu->arch.features) != set)
867                         return -EINVAL;
868
869                 if (set)
870                         set_bit(i, vcpu->arch.features);
871         }
872
873         vcpu->arch.target = phys_target;
874
875         /* Now we know what it is, we can reset it. */
876         return kvm_reset_vcpu(vcpu);
877 }
878
879
880 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
881                                          struct kvm_vcpu_init *init)
882 {
883         int ret;
884
885         ret = kvm_vcpu_set_target(vcpu, init);
886         if (ret)
887                 return ret;
888
889         /*
890          * Ensure a rebooted VM will fault in RAM pages and detect if the
891          * guest MMU is turned off and flush the caches as needed.
892          */
893         if (vcpu->arch.has_run_once)
894                 stage2_unmap_vm(vcpu->kvm);
895
896         vcpu_reset_hcr(vcpu);
897
898         /*
899          * Handle the "start in power-off" case.
900          */
901         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
902                 vcpu_power_off(vcpu);
903         else
904                 vcpu->arch.power_off = false;
905
906         return 0;
907 }
908
909 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
910                                  struct kvm_device_attr *attr)
911 {
912         int ret = -ENXIO;
913
914         switch (attr->group) {
915         default:
916                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
917                 break;
918         }
919
920         return ret;
921 }
922
923 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
924                                  struct kvm_device_attr *attr)
925 {
926         int ret = -ENXIO;
927
928         switch (attr->group) {
929         default:
930                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
931                 break;
932         }
933
934         return ret;
935 }
936
937 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
938                                  struct kvm_device_attr *attr)
939 {
940         int ret = -ENXIO;
941
942         switch (attr->group) {
943         default:
944                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
945                 break;
946         }
947
948         return ret;
949 }
950
951 long kvm_arch_vcpu_ioctl(struct file *filp,
952                          unsigned int ioctl, unsigned long arg)
953 {
954         struct kvm_vcpu *vcpu = filp->private_data;
955         void __user *argp = (void __user *)arg;
956         struct kvm_device_attr attr;
957
958         switch (ioctl) {
959         case KVM_ARM_VCPU_INIT: {
960                 struct kvm_vcpu_init init;
961
962                 if (copy_from_user(&init, argp, sizeof(init)))
963                         return -EFAULT;
964
965                 return kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
966         }
967         case KVM_SET_ONE_REG:
968         case KVM_GET_ONE_REG: {
969                 struct kvm_one_reg reg;
970
971                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
972                         return -ENOEXEC;
973
974                 if (copy_from_user(&reg, argp, sizeof(reg)))
975                         return -EFAULT;
976                 if (ioctl == KVM_SET_ONE_REG)
977                         return kvm_arm_set_reg(vcpu, &reg);
978                 else
979                         return kvm_arm_get_reg(vcpu, &reg);
980         }
981         case KVM_GET_REG_LIST: {
982                 struct kvm_reg_list __user *user_list = argp;
983                 struct kvm_reg_list reg_list;
984                 unsigned n;
985
986                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
987                         return -ENOEXEC;
988
989                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
990                         return -EFAULT;
991                 n = reg_list.n;
992                 reg_list.n = kvm_arm_num_regs(vcpu);
993                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
994                         return -EFAULT;
995                 if (n < reg_list.n)
996                         return -E2BIG;
997                 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
998         }
999         case KVM_SET_DEVICE_ATTR: {
1000                 if (copy_from_user(&attr, argp, sizeof(attr)))
1001                         return -EFAULT;
1002                 return kvm_arm_vcpu_set_attr(vcpu, &attr);
1003         }
1004         case KVM_GET_DEVICE_ATTR: {
1005                 if (copy_from_user(&attr, argp, sizeof(attr)))
1006                         return -EFAULT;
1007                 return kvm_arm_vcpu_get_attr(vcpu, &attr);
1008         }
1009         case KVM_HAS_DEVICE_ATTR: {
1010                 if (copy_from_user(&attr, argp, sizeof(attr)))
1011                         return -EFAULT;
1012                 return kvm_arm_vcpu_has_attr(vcpu, &attr);
1013         }
1014         default:
1015                 return -EINVAL;
1016         }
1017 }
1018
1019 /**
1020  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1021  * @kvm: kvm instance
1022  * @log: slot id and address to which we copy the log
1023  *
1024  * Steps 1-4 below provide general overview of dirty page logging. See
1025  * kvm_get_dirty_log_protect() function description for additional details.
1026  *
1027  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1028  * always flush the TLB (step 4) even if previous step failed  and the dirty
1029  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1030  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1031  * writes will be marked dirty for next log read.
1032  *
1033  *   1. Take a snapshot of the bit and clear it if needed.
1034  *   2. Write protect the corresponding page.
1035  *   3. Copy the snapshot to the userspace.
1036  *   4. Flush TLB's if needed.
1037  */
1038 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1039 {
1040         bool is_dirty = false;
1041         int r;
1042
1043         mutex_lock(&kvm->slots_lock);
1044
1045         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1046
1047         if (is_dirty)
1048                 kvm_flush_remote_tlbs(kvm);
1049
1050         mutex_unlock(&kvm->slots_lock);
1051         return r;
1052 }
1053
1054 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1055                                         struct kvm_arm_device_addr *dev_addr)
1056 {
1057         unsigned long dev_id, type;
1058
1059         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1060                 KVM_ARM_DEVICE_ID_SHIFT;
1061         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1062                 KVM_ARM_DEVICE_TYPE_SHIFT;
1063
1064         switch (dev_id) {
1065         case KVM_ARM_DEVICE_VGIC_V2:
1066                 if (!vgic_present)
1067                         return -ENXIO;
1068                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1069         default:
1070                 return -ENODEV;
1071         }
1072 }
1073
1074 long kvm_arch_vm_ioctl(struct file *filp,
1075                        unsigned int ioctl, unsigned long arg)
1076 {
1077         struct kvm *kvm = filp->private_data;
1078         void __user *argp = (void __user *)arg;
1079
1080         switch (ioctl) {
1081         case KVM_CREATE_IRQCHIP: {
1082                 int ret;
1083                 if (!vgic_present)
1084                         return -ENXIO;
1085                 mutex_lock(&kvm->lock);
1086                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1087                 mutex_unlock(&kvm->lock);
1088                 return ret;
1089         }
1090         case KVM_ARM_SET_DEVICE_ADDR: {
1091                 struct kvm_arm_device_addr dev_addr;
1092
1093                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1094                         return -EFAULT;
1095                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1096         }
1097         case KVM_ARM_PREFERRED_TARGET: {
1098                 int err;
1099                 struct kvm_vcpu_init init;
1100
1101                 err = kvm_vcpu_preferred_target(&init);
1102                 if (err)
1103                         return err;
1104
1105                 if (copy_to_user(argp, &init, sizeof(init)))
1106                         return -EFAULT;
1107
1108                 return 0;
1109         }
1110         default:
1111                 return -EINVAL;
1112         }
1113 }
1114
1115 static void cpu_init_hyp_mode(void *dummy)
1116 {
1117         phys_addr_t pgd_ptr;
1118         unsigned long hyp_stack_ptr;
1119         unsigned long stack_page;
1120         unsigned long vector_ptr;
1121
1122         /* Switch from the HYP stub to our own HYP init vector */
1123         __hyp_set_vectors(kvm_get_idmap_vector());
1124
1125         pgd_ptr = kvm_mmu_get_httbr();
1126         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1127         hyp_stack_ptr = stack_page + PAGE_SIZE;
1128         vector_ptr = (unsigned long)kvm_ksym_ref(__kvm_hyp_vector);
1129
1130         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1131         __cpu_init_stage2();
1132
1133         if (is_kernel_in_hyp_mode())
1134                 kvm_timer_init_vhe();
1135
1136         kvm_arm_init_debug();
1137 }
1138
1139 static void cpu_hyp_reset(void)
1140 {
1141         if (!is_kernel_in_hyp_mode())
1142                 __hyp_reset_vectors();
1143 }
1144
1145 static void cpu_hyp_reinit(void)
1146 {
1147         cpu_hyp_reset();
1148
1149         if (is_kernel_in_hyp_mode()) {
1150                 /*
1151                  * __cpu_init_stage2() is safe to call even if the PM
1152                  * event was cancelled before the CPU was reset.
1153                  */
1154                 __cpu_init_stage2();
1155         } else {
1156                 cpu_init_hyp_mode(NULL);
1157         }
1158
1159         if (vgic_present)
1160                 kvm_vgic_init_cpu_hardware();
1161 }
1162
1163 static void _kvm_arch_hardware_enable(void *discard)
1164 {
1165         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1166                 cpu_hyp_reinit();
1167                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1168         }
1169 }
1170
1171 int kvm_arch_hardware_enable(void)
1172 {
1173         _kvm_arch_hardware_enable(NULL);
1174         return 0;
1175 }
1176
1177 static void _kvm_arch_hardware_disable(void *discard)
1178 {
1179         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1180                 cpu_hyp_reset();
1181                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1182         }
1183 }
1184
1185 void kvm_arch_hardware_disable(void)
1186 {
1187         _kvm_arch_hardware_disable(NULL);
1188 }
1189
1190 #ifdef CONFIG_CPU_PM
1191 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1192                                     unsigned long cmd,
1193                                     void *v)
1194 {
1195         /*
1196          * kvm_arm_hardware_enabled is left with its old value over
1197          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1198          * re-enable hyp.
1199          */
1200         switch (cmd) {
1201         case CPU_PM_ENTER:
1202                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1203                         /*
1204                          * don't update kvm_arm_hardware_enabled here
1205                          * so that the hardware will be re-enabled
1206                          * when we resume. See below.
1207                          */
1208                         cpu_hyp_reset();
1209
1210                 return NOTIFY_OK;
1211         case CPU_PM_EXIT:
1212                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1213                         /* The hardware was enabled before suspend. */
1214                         cpu_hyp_reinit();
1215
1216                 return NOTIFY_OK;
1217
1218         default:
1219                 return NOTIFY_DONE;
1220         }
1221 }
1222
1223 static struct notifier_block hyp_init_cpu_pm_nb = {
1224         .notifier_call = hyp_init_cpu_pm_notifier,
1225 };
1226
1227 static void __init hyp_cpu_pm_init(void)
1228 {
1229         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1230 }
1231 static void __init hyp_cpu_pm_exit(void)
1232 {
1233         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1234 }
1235 #else
1236 static inline void hyp_cpu_pm_init(void)
1237 {
1238 }
1239 static inline void hyp_cpu_pm_exit(void)
1240 {
1241 }
1242 #endif
1243
1244 static void teardown_common_resources(void)
1245 {
1246         free_percpu(kvm_host_cpu_state);
1247 }
1248
1249 static int init_common_resources(void)
1250 {
1251         kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
1252         if (!kvm_host_cpu_state) {
1253                 kvm_err("Cannot allocate host CPU state\n");
1254                 return -ENOMEM;
1255         }
1256
1257         /* set size of VMID supported by CPU */
1258         kvm_vmid_bits = kvm_get_vmid_bits();
1259         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1260
1261         return 0;
1262 }
1263
1264 static int init_subsystems(void)
1265 {
1266         int err = 0;
1267
1268         /*
1269          * Enable hardware so that subsystem initialisation can access EL2.
1270          */
1271         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1272
1273         /*
1274          * Register CPU lower-power notifier
1275          */
1276         hyp_cpu_pm_init();
1277
1278         /*
1279          * Init HYP view of VGIC
1280          */
1281         err = kvm_vgic_hyp_init();
1282         switch (err) {
1283         case 0:
1284                 vgic_present = true;
1285                 break;
1286         case -ENODEV:
1287         case -ENXIO:
1288                 vgic_present = false;
1289                 err = 0;
1290                 break;
1291         default:
1292                 goto out;
1293         }
1294
1295         /*
1296          * Init HYP architected timer support
1297          */
1298         err = kvm_timer_hyp_init();
1299         if (err)
1300                 goto out;
1301
1302         kvm_perf_init();
1303         kvm_coproc_table_init();
1304
1305 out:
1306         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1307
1308         return err;
1309 }
1310
1311 static void teardown_hyp_mode(void)
1312 {
1313         int cpu;
1314
1315         if (is_kernel_in_hyp_mode())
1316                 return;
1317
1318         free_hyp_pgds();
1319         for_each_possible_cpu(cpu)
1320                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1321         hyp_cpu_pm_exit();
1322 }
1323
1324 static int init_vhe_mode(void)
1325 {
1326         kvm_info("VHE mode initialized successfully\n");
1327         return 0;
1328 }
1329
1330 /**
1331  * Inits Hyp-mode on all online CPUs
1332  */
1333 static int init_hyp_mode(void)
1334 {
1335         int cpu;
1336         int err = 0;
1337
1338         /*
1339          * Allocate Hyp PGD and setup Hyp identity mapping
1340          */
1341         err = kvm_mmu_init();
1342         if (err)
1343                 goto out_err;
1344
1345         /*
1346          * Allocate stack pages for Hypervisor-mode
1347          */
1348         for_each_possible_cpu(cpu) {
1349                 unsigned long stack_page;
1350
1351                 stack_page = __get_free_page(GFP_KERNEL);
1352                 if (!stack_page) {
1353                         err = -ENOMEM;
1354                         goto out_err;
1355                 }
1356
1357                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1358         }
1359
1360         /*
1361          * Map the Hyp-code called directly from the host
1362          */
1363         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1364                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1365         if (err) {
1366                 kvm_err("Cannot map world-switch code\n");
1367                 goto out_err;
1368         }
1369
1370         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1371                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1372         if (err) {
1373                 kvm_err("Cannot map rodata section\n");
1374                 goto out_err;
1375         }
1376
1377         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1378                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1379         if (err) {
1380                 kvm_err("Cannot map bss section\n");
1381                 goto out_err;
1382         }
1383
1384         /*
1385          * Map the Hyp stack pages
1386          */
1387         for_each_possible_cpu(cpu) {
1388                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1389                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1390                                           PAGE_HYP);
1391
1392                 if (err) {
1393                         kvm_err("Cannot map hyp stack\n");
1394                         goto out_err;
1395                 }
1396         }
1397
1398         for_each_possible_cpu(cpu) {
1399                 kvm_cpu_context_t *cpu_ctxt;
1400
1401                 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
1402                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1403
1404                 if (err) {
1405                         kvm_err("Cannot map host CPU state: %d\n", err);
1406                         goto out_err;
1407                 }
1408         }
1409
1410         kvm_info("Hyp mode initialized successfully\n");
1411
1412         return 0;
1413
1414 out_err:
1415         teardown_hyp_mode();
1416         kvm_err("error initializing Hyp mode: %d\n", err);
1417         return err;
1418 }
1419
1420 static void check_kvm_target_cpu(void *ret)
1421 {
1422         *(int *)ret = kvm_target_cpu();
1423 }
1424
1425 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1426 {
1427         struct kvm_vcpu *vcpu;
1428         int i;
1429
1430         mpidr &= MPIDR_HWID_BITMASK;
1431         kvm_for_each_vcpu(i, vcpu, kvm) {
1432                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1433                         return vcpu;
1434         }
1435         return NULL;
1436 }
1437
1438 /**
1439  * Initialize Hyp-mode and memory mappings on all CPUs.
1440  */
1441 int kvm_arch_init(void *opaque)
1442 {
1443         int err;
1444         int ret, cpu;
1445
1446         if (!is_hyp_mode_available()) {
1447                 kvm_err("HYP mode not available\n");
1448                 return -ENODEV;
1449         }
1450
1451         for_each_online_cpu(cpu) {
1452                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1453                 if (ret < 0) {
1454                         kvm_err("Error, CPU %d not supported!\n", cpu);
1455                         return -ENODEV;
1456                 }
1457         }
1458
1459         err = init_common_resources();
1460         if (err)
1461                 return err;
1462
1463         if (is_kernel_in_hyp_mode())
1464                 err = init_vhe_mode();
1465         else
1466                 err = init_hyp_mode();
1467         if (err)
1468                 goto out_err;
1469
1470         err = init_subsystems();
1471         if (err)
1472                 goto out_hyp;
1473
1474         return 0;
1475
1476 out_hyp:
1477         teardown_hyp_mode();
1478 out_err:
1479         teardown_common_resources();
1480         return err;
1481 }
1482
1483 /* NOP: Compiling as a module not supported */
1484 void kvm_arch_exit(void)
1485 {
1486         kvm_perf_teardown();
1487 }
1488
1489 static int arm_init(void)
1490 {
1491         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1492         return rc;
1493 }
1494
1495 module_init(arm_init);