]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/arm/arm.c
Merge tag 'mfd-next-4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux.git] / virt / kvm / arm / arm.c
1 /*
2  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3  * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License, version 2, as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
17  */
18
19 #include <linux/cpu_pm.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/vmalloc.h>
26 #include <linux/fs.h>
27 #include <linux/mman.h>
28 #include <linux/sched.h>
29 #include <linux/kvm.h>
30 #include <linux/kvm_irqfd.h>
31 #include <linux/irqbypass.h>
32 #include <trace/events/kvm.h>
33 #include <kvm/arm_pmu.h>
34 #include <kvm/arm_psci.h>
35
36 #define CREATE_TRACE_POINTS
37 #include "trace.h"
38
39 #include <linux/uaccess.h>
40 #include <asm/ptrace.h>
41 #include <asm/mman.h>
42 #include <asm/tlbflush.h>
43 #include <asm/cacheflush.h>
44 #include <asm/virt.h>
45 #include <asm/kvm_arm.h>
46 #include <asm/kvm_asm.h>
47 #include <asm/kvm_mmu.h>
48 #include <asm/kvm_emulate.h>
49 #include <asm/kvm_coproc.h>
50 #include <asm/sections.h>
51
52 #ifdef REQUIRES_VIRT
53 __asm__(".arch_extension        virt");
54 #endif
55
56 DEFINE_PER_CPU(kvm_cpu_context_t, kvm_host_cpu_state);
57 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
58
59 /* Per-CPU variable containing the currently running vcpu. */
60 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
61
62 /* The VMID used in the VTTBR */
63 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
64 static u32 kvm_next_vmid;
65 static unsigned int kvm_vmid_bits __read_mostly;
66 static DEFINE_RWLOCK(kvm_vmid_lock);
67
68 static bool vgic_present;
69
70 static DEFINE_PER_CPU(unsigned char, kvm_arm_hardware_enabled);
71
72 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
73 {
74         __this_cpu_write(kvm_arm_running_vcpu, vcpu);
75 }
76
77 DEFINE_STATIC_KEY_FALSE(userspace_irqchip_in_use);
78
79 /**
80  * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
81  * Must be called from non-preemptible context
82  */
83 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
84 {
85         return __this_cpu_read(kvm_arm_running_vcpu);
86 }
87
88 /**
89  * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
90  */
91 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
92 {
93         return &kvm_arm_running_vcpu;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98         return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 int kvm_arch_hardware_setup(void)
102 {
103         return 0;
104 }
105
106 void kvm_arch_check_processor_compat(void *rtn)
107 {
108         *(int *)rtn = 0;
109 }
110
111
112 /**
113  * kvm_arch_init_vm - initializes a VM data structure
114  * @kvm:        pointer to the KVM struct
115  */
116 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
117 {
118         int ret, cpu;
119
120         if (type)
121                 return -EINVAL;
122
123         kvm->arch.last_vcpu_ran = alloc_percpu(typeof(*kvm->arch.last_vcpu_ran));
124         if (!kvm->arch.last_vcpu_ran)
125                 return -ENOMEM;
126
127         for_each_possible_cpu(cpu)
128                 *per_cpu_ptr(kvm->arch.last_vcpu_ran, cpu) = -1;
129
130         ret = kvm_alloc_stage2_pgd(kvm);
131         if (ret)
132                 goto out_fail_alloc;
133
134         ret = create_hyp_mappings(kvm, kvm + 1, PAGE_HYP);
135         if (ret)
136                 goto out_free_stage2_pgd;
137
138         kvm_vgic_early_init(kvm);
139
140         /* Mark the initial VMID generation invalid */
141         kvm->arch.vmid_gen = 0;
142
143         /* The maximum number of VCPUs is limited by the host's GIC model */
144         kvm->arch.max_vcpus = vgic_present ?
145                                 kvm_vgic_get_max_vcpus() : KVM_MAX_VCPUS;
146
147         return ret;
148 out_free_stage2_pgd:
149         kvm_free_stage2_pgd(kvm);
150 out_fail_alloc:
151         free_percpu(kvm->arch.last_vcpu_ran);
152         kvm->arch.last_vcpu_ran = NULL;
153         return ret;
154 }
155
156 bool kvm_arch_has_vcpu_debugfs(void)
157 {
158         return false;
159 }
160
161 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
162 {
163         return 0;
164 }
165
166 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
167 {
168         return VM_FAULT_SIGBUS;
169 }
170
171
172 /**
173  * kvm_arch_destroy_vm - destroy the VM data structure
174  * @kvm:        pointer to the KVM struct
175  */
176 void kvm_arch_destroy_vm(struct kvm *kvm)
177 {
178         int i;
179
180         kvm_vgic_destroy(kvm);
181
182         free_percpu(kvm->arch.last_vcpu_ran);
183         kvm->arch.last_vcpu_ran = NULL;
184
185         for (i = 0; i < KVM_MAX_VCPUS; ++i) {
186                 if (kvm->vcpus[i]) {
187                         kvm_arch_vcpu_free(kvm->vcpus[i]);
188                         kvm->vcpus[i] = NULL;
189                 }
190         }
191         atomic_set(&kvm->online_vcpus, 0);
192 }
193
194 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
195 {
196         int r;
197         switch (ext) {
198         case KVM_CAP_IRQCHIP:
199                 r = vgic_present;
200                 break;
201         case KVM_CAP_IOEVENTFD:
202         case KVM_CAP_DEVICE_CTRL:
203         case KVM_CAP_USER_MEMORY:
204         case KVM_CAP_SYNC_MMU:
205         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
206         case KVM_CAP_ONE_REG:
207         case KVM_CAP_ARM_PSCI:
208         case KVM_CAP_ARM_PSCI_0_2:
209         case KVM_CAP_READONLY_MEM:
210         case KVM_CAP_MP_STATE:
211         case KVM_CAP_IMMEDIATE_EXIT:
212                 r = 1;
213                 break;
214         case KVM_CAP_ARM_SET_DEVICE_ADDR:
215                 r = 1;
216                 break;
217         case KVM_CAP_NR_VCPUS:
218                 r = num_online_cpus();
219                 break;
220         case KVM_CAP_MAX_VCPUS:
221                 r = KVM_MAX_VCPUS;
222                 break;
223         case KVM_CAP_NR_MEMSLOTS:
224                 r = KVM_USER_MEM_SLOTS;
225                 break;
226         case KVM_CAP_MSI_DEVID:
227                 if (!kvm)
228                         r = -EINVAL;
229                 else
230                         r = kvm->arch.vgic.msis_require_devid;
231                 break;
232         case KVM_CAP_ARM_USER_IRQ:
233                 /*
234                  * 1: EL1_VTIMER, EL1_PTIMER, and PMU.
235                  * (bump this number if adding more devices)
236                  */
237                 r = 1;
238                 break;
239         default:
240                 r = kvm_arch_dev_ioctl_check_extension(kvm, ext);
241                 break;
242         }
243         return r;
244 }
245
246 long kvm_arch_dev_ioctl(struct file *filp,
247                         unsigned int ioctl, unsigned long arg)
248 {
249         return -EINVAL;
250 }
251
252
253 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
254 {
255         int err;
256         struct kvm_vcpu *vcpu;
257
258         if (irqchip_in_kernel(kvm) && vgic_initialized(kvm)) {
259                 err = -EBUSY;
260                 goto out;
261         }
262
263         if (id >= kvm->arch.max_vcpus) {
264                 err = -EINVAL;
265                 goto out;
266         }
267
268         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
269         if (!vcpu) {
270                 err = -ENOMEM;
271                 goto out;
272         }
273
274         err = kvm_vcpu_init(vcpu, kvm, id);
275         if (err)
276                 goto free_vcpu;
277
278         err = create_hyp_mappings(vcpu, vcpu + 1, PAGE_HYP);
279         if (err)
280                 goto vcpu_uninit;
281
282         return vcpu;
283 vcpu_uninit:
284         kvm_vcpu_uninit(vcpu);
285 free_vcpu:
286         kmem_cache_free(kvm_vcpu_cache, vcpu);
287 out:
288         return ERR_PTR(err);
289 }
290
291 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
292 {
293         kvm_vgic_vcpu_early_init(vcpu);
294 }
295
296 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
297 {
298         if (vcpu->arch.has_run_once && unlikely(!irqchip_in_kernel(vcpu->kvm)))
299                 static_branch_dec(&userspace_irqchip_in_use);
300
301         kvm_mmu_free_memory_caches(vcpu);
302         kvm_timer_vcpu_terminate(vcpu);
303         kvm_pmu_vcpu_destroy(vcpu);
304         kvm_vcpu_uninit(vcpu);
305         kmem_cache_free(kvm_vcpu_cache, vcpu);
306 }
307
308 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
309 {
310         kvm_arch_vcpu_free(vcpu);
311 }
312
313 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
314 {
315         return kvm_timer_is_pending(vcpu);
316 }
317
318 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
319 {
320         kvm_timer_schedule(vcpu);
321         kvm_vgic_v4_enable_doorbell(vcpu);
322 }
323
324 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
325 {
326         kvm_timer_unschedule(vcpu);
327         kvm_vgic_v4_disable_doorbell(vcpu);
328 }
329
330 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
331 {
332         /* Force users to call KVM_ARM_VCPU_INIT */
333         vcpu->arch.target = -1;
334         bitmap_zero(vcpu->arch.features, KVM_VCPU_MAX_FEATURES);
335
336         /* Set up the timer */
337         kvm_timer_vcpu_init(vcpu);
338
339         kvm_arm_reset_debug_ptr(vcpu);
340
341         return kvm_vgic_vcpu_init(vcpu);
342 }
343
344 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
345 {
346         int *last_ran;
347
348         last_ran = this_cpu_ptr(vcpu->kvm->arch.last_vcpu_ran);
349
350         /*
351          * We might get preempted before the vCPU actually runs, but
352          * over-invalidation doesn't affect correctness.
353          */
354         if (*last_ran != vcpu->vcpu_id) {
355                 kvm_call_hyp(__kvm_tlb_flush_local_vmid, vcpu);
356                 *last_ran = vcpu->vcpu_id;
357         }
358
359         vcpu->cpu = cpu;
360         vcpu->arch.host_cpu_context = this_cpu_ptr(&kvm_host_cpu_state);
361
362         kvm_arm_set_running_vcpu(vcpu);
363         kvm_vgic_load(vcpu);
364         kvm_timer_vcpu_load(vcpu);
365         kvm_vcpu_load_sysregs(vcpu);
366 }
367
368 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
369 {
370         kvm_vcpu_put_sysregs(vcpu);
371         kvm_timer_vcpu_put(vcpu);
372         kvm_vgic_put(vcpu);
373
374         vcpu->cpu = -1;
375
376         kvm_arm_set_running_vcpu(NULL);
377 }
378
379 static void vcpu_power_off(struct kvm_vcpu *vcpu)
380 {
381         vcpu->arch.power_off = true;
382         kvm_make_request(KVM_REQ_SLEEP, vcpu);
383         kvm_vcpu_kick(vcpu);
384 }
385
386 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
387                                     struct kvm_mp_state *mp_state)
388 {
389         if (vcpu->arch.power_off)
390                 mp_state->mp_state = KVM_MP_STATE_STOPPED;
391         else
392                 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
393
394         return 0;
395 }
396
397 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
398                                     struct kvm_mp_state *mp_state)
399 {
400         int ret = 0;
401
402         switch (mp_state->mp_state) {
403         case KVM_MP_STATE_RUNNABLE:
404                 vcpu->arch.power_off = false;
405                 break;
406         case KVM_MP_STATE_STOPPED:
407                 vcpu_power_off(vcpu);
408                 break;
409         default:
410                 ret = -EINVAL;
411         }
412
413         return ret;
414 }
415
416 /**
417  * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
418  * @v:          The VCPU pointer
419  *
420  * If the guest CPU is not waiting for interrupts or an interrupt line is
421  * asserted, the CPU is by definition runnable.
422  */
423 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
424 {
425         bool irq_lines = *vcpu_hcr(v) & (HCR_VI | HCR_VF);
426         return ((irq_lines || kvm_vgic_vcpu_pending_irq(v))
427                 && !v->arch.power_off && !v->arch.pause);
428 }
429
430 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
431 {
432         return vcpu_mode_priv(vcpu);
433 }
434
435 /* Just ensure a guest exit from a particular CPU */
436 static void exit_vm_noop(void *info)
437 {
438 }
439
440 void force_vm_exit(const cpumask_t *mask)
441 {
442         preempt_disable();
443         smp_call_function_many(mask, exit_vm_noop, NULL, true);
444         preempt_enable();
445 }
446
447 /**
448  * need_new_vmid_gen - check that the VMID is still valid
449  * @kvm: The VM's VMID to check
450  *
451  * return true if there is a new generation of VMIDs being used
452  *
453  * The hardware supports only 256 values with the value zero reserved for the
454  * host, so we check if an assigned value belongs to a previous generation,
455  * which which requires us to assign a new value. If we're the first to use a
456  * VMID for the new generation, we must flush necessary caches and TLBs on all
457  * CPUs.
458  */
459 static bool need_new_vmid_gen(struct kvm *kvm)
460 {
461         return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
462 }
463
464 /**
465  * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
466  * @kvm The guest that we are about to run
467  *
468  * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
469  * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
470  * caches and TLBs.
471  */
472 static void update_vttbr(struct kvm *kvm)
473 {
474         phys_addr_t pgd_phys;
475         u64 vmid;
476         bool new_gen;
477
478         read_lock(&kvm_vmid_lock);
479         new_gen = need_new_vmid_gen(kvm);
480         read_unlock(&kvm_vmid_lock);
481
482         if (!new_gen)
483                 return;
484
485         write_lock(&kvm_vmid_lock);
486
487         /*
488          * We need to re-check the vmid_gen here to ensure that if another vcpu
489          * already allocated a valid vmid for this vm, then this vcpu should
490          * use the same vmid.
491          */
492         if (!need_new_vmid_gen(kvm)) {
493                 write_unlock(&kvm_vmid_lock);
494                 return;
495         }
496
497         /* First user of a new VMID generation? */
498         if (unlikely(kvm_next_vmid == 0)) {
499                 atomic64_inc(&kvm_vmid_gen);
500                 kvm_next_vmid = 1;
501
502                 /*
503                  * On SMP we know no other CPUs can use this CPU's or each
504                  * other's VMID after force_vm_exit returns since the
505                  * kvm_vmid_lock blocks them from reentry to the guest.
506                  */
507                 force_vm_exit(cpu_all_mask);
508                 /*
509                  * Now broadcast TLB + ICACHE invalidation over the inner
510                  * shareable domain to make sure all data structures are
511                  * clean.
512                  */
513                 kvm_call_hyp(__kvm_flush_vm_context);
514         }
515
516         kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
517         kvm->arch.vmid = kvm_next_vmid;
518         kvm_next_vmid++;
519         kvm_next_vmid &= (1 << kvm_vmid_bits) - 1;
520
521         /* update vttbr to be used with the new vmid */
522         pgd_phys = virt_to_phys(kvm->arch.pgd);
523         BUG_ON(pgd_phys & ~VTTBR_BADDR_MASK);
524         vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK(kvm_vmid_bits);
525         kvm->arch.vttbr = kvm_phys_to_vttbr(pgd_phys) | vmid;
526
527         write_unlock(&kvm_vmid_lock);
528 }
529
530 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
531 {
532         struct kvm *kvm = vcpu->kvm;
533         int ret = 0;
534
535         if (likely(vcpu->arch.has_run_once))
536                 return 0;
537
538         vcpu->arch.has_run_once = true;
539
540         if (likely(irqchip_in_kernel(kvm))) {
541                 /*
542                  * Map the VGIC hardware resources before running a vcpu the
543                  * first time on this VM.
544                  */
545                 if (unlikely(!vgic_ready(kvm))) {
546                         ret = kvm_vgic_map_resources(kvm);
547                         if (ret)
548                                 return ret;
549                 }
550         } else {
551                 /*
552                  * Tell the rest of the code that there are userspace irqchip
553                  * VMs in the wild.
554                  */
555                 static_branch_inc(&userspace_irqchip_in_use);
556         }
557
558         ret = kvm_timer_enable(vcpu);
559         if (ret)
560                 return ret;
561
562         ret = kvm_arm_pmu_v3_enable(vcpu);
563
564         return ret;
565 }
566
567 bool kvm_arch_intc_initialized(struct kvm *kvm)
568 {
569         return vgic_initialized(kvm);
570 }
571
572 void kvm_arm_halt_guest(struct kvm *kvm)
573 {
574         int i;
575         struct kvm_vcpu *vcpu;
576
577         kvm_for_each_vcpu(i, vcpu, kvm)
578                 vcpu->arch.pause = true;
579         kvm_make_all_cpus_request(kvm, KVM_REQ_SLEEP);
580 }
581
582 void kvm_arm_resume_guest(struct kvm *kvm)
583 {
584         int i;
585         struct kvm_vcpu *vcpu;
586
587         kvm_for_each_vcpu(i, vcpu, kvm) {
588                 vcpu->arch.pause = false;
589                 swake_up(kvm_arch_vcpu_wq(vcpu));
590         }
591 }
592
593 static void vcpu_req_sleep(struct kvm_vcpu *vcpu)
594 {
595         struct swait_queue_head *wq = kvm_arch_vcpu_wq(vcpu);
596
597         swait_event_interruptible(*wq, ((!vcpu->arch.power_off) &&
598                                        (!vcpu->arch.pause)));
599
600         if (vcpu->arch.power_off || vcpu->arch.pause) {
601                 /* Awaken to handle a signal, request we sleep again later. */
602                 kvm_make_request(KVM_REQ_SLEEP, vcpu);
603         }
604 }
605
606 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
607 {
608         return vcpu->arch.target >= 0;
609 }
610
611 static void check_vcpu_requests(struct kvm_vcpu *vcpu)
612 {
613         if (kvm_request_pending(vcpu)) {
614                 if (kvm_check_request(KVM_REQ_SLEEP, vcpu))
615                         vcpu_req_sleep(vcpu);
616
617                 /*
618                  * Clear IRQ_PENDING requests that were made to guarantee
619                  * that a VCPU sees new virtual interrupts.
620                  */
621                 kvm_check_request(KVM_REQ_IRQ_PENDING, vcpu);
622         }
623 }
624
625 /**
626  * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
627  * @vcpu:       The VCPU pointer
628  * @run:        The kvm_run structure pointer used for userspace state exchange
629  *
630  * This function is called through the VCPU_RUN ioctl called from user space. It
631  * will execute VM code in a loop until the time slice for the process is used
632  * or some emulation is needed from user space in which case the function will
633  * return with return value 0 and with the kvm_run structure filled in with the
634  * required data for the requested emulation.
635  */
636 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
637 {
638         int ret;
639
640         if (unlikely(!kvm_vcpu_initialized(vcpu)))
641                 return -ENOEXEC;
642
643         ret = kvm_vcpu_first_run_init(vcpu);
644         if (ret)
645                 return ret;
646
647         if (run->exit_reason == KVM_EXIT_MMIO) {
648                 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
649                 if (ret)
650                         return ret;
651                 if (kvm_arm_handle_step_debug(vcpu, vcpu->run))
652                         return 0;
653         }
654
655         if (run->immediate_exit)
656                 return -EINTR;
657
658         vcpu_load(vcpu);
659
660         kvm_sigset_activate(vcpu);
661
662         ret = 1;
663         run->exit_reason = KVM_EXIT_UNKNOWN;
664         while (ret > 0) {
665                 /*
666                  * Check conditions before entering the guest
667                  */
668                 cond_resched();
669
670                 update_vttbr(vcpu->kvm);
671
672                 check_vcpu_requests(vcpu);
673
674                 /*
675                  * Preparing the interrupts to be injected also
676                  * involves poking the GIC, which must be done in a
677                  * non-preemptible context.
678                  */
679                 preempt_disable();
680
681                 /* Flush FP/SIMD state that can't survive guest entry/exit */
682                 kvm_fpsimd_flush_cpu_state();
683
684                 kvm_pmu_flush_hwstate(vcpu);
685
686                 local_irq_disable();
687
688                 kvm_vgic_flush_hwstate(vcpu);
689
690                 /*
691                  * Exit if we have a signal pending so that we can deliver the
692                  * signal to user space.
693                  */
694                 if (signal_pending(current)) {
695                         ret = -EINTR;
696                         run->exit_reason = KVM_EXIT_INTR;
697                 }
698
699                 /*
700                  * If we're using a userspace irqchip, then check if we need
701                  * to tell a userspace irqchip about timer or PMU level
702                  * changes and if so, exit to userspace (the actual level
703                  * state gets updated in kvm_timer_update_run and
704                  * kvm_pmu_update_run below).
705                  */
706                 if (static_branch_unlikely(&userspace_irqchip_in_use)) {
707                         if (kvm_timer_should_notify_user(vcpu) ||
708                             kvm_pmu_should_notify_user(vcpu)) {
709                                 ret = -EINTR;
710                                 run->exit_reason = KVM_EXIT_INTR;
711                         }
712                 }
713
714                 /*
715                  * Ensure we set mode to IN_GUEST_MODE after we disable
716                  * interrupts and before the final VCPU requests check.
717                  * See the comment in kvm_vcpu_exiting_guest_mode() and
718                  * Documentation/virtual/kvm/vcpu-requests.rst
719                  */
720                 smp_store_mb(vcpu->mode, IN_GUEST_MODE);
721
722                 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm) ||
723                     kvm_request_pending(vcpu)) {
724                         vcpu->mode = OUTSIDE_GUEST_MODE;
725                         isb(); /* Ensure work in x_flush_hwstate is committed */
726                         kvm_pmu_sync_hwstate(vcpu);
727                         if (static_branch_unlikely(&userspace_irqchip_in_use))
728                                 kvm_timer_sync_hwstate(vcpu);
729                         kvm_vgic_sync_hwstate(vcpu);
730                         local_irq_enable();
731                         preempt_enable();
732                         continue;
733                 }
734
735                 kvm_arm_setup_debug(vcpu);
736
737                 /**************************************************************
738                  * Enter the guest
739                  */
740                 trace_kvm_entry(*vcpu_pc(vcpu));
741                 guest_enter_irqoff();
742
743                 if (has_vhe()) {
744                         kvm_arm_vhe_guest_enter();
745                         ret = kvm_vcpu_run_vhe(vcpu);
746                         kvm_arm_vhe_guest_exit();
747                 } else {
748                         ret = kvm_call_hyp(__kvm_vcpu_run_nvhe, vcpu);
749                 }
750
751                 vcpu->mode = OUTSIDE_GUEST_MODE;
752                 vcpu->stat.exits++;
753                 /*
754                  * Back from guest
755                  *************************************************************/
756
757                 kvm_arm_clear_debug(vcpu);
758
759                 /*
760                  * We must sync the PMU state before the vgic state so
761                  * that the vgic can properly sample the updated state of the
762                  * interrupt line.
763                  */
764                 kvm_pmu_sync_hwstate(vcpu);
765
766                 /*
767                  * Sync the vgic state before syncing the timer state because
768                  * the timer code needs to know if the virtual timer
769                  * interrupts are active.
770                  */
771                 kvm_vgic_sync_hwstate(vcpu);
772
773                 /*
774                  * Sync the timer hardware state before enabling interrupts as
775                  * we don't want vtimer interrupts to race with syncing the
776                  * timer virtual interrupt state.
777                  */
778                 if (static_branch_unlikely(&userspace_irqchip_in_use))
779                         kvm_timer_sync_hwstate(vcpu);
780
781                 /*
782                  * We may have taken a host interrupt in HYP mode (ie
783                  * while executing the guest). This interrupt is still
784                  * pending, as we haven't serviced it yet!
785                  *
786                  * We're now back in SVC mode, with interrupts
787                  * disabled.  Enabling the interrupts now will have
788                  * the effect of taking the interrupt again, in SVC
789                  * mode this time.
790                  */
791                 local_irq_enable();
792
793                 /*
794                  * We do local_irq_enable() before calling guest_exit() so
795                  * that if a timer interrupt hits while running the guest we
796                  * account that tick as being spent in the guest.  We enable
797                  * preemption after calling guest_exit() so that if we get
798                  * preempted we make sure ticks after that is not counted as
799                  * guest time.
800                  */
801                 guest_exit();
802                 trace_kvm_exit(ret, kvm_vcpu_trap_get_class(vcpu), *vcpu_pc(vcpu));
803
804                 /* Exit types that need handling before we can be preempted */
805                 handle_exit_early(vcpu, run, ret);
806
807                 preempt_enable();
808
809                 ret = handle_exit(vcpu, run, ret);
810         }
811
812         /* Tell userspace about in-kernel device output levels */
813         if (unlikely(!irqchip_in_kernel(vcpu->kvm))) {
814                 kvm_timer_update_run(vcpu);
815                 kvm_pmu_update_run(vcpu);
816         }
817
818         kvm_sigset_deactivate(vcpu);
819
820         vcpu_put(vcpu);
821         return ret;
822 }
823
824 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
825 {
826         int bit_index;
827         bool set;
828         unsigned long *hcr;
829
830         if (number == KVM_ARM_IRQ_CPU_IRQ)
831                 bit_index = __ffs(HCR_VI);
832         else /* KVM_ARM_IRQ_CPU_FIQ */
833                 bit_index = __ffs(HCR_VF);
834
835         hcr = vcpu_hcr(vcpu);
836         if (level)
837                 set = test_and_set_bit(bit_index, hcr);
838         else
839                 set = test_and_clear_bit(bit_index, hcr);
840
841         /*
842          * If we didn't change anything, no need to wake up or kick other CPUs
843          */
844         if (set == level)
845                 return 0;
846
847         /*
848          * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
849          * trigger a world-switch round on the running physical CPU to set the
850          * virtual IRQ/FIQ fields in the HCR appropriately.
851          */
852         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
853         kvm_vcpu_kick(vcpu);
854
855         return 0;
856 }
857
858 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
859                           bool line_status)
860 {
861         u32 irq = irq_level->irq;
862         unsigned int irq_type, vcpu_idx, irq_num;
863         int nrcpus = atomic_read(&kvm->online_vcpus);
864         struct kvm_vcpu *vcpu = NULL;
865         bool level = irq_level->level;
866
867         irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
868         vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
869         irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
870
871         trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
872
873         switch (irq_type) {
874         case KVM_ARM_IRQ_TYPE_CPU:
875                 if (irqchip_in_kernel(kvm))
876                         return -ENXIO;
877
878                 if (vcpu_idx >= nrcpus)
879                         return -EINVAL;
880
881                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
882                 if (!vcpu)
883                         return -EINVAL;
884
885                 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
886                         return -EINVAL;
887
888                 return vcpu_interrupt_line(vcpu, irq_num, level);
889         case KVM_ARM_IRQ_TYPE_PPI:
890                 if (!irqchip_in_kernel(kvm))
891                         return -ENXIO;
892
893                 if (vcpu_idx >= nrcpus)
894                         return -EINVAL;
895
896                 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
897                 if (!vcpu)
898                         return -EINVAL;
899
900                 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
901                         return -EINVAL;
902
903                 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level, NULL);
904         case KVM_ARM_IRQ_TYPE_SPI:
905                 if (!irqchip_in_kernel(kvm))
906                         return -ENXIO;
907
908                 if (irq_num < VGIC_NR_PRIVATE_IRQS)
909                         return -EINVAL;
910
911                 return kvm_vgic_inject_irq(kvm, 0, irq_num, level, NULL);
912         }
913
914         return -EINVAL;
915 }
916
917 static int kvm_vcpu_set_target(struct kvm_vcpu *vcpu,
918                                const struct kvm_vcpu_init *init)
919 {
920         unsigned int i;
921         int phys_target = kvm_target_cpu();
922
923         if (init->target != phys_target)
924                 return -EINVAL;
925
926         /*
927          * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
928          * use the same target.
929          */
930         if (vcpu->arch.target != -1 && vcpu->arch.target != init->target)
931                 return -EINVAL;
932
933         /* -ENOENT for unknown features, -EINVAL for invalid combinations. */
934         for (i = 0; i < sizeof(init->features) * 8; i++) {
935                 bool set = (init->features[i / 32] & (1 << (i % 32)));
936
937                 if (set && i >= KVM_VCPU_MAX_FEATURES)
938                         return -ENOENT;
939
940                 /*
941                  * Secondary and subsequent calls to KVM_ARM_VCPU_INIT must
942                  * use the same feature set.
943                  */
944                 if (vcpu->arch.target != -1 && i < KVM_VCPU_MAX_FEATURES &&
945                     test_bit(i, vcpu->arch.features) != set)
946                         return -EINVAL;
947
948                 if (set)
949                         set_bit(i, vcpu->arch.features);
950         }
951
952         vcpu->arch.target = phys_target;
953
954         /* Now we know what it is, we can reset it. */
955         return kvm_reset_vcpu(vcpu);
956 }
957
958
959 static int kvm_arch_vcpu_ioctl_vcpu_init(struct kvm_vcpu *vcpu,
960                                          struct kvm_vcpu_init *init)
961 {
962         int ret;
963
964         ret = kvm_vcpu_set_target(vcpu, init);
965         if (ret)
966                 return ret;
967
968         /*
969          * Ensure a rebooted VM will fault in RAM pages and detect if the
970          * guest MMU is turned off and flush the caches as needed.
971          */
972         if (vcpu->arch.has_run_once)
973                 stage2_unmap_vm(vcpu->kvm);
974
975         vcpu_reset_hcr(vcpu);
976
977         /*
978          * Handle the "start in power-off" case.
979          */
980         if (test_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features))
981                 vcpu_power_off(vcpu);
982         else
983                 vcpu->arch.power_off = false;
984
985         return 0;
986 }
987
988 static int kvm_arm_vcpu_set_attr(struct kvm_vcpu *vcpu,
989                                  struct kvm_device_attr *attr)
990 {
991         int ret = -ENXIO;
992
993         switch (attr->group) {
994         default:
995                 ret = kvm_arm_vcpu_arch_set_attr(vcpu, attr);
996                 break;
997         }
998
999         return ret;
1000 }
1001
1002 static int kvm_arm_vcpu_get_attr(struct kvm_vcpu *vcpu,
1003                                  struct kvm_device_attr *attr)
1004 {
1005         int ret = -ENXIO;
1006
1007         switch (attr->group) {
1008         default:
1009                 ret = kvm_arm_vcpu_arch_get_attr(vcpu, attr);
1010                 break;
1011         }
1012
1013         return ret;
1014 }
1015
1016 static int kvm_arm_vcpu_has_attr(struct kvm_vcpu *vcpu,
1017                                  struct kvm_device_attr *attr)
1018 {
1019         int ret = -ENXIO;
1020
1021         switch (attr->group) {
1022         default:
1023                 ret = kvm_arm_vcpu_arch_has_attr(vcpu, attr);
1024                 break;
1025         }
1026
1027         return ret;
1028 }
1029
1030 long kvm_arch_vcpu_ioctl(struct file *filp,
1031                          unsigned int ioctl, unsigned long arg)
1032 {
1033         struct kvm_vcpu *vcpu = filp->private_data;
1034         void __user *argp = (void __user *)arg;
1035         struct kvm_device_attr attr;
1036         long r;
1037
1038         switch (ioctl) {
1039         case KVM_ARM_VCPU_INIT: {
1040                 struct kvm_vcpu_init init;
1041
1042                 r = -EFAULT;
1043                 if (copy_from_user(&init, argp, sizeof(init)))
1044                         break;
1045
1046                 r = kvm_arch_vcpu_ioctl_vcpu_init(vcpu, &init);
1047                 break;
1048         }
1049         case KVM_SET_ONE_REG:
1050         case KVM_GET_ONE_REG: {
1051                 struct kvm_one_reg reg;
1052
1053                 r = -ENOEXEC;
1054                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1055                         break;
1056
1057                 r = -EFAULT;
1058                 if (copy_from_user(&reg, argp, sizeof(reg)))
1059                         break;
1060
1061                 if (ioctl == KVM_SET_ONE_REG)
1062                         r = kvm_arm_set_reg(vcpu, &reg);
1063                 else
1064                         r = kvm_arm_get_reg(vcpu, &reg);
1065                 break;
1066         }
1067         case KVM_GET_REG_LIST: {
1068                 struct kvm_reg_list __user *user_list = argp;
1069                 struct kvm_reg_list reg_list;
1070                 unsigned n;
1071
1072                 r = -ENOEXEC;
1073                 if (unlikely(!kvm_vcpu_initialized(vcpu)))
1074                         break;
1075
1076                 r = -EFAULT;
1077                 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
1078                         break;
1079                 n = reg_list.n;
1080                 reg_list.n = kvm_arm_num_regs(vcpu);
1081                 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
1082                         break;
1083                 r = -E2BIG;
1084                 if (n < reg_list.n)
1085                         break;
1086                 r = kvm_arm_copy_reg_indices(vcpu, user_list->reg);
1087                 break;
1088         }
1089         case KVM_SET_DEVICE_ATTR: {
1090                 r = -EFAULT;
1091                 if (copy_from_user(&attr, argp, sizeof(attr)))
1092                         break;
1093                 r = kvm_arm_vcpu_set_attr(vcpu, &attr);
1094                 break;
1095         }
1096         case KVM_GET_DEVICE_ATTR: {
1097                 r = -EFAULT;
1098                 if (copy_from_user(&attr, argp, sizeof(attr)))
1099                         break;
1100                 r = kvm_arm_vcpu_get_attr(vcpu, &attr);
1101                 break;
1102         }
1103         case KVM_HAS_DEVICE_ATTR: {
1104                 r = -EFAULT;
1105                 if (copy_from_user(&attr, argp, sizeof(attr)))
1106                         break;
1107                 r = kvm_arm_vcpu_has_attr(vcpu, &attr);
1108                 break;
1109         }
1110         default:
1111                 r = -EINVAL;
1112         }
1113
1114         return r;
1115 }
1116
1117 /**
1118  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
1119  * @kvm: kvm instance
1120  * @log: slot id and address to which we copy the log
1121  *
1122  * Steps 1-4 below provide general overview of dirty page logging. See
1123  * kvm_get_dirty_log_protect() function description for additional details.
1124  *
1125  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
1126  * always flush the TLB (step 4) even if previous step failed  and the dirty
1127  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
1128  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
1129  * writes will be marked dirty for next log read.
1130  *
1131  *   1. Take a snapshot of the bit and clear it if needed.
1132  *   2. Write protect the corresponding page.
1133  *   3. Copy the snapshot to the userspace.
1134  *   4. Flush TLB's if needed.
1135  */
1136 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
1137 {
1138         bool is_dirty = false;
1139         int r;
1140
1141         mutex_lock(&kvm->slots_lock);
1142
1143         r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
1144
1145         if (is_dirty)
1146                 kvm_flush_remote_tlbs(kvm);
1147
1148         mutex_unlock(&kvm->slots_lock);
1149         return r;
1150 }
1151
1152 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
1153                                         struct kvm_arm_device_addr *dev_addr)
1154 {
1155         unsigned long dev_id, type;
1156
1157         dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
1158                 KVM_ARM_DEVICE_ID_SHIFT;
1159         type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
1160                 KVM_ARM_DEVICE_TYPE_SHIFT;
1161
1162         switch (dev_id) {
1163         case KVM_ARM_DEVICE_VGIC_V2:
1164                 if (!vgic_present)
1165                         return -ENXIO;
1166                 return kvm_vgic_addr(kvm, type, &dev_addr->addr, true);
1167         default:
1168                 return -ENODEV;
1169         }
1170 }
1171
1172 long kvm_arch_vm_ioctl(struct file *filp,
1173                        unsigned int ioctl, unsigned long arg)
1174 {
1175         struct kvm *kvm = filp->private_data;
1176         void __user *argp = (void __user *)arg;
1177
1178         switch (ioctl) {
1179         case KVM_CREATE_IRQCHIP: {
1180                 int ret;
1181                 if (!vgic_present)
1182                         return -ENXIO;
1183                 mutex_lock(&kvm->lock);
1184                 ret = kvm_vgic_create(kvm, KVM_DEV_TYPE_ARM_VGIC_V2);
1185                 mutex_unlock(&kvm->lock);
1186                 return ret;
1187         }
1188         case KVM_ARM_SET_DEVICE_ADDR: {
1189                 struct kvm_arm_device_addr dev_addr;
1190
1191                 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
1192                         return -EFAULT;
1193                 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
1194         }
1195         case KVM_ARM_PREFERRED_TARGET: {
1196                 int err;
1197                 struct kvm_vcpu_init init;
1198
1199                 err = kvm_vcpu_preferred_target(&init);
1200                 if (err)
1201                         return err;
1202
1203                 if (copy_to_user(argp, &init, sizeof(init)))
1204                         return -EFAULT;
1205
1206                 return 0;
1207         }
1208         default:
1209                 return -EINVAL;
1210         }
1211 }
1212
1213 static void cpu_init_hyp_mode(void *dummy)
1214 {
1215         phys_addr_t pgd_ptr;
1216         unsigned long hyp_stack_ptr;
1217         unsigned long stack_page;
1218         unsigned long vector_ptr;
1219
1220         /* Switch from the HYP stub to our own HYP init vector */
1221         __hyp_set_vectors(kvm_get_idmap_vector());
1222
1223         pgd_ptr = kvm_mmu_get_httbr();
1224         stack_page = __this_cpu_read(kvm_arm_hyp_stack_page);
1225         hyp_stack_ptr = stack_page + PAGE_SIZE;
1226         vector_ptr = (unsigned long)kvm_get_hyp_vector();
1227
1228         __cpu_init_hyp_mode(pgd_ptr, hyp_stack_ptr, vector_ptr);
1229         __cpu_init_stage2();
1230
1231         kvm_arm_init_debug();
1232 }
1233
1234 static void cpu_hyp_reset(void)
1235 {
1236         if (!is_kernel_in_hyp_mode())
1237                 __hyp_reset_vectors();
1238 }
1239
1240 static void cpu_hyp_reinit(void)
1241 {
1242         cpu_hyp_reset();
1243
1244         if (is_kernel_in_hyp_mode()) {
1245                 /*
1246                  * __cpu_init_stage2() is safe to call even if the PM
1247                  * event was cancelled before the CPU was reset.
1248                  */
1249                 __cpu_init_stage2();
1250                 kvm_timer_init_vhe();
1251         } else {
1252                 cpu_init_hyp_mode(NULL);
1253         }
1254
1255         if (vgic_present)
1256                 kvm_vgic_init_cpu_hardware();
1257 }
1258
1259 static void _kvm_arch_hardware_enable(void *discard)
1260 {
1261         if (!__this_cpu_read(kvm_arm_hardware_enabled)) {
1262                 cpu_hyp_reinit();
1263                 __this_cpu_write(kvm_arm_hardware_enabled, 1);
1264         }
1265 }
1266
1267 int kvm_arch_hardware_enable(void)
1268 {
1269         _kvm_arch_hardware_enable(NULL);
1270         return 0;
1271 }
1272
1273 static void _kvm_arch_hardware_disable(void *discard)
1274 {
1275         if (__this_cpu_read(kvm_arm_hardware_enabled)) {
1276                 cpu_hyp_reset();
1277                 __this_cpu_write(kvm_arm_hardware_enabled, 0);
1278         }
1279 }
1280
1281 void kvm_arch_hardware_disable(void)
1282 {
1283         _kvm_arch_hardware_disable(NULL);
1284 }
1285
1286 #ifdef CONFIG_CPU_PM
1287 static int hyp_init_cpu_pm_notifier(struct notifier_block *self,
1288                                     unsigned long cmd,
1289                                     void *v)
1290 {
1291         /*
1292          * kvm_arm_hardware_enabled is left with its old value over
1293          * PM_ENTER->PM_EXIT. It is used to indicate PM_EXIT should
1294          * re-enable hyp.
1295          */
1296         switch (cmd) {
1297         case CPU_PM_ENTER:
1298                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1299                         /*
1300                          * don't update kvm_arm_hardware_enabled here
1301                          * so that the hardware will be re-enabled
1302                          * when we resume. See below.
1303                          */
1304                         cpu_hyp_reset();
1305
1306                 return NOTIFY_OK;
1307         case CPU_PM_ENTER_FAILED:
1308         case CPU_PM_EXIT:
1309                 if (__this_cpu_read(kvm_arm_hardware_enabled))
1310                         /* The hardware was enabled before suspend. */
1311                         cpu_hyp_reinit();
1312
1313                 return NOTIFY_OK;
1314
1315         default:
1316                 return NOTIFY_DONE;
1317         }
1318 }
1319
1320 static struct notifier_block hyp_init_cpu_pm_nb = {
1321         .notifier_call = hyp_init_cpu_pm_notifier,
1322 };
1323
1324 static void __init hyp_cpu_pm_init(void)
1325 {
1326         cpu_pm_register_notifier(&hyp_init_cpu_pm_nb);
1327 }
1328 static void __init hyp_cpu_pm_exit(void)
1329 {
1330         cpu_pm_unregister_notifier(&hyp_init_cpu_pm_nb);
1331 }
1332 #else
1333 static inline void hyp_cpu_pm_init(void)
1334 {
1335 }
1336 static inline void hyp_cpu_pm_exit(void)
1337 {
1338 }
1339 #endif
1340
1341 static int init_common_resources(void)
1342 {
1343         /* set size of VMID supported by CPU */
1344         kvm_vmid_bits = kvm_get_vmid_bits();
1345         kvm_info("%d-bit VMID\n", kvm_vmid_bits);
1346
1347         return 0;
1348 }
1349
1350 static int init_subsystems(void)
1351 {
1352         int err = 0;
1353
1354         /*
1355          * Enable hardware so that subsystem initialisation can access EL2.
1356          */
1357         on_each_cpu(_kvm_arch_hardware_enable, NULL, 1);
1358
1359         /*
1360          * Register CPU lower-power notifier
1361          */
1362         hyp_cpu_pm_init();
1363
1364         /*
1365          * Init HYP view of VGIC
1366          */
1367         err = kvm_vgic_hyp_init();
1368         switch (err) {
1369         case 0:
1370                 vgic_present = true;
1371                 break;
1372         case -ENODEV:
1373         case -ENXIO:
1374                 vgic_present = false;
1375                 err = 0;
1376                 break;
1377         default:
1378                 goto out;
1379         }
1380
1381         /*
1382          * Init HYP architected timer support
1383          */
1384         err = kvm_timer_hyp_init(vgic_present);
1385         if (err)
1386                 goto out;
1387
1388         kvm_perf_init();
1389         kvm_coproc_table_init();
1390
1391 out:
1392         on_each_cpu(_kvm_arch_hardware_disable, NULL, 1);
1393
1394         return err;
1395 }
1396
1397 static void teardown_hyp_mode(void)
1398 {
1399         int cpu;
1400
1401         free_hyp_pgds();
1402         for_each_possible_cpu(cpu)
1403                 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1404         hyp_cpu_pm_exit();
1405 }
1406
1407 /**
1408  * Inits Hyp-mode on all online CPUs
1409  */
1410 static int init_hyp_mode(void)
1411 {
1412         int cpu;
1413         int err = 0;
1414
1415         /*
1416          * Allocate Hyp PGD and setup Hyp identity mapping
1417          */
1418         err = kvm_mmu_init();
1419         if (err)
1420                 goto out_err;
1421
1422         /*
1423          * Allocate stack pages for Hypervisor-mode
1424          */
1425         for_each_possible_cpu(cpu) {
1426                 unsigned long stack_page;
1427
1428                 stack_page = __get_free_page(GFP_KERNEL);
1429                 if (!stack_page) {
1430                         err = -ENOMEM;
1431                         goto out_err;
1432                 }
1433
1434                 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1435         }
1436
1437         /*
1438          * Map the Hyp-code called directly from the host
1439          */
1440         err = create_hyp_mappings(kvm_ksym_ref(__hyp_text_start),
1441                                   kvm_ksym_ref(__hyp_text_end), PAGE_HYP_EXEC);
1442         if (err) {
1443                 kvm_err("Cannot map world-switch code\n");
1444                 goto out_err;
1445         }
1446
1447         err = create_hyp_mappings(kvm_ksym_ref(__start_rodata),
1448                                   kvm_ksym_ref(__end_rodata), PAGE_HYP_RO);
1449         if (err) {
1450                 kvm_err("Cannot map rodata section\n");
1451                 goto out_err;
1452         }
1453
1454         err = create_hyp_mappings(kvm_ksym_ref(__bss_start),
1455                                   kvm_ksym_ref(__bss_stop), PAGE_HYP_RO);
1456         if (err) {
1457                 kvm_err("Cannot map bss section\n");
1458                 goto out_err;
1459         }
1460
1461         err = kvm_map_vectors();
1462         if (err) {
1463                 kvm_err("Cannot map vectors\n");
1464                 goto out_err;
1465         }
1466
1467         /*
1468          * Map the Hyp stack pages
1469          */
1470         for_each_possible_cpu(cpu) {
1471                 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1472                 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE,
1473                                           PAGE_HYP);
1474
1475                 if (err) {
1476                         kvm_err("Cannot map hyp stack\n");
1477                         goto out_err;
1478                 }
1479         }
1480
1481         for_each_possible_cpu(cpu) {
1482                 kvm_cpu_context_t *cpu_ctxt;
1483
1484                 cpu_ctxt = per_cpu_ptr(&kvm_host_cpu_state, cpu);
1485                 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1, PAGE_HYP);
1486
1487                 if (err) {
1488                         kvm_err("Cannot map host CPU state: %d\n", err);
1489                         goto out_err;
1490                 }
1491         }
1492
1493         err = hyp_map_aux_data();
1494         if (err)
1495                 kvm_err("Cannot map host auxilary data: %d\n", err);
1496
1497         return 0;
1498
1499 out_err:
1500         teardown_hyp_mode();
1501         kvm_err("error initializing Hyp mode: %d\n", err);
1502         return err;
1503 }
1504
1505 static void check_kvm_target_cpu(void *ret)
1506 {
1507         *(int *)ret = kvm_target_cpu();
1508 }
1509
1510 struct kvm_vcpu *kvm_mpidr_to_vcpu(struct kvm *kvm, unsigned long mpidr)
1511 {
1512         struct kvm_vcpu *vcpu;
1513         int i;
1514
1515         mpidr &= MPIDR_HWID_BITMASK;
1516         kvm_for_each_vcpu(i, vcpu, kvm) {
1517                 if (mpidr == kvm_vcpu_get_mpidr_aff(vcpu))
1518                         return vcpu;
1519         }
1520         return NULL;
1521 }
1522
1523 bool kvm_arch_has_irq_bypass(void)
1524 {
1525         return true;
1526 }
1527
1528 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
1529                                       struct irq_bypass_producer *prod)
1530 {
1531         struct kvm_kernel_irqfd *irqfd =
1532                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1533
1534         return kvm_vgic_v4_set_forwarding(irqfd->kvm, prod->irq,
1535                                           &irqfd->irq_entry);
1536 }
1537 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
1538                                       struct irq_bypass_producer *prod)
1539 {
1540         struct kvm_kernel_irqfd *irqfd =
1541                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1542
1543         kvm_vgic_v4_unset_forwarding(irqfd->kvm, prod->irq,
1544                                      &irqfd->irq_entry);
1545 }
1546
1547 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *cons)
1548 {
1549         struct kvm_kernel_irqfd *irqfd =
1550                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1551
1552         kvm_arm_halt_guest(irqfd->kvm);
1553 }
1554
1555 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *cons)
1556 {
1557         struct kvm_kernel_irqfd *irqfd =
1558                 container_of(cons, struct kvm_kernel_irqfd, consumer);
1559
1560         kvm_arm_resume_guest(irqfd->kvm);
1561 }
1562
1563 /**
1564  * Initialize Hyp-mode and memory mappings on all CPUs.
1565  */
1566 int kvm_arch_init(void *opaque)
1567 {
1568         int err;
1569         int ret, cpu;
1570         bool in_hyp_mode;
1571
1572         if (!is_hyp_mode_available()) {
1573                 kvm_info("HYP mode not available\n");
1574                 return -ENODEV;
1575         }
1576
1577         for_each_online_cpu(cpu) {
1578                 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
1579                 if (ret < 0) {
1580                         kvm_err("Error, CPU %d not supported!\n", cpu);
1581                         return -ENODEV;
1582                 }
1583         }
1584
1585         err = init_common_resources();
1586         if (err)
1587                 return err;
1588
1589         in_hyp_mode = is_kernel_in_hyp_mode();
1590
1591         if (!in_hyp_mode) {
1592                 err = init_hyp_mode();
1593                 if (err)
1594                         goto out_err;
1595         }
1596
1597         err = init_subsystems();
1598         if (err)
1599                 goto out_hyp;
1600
1601         if (in_hyp_mode)
1602                 kvm_info("VHE mode initialized successfully\n");
1603         else
1604                 kvm_info("Hyp mode initialized successfully\n");
1605
1606         return 0;
1607
1608 out_hyp:
1609         if (!in_hyp_mode)
1610                 teardown_hyp_mode();
1611 out_err:
1612         return err;
1613 }
1614
1615 /* NOP: Compiling as a module not supported */
1616 void kvm_arch_exit(void)
1617 {
1618         kvm_perf_teardown();
1619 }
1620
1621 static int arm_init(void)
1622 {
1623         int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1624         return rc;
1625 }
1626
1627 module_init(arm_init);