]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/arm/vgic/vgic-mmio-v3.c
docs/perf: Add documentation for the i.MX8 DDR PMU
[linux.git] / virt / kvm / arm / vgic / vgic-mmio-v3.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * VGICv3 MMIO handling functions
4  */
5
6 #include <linux/irqchip/arm-gic-v3.h>
7 #include <linux/kvm.h>
8 #include <linux/kvm_host.h>
9 #include <kvm/iodev.h>
10 #include <kvm/arm_vgic.h>
11
12 #include <asm/kvm_emulate.h>
13 #include <asm/kvm_arm.h>
14 #include <asm/kvm_mmu.h>
15
16 #include "vgic.h"
17 #include "vgic-mmio.h"
18
19 /* extract @num bytes at @offset bytes offset in data */
20 unsigned long extract_bytes(u64 data, unsigned int offset,
21                             unsigned int num)
22 {
23         return (data >> (offset * 8)) & GENMASK_ULL(num * 8 - 1, 0);
24 }
25
26 /* allows updates of any half of a 64-bit register (or the whole thing) */
27 u64 update_64bit_reg(u64 reg, unsigned int offset, unsigned int len,
28                      unsigned long val)
29 {
30         int lower = (offset & 4) * 8;
31         int upper = lower + 8 * len - 1;
32
33         reg &= ~GENMASK_ULL(upper, lower);
34         val &= GENMASK_ULL(len * 8 - 1, 0);
35
36         return reg | ((u64)val << lower);
37 }
38
39 bool vgic_has_its(struct kvm *kvm)
40 {
41         struct vgic_dist *dist = &kvm->arch.vgic;
42
43         if (dist->vgic_model != KVM_DEV_TYPE_ARM_VGIC_V3)
44                 return false;
45
46         return dist->has_its;
47 }
48
49 bool vgic_supports_direct_msis(struct kvm *kvm)
50 {
51         return kvm_vgic_global_state.has_gicv4 && vgic_has_its(kvm);
52 }
53
54 /*
55  * The Revision field in the IIDR have the following meanings:
56  *
57  * Revision 2: Interrupt groups are guest-configurable and signaled using
58  *             their configured groups.
59  */
60
61 static unsigned long vgic_mmio_read_v3_misc(struct kvm_vcpu *vcpu,
62                                             gpa_t addr, unsigned int len)
63 {
64         struct vgic_dist *vgic = &vcpu->kvm->arch.vgic;
65         u32 value = 0;
66
67         switch (addr & 0x0c) {
68         case GICD_CTLR:
69                 if (vgic->enabled)
70                         value |= GICD_CTLR_ENABLE_SS_G1;
71                 value |= GICD_CTLR_ARE_NS | GICD_CTLR_DS;
72                 break;
73         case GICD_TYPER:
74                 value = vgic->nr_spis + VGIC_NR_PRIVATE_IRQS;
75                 value = (value >> 5) - 1;
76                 if (vgic_has_its(vcpu->kvm)) {
77                         value |= (INTERRUPT_ID_BITS_ITS - 1) << 19;
78                         value |= GICD_TYPER_LPIS;
79                 } else {
80                         value |= (INTERRUPT_ID_BITS_SPIS - 1) << 19;
81                 }
82                 break;
83         case GICD_IIDR:
84                 value = (PRODUCT_ID_KVM << GICD_IIDR_PRODUCT_ID_SHIFT) |
85                         (vgic->implementation_rev << GICD_IIDR_REVISION_SHIFT) |
86                         (IMPLEMENTER_ARM << GICD_IIDR_IMPLEMENTER_SHIFT);
87                 break;
88         default:
89                 return 0;
90         }
91
92         return value;
93 }
94
95 static void vgic_mmio_write_v3_misc(struct kvm_vcpu *vcpu,
96                                     gpa_t addr, unsigned int len,
97                                     unsigned long val)
98 {
99         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
100         bool was_enabled = dist->enabled;
101
102         switch (addr & 0x0c) {
103         case GICD_CTLR:
104                 dist->enabled = val & GICD_CTLR_ENABLE_SS_G1;
105
106                 if (!was_enabled && dist->enabled)
107                         vgic_kick_vcpus(vcpu->kvm);
108                 break;
109         case GICD_TYPER:
110         case GICD_IIDR:
111                 return;
112         }
113 }
114
115 static int vgic_mmio_uaccess_write_v3_misc(struct kvm_vcpu *vcpu,
116                                            gpa_t addr, unsigned int len,
117                                            unsigned long val)
118 {
119         switch (addr & 0x0c) {
120         case GICD_IIDR:
121                 if (val != vgic_mmio_read_v3_misc(vcpu, addr, len))
122                         return -EINVAL;
123         }
124
125         vgic_mmio_write_v3_misc(vcpu, addr, len, val);
126         return 0;
127 }
128
129 static unsigned long vgic_mmio_read_irouter(struct kvm_vcpu *vcpu,
130                                             gpa_t addr, unsigned int len)
131 {
132         int intid = VGIC_ADDR_TO_INTID(addr, 64);
133         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, NULL, intid);
134         unsigned long ret = 0;
135
136         if (!irq)
137                 return 0;
138
139         /* The upper word is RAZ for us. */
140         if (!(addr & 4))
141                 ret = extract_bytes(READ_ONCE(irq->mpidr), addr & 7, len);
142
143         vgic_put_irq(vcpu->kvm, irq);
144         return ret;
145 }
146
147 static void vgic_mmio_write_irouter(struct kvm_vcpu *vcpu,
148                                     gpa_t addr, unsigned int len,
149                                     unsigned long val)
150 {
151         int intid = VGIC_ADDR_TO_INTID(addr, 64);
152         struct vgic_irq *irq;
153         unsigned long flags;
154
155         /* The upper word is WI for us since we don't implement Aff3. */
156         if (addr & 4)
157                 return;
158
159         irq = vgic_get_irq(vcpu->kvm, NULL, intid);
160
161         if (!irq)
162                 return;
163
164         raw_spin_lock_irqsave(&irq->irq_lock, flags);
165
166         /* We only care about and preserve Aff0, Aff1 and Aff2. */
167         irq->mpidr = val & GENMASK(23, 0);
168         irq->target_vcpu = kvm_mpidr_to_vcpu(vcpu->kvm, irq->mpidr);
169
170         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
171         vgic_put_irq(vcpu->kvm, irq);
172 }
173
174 static unsigned long vgic_mmio_read_v3r_ctlr(struct kvm_vcpu *vcpu,
175                                              gpa_t addr, unsigned int len)
176 {
177         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
178
179         return vgic_cpu->lpis_enabled ? GICR_CTLR_ENABLE_LPIS : 0;
180 }
181
182
183 static void vgic_mmio_write_v3r_ctlr(struct kvm_vcpu *vcpu,
184                                      gpa_t addr, unsigned int len,
185                                      unsigned long val)
186 {
187         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
188         bool was_enabled = vgic_cpu->lpis_enabled;
189
190         if (!vgic_has_its(vcpu->kvm))
191                 return;
192
193         vgic_cpu->lpis_enabled = val & GICR_CTLR_ENABLE_LPIS;
194
195         if (was_enabled && !vgic_cpu->lpis_enabled)
196                 vgic_flush_pending_lpis(vcpu);
197
198         if (!was_enabled && vgic_cpu->lpis_enabled)
199                 vgic_enable_lpis(vcpu);
200 }
201
202 static unsigned long vgic_mmio_read_v3r_typer(struct kvm_vcpu *vcpu,
203                                               gpa_t addr, unsigned int len)
204 {
205         unsigned long mpidr = kvm_vcpu_get_mpidr_aff(vcpu);
206         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
207         struct vgic_redist_region *rdreg = vgic_cpu->rdreg;
208         int target_vcpu_id = vcpu->vcpu_id;
209         gpa_t last_rdist_typer = rdreg->base + GICR_TYPER +
210                         (rdreg->free_index - 1) * KVM_VGIC_V3_REDIST_SIZE;
211         u64 value;
212
213         value = (u64)(mpidr & GENMASK(23, 0)) << 32;
214         value |= ((target_vcpu_id & 0xffff) << 8);
215
216         if (addr == last_rdist_typer)
217                 value |= GICR_TYPER_LAST;
218         if (vgic_has_its(vcpu->kvm))
219                 value |= GICR_TYPER_PLPIS;
220
221         return extract_bytes(value, addr & 7, len);
222 }
223
224 static unsigned long vgic_mmio_read_v3r_iidr(struct kvm_vcpu *vcpu,
225                                              gpa_t addr, unsigned int len)
226 {
227         return (PRODUCT_ID_KVM << 24) | (IMPLEMENTER_ARM << 0);
228 }
229
230 static unsigned long vgic_mmio_read_v3_idregs(struct kvm_vcpu *vcpu,
231                                               gpa_t addr, unsigned int len)
232 {
233         switch (addr & 0xffff) {
234         case GICD_PIDR2:
235                 /* report a GICv3 compliant implementation */
236                 return 0x3b;
237         }
238
239         return 0;
240 }
241
242 static unsigned long vgic_v3_uaccess_read_pending(struct kvm_vcpu *vcpu,
243                                                   gpa_t addr, unsigned int len)
244 {
245         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
246         u32 value = 0;
247         int i;
248
249         /*
250          * pending state of interrupt is latched in pending_latch variable.
251          * Userspace will save and restore pending state and line_level
252          * separately.
253          * Refer to Documentation/virtual/kvm/devices/arm-vgic-v3.txt
254          * for handling of ISPENDR and ICPENDR.
255          */
256         for (i = 0; i < len * 8; i++) {
257                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
258
259                 if (irq->pending_latch)
260                         value |= (1U << i);
261
262                 vgic_put_irq(vcpu->kvm, irq);
263         }
264
265         return value;
266 }
267
268 static int vgic_v3_uaccess_write_pending(struct kvm_vcpu *vcpu,
269                                          gpa_t addr, unsigned int len,
270                                          unsigned long val)
271 {
272         u32 intid = VGIC_ADDR_TO_INTID(addr, 1);
273         int i;
274         unsigned long flags;
275
276         for (i = 0; i < len * 8; i++) {
277                 struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, intid + i);
278
279                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
280                 if (test_bit(i, &val)) {
281                         /*
282                          * pending_latch is set irrespective of irq type
283                          * (level or edge) to avoid dependency that VM should
284                          * restore irq config before pending info.
285                          */
286                         irq->pending_latch = true;
287                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
288                 } else {
289                         irq->pending_latch = false;
290                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
291                 }
292
293                 vgic_put_irq(vcpu->kvm, irq);
294         }
295
296         return 0;
297 }
298
299 /* We want to avoid outer shareable. */
300 u64 vgic_sanitise_shareability(u64 field)
301 {
302         switch (field) {
303         case GIC_BASER_OuterShareable:
304                 return GIC_BASER_InnerShareable;
305         default:
306                 return field;
307         }
308 }
309
310 /* Avoid any inner non-cacheable mapping. */
311 u64 vgic_sanitise_inner_cacheability(u64 field)
312 {
313         switch (field) {
314         case GIC_BASER_CACHE_nCnB:
315         case GIC_BASER_CACHE_nC:
316                 return GIC_BASER_CACHE_RaWb;
317         default:
318                 return field;
319         }
320 }
321
322 /* Non-cacheable or same-as-inner are OK. */
323 u64 vgic_sanitise_outer_cacheability(u64 field)
324 {
325         switch (field) {
326         case GIC_BASER_CACHE_SameAsInner:
327         case GIC_BASER_CACHE_nC:
328                 return field;
329         default:
330                 return GIC_BASER_CACHE_nC;
331         }
332 }
333
334 u64 vgic_sanitise_field(u64 reg, u64 field_mask, int field_shift,
335                         u64 (*sanitise_fn)(u64))
336 {
337         u64 field = (reg & field_mask) >> field_shift;
338
339         field = sanitise_fn(field) << field_shift;
340         return (reg & ~field_mask) | field;
341 }
342
343 #define PROPBASER_RES0_MASK                                             \
344         (GENMASK_ULL(63, 59) | GENMASK_ULL(55, 52) | GENMASK_ULL(6, 5))
345 #define PENDBASER_RES0_MASK                                             \
346         (BIT_ULL(63) | GENMASK_ULL(61, 59) | GENMASK_ULL(55, 52) |      \
347          GENMASK_ULL(15, 12) | GENMASK_ULL(6, 0))
348
349 static u64 vgic_sanitise_pendbaser(u64 reg)
350 {
351         reg = vgic_sanitise_field(reg, GICR_PENDBASER_SHAREABILITY_MASK,
352                                   GICR_PENDBASER_SHAREABILITY_SHIFT,
353                                   vgic_sanitise_shareability);
354         reg = vgic_sanitise_field(reg, GICR_PENDBASER_INNER_CACHEABILITY_MASK,
355                                   GICR_PENDBASER_INNER_CACHEABILITY_SHIFT,
356                                   vgic_sanitise_inner_cacheability);
357         reg = vgic_sanitise_field(reg, GICR_PENDBASER_OUTER_CACHEABILITY_MASK,
358                                   GICR_PENDBASER_OUTER_CACHEABILITY_SHIFT,
359                                   vgic_sanitise_outer_cacheability);
360
361         reg &= ~PENDBASER_RES0_MASK;
362
363         return reg;
364 }
365
366 static u64 vgic_sanitise_propbaser(u64 reg)
367 {
368         reg = vgic_sanitise_field(reg, GICR_PROPBASER_SHAREABILITY_MASK,
369                                   GICR_PROPBASER_SHAREABILITY_SHIFT,
370                                   vgic_sanitise_shareability);
371         reg = vgic_sanitise_field(reg, GICR_PROPBASER_INNER_CACHEABILITY_MASK,
372                                   GICR_PROPBASER_INNER_CACHEABILITY_SHIFT,
373                                   vgic_sanitise_inner_cacheability);
374         reg = vgic_sanitise_field(reg, GICR_PROPBASER_OUTER_CACHEABILITY_MASK,
375                                   GICR_PROPBASER_OUTER_CACHEABILITY_SHIFT,
376                                   vgic_sanitise_outer_cacheability);
377
378         reg &= ~PROPBASER_RES0_MASK;
379         return reg;
380 }
381
382 static unsigned long vgic_mmio_read_propbase(struct kvm_vcpu *vcpu,
383                                              gpa_t addr, unsigned int len)
384 {
385         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
386
387         return extract_bytes(dist->propbaser, addr & 7, len);
388 }
389
390 static void vgic_mmio_write_propbase(struct kvm_vcpu *vcpu,
391                                      gpa_t addr, unsigned int len,
392                                      unsigned long val)
393 {
394         struct vgic_dist *dist = &vcpu->kvm->arch.vgic;
395         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
396         u64 old_propbaser, propbaser;
397
398         /* Storing a value with LPIs already enabled is undefined */
399         if (vgic_cpu->lpis_enabled)
400                 return;
401
402         do {
403                 old_propbaser = READ_ONCE(dist->propbaser);
404                 propbaser = old_propbaser;
405                 propbaser = update_64bit_reg(propbaser, addr & 4, len, val);
406                 propbaser = vgic_sanitise_propbaser(propbaser);
407         } while (cmpxchg64(&dist->propbaser, old_propbaser,
408                            propbaser) != old_propbaser);
409 }
410
411 static unsigned long vgic_mmio_read_pendbase(struct kvm_vcpu *vcpu,
412                                              gpa_t addr, unsigned int len)
413 {
414         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
415
416         return extract_bytes(vgic_cpu->pendbaser, addr & 7, len);
417 }
418
419 static void vgic_mmio_write_pendbase(struct kvm_vcpu *vcpu,
420                                      gpa_t addr, unsigned int len,
421                                      unsigned long val)
422 {
423         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
424         u64 old_pendbaser, pendbaser;
425
426         /* Storing a value with LPIs already enabled is undefined */
427         if (vgic_cpu->lpis_enabled)
428                 return;
429
430         do {
431                 old_pendbaser = READ_ONCE(vgic_cpu->pendbaser);
432                 pendbaser = old_pendbaser;
433                 pendbaser = update_64bit_reg(pendbaser, addr & 4, len, val);
434                 pendbaser = vgic_sanitise_pendbaser(pendbaser);
435         } while (cmpxchg64(&vgic_cpu->pendbaser, old_pendbaser,
436                            pendbaser) != old_pendbaser);
437 }
438
439 /*
440  * The GICv3 per-IRQ registers are split to control PPIs and SGIs in the
441  * redistributors, while SPIs are covered by registers in the distributor
442  * block. Trying to set private IRQs in this block gets ignored.
443  * We take some special care here to fix the calculation of the register
444  * offset.
445  */
446 #define REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(off, rd, wr, ur, uw, bpi, acc) \
447         {                                                               \
448                 .reg_offset = off,                                      \
449                 .bits_per_irq = bpi,                                    \
450                 .len = (bpi * VGIC_NR_PRIVATE_IRQS) / 8,                \
451                 .access_flags = acc,                                    \
452                 .read = vgic_mmio_read_raz,                             \
453                 .write = vgic_mmio_write_wi,                            \
454         }, {                                                            \
455                 .reg_offset = off + (bpi * VGIC_NR_PRIVATE_IRQS) / 8,   \
456                 .bits_per_irq = bpi,                                    \
457                 .len = (bpi * (1024 - VGIC_NR_PRIVATE_IRQS)) / 8,       \
458                 .access_flags = acc,                                    \
459                 .read = rd,                                             \
460                 .write = wr,                                            \
461                 .uaccess_read = ur,                                     \
462                 .uaccess_write = uw,                                    \
463         }
464
465 static const struct vgic_register_region vgic_v3_dist_registers[] = {
466         REGISTER_DESC_WITH_LENGTH_UACCESS(GICD_CTLR,
467                 vgic_mmio_read_v3_misc, vgic_mmio_write_v3_misc,
468                 NULL, vgic_mmio_uaccess_write_v3_misc,
469                 16, VGIC_ACCESS_32bit),
470         REGISTER_DESC_WITH_LENGTH(GICD_STATUSR,
471                 vgic_mmio_read_rao, vgic_mmio_write_wi, 4,
472                 VGIC_ACCESS_32bit),
473         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGROUPR,
474                 vgic_mmio_read_group, vgic_mmio_write_group, NULL, NULL, 1,
475                 VGIC_ACCESS_32bit),
476         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISENABLER,
477                 vgic_mmio_read_enable, vgic_mmio_write_senable, NULL, NULL, 1,
478                 VGIC_ACCESS_32bit),
479         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICENABLER,
480                 vgic_mmio_read_enable, vgic_mmio_write_cenable, NULL, NULL, 1,
481                 VGIC_ACCESS_32bit),
482         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISPENDR,
483                 vgic_mmio_read_pending, vgic_mmio_write_spending,
484                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 1,
485                 VGIC_ACCESS_32bit),
486         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICPENDR,
487                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
488                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 1,
489                 VGIC_ACCESS_32bit),
490         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ISACTIVER,
491                 vgic_mmio_read_active, vgic_mmio_write_sactive,
492                 NULL, vgic_mmio_uaccess_write_sactive, 1,
493                 VGIC_ACCESS_32bit),
494         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICACTIVER,
495                 vgic_mmio_read_active, vgic_mmio_write_cactive,
496                 NULL, vgic_mmio_uaccess_write_cactive,
497                 1, VGIC_ACCESS_32bit),
498         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IPRIORITYR,
499                 vgic_mmio_read_priority, vgic_mmio_write_priority, NULL, NULL,
500                 8, VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
501         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ITARGETSR,
502                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 8,
503                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
504         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_ICFGR,
505                 vgic_mmio_read_config, vgic_mmio_write_config, NULL, NULL, 2,
506                 VGIC_ACCESS_32bit),
507         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IGRPMODR,
508                 vgic_mmio_read_raz, vgic_mmio_write_wi, NULL, NULL, 1,
509                 VGIC_ACCESS_32bit),
510         REGISTER_DESC_WITH_BITS_PER_IRQ_SHARED(GICD_IROUTER,
511                 vgic_mmio_read_irouter, vgic_mmio_write_irouter, NULL, NULL, 64,
512                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
513         REGISTER_DESC_WITH_LENGTH(GICD_IDREGS,
514                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
515                 VGIC_ACCESS_32bit),
516 };
517
518 static const struct vgic_register_region vgic_v3_rdbase_registers[] = {
519         REGISTER_DESC_WITH_LENGTH(GICR_CTLR,
520                 vgic_mmio_read_v3r_ctlr, vgic_mmio_write_v3r_ctlr, 4,
521                 VGIC_ACCESS_32bit),
522         REGISTER_DESC_WITH_LENGTH(GICR_STATUSR,
523                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
524                 VGIC_ACCESS_32bit),
525         REGISTER_DESC_WITH_LENGTH(GICR_IIDR,
526                 vgic_mmio_read_v3r_iidr, vgic_mmio_write_wi, 4,
527                 VGIC_ACCESS_32bit),
528         REGISTER_DESC_WITH_LENGTH(GICR_TYPER,
529                 vgic_mmio_read_v3r_typer, vgic_mmio_write_wi, 8,
530                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
531         REGISTER_DESC_WITH_LENGTH(GICR_WAKER,
532                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
533                 VGIC_ACCESS_32bit),
534         REGISTER_DESC_WITH_LENGTH(GICR_PROPBASER,
535                 vgic_mmio_read_propbase, vgic_mmio_write_propbase, 8,
536                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
537         REGISTER_DESC_WITH_LENGTH(GICR_PENDBASER,
538                 vgic_mmio_read_pendbase, vgic_mmio_write_pendbase, 8,
539                 VGIC_ACCESS_64bit | VGIC_ACCESS_32bit),
540         REGISTER_DESC_WITH_LENGTH(GICR_IDREGS,
541                 vgic_mmio_read_v3_idregs, vgic_mmio_write_wi, 48,
542                 VGIC_ACCESS_32bit),
543 };
544
545 static const struct vgic_register_region vgic_v3_sgibase_registers[] = {
546         REGISTER_DESC_WITH_LENGTH(GICR_IGROUPR0,
547                 vgic_mmio_read_group, vgic_mmio_write_group, 4,
548                 VGIC_ACCESS_32bit),
549         REGISTER_DESC_WITH_LENGTH(GICR_ISENABLER0,
550                 vgic_mmio_read_enable, vgic_mmio_write_senable, 4,
551                 VGIC_ACCESS_32bit),
552         REGISTER_DESC_WITH_LENGTH(GICR_ICENABLER0,
553                 vgic_mmio_read_enable, vgic_mmio_write_cenable, 4,
554                 VGIC_ACCESS_32bit),
555         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISPENDR0,
556                 vgic_mmio_read_pending, vgic_mmio_write_spending,
557                 vgic_v3_uaccess_read_pending, vgic_v3_uaccess_write_pending, 4,
558                 VGIC_ACCESS_32bit),
559         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICPENDR0,
560                 vgic_mmio_read_pending, vgic_mmio_write_cpending,
561                 vgic_mmio_read_raz, vgic_mmio_uaccess_write_wi, 4,
562                 VGIC_ACCESS_32bit),
563         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ISACTIVER0,
564                 vgic_mmio_read_active, vgic_mmio_write_sactive,
565                 NULL, vgic_mmio_uaccess_write_sactive,
566                 4, VGIC_ACCESS_32bit),
567         REGISTER_DESC_WITH_LENGTH_UACCESS(GICR_ICACTIVER0,
568                 vgic_mmio_read_active, vgic_mmio_write_cactive,
569                 NULL, vgic_mmio_uaccess_write_cactive,
570                 4, VGIC_ACCESS_32bit),
571         REGISTER_DESC_WITH_LENGTH(GICR_IPRIORITYR0,
572                 vgic_mmio_read_priority, vgic_mmio_write_priority, 32,
573                 VGIC_ACCESS_32bit | VGIC_ACCESS_8bit),
574         REGISTER_DESC_WITH_LENGTH(GICR_ICFGR0,
575                 vgic_mmio_read_config, vgic_mmio_write_config, 8,
576                 VGIC_ACCESS_32bit),
577         REGISTER_DESC_WITH_LENGTH(GICR_IGRPMODR0,
578                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
579                 VGIC_ACCESS_32bit),
580         REGISTER_DESC_WITH_LENGTH(GICR_NSACR,
581                 vgic_mmio_read_raz, vgic_mmio_write_wi, 4,
582                 VGIC_ACCESS_32bit),
583 };
584
585 unsigned int vgic_v3_init_dist_iodev(struct vgic_io_device *dev)
586 {
587         dev->regions = vgic_v3_dist_registers;
588         dev->nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
589
590         kvm_iodevice_init(&dev->dev, &kvm_io_gic_ops);
591
592         return SZ_64K;
593 }
594
595 /**
596  * vgic_register_redist_iodev - register a single redist iodev
597  * @vcpu:    The VCPU to which the redistributor belongs
598  *
599  * Register a KVM iodev for this VCPU's redistributor using the address
600  * provided.
601  *
602  * Return 0 on success, -ERRNO otherwise.
603  */
604 int vgic_register_redist_iodev(struct kvm_vcpu *vcpu)
605 {
606         struct kvm *kvm = vcpu->kvm;
607         struct vgic_dist *vgic = &kvm->arch.vgic;
608         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
609         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
610         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
611         struct vgic_redist_region *rdreg;
612         gpa_t rd_base, sgi_base;
613         int ret;
614
615         if (!IS_VGIC_ADDR_UNDEF(vgic_cpu->rd_iodev.base_addr))
616                 return 0;
617
618         /*
619          * We may be creating VCPUs before having set the base address for the
620          * redistributor region, in which case we will come back to this
621          * function for all VCPUs when the base address is set.  Just return
622          * without doing any work for now.
623          */
624         rdreg = vgic_v3_rdist_free_slot(&vgic->rd_regions);
625         if (!rdreg)
626                 return 0;
627
628         if (!vgic_v3_check_base(kvm))
629                 return -EINVAL;
630
631         vgic_cpu->rdreg = rdreg;
632
633         rd_base = rdreg->base + rdreg->free_index * KVM_VGIC_V3_REDIST_SIZE;
634         sgi_base = rd_base + SZ_64K;
635
636         kvm_iodevice_init(&rd_dev->dev, &kvm_io_gic_ops);
637         rd_dev->base_addr = rd_base;
638         rd_dev->iodev_type = IODEV_REDIST;
639         rd_dev->regions = vgic_v3_rdbase_registers;
640         rd_dev->nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
641         rd_dev->redist_vcpu = vcpu;
642
643         mutex_lock(&kvm->slots_lock);
644         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, rd_base,
645                                       SZ_64K, &rd_dev->dev);
646         mutex_unlock(&kvm->slots_lock);
647
648         if (ret)
649                 return ret;
650
651         kvm_iodevice_init(&sgi_dev->dev, &kvm_io_gic_ops);
652         sgi_dev->base_addr = sgi_base;
653         sgi_dev->iodev_type = IODEV_REDIST;
654         sgi_dev->regions = vgic_v3_sgibase_registers;
655         sgi_dev->nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers);
656         sgi_dev->redist_vcpu = vcpu;
657
658         mutex_lock(&kvm->slots_lock);
659         ret = kvm_io_bus_register_dev(kvm, KVM_MMIO_BUS, sgi_base,
660                                       SZ_64K, &sgi_dev->dev);
661         if (ret) {
662                 kvm_io_bus_unregister_dev(kvm, KVM_MMIO_BUS,
663                                           &rd_dev->dev);
664                 goto out;
665         }
666
667         rdreg->free_index++;
668 out:
669         mutex_unlock(&kvm->slots_lock);
670         return ret;
671 }
672
673 static void vgic_unregister_redist_iodev(struct kvm_vcpu *vcpu)
674 {
675         struct vgic_io_device *rd_dev = &vcpu->arch.vgic_cpu.rd_iodev;
676         struct vgic_io_device *sgi_dev = &vcpu->arch.vgic_cpu.sgi_iodev;
677
678         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &rd_dev->dev);
679         kvm_io_bus_unregister_dev(vcpu->kvm, KVM_MMIO_BUS, &sgi_dev->dev);
680 }
681
682 static int vgic_register_all_redist_iodevs(struct kvm *kvm)
683 {
684         struct kvm_vcpu *vcpu;
685         int c, ret = 0;
686
687         kvm_for_each_vcpu(c, vcpu, kvm) {
688                 ret = vgic_register_redist_iodev(vcpu);
689                 if (ret)
690                         break;
691         }
692
693         if (ret) {
694                 /* The current c failed, so we start with the previous one. */
695                 mutex_lock(&kvm->slots_lock);
696                 for (c--; c >= 0; c--) {
697                         vcpu = kvm_get_vcpu(kvm, c);
698                         vgic_unregister_redist_iodev(vcpu);
699                 }
700                 mutex_unlock(&kvm->slots_lock);
701         }
702
703         return ret;
704 }
705
706 /**
707  * vgic_v3_insert_redist_region - Insert a new redistributor region
708  *
709  * Performs various checks before inserting the rdist region in the list.
710  * Those tests depend on whether the size of the rdist region is known
711  * (ie. count != 0). The list is sorted by rdist region index.
712  *
713  * @kvm: kvm handle
714  * @index: redist region index
715  * @base: base of the new rdist region
716  * @count: number of redistributors the region is made of (0 in the old style
717  * single region, whose size is induced from the number of vcpus)
718  *
719  * Return 0 on success, < 0 otherwise
720  */
721 static int vgic_v3_insert_redist_region(struct kvm *kvm, uint32_t index,
722                                         gpa_t base, uint32_t count)
723 {
724         struct vgic_dist *d = &kvm->arch.vgic;
725         struct vgic_redist_region *rdreg;
726         struct list_head *rd_regions = &d->rd_regions;
727         size_t size = count * KVM_VGIC_V3_REDIST_SIZE;
728         int ret;
729
730         /* single rdist region already set ?*/
731         if (!count && !list_empty(rd_regions))
732                 return -EINVAL;
733
734         /* cross the end of memory ? */
735         if (base + size < base)
736                 return -EINVAL;
737
738         if (list_empty(rd_regions)) {
739                 if (index != 0)
740                         return -EINVAL;
741         } else {
742                 rdreg = list_last_entry(rd_regions,
743                                         struct vgic_redist_region, list);
744                 if (index != rdreg->index + 1)
745                         return -EINVAL;
746
747                 /* Cannot add an explicitly sized regions after legacy region */
748                 if (!rdreg->count)
749                         return -EINVAL;
750         }
751
752         /*
753          * For legacy single-region redistributor regions (!count),
754          * check that the redistributor region does not overlap with the
755          * distributor's address space.
756          */
757         if (!count && !IS_VGIC_ADDR_UNDEF(d->vgic_dist_base) &&
758                 vgic_dist_overlap(kvm, base, size))
759                 return -EINVAL;
760
761         /* collision with any other rdist region? */
762         if (vgic_v3_rdist_overlap(kvm, base, size))
763                 return -EINVAL;
764
765         rdreg = kzalloc(sizeof(*rdreg), GFP_KERNEL);
766         if (!rdreg)
767                 return -ENOMEM;
768
769         rdreg->base = VGIC_ADDR_UNDEF;
770
771         ret = vgic_check_ioaddr(kvm, &rdreg->base, base, SZ_64K);
772         if (ret)
773                 goto free;
774
775         rdreg->base = base;
776         rdreg->count = count;
777         rdreg->free_index = 0;
778         rdreg->index = index;
779
780         list_add_tail(&rdreg->list, rd_regions);
781         return 0;
782 free:
783         kfree(rdreg);
784         return ret;
785 }
786
787 int vgic_v3_set_redist_base(struct kvm *kvm, u32 index, u64 addr, u32 count)
788 {
789         int ret;
790
791         ret = vgic_v3_insert_redist_region(kvm, index, addr, count);
792         if (ret)
793                 return ret;
794
795         /*
796          * Register iodevs for each existing VCPU.  Adding more VCPUs
797          * afterwards will register the iodevs when needed.
798          */
799         ret = vgic_register_all_redist_iodevs(kvm);
800         if (ret)
801                 return ret;
802
803         return 0;
804 }
805
806 int vgic_v3_has_attr_regs(struct kvm_device *dev, struct kvm_device_attr *attr)
807 {
808         const struct vgic_register_region *region;
809         struct vgic_io_device iodev;
810         struct vgic_reg_attr reg_attr;
811         struct kvm_vcpu *vcpu;
812         gpa_t addr;
813         int ret;
814
815         ret = vgic_v3_parse_attr(dev, attr, &reg_attr);
816         if (ret)
817                 return ret;
818
819         vcpu = reg_attr.vcpu;
820         addr = reg_attr.addr;
821
822         switch (attr->group) {
823         case KVM_DEV_ARM_VGIC_GRP_DIST_REGS:
824                 iodev.regions = vgic_v3_dist_registers;
825                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_dist_registers);
826                 iodev.base_addr = 0;
827                 break;
828         case KVM_DEV_ARM_VGIC_GRP_REDIST_REGS:{
829                 iodev.regions = vgic_v3_rdbase_registers;
830                 iodev.nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers);
831                 iodev.base_addr = 0;
832                 break;
833         }
834         case KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS: {
835                 u64 reg, id;
836
837                 id = (attr->attr & KVM_DEV_ARM_VGIC_SYSREG_INSTR_MASK);
838                 return vgic_v3_has_cpu_sysregs_attr(vcpu, 0, id, &reg);
839         }
840         default:
841                 return -ENXIO;
842         }
843
844         /* We only support aligned 32-bit accesses. */
845         if (addr & 3)
846                 return -ENXIO;
847
848         region = vgic_get_mmio_region(vcpu, &iodev, addr, sizeof(u32));
849         if (!region)
850                 return -ENXIO;
851
852         return 0;
853 }
854 /*
855  * Compare a given affinity (level 1-3 and a level 0 mask, from the SGI
856  * generation register ICC_SGI1R_EL1) with a given VCPU.
857  * If the VCPU's MPIDR matches, return the level0 affinity, otherwise
858  * return -1.
859  */
860 static int match_mpidr(u64 sgi_aff, u16 sgi_cpu_mask, struct kvm_vcpu *vcpu)
861 {
862         unsigned long affinity;
863         int level0;
864
865         /*
866          * Split the current VCPU's MPIDR into affinity level 0 and the
867          * rest as this is what we have to compare against.
868          */
869         affinity = kvm_vcpu_get_mpidr_aff(vcpu);
870         level0 = MPIDR_AFFINITY_LEVEL(affinity, 0);
871         affinity &= ~MPIDR_LEVEL_MASK;
872
873         /* bail out if the upper three levels don't match */
874         if (sgi_aff != affinity)
875                 return -1;
876
877         /* Is this VCPU's bit set in the mask ? */
878         if (!(sgi_cpu_mask & BIT(level0)))
879                 return -1;
880
881         return level0;
882 }
883
884 /*
885  * The ICC_SGI* registers encode the affinity differently from the MPIDR,
886  * so provide a wrapper to use the existing defines to isolate a certain
887  * affinity level.
888  */
889 #define SGI_AFFINITY_LEVEL(reg, level) \
890         ((((reg) & ICC_SGI1R_AFFINITY_## level ##_MASK) \
891         >> ICC_SGI1R_AFFINITY_## level ##_SHIFT) << MPIDR_LEVEL_SHIFT(level))
892
893 /**
894  * vgic_v3_dispatch_sgi - handle SGI requests from VCPUs
895  * @vcpu: The VCPU requesting a SGI
896  * @reg: The value written into ICC_{ASGI1,SGI0,SGI1}R by that VCPU
897  * @allow_group1: Does the sysreg access allow generation of G1 SGIs
898  *
899  * With GICv3 (and ARE=1) CPUs trigger SGIs by writing to a system register.
900  * This will trap in sys_regs.c and call this function.
901  * This ICC_SGI1R_EL1 register contains the upper three affinity levels of the
902  * target processors as well as a bitmask of 16 Aff0 CPUs.
903  * If the interrupt routing mode bit is not set, we iterate over all VCPUs to
904  * check for matching ones. If this bit is set, we signal all, but not the
905  * calling VCPU.
906  */
907 void vgic_v3_dispatch_sgi(struct kvm_vcpu *vcpu, u64 reg, bool allow_group1)
908 {
909         struct kvm *kvm = vcpu->kvm;
910         struct kvm_vcpu *c_vcpu;
911         u16 target_cpus;
912         u64 mpidr;
913         int sgi, c;
914         int vcpu_id = vcpu->vcpu_id;
915         bool broadcast;
916         unsigned long flags;
917
918         sgi = (reg & ICC_SGI1R_SGI_ID_MASK) >> ICC_SGI1R_SGI_ID_SHIFT;
919         broadcast = reg & BIT_ULL(ICC_SGI1R_IRQ_ROUTING_MODE_BIT);
920         target_cpus = (reg & ICC_SGI1R_TARGET_LIST_MASK) >> ICC_SGI1R_TARGET_LIST_SHIFT;
921         mpidr = SGI_AFFINITY_LEVEL(reg, 3);
922         mpidr |= SGI_AFFINITY_LEVEL(reg, 2);
923         mpidr |= SGI_AFFINITY_LEVEL(reg, 1);
924
925         /*
926          * We iterate over all VCPUs to find the MPIDRs matching the request.
927          * If we have handled one CPU, we clear its bit to detect early
928          * if we are already finished. This avoids iterating through all
929          * VCPUs when most of the times we just signal a single VCPU.
930          */
931         kvm_for_each_vcpu(c, c_vcpu, kvm) {
932                 struct vgic_irq *irq;
933
934                 /* Exit early if we have dealt with all requested CPUs */
935                 if (!broadcast && target_cpus == 0)
936                         break;
937
938                 /* Don't signal the calling VCPU */
939                 if (broadcast && c == vcpu_id)
940                         continue;
941
942                 if (!broadcast) {
943                         int level0;
944
945                         level0 = match_mpidr(mpidr, target_cpus, c_vcpu);
946                         if (level0 == -1)
947                                 continue;
948
949                         /* remove this matching VCPU from the mask */
950                         target_cpus &= ~BIT(level0);
951                 }
952
953                 irq = vgic_get_irq(vcpu->kvm, c_vcpu, sgi);
954
955                 raw_spin_lock_irqsave(&irq->irq_lock, flags);
956
957                 /*
958                  * An access targetting Group0 SGIs can only generate
959                  * those, while an access targetting Group1 SGIs can
960                  * generate interrupts of either group.
961                  */
962                 if (!irq->group || allow_group1) {
963                         irq->pending_latch = true;
964                         vgic_queue_irq_unlock(vcpu->kvm, irq, flags);
965                 } else {
966                         raw_spin_unlock_irqrestore(&irq->irq_lock, flags);
967                 }
968
969                 vgic_put_irq(vcpu->kvm, irq);
970         }
971 }
972
973 int vgic_v3_dist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
974                          int offset, u32 *val)
975 {
976         struct vgic_io_device dev = {
977                 .regions = vgic_v3_dist_registers,
978                 .nr_regions = ARRAY_SIZE(vgic_v3_dist_registers),
979         };
980
981         return vgic_uaccess(vcpu, &dev, is_write, offset, val);
982 }
983
984 int vgic_v3_redist_uaccess(struct kvm_vcpu *vcpu, bool is_write,
985                            int offset, u32 *val)
986 {
987         struct vgic_io_device rd_dev = {
988                 .regions = vgic_v3_rdbase_registers,
989                 .nr_regions = ARRAY_SIZE(vgic_v3_rdbase_registers),
990         };
991
992         struct vgic_io_device sgi_dev = {
993                 .regions = vgic_v3_sgibase_registers,
994                 .nr_regions = ARRAY_SIZE(vgic_v3_sgibase_registers),
995         };
996
997         /* SGI_base is the next 64K frame after RD_base */
998         if (offset >= SZ_64K)
999                 return vgic_uaccess(vcpu, &sgi_dev, is_write, offset - SZ_64K,
1000                                     val);
1001         else
1002                 return vgic_uaccess(vcpu, &rd_dev, is_write, offset, val);
1003 }
1004
1005 int vgic_v3_line_level_info_uaccess(struct kvm_vcpu *vcpu, bool is_write,
1006                                     u32 intid, u64 *val)
1007 {
1008         if (intid % 32)
1009                 return -EINVAL;
1010
1011         if (is_write)
1012                 vgic_write_irq_line_level_info(vcpu, intid, *val);
1013         else
1014                 *val = vgic_read_irq_line_level_info(vcpu, intid);
1015
1016         return 0;
1017 }