]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/arm/vgic/vgic.c
ASoC: cs42l52: Improve two size determinations in cs42l52_i2c_probe()
[linux.git] / virt / kvm / arm / vgic / vgic.c
1 /*
2  * Copyright (C) 2015, 2016 ARM Ltd.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License version 2 as
6  * published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  * GNU General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public License
14  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
15  */
16
17 #include <linux/kvm.h>
18 #include <linux/kvm_host.h>
19 #include <linux/list_sort.h>
20 #include <linux/interrupt.h>
21 #include <linux/irq.h>
22
23 #include "vgic.h"
24
25 #define CREATE_TRACE_POINTS
26 #include "trace.h"
27
28 #ifdef CONFIG_DEBUG_SPINLOCK
29 #define DEBUG_SPINLOCK_BUG_ON(p) BUG_ON(p)
30 #else
31 #define DEBUG_SPINLOCK_BUG_ON(p)
32 #endif
33
34 struct vgic_global kvm_vgic_global_state __ro_after_init = {
35         .gicv3_cpuif = STATIC_KEY_FALSE_INIT,
36 };
37
38 /*
39  * Locking order is always:
40  * kvm->lock (mutex)
41  *   its->cmd_lock (mutex)
42  *     its->its_lock (mutex)
43  *       vgic_cpu->ap_list_lock
44  *         kvm->lpi_list_lock
45  *           vgic_irq->irq_lock
46  *
47  * If you need to take multiple locks, always take the upper lock first,
48  * then the lower ones, e.g. first take the its_lock, then the irq_lock.
49  * If you are already holding a lock and need to take a higher one, you
50  * have to drop the lower ranking lock first and re-aquire it after having
51  * taken the upper one.
52  *
53  * When taking more than one ap_list_lock at the same time, always take the
54  * lowest numbered VCPU's ap_list_lock first, so:
55  *   vcpuX->vcpu_id < vcpuY->vcpu_id:
56  *     spin_lock(vcpuX->arch.vgic_cpu.ap_list_lock);
57  *     spin_lock(vcpuY->arch.vgic_cpu.ap_list_lock);
58  *
59  * Since the VGIC must support injecting virtual interrupts from ISRs, we have
60  * to use the spin_lock_irqsave/spin_unlock_irqrestore versions of outer
61  * spinlocks for any lock that may be taken while injecting an interrupt.
62  */
63
64 /*
65  * Iterate over the VM's list of mapped LPIs to find the one with a
66  * matching interrupt ID and return a reference to the IRQ structure.
67  */
68 static struct vgic_irq *vgic_get_lpi(struct kvm *kvm, u32 intid)
69 {
70         struct vgic_dist *dist = &kvm->arch.vgic;
71         struct vgic_irq *irq = NULL;
72
73         spin_lock(&dist->lpi_list_lock);
74
75         list_for_each_entry(irq, &dist->lpi_list_head, lpi_list) {
76                 if (irq->intid != intid)
77                         continue;
78
79                 /*
80                  * This increases the refcount, the caller is expected to
81                  * call vgic_put_irq() later once it's finished with the IRQ.
82                  */
83                 vgic_get_irq_kref(irq);
84                 goto out_unlock;
85         }
86         irq = NULL;
87
88 out_unlock:
89         spin_unlock(&dist->lpi_list_lock);
90
91         return irq;
92 }
93
94 /*
95  * This looks up the virtual interrupt ID to get the corresponding
96  * struct vgic_irq. It also increases the refcount, so any caller is expected
97  * to call vgic_put_irq() once it's finished with this IRQ.
98  */
99 struct vgic_irq *vgic_get_irq(struct kvm *kvm, struct kvm_vcpu *vcpu,
100                               u32 intid)
101 {
102         /* SGIs and PPIs */
103         if (intid <= VGIC_MAX_PRIVATE)
104                 return &vcpu->arch.vgic_cpu.private_irqs[intid];
105
106         /* SPIs */
107         if (intid <= VGIC_MAX_SPI)
108                 return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS];
109
110         /* LPIs */
111         if (intid >= VGIC_MIN_LPI)
112                 return vgic_get_lpi(kvm, intid);
113
114         WARN(1, "Looking up struct vgic_irq for reserved INTID");
115         return NULL;
116 }
117
118 /*
119  * We can't do anything in here, because we lack the kvm pointer to
120  * lock and remove the item from the lpi_list. So we keep this function
121  * empty and use the return value of kref_put() to trigger the freeing.
122  */
123 static void vgic_irq_release(struct kref *ref)
124 {
125 }
126
127 void vgic_put_irq(struct kvm *kvm, struct vgic_irq *irq)
128 {
129         struct vgic_dist *dist = &kvm->arch.vgic;
130
131         if (irq->intid < VGIC_MIN_LPI)
132                 return;
133
134         spin_lock(&dist->lpi_list_lock);
135         if (!kref_put(&irq->refcount, vgic_irq_release)) {
136                 spin_unlock(&dist->lpi_list_lock);
137                 return;
138         };
139
140         list_del(&irq->lpi_list);
141         dist->lpi_list_count--;
142         spin_unlock(&dist->lpi_list_lock);
143
144         kfree(irq);
145 }
146
147 /**
148  * kvm_vgic_target_oracle - compute the target vcpu for an irq
149  *
150  * @irq:        The irq to route. Must be already locked.
151  *
152  * Based on the current state of the interrupt (enabled, pending,
153  * active, vcpu and target_vcpu), compute the next vcpu this should be
154  * given to. Return NULL if this shouldn't be injected at all.
155  *
156  * Requires the IRQ lock to be held.
157  */
158 static struct kvm_vcpu *vgic_target_oracle(struct vgic_irq *irq)
159 {
160         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
161
162         /* If the interrupt is active, it must stay on the current vcpu */
163         if (irq->active)
164                 return irq->vcpu ? : irq->target_vcpu;
165
166         /*
167          * If the IRQ is not active but enabled and pending, we should direct
168          * it to its configured target VCPU.
169          * If the distributor is disabled, pending interrupts shouldn't be
170          * forwarded.
171          */
172         if (irq->enabled && irq_is_pending(irq)) {
173                 if (unlikely(irq->target_vcpu &&
174                              !irq->target_vcpu->kvm->arch.vgic.enabled))
175                         return NULL;
176
177                 return irq->target_vcpu;
178         }
179
180         /* If neither active nor pending and enabled, then this IRQ should not
181          * be queued to any VCPU.
182          */
183         return NULL;
184 }
185
186 /*
187  * The order of items in the ap_lists defines how we'll pack things in LRs as
188  * well, the first items in the list being the first things populated in the
189  * LRs.
190  *
191  * A hard rule is that active interrupts can never be pushed out of the LRs
192  * (and therefore take priority) since we cannot reliably trap on deactivation
193  * of IRQs and therefore they have to be present in the LRs.
194  *
195  * Otherwise things should be sorted by the priority field and the GIC
196  * hardware support will take care of preemption of priority groups etc.
197  *
198  * Return negative if "a" sorts before "b", 0 to preserve order, and positive
199  * to sort "b" before "a".
200  */
201 static int vgic_irq_cmp(void *priv, struct list_head *a, struct list_head *b)
202 {
203         struct vgic_irq *irqa = container_of(a, struct vgic_irq, ap_list);
204         struct vgic_irq *irqb = container_of(b, struct vgic_irq, ap_list);
205         bool penda, pendb;
206         int ret;
207
208         spin_lock(&irqa->irq_lock);
209         spin_lock_nested(&irqb->irq_lock, SINGLE_DEPTH_NESTING);
210
211         if (irqa->active || irqb->active) {
212                 ret = (int)irqb->active - (int)irqa->active;
213                 goto out;
214         }
215
216         penda = irqa->enabled && irq_is_pending(irqa);
217         pendb = irqb->enabled && irq_is_pending(irqb);
218
219         if (!penda || !pendb) {
220                 ret = (int)pendb - (int)penda;
221                 goto out;
222         }
223
224         /* Both pending and enabled, sort by priority */
225         ret = irqa->priority - irqb->priority;
226 out:
227         spin_unlock(&irqb->irq_lock);
228         spin_unlock(&irqa->irq_lock);
229         return ret;
230 }
231
232 /* Must be called with the ap_list_lock held */
233 static void vgic_sort_ap_list(struct kvm_vcpu *vcpu)
234 {
235         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
236
237         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
238
239         list_sort(NULL, &vgic_cpu->ap_list_head, vgic_irq_cmp);
240 }
241
242 /*
243  * Only valid injection if changing level for level-triggered IRQs or for a
244  * rising edge, and in-kernel connected IRQ lines can only be controlled by
245  * their owner.
246  */
247 static bool vgic_validate_injection(struct vgic_irq *irq, bool level, void *owner)
248 {
249         if (irq->owner != owner)
250                 return false;
251
252         switch (irq->config) {
253         case VGIC_CONFIG_LEVEL:
254                 return irq->line_level != level;
255         case VGIC_CONFIG_EDGE:
256                 return level;
257         }
258
259         return false;
260 }
261
262 /*
263  * Check whether an IRQ needs to (and can) be queued to a VCPU's ap list.
264  * Do the queuing if necessary, taking the right locks in the right order.
265  * Returns true when the IRQ was queued, false otherwise.
266  *
267  * Needs to be entered with the IRQ lock already held, but will return
268  * with all locks dropped.
269  */
270 bool vgic_queue_irq_unlock(struct kvm *kvm, struct vgic_irq *irq,
271                            unsigned long flags)
272 {
273         struct kvm_vcpu *vcpu;
274
275         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
276
277 retry:
278         vcpu = vgic_target_oracle(irq);
279         if (irq->vcpu || !vcpu) {
280                 /*
281                  * If this IRQ is already on a VCPU's ap_list, then it
282                  * cannot be moved or modified and there is no more work for
283                  * us to do.
284                  *
285                  * Otherwise, if the irq is not pending and enabled, it does
286                  * not need to be inserted into an ap_list and there is also
287                  * no more work for us to do.
288                  */
289                 spin_unlock_irqrestore(&irq->irq_lock, flags);
290
291                 /*
292                  * We have to kick the VCPU here, because we could be
293                  * queueing an edge-triggered interrupt for which we
294                  * get no EOI maintenance interrupt. In that case,
295                  * while the IRQ is already on the VCPU's AP list, the
296                  * VCPU could have EOI'ed the original interrupt and
297                  * won't see this one until it exits for some other
298                  * reason.
299                  */
300                 if (vcpu) {
301                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
302                         kvm_vcpu_kick(vcpu);
303                 }
304                 return false;
305         }
306
307         /*
308          * We must unlock the irq lock to take the ap_list_lock where
309          * we are going to insert this new pending interrupt.
310          */
311         spin_unlock_irqrestore(&irq->irq_lock, flags);
312
313         /* someone can do stuff here, which we re-check below */
314
315         spin_lock_irqsave(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
316         spin_lock(&irq->irq_lock);
317
318         /*
319          * Did something change behind our backs?
320          *
321          * There are two cases:
322          * 1) The irq lost its pending state or was disabled behind our
323          *    backs and/or it was queued to another VCPU's ap_list.
324          * 2) Someone changed the affinity on this irq behind our
325          *    backs and we are now holding the wrong ap_list_lock.
326          *
327          * In both cases, drop the locks and retry.
328          */
329
330         if (unlikely(irq->vcpu || vcpu != vgic_target_oracle(irq))) {
331                 spin_unlock(&irq->irq_lock);
332                 spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
333
334                 spin_lock_irqsave(&irq->irq_lock, flags);
335                 goto retry;
336         }
337
338         /*
339          * Grab a reference to the irq to reflect the fact that it is
340          * now in the ap_list.
341          */
342         vgic_get_irq_kref(irq);
343         list_add_tail(&irq->ap_list, &vcpu->arch.vgic_cpu.ap_list_head);
344         irq->vcpu = vcpu;
345
346         spin_unlock(&irq->irq_lock);
347         spin_unlock_irqrestore(&vcpu->arch.vgic_cpu.ap_list_lock, flags);
348
349         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
350         kvm_vcpu_kick(vcpu);
351
352         return true;
353 }
354
355 /**
356  * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic
357  * @kvm:     The VM structure pointer
358  * @cpuid:   The CPU for PPIs
359  * @intid:   The INTID to inject a new state to.
360  * @level:   Edge-triggered:  true:  to trigger the interrupt
361  *                            false: to ignore the call
362  *           Level-sensitive  true:  raise the input signal
363  *                            false: lower the input signal
364  * @owner:   The opaque pointer to the owner of the IRQ being raised to verify
365  *           that the caller is allowed to inject this IRQ.  Userspace
366  *           injections will have owner == NULL.
367  *
368  * The VGIC is not concerned with devices being active-LOW or active-HIGH for
369  * level-sensitive interrupts.  You can think of the level parameter as 1
370  * being HIGH and 0 being LOW and all devices being active-HIGH.
371  */
372 int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int intid,
373                         bool level, void *owner)
374 {
375         struct kvm_vcpu *vcpu;
376         struct vgic_irq *irq;
377         unsigned long flags;
378         int ret;
379
380         trace_vgic_update_irq_pending(cpuid, intid, level);
381
382         ret = vgic_lazy_init(kvm);
383         if (ret)
384                 return ret;
385
386         vcpu = kvm_get_vcpu(kvm, cpuid);
387         if (!vcpu && intid < VGIC_NR_PRIVATE_IRQS)
388                 return -EINVAL;
389
390         irq = vgic_get_irq(kvm, vcpu, intid);
391         if (!irq)
392                 return -EINVAL;
393
394         spin_lock_irqsave(&irq->irq_lock, flags);
395
396         if (!vgic_validate_injection(irq, level, owner)) {
397                 /* Nothing to see here, move along... */
398                 spin_unlock_irqrestore(&irq->irq_lock, flags);
399                 vgic_put_irq(kvm, irq);
400                 return 0;
401         }
402
403         if (irq->config == VGIC_CONFIG_LEVEL)
404                 irq->line_level = level;
405         else
406                 irq->pending_latch = true;
407
408         vgic_queue_irq_unlock(kvm, irq, flags);
409         vgic_put_irq(kvm, irq);
410
411         return 0;
412 }
413
414 /* @irq->irq_lock must be held */
415 static int kvm_vgic_map_irq(struct kvm_vcpu *vcpu, struct vgic_irq *irq,
416                             unsigned int host_irq)
417 {
418         struct irq_desc *desc;
419         struct irq_data *data;
420
421         /*
422          * Find the physical IRQ number corresponding to @host_irq
423          */
424         desc = irq_to_desc(host_irq);
425         if (!desc) {
426                 kvm_err("%s: no interrupt descriptor\n", __func__);
427                 return -EINVAL;
428         }
429         data = irq_desc_get_irq_data(desc);
430         while (data->parent_data)
431                 data = data->parent_data;
432
433         irq->hw = true;
434         irq->host_irq = host_irq;
435         irq->hwintid = data->hwirq;
436         return 0;
437 }
438
439 /* @irq->irq_lock must be held */
440 static inline void kvm_vgic_unmap_irq(struct vgic_irq *irq)
441 {
442         irq->hw = false;
443         irq->hwintid = 0;
444 }
445
446 int kvm_vgic_map_phys_irq(struct kvm_vcpu *vcpu, unsigned int host_irq,
447                           u32 vintid)
448 {
449         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
450         unsigned long flags;
451         int ret;
452
453         BUG_ON(!irq);
454
455         spin_lock_irqsave(&irq->irq_lock, flags);
456         ret = kvm_vgic_map_irq(vcpu, irq, host_irq);
457         spin_unlock_irqrestore(&irq->irq_lock, flags);
458         vgic_put_irq(vcpu->kvm, irq);
459
460         return ret;
461 }
462
463 int kvm_vgic_unmap_phys_irq(struct kvm_vcpu *vcpu, unsigned int vintid)
464 {
465         struct vgic_irq *irq;
466         unsigned long flags;
467
468         if (!vgic_initialized(vcpu->kvm))
469                 return -EAGAIN;
470
471         irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
472         BUG_ON(!irq);
473
474         spin_lock_irqsave(&irq->irq_lock, flags);
475         kvm_vgic_unmap_irq(irq);
476         spin_unlock_irqrestore(&irq->irq_lock, flags);
477         vgic_put_irq(vcpu->kvm, irq);
478
479         return 0;
480 }
481
482 /**
483  * kvm_vgic_set_owner - Set the owner of an interrupt for a VM
484  *
485  * @vcpu:   Pointer to the VCPU (used for PPIs)
486  * @intid:  The virtual INTID identifying the interrupt (PPI or SPI)
487  * @owner:  Opaque pointer to the owner
488  *
489  * Returns 0 if intid is not already used by another in-kernel device and the
490  * owner is set, otherwise returns an error code.
491  */
492 int kvm_vgic_set_owner(struct kvm_vcpu *vcpu, unsigned int intid, void *owner)
493 {
494         struct vgic_irq *irq;
495         int ret = 0;
496
497         if (!vgic_initialized(vcpu->kvm))
498                 return -EAGAIN;
499
500         /* SGIs and LPIs cannot be wired up to any device */
501         if (!irq_is_ppi(intid) && !vgic_valid_spi(vcpu->kvm, intid))
502                 return -EINVAL;
503
504         irq = vgic_get_irq(vcpu->kvm, vcpu, intid);
505         spin_lock(&irq->irq_lock);
506         if (irq->owner && irq->owner != owner)
507                 ret = -EEXIST;
508         else
509                 irq->owner = owner;
510         spin_unlock(&irq->irq_lock);
511
512         return ret;
513 }
514
515 /**
516  * vgic_prune_ap_list - Remove non-relevant interrupts from the list
517  *
518  * @vcpu: The VCPU pointer
519  *
520  * Go over the list of "interesting" interrupts, and prune those that we
521  * won't have to consider in the near future.
522  */
523 static void vgic_prune_ap_list(struct kvm_vcpu *vcpu)
524 {
525         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
526         struct vgic_irq *irq, *tmp;
527         unsigned long flags;
528
529 retry:
530         spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
531
532         list_for_each_entry_safe(irq, tmp, &vgic_cpu->ap_list_head, ap_list) {
533                 struct kvm_vcpu *target_vcpu, *vcpuA, *vcpuB;
534
535                 spin_lock(&irq->irq_lock);
536
537                 BUG_ON(vcpu != irq->vcpu);
538
539                 target_vcpu = vgic_target_oracle(irq);
540
541                 if (!target_vcpu) {
542                         /*
543                          * We don't need to process this interrupt any
544                          * further, move it off the list.
545                          */
546                         list_del(&irq->ap_list);
547                         irq->vcpu = NULL;
548                         spin_unlock(&irq->irq_lock);
549
550                         /*
551                          * This vgic_put_irq call matches the
552                          * vgic_get_irq_kref in vgic_queue_irq_unlock,
553                          * where we added the LPI to the ap_list. As
554                          * we remove the irq from the list, we drop
555                          * also drop the refcount.
556                          */
557                         vgic_put_irq(vcpu->kvm, irq);
558                         continue;
559                 }
560
561                 if (target_vcpu == vcpu) {
562                         /* We're on the right CPU */
563                         spin_unlock(&irq->irq_lock);
564                         continue;
565                 }
566
567                 /* This interrupt looks like it has to be migrated. */
568
569                 spin_unlock(&irq->irq_lock);
570                 spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
571
572                 /*
573                  * Ensure locking order by always locking the smallest
574                  * ID first.
575                  */
576                 if (vcpu->vcpu_id < target_vcpu->vcpu_id) {
577                         vcpuA = vcpu;
578                         vcpuB = target_vcpu;
579                 } else {
580                         vcpuA = target_vcpu;
581                         vcpuB = vcpu;
582                 }
583
584                 spin_lock_irqsave(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
585                 spin_lock_nested(&vcpuB->arch.vgic_cpu.ap_list_lock,
586                                  SINGLE_DEPTH_NESTING);
587                 spin_lock(&irq->irq_lock);
588
589                 /*
590                  * If the affinity has been preserved, move the
591                  * interrupt around. Otherwise, it means things have
592                  * changed while the interrupt was unlocked, and we
593                  * need to replay this.
594                  *
595                  * In all cases, we cannot trust the list not to have
596                  * changed, so we restart from the beginning.
597                  */
598                 if (target_vcpu == vgic_target_oracle(irq)) {
599                         struct vgic_cpu *new_cpu = &target_vcpu->arch.vgic_cpu;
600
601                         list_del(&irq->ap_list);
602                         irq->vcpu = target_vcpu;
603                         list_add_tail(&irq->ap_list, &new_cpu->ap_list_head);
604                 }
605
606                 spin_unlock(&irq->irq_lock);
607                 spin_unlock(&vcpuB->arch.vgic_cpu.ap_list_lock);
608                 spin_unlock_irqrestore(&vcpuA->arch.vgic_cpu.ap_list_lock, flags);
609                 goto retry;
610         }
611
612         spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
613 }
614
615 static inline void vgic_fold_lr_state(struct kvm_vcpu *vcpu)
616 {
617         if (kvm_vgic_global_state.type == VGIC_V2)
618                 vgic_v2_fold_lr_state(vcpu);
619         else
620                 vgic_v3_fold_lr_state(vcpu);
621 }
622
623 /* Requires the irq_lock to be held. */
624 static inline void vgic_populate_lr(struct kvm_vcpu *vcpu,
625                                     struct vgic_irq *irq, int lr)
626 {
627         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&irq->irq_lock));
628
629         if (kvm_vgic_global_state.type == VGIC_V2)
630                 vgic_v2_populate_lr(vcpu, irq, lr);
631         else
632                 vgic_v3_populate_lr(vcpu, irq, lr);
633 }
634
635 static inline void vgic_clear_lr(struct kvm_vcpu *vcpu, int lr)
636 {
637         if (kvm_vgic_global_state.type == VGIC_V2)
638                 vgic_v2_clear_lr(vcpu, lr);
639         else
640                 vgic_v3_clear_lr(vcpu, lr);
641 }
642
643 static inline void vgic_set_underflow(struct kvm_vcpu *vcpu)
644 {
645         if (kvm_vgic_global_state.type == VGIC_V2)
646                 vgic_v2_set_underflow(vcpu);
647         else
648                 vgic_v3_set_underflow(vcpu);
649 }
650
651 /* Requires the ap_list_lock to be held. */
652 static int compute_ap_list_depth(struct kvm_vcpu *vcpu)
653 {
654         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
655         struct vgic_irq *irq;
656         int count = 0;
657
658         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
659
660         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
661                 spin_lock(&irq->irq_lock);
662                 /* GICv2 SGIs can count for more than one... */
663                 if (vgic_irq_is_sgi(irq->intid) && irq->source)
664                         count += hweight8(irq->source);
665                 else
666                         count++;
667                 spin_unlock(&irq->irq_lock);
668         }
669         return count;
670 }
671
672 /* Requires the VCPU's ap_list_lock to be held. */
673 static void vgic_flush_lr_state(struct kvm_vcpu *vcpu)
674 {
675         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
676         struct vgic_irq *irq;
677         int count = 0;
678
679         DEBUG_SPINLOCK_BUG_ON(!spin_is_locked(&vgic_cpu->ap_list_lock));
680
681         if (compute_ap_list_depth(vcpu) > kvm_vgic_global_state.nr_lr)
682                 vgic_sort_ap_list(vcpu);
683
684         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
685                 spin_lock(&irq->irq_lock);
686
687                 if (unlikely(vgic_target_oracle(irq) != vcpu))
688                         goto next;
689
690                 /*
691                  * If we get an SGI with multiple sources, try to get
692                  * them in all at once.
693                  */
694                 do {
695                         vgic_populate_lr(vcpu, irq, count++);
696                 } while (irq->source && count < kvm_vgic_global_state.nr_lr);
697
698 next:
699                 spin_unlock(&irq->irq_lock);
700
701                 if (count == kvm_vgic_global_state.nr_lr) {
702                         if (!list_is_last(&irq->ap_list,
703                                           &vgic_cpu->ap_list_head))
704                                 vgic_set_underflow(vcpu);
705                         break;
706                 }
707         }
708
709         vcpu->arch.vgic_cpu.used_lrs = count;
710
711         /* Nuke remaining LRs */
712         for ( ; count < kvm_vgic_global_state.nr_lr; count++)
713                 vgic_clear_lr(vcpu, count);
714 }
715
716 /* Sync back the hardware VGIC state into our emulation after a guest's run. */
717 void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu)
718 {
719         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
720
721         WARN_ON(vgic_v4_sync_hwstate(vcpu));
722
723         /* An empty ap_list_head implies used_lrs == 0 */
724         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
725                 return;
726
727         if (vgic_cpu->used_lrs)
728                 vgic_fold_lr_state(vcpu);
729         vgic_prune_ap_list(vcpu);
730 }
731
732 /* Flush our emulation state into the GIC hardware before entering the guest. */
733 void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu)
734 {
735         WARN_ON(vgic_v4_flush_hwstate(vcpu));
736
737         /*
738          * If there are no virtual interrupts active or pending for this
739          * VCPU, then there is no work to do and we can bail out without
740          * taking any lock.  There is a potential race with someone injecting
741          * interrupts to the VCPU, but it is a benign race as the VCPU will
742          * either observe the new interrupt before or after doing this check,
743          * and introducing additional synchronization mechanism doesn't change
744          * this.
745          */
746         if (list_empty(&vcpu->arch.vgic_cpu.ap_list_head))
747                 return;
748
749         DEBUG_SPINLOCK_BUG_ON(!irqs_disabled());
750
751         spin_lock(&vcpu->arch.vgic_cpu.ap_list_lock);
752         vgic_flush_lr_state(vcpu);
753         spin_unlock(&vcpu->arch.vgic_cpu.ap_list_lock);
754 }
755
756 void kvm_vgic_load(struct kvm_vcpu *vcpu)
757 {
758         if (unlikely(!vgic_initialized(vcpu->kvm)))
759                 return;
760
761         if (kvm_vgic_global_state.type == VGIC_V2)
762                 vgic_v2_load(vcpu);
763         else
764                 vgic_v3_load(vcpu);
765 }
766
767 void kvm_vgic_put(struct kvm_vcpu *vcpu)
768 {
769         if (unlikely(!vgic_initialized(vcpu->kvm)))
770                 return;
771
772         if (kvm_vgic_global_state.type == VGIC_V2)
773                 vgic_v2_put(vcpu);
774         else
775                 vgic_v3_put(vcpu);
776 }
777
778 int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu)
779 {
780         struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu;
781         struct vgic_irq *irq;
782         bool pending = false;
783         unsigned long flags;
784
785         if (!vcpu->kvm->arch.vgic.enabled)
786                 return false;
787
788         if (vcpu->arch.vgic_cpu.vgic_v3.its_vpe.pending_last)
789                 return true;
790
791         spin_lock_irqsave(&vgic_cpu->ap_list_lock, flags);
792
793         list_for_each_entry(irq, &vgic_cpu->ap_list_head, ap_list) {
794                 spin_lock(&irq->irq_lock);
795                 pending = irq_is_pending(irq) && irq->enabled;
796                 spin_unlock(&irq->irq_lock);
797
798                 if (pending)
799                         break;
800         }
801
802         spin_unlock_irqrestore(&vgic_cpu->ap_list_lock, flags);
803
804         return pending;
805 }
806
807 void vgic_kick_vcpus(struct kvm *kvm)
808 {
809         struct kvm_vcpu *vcpu;
810         int c;
811
812         /*
813          * We've injected an interrupt, time to find out who deserves
814          * a good kick...
815          */
816         kvm_for_each_vcpu(c, vcpu, kvm) {
817                 if (kvm_vgic_vcpu_pending_irq(vcpu)) {
818                         kvm_make_request(KVM_REQ_IRQ_PENDING, vcpu);
819                         kvm_vcpu_kick(vcpu);
820                 }
821         }
822 }
823
824 bool kvm_vgic_map_is_active(struct kvm_vcpu *vcpu, unsigned int vintid)
825 {
826         struct vgic_irq *irq = vgic_get_irq(vcpu->kvm, vcpu, vintid);
827         bool map_is_active;
828         unsigned long flags;
829
830         if (!vgic_initialized(vcpu->kvm))
831                 return false;
832
833         spin_lock_irqsave(&irq->irq_lock, flags);
834         map_is_active = irq->hw && irq->active;
835         spin_unlock_irqrestore(&irq->irq_lock, flags);
836         vgic_put_irq(vcpu->kvm, irq);
837
838         return map_is_active;
839 }
840