]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/kvm_main.c
KVM: Drop kvm_arch_vcpu_setup()
[linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 static bool largepages_enabled = true;
152
153 #define KVM_EVENT_CREATE_VM 0
154 #define KVM_EVENT_DESTROY_VM 1
155 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
156 static unsigned long long kvm_createvm_count;
157 static unsigned long long kvm_active_vms;
158
159 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
160                 unsigned long start, unsigned long end, bool blockable)
161 {
162         return 0;
163 }
164
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167         /*
168          * The metadata used by is_zone_device_page() to determine whether or
169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
171          * page_count() is zero to help detect bad usage of this helper.
172          */
173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174                 return false;
175
176         return is_zone_device_page(pfn_to_page(pfn));
177 }
178
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181         /*
182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183          * perspective they are "normal" pages, albeit with slightly different
184          * usage rules.
185          */
186         if (pfn_valid(pfn))
187                 return PageReserved(pfn_to_page(pfn)) &&
188                        !kvm_is_zone_device_pfn(pfn);
189
190         return true;
191 }
192
193 /*
194  * Switches to specified vcpu, until a matching vcpu_put()
195  */
196 void vcpu_load(struct kvm_vcpu *vcpu)
197 {
198         int cpu = get_cpu();
199         preempt_notifier_register(&vcpu->preempt_notifier);
200         kvm_arch_vcpu_load(vcpu, cpu);
201         put_cpu();
202 }
203 EXPORT_SYMBOL_GPL(vcpu_load);
204
205 void vcpu_put(struct kvm_vcpu *vcpu)
206 {
207         preempt_disable();
208         kvm_arch_vcpu_put(vcpu);
209         preempt_notifier_unregister(&vcpu->preempt_notifier);
210         preempt_enable();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_put);
213
214 /* TODO: merge with kvm_arch_vcpu_should_kick */
215 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
216 {
217         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
218
219         /*
220          * We need to wait for the VCPU to reenable interrupts and get out of
221          * READING_SHADOW_PAGE_TABLES mode.
222          */
223         if (req & KVM_REQUEST_WAIT)
224                 return mode != OUTSIDE_GUEST_MODE;
225
226         /*
227          * Need to kick a running VCPU, but otherwise there is nothing to do.
228          */
229         return mode == IN_GUEST_MODE;
230 }
231
232 static void ack_flush(void *_completed)
233 {
234 }
235
236 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
237 {
238         if (unlikely(!cpus))
239                 cpus = cpu_online_mask;
240
241         if (cpumask_empty(cpus))
242                 return false;
243
244         smp_call_function_many(cpus, ack_flush, NULL, wait);
245         return true;
246 }
247
248 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
249                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
250 {
251         int i, cpu, me;
252         struct kvm_vcpu *vcpu;
253         bool called;
254
255         me = get_cpu();
256
257         kvm_for_each_vcpu(i, vcpu, kvm) {
258                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
259                         continue;
260
261                 kvm_make_request(req, vcpu);
262                 cpu = vcpu->cpu;
263
264                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
265                         continue;
266
267                 if (tmp != NULL && cpu != -1 && cpu != me &&
268                     kvm_request_needs_ipi(vcpu, req))
269                         __cpumask_set_cpu(cpu, tmp);
270         }
271
272         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
273         put_cpu();
274
275         return called;
276 }
277
278 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
279 {
280         cpumask_var_t cpus;
281         bool called;
282
283         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
284
285         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
286
287         free_cpumask_var(cpus);
288         return called;
289 }
290
291 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
292 void kvm_flush_remote_tlbs(struct kvm *kvm)
293 {
294         /*
295          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
296          * kvm_make_all_cpus_request.
297          */
298         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
299
300         /*
301          * We want to publish modifications to the page tables before reading
302          * mode. Pairs with a memory barrier in arch-specific code.
303          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
304          * and smp_mb in walk_shadow_page_lockless_begin/end.
305          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
306          *
307          * There is already an smp_mb__after_atomic() before
308          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
309          * barrier here.
310          */
311         if (!kvm_arch_flush_remote_tlb(kvm)
312             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
313                 ++kvm->stat.remote_tlb_flush;
314         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
315 }
316 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
317 #endif
318
319 void kvm_reload_remote_mmus(struct kvm *kvm)
320 {
321         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
322 }
323
324 static int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
325 {
326         struct page *page;
327         int r;
328
329         mutex_init(&vcpu->mutex);
330         vcpu->cpu = -1;
331         vcpu->kvm = kvm;
332         vcpu->vcpu_id = id;
333         vcpu->pid = NULL;
334         init_swait_queue_head(&vcpu->wq);
335         kvm_async_pf_vcpu_init(vcpu);
336
337         vcpu->pre_pcpu = -1;
338         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
339
340         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
341         if (!page) {
342                 r = -ENOMEM;
343                 goto fail;
344         }
345         vcpu->run = page_address(page);
346
347         kvm_vcpu_set_in_spin_loop(vcpu, false);
348         kvm_vcpu_set_dy_eligible(vcpu, false);
349         vcpu->preempted = false;
350         vcpu->ready = false;
351         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
352
353         r = kvm_arch_vcpu_init(vcpu);
354         if (r < 0)
355                 goto fail_free_run;
356         return 0;
357
358 fail_free_run:
359         free_page((unsigned long)vcpu->run);
360 fail:
361         return r;
362 }
363
364 static void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
365 {
366         /*
367          * no need for rcu_read_lock as VCPU_RUN is the only place that
368          * will change the vcpu->pid pointer and on uninit all file
369          * descriptors are already gone.
370          */
371         put_pid(rcu_dereference_protected(vcpu->pid, 1));
372         kvm_arch_vcpu_uninit(vcpu);
373         free_page((unsigned long)vcpu->run);
374 }
375
376 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
377 {
378         kvm_arch_vcpu_destroy(vcpu);
379
380         kvm_vcpu_uninit(vcpu);
381         kmem_cache_free(kvm_vcpu_cache, vcpu);
382 }
383 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
384
385 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
386 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
387 {
388         return container_of(mn, struct kvm, mmu_notifier);
389 }
390
391 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
392                                         struct mm_struct *mm,
393                                         unsigned long address,
394                                         pte_t pte)
395 {
396         struct kvm *kvm = mmu_notifier_to_kvm(mn);
397         int idx;
398
399         idx = srcu_read_lock(&kvm->srcu);
400         spin_lock(&kvm->mmu_lock);
401         kvm->mmu_notifier_seq++;
402
403         if (kvm_set_spte_hva(kvm, address, pte))
404                 kvm_flush_remote_tlbs(kvm);
405
406         spin_unlock(&kvm->mmu_lock);
407         srcu_read_unlock(&kvm->srcu, idx);
408 }
409
410 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
411                                         const struct mmu_notifier_range *range)
412 {
413         struct kvm *kvm = mmu_notifier_to_kvm(mn);
414         int need_tlb_flush = 0, idx;
415         int ret;
416
417         idx = srcu_read_lock(&kvm->srcu);
418         spin_lock(&kvm->mmu_lock);
419         /*
420          * The count increase must become visible at unlock time as no
421          * spte can be established without taking the mmu_lock and
422          * count is also read inside the mmu_lock critical section.
423          */
424         kvm->mmu_notifier_count++;
425         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
426         need_tlb_flush |= kvm->tlbs_dirty;
427         /* we've to flush the tlb before the pages can be freed */
428         if (need_tlb_flush)
429                 kvm_flush_remote_tlbs(kvm);
430
431         spin_unlock(&kvm->mmu_lock);
432
433         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
434                                         range->end,
435                                         mmu_notifier_range_blockable(range));
436
437         srcu_read_unlock(&kvm->srcu, idx);
438
439         return ret;
440 }
441
442 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
443                                         const struct mmu_notifier_range *range)
444 {
445         struct kvm *kvm = mmu_notifier_to_kvm(mn);
446
447         spin_lock(&kvm->mmu_lock);
448         /*
449          * This sequence increase will notify the kvm page fault that
450          * the page that is going to be mapped in the spte could have
451          * been freed.
452          */
453         kvm->mmu_notifier_seq++;
454         smp_wmb();
455         /*
456          * The above sequence increase must be visible before the
457          * below count decrease, which is ensured by the smp_wmb above
458          * in conjunction with the smp_rmb in mmu_notifier_retry().
459          */
460         kvm->mmu_notifier_count--;
461         spin_unlock(&kvm->mmu_lock);
462
463         BUG_ON(kvm->mmu_notifier_count < 0);
464 }
465
466 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
467                                               struct mm_struct *mm,
468                                               unsigned long start,
469                                               unsigned long end)
470 {
471         struct kvm *kvm = mmu_notifier_to_kvm(mn);
472         int young, idx;
473
474         idx = srcu_read_lock(&kvm->srcu);
475         spin_lock(&kvm->mmu_lock);
476
477         young = kvm_age_hva(kvm, start, end);
478         if (young)
479                 kvm_flush_remote_tlbs(kvm);
480
481         spin_unlock(&kvm->mmu_lock);
482         srcu_read_unlock(&kvm->srcu, idx);
483
484         return young;
485 }
486
487 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
488                                         struct mm_struct *mm,
489                                         unsigned long start,
490                                         unsigned long end)
491 {
492         struct kvm *kvm = mmu_notifier_to_kvm(mn);
493         int young, idx;
494
495         idx = srcu_read_lock(&kvm->srcu);
496         spin_lock(&kvm->mmu_lock);
497         /*
498          * Even though we do not flush TLB, this will still adversely
499          * affect performance on pre-Haswell Intel EPT, where there is
500          * no EPT Access Bit to clear so that we have to tear down EPT
501          * tables instead. If we find this unacceptable, we can always
502          * add a parameter to kvm_age_hva so that it effectively doesn't
503          * do anything on clear_young.
504          *
505          * Also note that currently we never issue secondary TLB flushes
506          * from clear_young, leaving this job up to the regular system
507          * cadence. If we find this inaccurate, we might come up with a
508          * more sophisticated heuristic later.
509          */
510         young = kvm_age_hva(kvm, start, end);
511         spin_unlock(&kvm->mmu_lock);
512         srcu_read_unlock(&kvm->srcu, idx);
513
514         return young;
515 }
516
517 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
518                                        struct mm_struct *mm,
519                                        unsigned long address)
520 {
521         struct kvm *kvm = mmu_notifier_to_kvm(mn);
522         int young, idx;
523
524         idx = srcu_read_lock(&kvm->srcu);
525         spin_lock(&kvm->mmu_lock);
526         young = kvm_test_age_hva(kvm, address);
527         spin_unlock(&kvm->mmu_lock);
528         srcu_read_unlock(&kvm->srcu, idx);
529
530         return young;
531 }
532
533 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
534                                      struct mm_struct *mm)
535 {
536         struct kvm *kvm = mmu_notifier_to_kvm(mn);
537         int idx;
538
539         idx = srcu_read_lock(&kvm->srcu);
540         kvm_arch_flush_shadow_all(kvm);
541         srcu_read_unlock(&kvm->srcu, idx);
542 }
543
544 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
545         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
546         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
547         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
548         .clear_young            = kvm_mmu_notifier_clear_young,
549         .test_young             = kvm_mmu_notifier_test_young,
550         .change_pte             = kvm_mmu_notifier_change_pte,
551         .release                = kvm_mmu_notifier_release,
552 };
553
554 static int kvm_init_mmu_notifier(struct kvm *kvm)
555 {
556         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
557         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
558 }
559
560 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
561
562 static int kvm_init_mmu_notifier(struct kvm *kvm)
563 {
564         return 0;
565 }
566
567 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
568
569 static struct kvm_memslots *kvm_alloc_memslots(void)
570 {
571         int i;
572         struct kvm_memslots *slots;
573
574         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
575         if (!slots)
576                 return NULL;
577
578         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
579                 slots->id_to_index[i] = slots->memslots[i].id = i;
580
581         return slots;
582 }
583
584 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
585 {
586         if (!memslot->dirty_bitmap)
587                 return;
588
589         kvfree(memslot->dirty_bitmap);
590         memslot->dirty_bitmap = NULL;
591 }
592
593 /*
594  * Free any memory in @free but not in @dont.
595  */
596 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
597                               struct kvm_memory_slot *dont)
598 {
599         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
600                 kvm_destroy_dirty_bitmap(free);
601
602         kvm_arch_free_memslot(kvm, free, dont);
603
604         free->npages = 0;
605 }
606
607 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
608 {
609         struct kvm_memory_slot *memslot;
610
611         if (!slots)
612                 return;
613
614         kvm_for_each_memslot(memslot, slots)
615                 kvm_free_memslot(kvm, memslot, NULL);
616
617         kvfree(slots);
618 }
619
620 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
621 {
622         int i;
623
624         if (!kvm->debugfs_dentry)
625                 return;
626
627         debugfs_remove_recursive(kvm->debugfs_dentry);
628
629         if (kvm->debugfs_stat_data) {
630                 for (i = 0; i < kvm_debugfs_num_entries; i++)
631                         kfree(kvm->debugfs_stat_data[i]);
632                 kfree(kvm->debugfs_stat_data);
633         }
634 }
635
636 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
637 {
638         char dir_name[ITOA_MAX_LEN * 2];
639         struct kvm_stat_data *stat_data;
640         struct kvm_stats_debugfs_item *p;
641
642         if (!debugfs_initialized())
643                 return 0;
644
645         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
646         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
647
648         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
649                                          sizeof(*kvm->debugfs_stat_data),
650                                          GFP_KERNEL_ACCOUNT);
651         if (!kvm->debugfs_stat_data)
652                 return -ENOMEM;
653
654         for (p = debugfs_entries; p->name; p++) {
655                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
656                 if (!stat_data)
657                         return -ENOMEM;
658
659                 stat_data->kvm = kvm;
660                 stat_data->dbgfs_item = p;
661                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
662                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
663                                     kvm->debugfs_dentry, stat_data,
664                                     &stat_fops_per_vm);
665         }
666         return 0;
667 }
668
669 /*
670  * Called after the VM is otherwise initialized, but just before adding it to
671  * the vm_list.
672  */
673 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
674 {
675         return 0;
676 }
677
678 /*
679  * Called just after removing the VM from the vm_list, but before doing any
680  * other destruction.
681  */
682 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
683 {
684 }
685
686 static struct kvm *kvm_create_vm(unsigned long type)
687 {
688         struct kvm *kvm = kvm_arch_alloc_vm();
689         int r = -ENOMEM;
690         int i;
691
692         if (!kvm)
693                 return ERR_PTR(-ENOMEM);
694
695         spin_lock_init(&kvm->mmu_lock);
696         mmgrab(current->mm);
697         kvm->mm = current->mm;
698         kvm_eventfd_init(kvm);
699         mutex_init(&kvm->lock);
700         mutex_init(&kvm->irq_lock);
701         mutex_init(&kvm->slots_lock);
702         INIT_LIST_HEAD(&kvm->devices);
703
704         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
705
706         if (init_srcu_struct(&kvm->srcu))
707                 goto out_err_no_srcu;
708         if (init_srcu_struct(&kvm->irq_srcu))
709                 goto out_err_no_irq_srcu;
710
711         refcount_set(&kvm->users_count, 1);
712         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
713                 struct kvm_memslots *slots = kvm_alloc_memslots();
714
715                 if (!slots)
716                         goto out_err_no_arch_destroy_vm;
717                 /* Generations must be different for each address space. */
718                 slots->generation = i;
719                 rcu_assign_pointer(kvm->memslots[i], slots);
720         }
721
722         for (i = 0; i < KVM_NR_BUSES; i++) {
723                 rcu_assign_pointer(kvm->buses[i],
724                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
725                 if (!kvm->buses[i])
726                         goto out_err_no_arch_destroy_vm;
727         }
728
729         r = kvm_arch_init_vm(kvm, type);
730         if (r)
731                 goto out_err_no_arch_destroy_vm;
732
733         r = hardware_enable_all();
734         if (r)
735                 goto out_err_no_disable;
736
737 #ifdef CONFIG_HAVE_KVM_IRQFD
738         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
739 #endif
740
741         r = kvm_init_mmu_notifier(kvm);
742         if (r)
743                 goto out_err_no_mmu_notifier;
744
745         r = kvm_arch_post_init_vm(kvm);
746         if (r)
747                 goto out_err;
748
749         mutex_lock(&kvm_lock);
750         list_add(&kvm->vm_list, &vm_list);
751         mutex_unlock(&kvm_lock);
752
753         preempt_notifier_inc();
754
755         return kvm;
756
757 out_err:
758 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
759         if (kvm->mmu_notifier.ops)
760                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
761 #endif
762 out_err_no_mmu_notifier:
763         hardware_disable_all();
764 out_err_no_disable:
765         kvm_arch_destroy_vm(kvm);
766 out_err_no_arch_destroy_vm:
767         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
768         for (i = 0; i < KVM_NR_BUSES; i++)
769                 kfree(kvm_get_bus(kvm, i));
770         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
771                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
772         cleanup_srcu_struct(&kvm->irq_srcu);
773 out_err_no_irq_srcu:
774         cleanup_srcu_struct(&kvm->srcu);
775 out_err_no_srcu:
776         kvm_arch_free_vm(kvm);
777         mmdrop(current->mm);
778         return ERR_PTR(r);
779 }
780
781 static void kvm_destroy_devices(struct kvm *kvm)
782 {
783         struct kvm_device *dev, *tmp;
784
785         /*
786          * We do not need to take the kvm->lock here, because nobody else
787          * has a reference to the struct kvm at this point and therefore
788          * cannot access the devices list anyhow.
789          */
790         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
791                 list_del(&dev->vm_node);
792                 dev->ops->destroy(dev);
793         }
794 }
795
796 static void kvm_destroy_vm(struct kvm *kvm)
797 {
798         int i;
799         struct mm_struct *mm = kvm->mm;
800
801         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
802         kvm_destroy_vm_debugfs(kvm);
803         kvm_arch_sync_events(kvm);
804         mutex_lock(&kvm_lock);
805         list_del(&kvm->vm_list);
806         mutex_unlock(&kvm_lock);
807         kvm_arch_pre_destroy_vm(kvm);
808
809         kvm_free_irq_routing(kvm);
810         for (i = 0; i < KVM_NR_BUSES; i++) {
811                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
812
813                 if (bus)
814                         kvm_io_bus_destroy(bus);
815                 kvm->buses[i] = NULL;
816         }
817         kvm_coalesced_mmio_free(kvm);
818 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
819         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
820 #else
821         kvm_arch_flush_shadow_all(kvm);
822 #endif
823         kvm_arch_destroy_vm(kvm);
824         kvm_destroy_devices(kvm);
825         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
826                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
827         cleanup_srcu_struct(&kvm->irq_srcu);
828         cleanup_srcu_struct(&kvm->srcu);
829         kvm_arch_free_vm(kvm);
830         preempt_notifier_dec();
831         hardware_disable_all();
832         mmdrop(mm);
833 }
834
835 void kvm_get_kvm(struct kvm *kvm)
836 {
837         refcount_inc(&kvm->users_count);
838 }
839 EXPORT_SYMBOL_GPL(kvm_get_kvm);
840
841 void kvm_put_kvm(struct kvm *kvm)
842 {
843         if (refcount_dec_and_test(&kvm->users_count))
844                 kvm_destroy_vm(kvm);
845 }
846 EXPORT_SYMBOL_GPL(kvm_put_kvm);
847
848 /*
849  * Used to put a reference that was taken on behalf of an object associated
850  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
851  * of the new file descriptor fails and the reference cannot be transferred to
852  * its final owner.  In such cases, the caller is still actively using @kvm and
853  * will fail miserably if the refcount unexpectedly hits zero.
854  */
855 void kvm_put_kvm_no_destroy(struct kvm *kvm)
856 {
857         WARN_ON(refcount_dec_and_test(&kvm->users_count));
858 }
859 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
860
861 static int kvm_vm_release(struct inode *inode, struct file *filp)
862 {
863         struct kvm *kvm = filp->private_data;
864
865         kvm_irqfd_release(kvm);
866
867         kvm_put_kvm(kvm);
868         return 0;
869 }
870
871 /*
872  * Allocation size is twice as large as the actual dirty bitmap size.
873  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
874  */
875 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
876 {
877         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
878
879         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
880         if (!memslot->dirty_bitmap)
881                 return -ENOMEM;
882
883         return 0;
884 }
885
886 /*
887  * Insert memslot and re-sort memslots based on their GFN,
888  * so binary search could be used to lookup GFN.
889  * Sorting algorithm takes advantage of having initially
890  * sorted array and known changed memslot position.
891  */
892 static void update_memslots(struct kvm_memslots *slots,
893                             struct kvm_memory_slot *new,
894                             enum kvm_mr_change change)
895 {
896         int id = new->id;
897         int i = slots->id_to_index[id];
898         struct kvm_memory_slot *mslots = slots->memslots;
899
900         WARN_ON(mslots[i].id != id);
901         switch (change) {
902         case KVM_MR_CREATE:
903                 slots->used_slots++;
904                 WARN_ON(mslots[i].npages || !new->npages);
905                 break;
906         case KVM_MR_DELETE:
907                 slots->used_slots--;
908                 WARN_ON(new->npages || !mslots[i].npages);
909                 break;
910         default:
911                 break;
912         }
913
914         while (i < KVM_MEM_SLOTS_NUM - 1 &&
915                new->base_gfn <= mslots[i + 1].base_gfn) {
916                 if (!mslots[i + 1].npages)
917                         break;
918                 mslots[i] = mslots[i + 1];
919                 slots->id_to_index[mslots[i].id] = i;
920                 i++;
921         }
922
923         /*
924          * The ">=" is needed when creating a slot with base_gfn == 0,
925          * so that it moves before all those with base_gfn == npages == 0.
926          *
927          * On the other hand, if new->npages is zero, the above loop has
928          * already left i pointing to the beginning of the empty part of
929          * mslots, and the ">=" would move the hole backwards in this
930          * case---which is wrong.  So skip the loop when deleting a slot.
931          */
932         if (new->npages) {
933                 while (i > 0 &&
934                        new->base_gfn >= mslots[i - 1].base_gfn) {
935                         mslots[i] = mslots[i - 1];
936                         slots->id_to_index[mslots[i].id] = i;
937                         i--;
938                 }
939         } else
940                 WARN_ON_ONCE(i != slots->used_slots);
941
942         mslots[i] = *new;
943         slots->id_to_index[mslots[i].id] = i;
944 }
945
946 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
947 {
948         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
949
950 #ifdef __KVM_HAVE_READONLY_MEM
951         valid_flags |= KVM_MEM_READONLY;
952 #endif
953
954         if (mem->flags & ~valid_flags)
955                 return -EINVAL;
956
957         return 0;
958 }
959
960 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
961                 int as_id, struct kvm_memslots *slots)
962 {
963         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
964         u64 gen = old_memslots->generation;
965
966         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
967         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
968
969         rcu_assign_pointer(kvm->memslots[as_id], slots);
970         synchronize_srcu_expedited(&kvm->srcu);
971
972         /*
973          * Increment the new memslot generation a second time, dropping the
974          * update in-progress flag and incrementing the generation based on
975          * the number of address spaces.  This provides a unique and easily
976          * identifiable generation number while the memslots are in flux.
977          */
978         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
979
980         /*
981          * Generations must be unique even across address spaces.  We do not need
982          * a global counter for that, instead the generation space is evenly split
983          * across address spaces.  For example, with two address spaces, address
984          * space 0 will use generations 0, 2, 4, ... while address space 1 will
985          * use generations 1, 3, 5, ...
986          */
987         gen += KVM_ADDRESS_SPACE_NUM;
988
989         kvm_arch_memslots_updated(kvm, gen);
990
991         slots->generation = gen;
992
993         return old_memslots;
994 }
995
996 /*
997  * Allocate some memory and give it an address in the guest physical address
998  * space.
999  *
1000  * Discontiguous memory is allowed, mostly for framebuffers.
1001  *
1002  * Must be called holding kvm->slots_lock for write.
1003  */
1004 int __kvm_set_memory_region(struct kvm *kvm,
1005                             const struct kvm_userspace_memory_region *mem)
1006 {
1007         int r;
1008         gfn_t base_gfn;
1009         unsigned long npages;
1010         struct kvm_memory_slot *slot;
1011         struct kvm_memory_slot old, new;
1012         struct kvm_memslots *slots = NULL, *old_memslots;
1013         int as_id, id;
1014         enum kvm_mr_change change;
1015
1016         r = check_memory_region_flags(mem);
1017         if (r)
1018                 goto out;
1019
1020         r = -EINVAL;
1021         as_id = mem->slot >> 16;
1022         id = (u16)mem->slot;
1023
1024         /* General sanity checks */
1025         if (mem->memory_size & (PAGE_SIZE - 1))
1026                 goto out;
1027         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1028                 goto out;
1029         /* We can read the guest memory with __xxx_user() later on. */
1030         if ((id < KVM_USER_MEM_SLOTS) &&
1031             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1032              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1033                         mem->memory_size)))
1034                 goto out;
1035         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1036                 goto out;
1037         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1038                 goto out;
1039
1040         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1041         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1042         npages = mem->memory_size >> PAGE_SHIFT;
1043
1044         if (npages > KVM_MEM_MAX_NR_PAGES)
1045                 goto out;
1046
1047         new = old = *slot;
1048
1049         new.id = id;
1050         new.base_gfn = base_gfn;
1051         new.npages = npages;
1052         new.flags = mem->flags;
1053
1054         if (npages) {
1055                 if (!old.npages)
1056                         change = KVM_MR_CREATE;
1057                 else { /* Modify an existing slot. */
1058                         if ((mem->userspace_addr != old.userspace_addr) ||
1059                             (npages != old.npages) ||
1060                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1061                                 goto out;
1062
1063                         if (base_gfn != old.base_gfn)
1064                                 change = KVM_MR_MOVE;
1065                         else if (new.flags != old.flags)
1066                                 change = KVM_MR_FLAGS_ONLY;
1067                         else { /* Nothing to change. */
1068                                 r = 0;
1069                                 goto out;
1070                         }
1071                 }
1072         } else {
1073                 if (!old.npages)
1074                         goto out;
1075
1076                 change = KVM_MR_DELETE;
1077                 new.base_gfn = 0;
1078                 new.flags = 0;
1079         }
1080
1081         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1082                 /* Check for overlaps */
1083                 r = -EEXIST;
1084                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1085                         if (slot->id == id)
1086                                 continue;
1087                         if (!((base_gfn + npages <= slot->base_gfn) ||
1088                               (base_gfn >= slot->base_gfn + slot->npages)))
1089                                 goto out;
1090                 }
1091         }
1092
1093         /* Free page dirty bitmap if unneeded */
1094         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1095                 new.dirty_bitmap = NULL;
1096
1097         r = -ENOMEM;
1098         if (change == KVM_MR_CREATE) {
1099                 new.userspace_addr = mem->userspace_addr;
1100
1101                 if (kvm_arch_create_memslot(kvm, &new, npages))
1102                         goto out_free;
1103         }
1104
1105         /* Allocate page dirty bitmap if needed */
1106         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1107                 if (kvm_create_dirty_bitmap(&new) < 0)
1108                         goto out_free;
1109         }
1110
1111         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1112         if (!slots)
1113                 goto out_free;
1114         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1115
1116         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1117                 slot = id_to_memslot(slots, id);
1118                 slot->flags |= KVM_MEMSLOT_INVALID;
1119
1120                 old_memslots = install_new_memslots(kvm, as_id, slots);
1121
1122                 /* From this point no new shadow pages pointing to a deleted,
1123                  * or moved, memslot will be created.
1124                  *
1125                  * validation of sp->gfn happens in:
1126                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1127                  *      - kvm_is_visible_gfn (mmu_check_root)
1128                  */
1129                 kvm_arch_flush_shadow_memslot(kvm, slot);
1130
1131                 /*
1132                  * We can re-use the old_memslots from above, the only difference
1133                  * from the currently installed memslots is the invalid flag.  This
1134                  * will get overwritten by update_memslots anyway.
1135                  */
1136                 slots = old_memslots;
1137         }
1138
1139         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1140         if (r)
1141                 goto out_slots;
1142
1143         /* actual memory is freed via old in kvm_free_memslot below */
1144         if (change == KVM_MR_DELETE) {
1145                 new.dirty_bitmap = NULL;
1146                 memset(&new.arch, 0, sizeof(new.arch));
1147         }
1148
1149         update_memslots(slots, &new, change);
1150         old_memslots = install_new_memslots(kvm, as_id, slots);
1151
1152         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1153
1154         kvm_free_memslot(kvm, &old, &new);
1155         kvfree(old_memslots);
1156         return 0;
1157
1158 out_slots:
1159         kvfree(slots);
1160 out_free:
1161         kvm_free_memslot(kvm, &new, &old);
1162 out:
1163         return r;
1164 }
1165 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1166
1167 int kvm_set_memory_region(struct kvm *kvm,
1168                           const struct kvm_userspace_memory_region *mem)
1169 {
1170         int r;
1171
1172         mutex_lock(&kvm->slots_lock);
1173         r = __kvm_set_memory_region(kvm, mem);
1174         mutex_unlock(&kvm->slots_lock);
1175         return r;
1176 }
1177 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1178
1179 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1180                                           struct kvm_userspace_memory_region *mem)
1181 {
1182         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1183                 return -EINVAL;
1184
1185         return kvm_set_memory_region(kvm, mem);
1186 }
1187
1188 int kvm_get_dirty_log(struct kvm *kvm,
1189                         struct kvm_dirty_log *log, int *is_dirty)
1190 {
1191         struct kvm_memslots *slots;
1192         struct kvm_memory_slot *memslot;
1193         int i, as_id, id;
1194         unsigned long n;
1195         unsigned long any = 0;
1196
1197         as_id = log->slot >> 16;
1198         id = (u16)log->slot;
1199         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1200                 return -EINVAL;
1201
1202         slots = __kvm_memslots(kvm, as_id);
1203         memslot = id_to_memslot(slots, id);
1204         if (!memslot->dirty_bitmap)
1205                 return -ENOENT;
1206
1207         n = kvm_dirty_bitmap_bytes(memslot);
1208
1209         for (i = 0; !any && i < n/sizeof(long); ++i)
1210                 any = memslot->dirty_bitmap[i];
1211
1212         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1213                 return -EFAULT;
1214
1215         if (any)
1216                 *is_dirty = 1;
1217         return 0;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1220
1221 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1222 /**
1223  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1224  *      and reenable dirty page tracking for the corresponding pages.
1225  * @kvm:        pointer to kvm instance
1226  * @log:        slot id and address to which we copy the log
1227  * @flush:      true if TLB flush is needed by caller
1228  *
1229  * We need to keep it in mind that VCPU threads can write to the bitmap
1230  * concurrently. So, to avoid losing track of dirty pages we keep the
1231  * following order:
1232  *
1233  *    1. Take a snapshot of the bit and clear it if needed.
1234  *    2. Write protect the corresponding page.
1235  *    3. Copy the snapshot to the userspace.
1236  *    4. Upon return caller flushes TLB's if needed.
1237  *
1238  * Between 2 and 4, the guest may write to the page using the remaining TLB
1239  * entry.  This is not a problem because the page is reported dirty using
1240  * the snapshot taken before and step 4 ensures that writes done after
1241  * exiting to userspace will be logged for the next call.
1242  *
1243  */
1244 int kvm_get_dirty_log_protect(struct kvm *kvm,
1245                         struct kvm_dirty_log *log, bool *flush)
1246 {
1247         struct kvm_memslots *slots;
1248         struct kvm_memory_slot *memslot;
1249         int i, as_id, id;
1250         unsigned long n;
1251         unsigned long *dirty_bitmap;
1252         unsigned long *dirty_bitmap_buffer;
1253
1254         as_id = log->slot >> 16;
1255         id = (u16)log->slot;
1256         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1257                 return -EINVAL;
1258
1259         slots = __kvm_memslots(kvm, as_id);
1260         memslot = id_to_memslot(slots, id);
1261
1262         dirty_bitmap = memslot->dirty_bitmap;
1263         if (!dirty_bitmap)
1264                 return -ENOENT;
1265
1266         n = kvm_dirty_bitmap_bytes(memslot);
1267         *flush = false;
1268         if (kvm->manual_dirty_log_protect) {
1269                 /*
1270                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1271                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1272                  * is some code duplication between this function and
1273                  * kvm_get_dirty_log, but hopefully all architecture
1274                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1275                  * can be eliminated.
1276                  */
1277                 dirty_bitmap_buffer = dirty_bitmap;
1278         } else {
1279                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1280                 memset(dirty_bitmap_buffer, 0, n);
1281
1282                 spin_lock(&kvm->mmu_lock);
1283                 for (i = 0; i < n / sizeof(long); i++) {
1284                         unsigned long mask;
1285                         gfn_t offset;
1286
1287                         if (!dirty_bitmap[i])
1288                                 continue;
1289
1290                         *flush = true;
1291                         mask = xchg(&dirty_bitmap[i], 0);
1292                         dirty_bitmap_buffer[i] = mask;
1293
1294                         offset = i * BITS_PER_LONG;
1295                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1296                                                                 offset, mask);
1297                 }
1298                 spin_unlock(&kvm->mmu_lock);
1299         }
1300
1301         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1302                 return -EFAULT;
1303         return 0;
1304 }
1305 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1306
1307 /**
1308  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1309  *      and reenable dirty page tracking for the corresponding pages.
1310  * @kvm:        pointer to kvm instance
1311  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1312  * @flush:      true if TLB flush is needed by caller
1313  */
1314 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1315                                 struct kvm_clear_dirty_log *log, bool *flush)
1316 {
1317         struct kvm_memslots *slots;
1318         struct kvm_memory_slot *memslot;
1319         int as_id, id;
1320         gfn_t offset;
1321         unsigned long i, n;
1322         unsigned long *dirty_bitmap;
1323         unsigned long *dirty_bitmap_buffer;
1324
1325         as_id = log->slot >> 16;
1326         id = (u16)log->slot;
1327         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1328                 return -EINVAL;
1329
1330         if (log->first_page & 63)
1331                 return -EINVAL;
1332
1333         slots = __kvm_memslots(kvm, as_id);
1334         memslot = id_to_memslot(slots, id);
1335
1336         dirty_bitmap = memslot->dirty_bitmap;
1337         if (!dirty_bitmap)
1338                 return -ENOENT;
1339
1340         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1341
1342         if (log->first_page > memslot->npages ||
1343             log->num_pages > memslot->npages - log->first_page ||
1344             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1345             return -EINVAL;
1346
1347         *flush = false;
1348         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1349         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1350                 return -EFAULT;
1351
1352         spin_lock(&kvm->mmu_lock);
1353         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1354                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1355              i++, offset += BITS_PER_LONG) {
1356                 unsigned long mask = *dirty_bitmap_buffer++;
1357                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1358                 if (!mask)
1359                         continue;
1360
1361                 mask &= atomic_long_fetch_andnot(mask, p);
1362
1363                 /*
1364                  * mask contains the bits that really have been cleared.  This
1365                  * never includes any bits beyond the length of the memslot (if
1366                  * the length is not aligned to 64 pages), therefore it is not
1367                  * a problem if userspace sets them in log->dirty_bitmap.
1368                 */
1369                 if (mask) {
1370                         *flush = true;
1371                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1372                                                                 offset, mask);
1373                 }
1374         }
1375         spin_unlock(&kvm->mmu_lock);
1376
1377         return 0;
1378 }
1379 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1380 #endif
1381
1382 bool kvm_largepages_enabled(void)
1383 {
1384         return largepages_enabled;
1385 }
1386
1387 void kvm_disable_largepages(void)
1388 {
1389         largepages_enabled = false;
1390 }
1391 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1392
1393 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1394 {
1395         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1396 }
1397 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1398
1399 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1400 {
1401         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1402 }
1403
1404 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1405 {
1406         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1407
1408         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1409               memslot->flags & KVM_MEMSLOT_INVALID)
1410                 return false;
1411
1412         return true;
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1415
1416 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1417 {
1418         struct vm_area_struct *vma;
1419         unsigned long addr, size;
1420
1421         size = PAGE_SIZE;
1422
1423         addr = gfn_to_hva(kvm, gfn);
1424         if (kvm_is_error_hva(addr))
1425                 return PAGE_SIZE;
1426
1427         down_read(&current->mm->mmap_sem);
1428         vma = find_vma(current->mm, addr);
1429         if (!vma)
1430                 goto out;
1431
1432         size = vma_kernel_pagesize(vma);
1433
1434 out:
1435         up_read(&current->mm->mmap_sem);
1436
1437         return size;
1438 }
1439
1440 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1441 {
1442         return slot->flags & KVM_MEM_READONLY;
1443 }
1444
1445 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1446                                        gfn_t *nr_pages, bool write)
1447 {
1448         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1449                 return KVM_HVA_ERR_BAD;
1450
1451         if (memslot_is_readonly(slot) && write)
1452                 return KVM_HVA_ERR_RO_BAD;
1453
1454         if (nr_pages)
1455                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1456
1457         return __gfn_to_hva_memslot(slot, gfn);
1458 }
1459
1460 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1461                                      gfn_t *nr_pages)
1462 {
1463         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1464 }
1465
1466 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1467                                         gfn_t gfn)
1468 {
1469         return gfn_to_hva_many(slot, gfn, NULL);
1470 }
1471 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1472
1473 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1474 {
1475         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1476 }
1477 EXPORT_SYMBOL_GPL(gfn_to_hva);
1478
1479 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1480 {
1481         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1482 }
1483 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1484
1485 /*
1486  * Return the hva of a @gfn and the R/W attribute if possible.
1487  *
1488  * @slot: the kvm_memory_slot which contains @gfn
1489  * @gfn: the gfn to be translated
1490  * @writable: used to return the read/write attribute of the @slot if the hva
1491  * is valid and @writable is not NULL
1492  */
1493 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1494                                       gfn_t gfn, bool *writable)
1495 {
1496         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1497
1498         if (!kvm_is_error_hva(hva) && writable)
1499                 *writable = !memslot_is_readonly(slot);
1500
1501         return hva;
1502 }
1503
1504 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1505 {
1506         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1507
1508         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1509 }
1510
1511 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1512 {
1513         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1514
1515         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1516 }
1517
1518 static inline int check_user_page_hwpoison(unsigned long addr)
1519 {
1520         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1521
1522         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1523         return rc == -EHWPOISON;
1524 }
1525
1526 /*
1527  * The fast path to get the writable pfn which will be stored in @pfn,
1528  * true indicates success, otherwise false is returned.  It's also the
1529  * only part that runs if we can in atomic context.
1530  */
1531 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1532                             bool *writable, kvm_pfn_t *pfn)
1533 {
1534         struct page *page[1];
1535         int npages;
1536
1537         /*
1538          * Fast pin a writable pfn only if it is a write fault request
1539          * or the caller allows to map a writable pfn for a read fault
1540          * request.
1541          */
1542         if (!(write_fault || writable))
1543                 return false;
1544
1545         npages = __get_user_pages_fast(addr, 1, 1, page);
1546         if (npages == 1) {
1547                 *pfn = page_to_pfn(page[0]);
1548
1549                 if (writable)
1550                         *writable = true;
1551                 return true;
1552         }
1553
1554         return false;
1555 }
1556
1557 /*
1558  * The slow path to get the pfn of the specified host virtual address,
1559  * 1 indicates success, -errno is returned if error is detected.
1560  */
1561 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1562                            bool *writable, kvm_pfn_t *pfn)
1563 {
1564         unsigned int flags = FOLL_HWPOISON;
1565         struct page *page;
1566         int npages = 0;
1567
1568         might_sleep();
1569
1570         if (writable)
1571                 *writable = write_fault;
1572
1573         if (write_fault)
1574                 flags |= FOLL_WRITE;
1575         if (async)
1576                 flags |= FOLL_NOWAIT;
1577
1578         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1579         if (npages != 1)
1580                 return npages;
1581
1582         /* map read fault as writable if possible */
1583         if (unlikely(!write_fault) && writable) {
1584                 struct page *wpage;
1585
1586                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1587                         *writable = true;
1588                         put_page(page);
1589                         page = wpage;
1590                 }
1591         }
1592         *pfn = page_to_pfn(page);
1593         return npages;
1594 }
1595
1596 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1597 {
1598         if (unlikely(!(vma->vm_flags & VM_READ)))
1599                 return false;
1600
1601         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1602                 return false;
1603
1604         return true;
1605 }
1606
1607 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1608                                unsigned long addr, bool *async,
1609                                bool write_fault, bool *writable,
1610                                kvm_pfn_t *p_pfn)
1611 {
1612         unsigned long pfn;
1613         int r;
1614
1615         r = follow_pfn(vma, addr, &pfn);
1616         if (r) {
1617                 /*
1618                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1619                  * not call the fault handler, so do it here.
1620                  */
1621                 bool unlocked = false;
1622                 r = fixup_user_fault(current, current->mm, addr,
1623                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1624                                      &unlocked);
1625                 if (unlocked)
1626                         return -EAGAIN;
1627                 if (r)
1628                         return r;
1629
1630                 r = follow_pfn(vma, addr, &pfn);
1631                 if (r)
1632                         return r;
1633
1634         }
1635
1636         if (writable)
1637                 *writable = true;
1638
1639         /*
1640          * Get a reference here because callers of *hva_to_pfn* and
1641          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1642          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1643          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1644          * simply do nothing for reserved pfns.
1645          *
1646          * Whoever called remap_pfn_range is also going to call e.g.
1647          * unmap_mapping_range before the underlying pages are freed,
1648          * causing a call to our MMU notifier.
1649          */ 
1650         kvm_get_pfn(pfn);
1651
1652         *p_pfn = pfn;
1653         return 0;
1654 }
1655
1656 /*
1657  * Pin guest page in memory and return its pfn.
1658  * @addr: host virtual address which maps memory to the guest
1659  * @atomic: whether this function can sleep
1660  * @async: whether this function need to wait IO complete if the
1661  *         host page is not in the memory
1662  * @write_fault: whether we should get a writable host page
1663  * @writable: whether it allows to map a writable host page for !@write_fault
1664  *
1665  * The function will map a writable host page for these two cases:
1666  * 1): @write_fault = true
1667  * 2): @write_fault = false && @writable, @writable will tell the caller
1668  *     whether the mapping is writable.
1669  */
1670 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1671                         bool write_fault, bool *writable)
1672 {
1673         struct vm_area_struct *vma;
1674         kvm_pfn_t pfn = 0;
1675         int npages, r;
1676
1677         /* we can do it either atomically or asynchronously, not both */
1678         BUG_ON(atomic && async);
1679
1680         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1681                 return pfn;
1682
1683         if (atomic)
1684                 return KVM_PFN_ERR_FAULT;
1685
1686         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1687         if (npages == 1)
1688                 return pfn;
1689
1690         down_read(&current->mm->mmap_sem);
1691         if (npages == -EHWPOISON ||
1692               (!async && check_user_page_hwpoison(addr))) {
1693                 pfn = KVM_PFN_ERR_HWPOISON;
1694                 goto exit;
1695         }
1696
1697 retry:
1698         vma = find_vma_intersection(current->mm, addr, addr + 1);
1699
1700         if (vma == NULL)
1701                 pfn = KVM_PFN_ERR_FAULT;
1702         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1703                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1704                 if (r == -EAGAIN)
1705                         goto retry;
1706                 if (r < 0)
1707                         pfn = KVM_PFN_ERR_FAULT;
1708         } else {
1709                 if (async && vma_is_valid(vma, write_fault))
1710                         *async = true;
1711                 pfn = KVM_PFN_ERR_FAULT;
1712         }
1713 exit:
1714         up_read(&current->mm->mmap_sem);
1715         return pfn;
1716 }
1717
1718 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1719                                bool atomic, bool *async, bool write_fault,
1720                                bool *writable)
1721 {
1722         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1723
1724         if (addr == KVM_HVA_ERR_RO_BAD) {
1725                 if (writable)
1726                         *writable = false;
1727                 return KVM_PFN_ERR_RO_FAULT;
1728         }
1729
1730         if (kvm_is_error_hva(addr)) {
1731                 if (writable)
1732                         *writable = false;
1733                 return KVM_PFN_NOSLOT;
1734         }
1735
1736         /* Do not map writable pfn in the readonly memslot. */
1737         if (writable && memslot_is_readonly(slot)) {
1738                 *writable = false;
1739                 writable = NULL;
1740         }
1741
1742         return hva_to_pfn(addr, atomic, async, write_fault,
1743                           writable);
1744 }
1745 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1746
1747 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1748                       bool *writable)
1749 {
1750         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1751                                     write_fault, writable);
1752 }
1753 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1754
1755 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1756 {
1757         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1758 }
1759 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1760
1761 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1762 {
1763         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1764 }
1765 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1766
1767 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1768 {
1769         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1770 }
1771 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1772
1773 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1774 {
1775         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1776 }
1777 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1778
1779 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1780 {
1781         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1782 }
1783 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1784
1785 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1786 {
1787         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1788 }
1789 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1790
1791 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1792                             struct page **pages, int nr_pages)
1793 {
1794         unsigned long addr;
1795         gfn_t entry = 0;
1796
1797         addr = gfn_to_hva_many(slot, gfn, &entry);
1798         if (kvm_is_error_hva(addr))
1799                 return -1;
1800
1801         if (entry < nr_pages)
1802                 return 0;
1803
1804         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1805 }
1806 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1807
1808 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1809 {
1810         if (is_error_noslot_pfn(pfn))
1811                 return KVM_ERR_PTR_BAD_PAGE;
1812
1813         if (kvm_is_reserved_pfn(pfn)) {
1814                 WARN_ON(1);
1815                 return KVM_ERR_PTR_BAD_PAGE;
1816         }
1817
1818         return pfn_to_page(pfn);
1819 }
1820
1821 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1822 {
1823         kvm_pfn_t pfn;
1824
1825         pfn = gfn_to_pfn(kvm, gfn);
1826
1827         return kvm_pfn_to_page(pfn);
1828 }
1829 EXPORT_SYMBOL_GPL(gfn_to_page);
1830
1831 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1832                          struct kvm_host_map *map)
1833 {
1834         kvm_pfn_t pfn;
1835         void *hva = NULL;
1836         struct page *page = KVM_UNMAPPED_PAGE;
1837
1838         if (!map)
1839                 return -EINVAL;
1840
1841         pfn = gfn_to_pfn_memslot(slot, gfn);
1842         if (is_error_noslot_pfn(pfn))
1843                 return -EINVAL;
1844
1845         if (pfn_valid(pfn)) {
1846                 page = pfn_to_page(pfn);
1847                 hva = kmap(page);
1848 #ifdef CONFIG_HAS_IOMEM
1849         } else {
1850                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1851 #endif
1852         }
1853
1854         if (!hva)
1855                 return -EFAULT;
1856
1857         map->page = page;
1858         map->hva = hva;
1859         map->pfn = pfn;
1860         map->gfn = gfn;
1861
1862         return 0;
1863 }
1864
1865 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1866 {
1867         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1868 }
1869 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1870
1871 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1872                     bool dirty)
1873 {
1874         if (!map)
1875                 return;
1876
1877         if (!map->hva)
1878                 return;
1879
1880         if (map->page != KVM_UNMAPPED_PAGE)
1881                 kunmap(map->page);
1882 #ifdef CONFIG_HAS_IOMEM
1883         else
1884                 memunmap(map->hva);
1885 #endif
1886
1887         if (dirty) {
1888                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1889                 kvm_release_pfn_dirty(map->pfn);
1890         } else {
1891                 kvm_release_pfn_clean(map->pfn);
1892         }
1893
1894         map->hva = NULL;
1895         map->page = NULL;
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1898
1899 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1900 {
1901         kvm_pfn_t pfn;
1902
1903         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1904
1905         return kvm_pfn_to_page(pfn);
1906 }
1907 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1908
1909 void kvm_release_page_clean(struct page *page)
1910 {
1911         WARN_ON(is_error_page(page));
1912
1913         kvm_release_pfn_clean(page_to_pfn(page));
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1916
1917 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1918 {
1919         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1920                 put_page(pfn_to_page(pfn));
1921 }
1922 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1923
1924 void kvm_release_page_dirty(struct page *page)
1925 {
1926         WARN_ON(is_error_page(page));
1927
1928         kvm_release_pfn_dirty(page_to_pfn(page));
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1931
1932 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1933 {
1934         kvm_set_pfn_dirty(pfn);
1935         kvm_release_pfn_clean(pfn);
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1938
1939 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1940 {
1941         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1942                 SetPageDirty(pfn_to_page(pfn));
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1945
1946 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1947 {
1948         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1949                 mark_page_accessed(pfn_to_page(pfn));
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1952
1953 void kvm_get_pfn(kvm_pfn_t pfn)
1954 {
1955         if (!kvm_is_reserved_pfn(pfn))
1956                 get_page(pfn_to_page(pfn));
1957 }
1958 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1959
1960 static int next_segment(unsigned long len, int offset)
1961 {
1962         if (len > PAGE_SIZE - offset)
1963                 return PAGE_SIZE - offset;
1964         else
1965                 return len;
1966 }
1967
1968 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1969                                  void *data, int offset, int len)
1970 {
1971         int r;
1972         unsigned long addr;
1973
1974         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1975         if (kvm_is_error_hva(addr))
1976                 return -EFAULT;
1977         r = __copy_from_user(data, (void __user *)addr + offset, len);
1978         if (r)
1979                 return -EFAULT;
1980         return 0;
1981 }
1982
1983 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1984                         int len)
1985 {
1986         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1987
1988         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1989 }
1990 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1991
1992 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1993                              int offset, int len)
1994 {
1995         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1996
1997         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1998 }
1999 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2000
2001 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2002 {
2003         gfn_t gfn = gpa >> PAGE_SHIFT;
2004         int seg;
2005         int offset = offset_in_page(gpa);
2006         int ret;
2007
2008         while ((seg = next_segment(len, offset)) != 0) {
2009                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2010                 if (ret < 0)
2011                         return ret;
2012                 offset = 0;
2013                 len -= seg;
2014                 data += seg;
2015                 ++gfn;
2016         }
2017         return 0;
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_read_guest);
2020
2021 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2022 {
2023         gfn_t gfn = gpa >> PAGE_SHIFT;
2024         int seg;
2025         int offset = offset_in_page(gpa);
2026         int ret;
2027
2028         while ((seg = next_segment(len, offset)) != 0) {
2029                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2030                 if (ret < 0)
2031                         return ret;
2032                 offset = 0;
2033                 len -= seg;
2034                 data += seg;
2035                 ++gfn;
2036         }
2037         return 0;
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2040
2041 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2042                                    void *data, int offset, unsigned long len)
2043 {
2044         int r;
2045         unsigned long addr;
2046
2047         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2048         if (kvm_is_error_hva(addr))
2049                 return -EFAULT;
2050         pagefault_disable();
2051         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2052         pagefault_enable();
2053         if (r)
2054                 return -EFAULT;
2055         return 0;
2056 }
2057
2058 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2059                           unsigned long len)
2060 {
2061         gfn_t gfn = gpa >> PAGE_SHIFT;
2062         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2063         int offset = offset_in_page(gpa);
2064
2065         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2066 }
2067 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2068
2069 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2070                                void *data, unsigned long len)
2071 {
2072         gfn_t gfn = gpa >> PAGE_SHIFT;
2073         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2074         int offset = offset_in_page(gpa);
2075
2076         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2077 }
2078 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2079
2080 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2081                                   const void *data, int offset, int len)
2082 {
2083         int r;
2084         unsigned long addr;
2085
2086         addr = gfn_to_hva_memslot(memslot, gfn);
2087         if (kvm_is_error_hva(addr))
2088                 return -EFAULT;
2089         r = __copy_to_user((void __user *)addr + offset, data, len);
2090         if (r)
2091                 return -EFAULT;
2092         mark_page_dirty_in_slot(memslot, gfn);
2093         return 0;
2094 }
2095
2096 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2097                          const void *data, int offset, int len)
2098 {
2099         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2100
2101         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2102 }
2103 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2104
2105 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2106                               const void *data, int offset, int len)
2107 {
2108         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2109
2110         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2111 }
2112 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2113
2114 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2115                     unsigned long len)
2116 {
2117         gfn_t gfn = gpa >> PAGE_SHIFT;
2118         int seg;
2119         int offset = offset_in_page(gpa);
2120         int ret;
2121
2122         while ((seg = next_segment(len, offset)) != 0) {
2123                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2124                 if (ret < 0)
2125                         return ret;
2126                 offset = 0;
2127                 len -= seg;
2128                 data += seg;
2129                 ++gfn;
2130         }
2131         return 0;
2132 }
2133 EXPORT_SYMBOL_GPL(kvm_write_guest);
2134
2135 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2136                          unsigned long len)
2137 {
2138         gfn_t gfn = gpa >> PAGE_SHIFT;
2139         int seg;
2140         int offset = offset_in_page(gpa);
2141         int ret;
2142
2143         while ((seg = next_segment(len, offset)) != 0) {
2144                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2145                 if (ret < 0)
2146                         return ret;
2147                 offset = 0;
2148                 len -= seg;
2149                 data += seg;
2150                 ++gfn;
2151         }
2152         return 0;
2153 }
2154 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2155
2156 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2157                                        struct gfn_to_hva_cache *ghc,
2158                                        gpa_t gpa, unsigned long len)
2159 {
2160         int offset = offset_in_page(gpa);
2161         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2162         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2163         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2164         gfn_t nr_pages_avail;
2165         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2166
2167         ghc->gpa = gpa;
2168         ghc->generation = slots->generation;
2169         ghc->len = len;
2170         ghc->hva = KVM_HVA_ERR_BAD;
2171
2172         /*
2173          * If the requested region crosses two memslots, we still
2174          * verify that the entire region is valid here.
2175          */
2176         while (!r && start_gfn <= end_gfn) {
2177                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2178                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2179                                            &nr_pages_avail);
2180                 if (kvm_is_error_hva(ghc->hva))
2181                         r = -EFAULT;
2182                 start_gfn += nr_pages_avail;
2183         }
2184
2185         /* Use the slow path for cross page reads and writes. */
2186         if (!r && nr_pages_needed == 1)
2187                 ghc->hva += offset;
2188         else
2189                 ghc->memslot = NULL;
2190
2191         return r;
2192 }
2193
2194 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2195                               gpa_t gpa, unsigned long len)
2196 {
2197         struct kvm_memslots *slots = kvm_memslots(kvm);
2198         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2199 }
2200 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2201
2202 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2203                                   void *data, unsigned int offset,
2204                                   unsigned long len)
2205 {
2206         struct kvm_memslots *slots = kvm_memslots(kvm);
2207         int r;
2208         gpa_t gpa = ghc->gpa + offset;
2209
2210         BUG_ON(len + offset > ghc->len);
2211
2212         if (slots->generation != ghc->generation)
2213                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2214
2215         if (unlikely(!ghc->memslot))
2216                 return kvm_write_guest(kvm, gpa, data, len);
2217
2218         if (kvm_is_error_hva(ghc->hva))
2219                 return -EFAULT;
2220
2221         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2222         if (r)
2223                 return -EFAULT;
2224         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2225
2226         return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2229
2230 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2231                            void *data, unsigned long len)
2232 {
2233         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2234 }
2235 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2236
2237 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2238                            void *data, unsigned long len)
2239 {
2240         struct kvm_memslots *slots = kvm_memslots(kvm);
2241         int r;
2242
2243         BUG_ON(len > ghc->len);
2244
2245         if (slots->generation != ghc->generation)
2246                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2247
2248         if (unlikely(!ghc->memslot))
2249                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2250
2251         if (kvm_is_error_hva(ghc->hva))
2252                 return -EFAULT;
2253
2254         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2255         if (r)
2256                 return -EFAULT;
2257
2258         return 0;
2259 }
2260 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2261
2262 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2263 {
2264         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2265
2266         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2267 }
2268 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2269
2270 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2271 {
2272         gfn_t gfn = gpa >> PAGE_SHIFT;
2273         int seg;
2274         int offset = offset_in_page(gpa);
2275         int ret;
2276
2277         while ((seg = next_segment(len, offset)) != 0) {
2278                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2279                 if (ret < 0)
2280                         return ret;
2281                 offset = 0;
2282                 len -= seg;
2283                 ++gfn;
2284         }
2285         return 0;
2286 }
2287 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2288
2289 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2290                                     gfn_t gfn)
2291 {
2292         if (memslot && memslot->dirty_bitmap) {
2293                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2294
2295                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2296         }
2297 }
2298
2299 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2300 {
2301         struct kvm_memory_slot *memslot;
2302
2303         memslot = gfn_to_memslot(kvm, gfn);
2304         mark_page_dirty_in_slot(memslot, gfn);
2305 }
2306 EXPORT_SYMBOL_GPL(mark_page_dirty);
2307
2308 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2309 {
2310         struct kvm_memory_slot *memslot;
2311
2312         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2313         mark_page_dirty_in_slot(memslot, gfn);
2314 }
2315 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2316
2317 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2318 {
2319         if (!vcpu->sigset_active)
2320                 return;
2321
2322         /*
2323          * This does a lockless modification of ->real_blocked, which is fine
2324          * because, only current can change ->real_blocked and all readers of
2325          * ->real_blocked don't care as long ->real_blocked is always a subset
2326          * of ->blocked.
2327          */
2328         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2329 }
2330
2331 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2332 {
2333         if (!vcpu->sigset_active)
2334                 return;
2335
2336         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2337         sigemptyset(&current->real_blocked);
2338 }
2339
2340 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2341 {
2342         unsigned int old, val, grow, grow_start;
2343
2344         old = val = vcpu->halt_poll_ns;
2345         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2346         grow = READ_ONCE(halt_poll_ns_grow);
2347         if (!grow)
2348                 goto out;
2349
2350         val *= grow;
2351         if (val < grow_start)
2352                 val = grow_start;
2353
2354         if (val > halt_poll_ns)
2355                 val = halt_poll_ns;
2356
2357         vcpu->halt_poll_ns = val;
2358 out:
2359         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2360 }
2361
2362 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2363 {
2364         unsigned int old, val, shrink;
2365
2366         old = val = vcpu->halt_poll_ns;
2367         shrink = READ_ONCE(halt_poll_ns_shrink);
2368         if (shrink == 0)
2369                 val = 0;
2370         else
2371                 val /= shrink;
2372
2373         vcpu->halt_poll_ns = val;
2374         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2375 }
2376
2377 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2378 {
2379         int ret = -EINTR;
2380         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2381
2382         if (kvm_arch_vcpu_runnable(vcpu)) {
2383                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2384                 goto out;
2385         }
2386         if (kvm_cpu_has_pending_timer(vcpu))
2387                 goto out;
2388         if (signal_pending(current))
2389                 goto out;
2390
2391         ret = 0;
2392 out:
2393         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2394         return ret;
2395 }
2396
2397 /*
2398  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2399  */
2400 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2401 {
2402         ktime_t start, cur;
2403         DECLARE_SWAITQUEUE(wait);
2404         bool waited = false;
2405         u64 block_ns;
2406
2407         kvm_arch_vcpu_blocking(vcpu);
2408
2409         start = cur = ktime_get();
2410         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2411                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2412
2413                 ++vcpu->stat.halt_attempted_poll;
2414                 do {
2415                         /*
2416                          * This sets KVM_REQ_UNHALT if an interrupt
2417                          * arrives.
2418                          */
2419                         if (kvm_vcpu_check_block(vcpu) < 0) {
2420                                 ++vcpu->stat.halt_successful_poll;
2421                                 if (!vcpu_valid_wakeup(vcpu))
2422                                         ++vcpu->stat.halt_poll_invalid;
2423                                 goto out;
2424                         }
2425                         cur = ktime_get();
2426                 } while (single_task_running() && ktime_before(cur, stop));
2427         }
2428
2429         for (;;) {
2430                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2431
2432                 if (kvm_vcpu_check_block(vcpu) < 0)
2433                         break;
2434
2435                 waited = true;
2436                 schedule();
2437         }
2438
2439         finish_swait(&vcpu->wq, &wait);
2440         cur = ktime_get();
2441 out:
2442         kvm_arch_vcpu_unblocking(vcpu);
2443         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2444
2445         if (!kvm_arch_no_poll(vcpu)) {
2446                 if (!vcpu_valid_wakeup(vcpu)) {
2447                         shrink_halt_poll_ns(vcpu);
2448                 } else if (halt_poll_ns) {
2449                         if (block_ns <= vcpu->halt_poll_ns)
2450                                 ;
2451                         /* we had a long block, shrink polling */
2452                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2453                                 shrink_halt_poll_ns(vcpu);
2454                         /* we had a short halt and our poll time is too small */
2455                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2456                                 block_ns < halt_poll_ns)
2457                                 grow_halt_poll_ns(vcpu);
2458                 } else {
2459                         vcpu->halt_poll_ns = 0;
2460                 }
2461         }
2462
2463         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2464         kvm_arch_vcpu_block_finish(vcpu);
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2467
2468 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2469 {
2470         struct swait_queue_head *wqp;
2471
2472         wqp = kvm_arch_vcpu_wq(vcpu);
2473         if (swq_has_sleeper(wqp)) {
2474                 swake_up_one(wqp);
2475                 WRITE_ONCE(vcpu->ready, true);
2476                 ++vcpu->stat.halt_wakeup;
2477                 return true;
2478         }
2479
2480         return false;
2481 }
2482 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2483
2484 #ifndef CONFIG_S390
2485 /*
2486  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2487  */
2488 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2489 {
2490         int me;
2491         int cpu = vcpu->cpu;
2492
2493         if (kvm_vcpu_wake_up(vcpu))
2494                 return;
2495
2496         me = get_cpu();
2497         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2498                 if (kvm_arch_vcpu_should_kick(vcpu))
2499                         smp_send_reschedule(cpu);
2500         put_cpu();
2501 }
2502 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2503 #endif /* !CONFIG_S390 */
2504
2505 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2506 {
2507         struct pid *pid;
2508         struct task_struct *task = NULL;
2509         int ret = 0;
2510
2511         rcu_read_lock();
2512         pid = rcu_dereference(target->pid);
2513         if (pid)
2514                 task = get_pid_task(pid, PIDTYPE_PID);
2515         rcu_read_unlock();
2516         if (!task)
2517                 return ret;
2518         ret = yield_to(task, 1);
2519         put_task_struct(task);
2520
2521         return ret;
2522 }
2523 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2524
2525 /*
2526  * Helper that checks whether a VCPU is eligible for directed yield.
2527  * Most eligible candidate to yield is decided by following heuristics:
2528  *
2529  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2530  *  (preempted lock holder), indicated by @in_spin_loop.
2531  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2532  *
2533  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2534  *  chance last time (mostly it has become eligible now since we have probably
2535  *  yielded to lockholder in last iteration. This is done by toggling
2536  *  @dy_eligible each time a VCPU checked for eligibility.)
2537  *
2538  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2539  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2540  *  burning. Giving priority for a potential lock-holder increases lock
2541  *  progress.
2542  *
2543  *  Since algorithm is based on heuristics, accessing another VCPU data without
2544  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2545  *  and continue with next VCPU and so on.
2546  */
2547 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2548 {
2549 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2550         bool eligible;
2551
2552         eligible = !vcpu->spin_loop.in_spin_loop ||
2553                     vcpu->spin_loop.dy_eligible;
2554
2555         if (vcpu->spin_loop.in_spin_loop)
2556                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2557
2558         return eligible;
2559 #else
2560         return true;
2561 #endif
2562 }
2563
2564 /*
2565  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2566  * a vcpu_load/vcpu_put pair.  However, for most architectures
2567  * kvm_arch_vcpu_runnable does not require vcpu_load.
2568  */
2569 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2570 {
2571         return kvm_arch_vcpu_runnable(vcpu);
2572 }
2573
2574 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2575 {
2576         if (kvm_arch_dy_runnable(vcpu))
2577                 return true;
2578
2579 #ifdef CONFIG_KVM_ASYNC_PF
2580         if (!list_empty_careful(&vcpu->async_pf.done))
2581                 return true;
2582 #endif
2583
2584         return false;
2585 }
2586
2587 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2588 {
2589         struct kvm *kvm = me->kvm;
2590         struct kvm_vcpu *vcpu;
2591         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2592         int yielded = 0;
2593         int try = 3;
2594         int pass;
2595         int i;
2596
2597         kvm_vcpu_set_in_spin_loop(me, true);
2598         /*
2599          * We boost the priority of a VCPU that is runnable but not
2600          * currently running, because it got preempted by something
2601          * else and called schedule in __vcpu_run.  Hopefully that
2602          * VCPU is holding the lock that we need and will release it.
2603          * We approximate round-robin by starting at the last boosted VCPU.
2604          */
2605         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2606                 kvm_for_each_vcpu(i, vcpu, kvm) {
2607                         if (!pass && i <= last_boosted_vcpu) {
2608                                 i = last_boosted_vcpu;
2609                                 continue;
2610                         } else if (pass && i > last_boosted_vcpu)
2611                                 break;
2612                         if (!READ_ONCE(vcpu->ready))
2613                                 continue;
2614                         if (vcpu == me)
2615                                 continue;
2616                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2617                                 continue;
2618                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2619                                 !kvm_arch_vcpu_in_kernel(vcpu))
2620                                 continue;
2621                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2622                                 continue;
2623
2624                         yielded = kvm_vcpu_yield_to(vcpu);
2625                         if (yielded > 0) {
2626                                 kvm->last_boosted_vcpu = i;
2627                                 break;
2628                         } else if (yielded < 0) {
2629                                 try--;
2630                                 if (!try)
2631                                         break;
2632                         }
2633                 }
2634         }
2635         kvm_vcpu_set_in_spin_loop(me, false);
2636
2637         /* Ensure vcpu is not eligible during next spinloop */
2638         kvm_vcpu_set_dy_eligible(me, false);
2639 }
2640 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2641
2642 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2643 {
2644         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2645         struct page *page;
2646
2647         if (vmf->pgoff == 0)
2648                 page = virt_to_page(vcpu->run);
2649 #ifdef CONFIG_X86
2650         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2651                 page = virt_to_page(vcpu->arch.pio_data);
2652 #endif
2653 #ifdef CONFIG_KVM_MMIO
2654         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2655                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2656 #endif
2657         else
2658                 return kvm_arch_vcpu_fault(vcpu, vmf);
2659         get_page(page);
2660         vmf->page = page;
2661         return 0;
2662 }
2663
2664 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2665         .fault = kvm_vcpu_fault,
2666 };
2667
2668 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2669 {
2670         vma->vm_ops = &kvm_vcpu_vm_ops;
2671         return 0;
2672 }
2673
2674 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2675 {
2676         struct kvm_vcpu *vcpu = filp->private_data;
2677
2678         debugfs_remove_recursive(vcpu->debugfs_dentry);
2679         kvm_put_kvm(vcpu->kvm);
2680         return 0;
2681 }
2682
2683 static struct file_operations kvm_vcpu_fops = {
2684         .release        = kvm_vcpu_release,
2685         .unlocked_ioctl = kvm_vcpu_ioctl,
2686         .mmap           = kvm_vcpu_mmap,
2687         .llseek         = noop_llseek,
2688         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2689 };
2690
2691 /*
2692  * Allocates an inode for the vcpu.
2693  */
2694 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2695 {
2696         char name[8 + 1 + ITOA_MAX_LEN + 1];
2697
2698         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2699         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2700 }
2701
2702 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2703 {
2704 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2705         char dir_name[ITOA_MAX_LEN * 2];
2706
2707         if (!debugfs_initialized())
2708                 return;
2709
2710         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2711         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2712                                                   vcpu->kvm->debugfs_dentry);
2713
2714         kvm_arch_create_vcpu_debugfs(vcpu);
2715 #endif
2716 }
2717
2718 /*
2719  * Creates some virtual cpus.  Good luck creating more than one.
2720  */
2721 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2722 {
2723         int r;
2724         struct kvm_vcpu *vcpu;
2725
2726         if (id >= KVM_MAX_VCPU_ID)
2727                 return -EINVAL;
2728
2729         mutex_lock(&kvm->lock);
2730         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2731                 mutex_unlock(&kvm->lock);
2732                 return -EINVAL;
2733         }
2734
2735         kvm->created_vcpus++;
2736         mutex_unlock(&kvm->lock);
2737
2738         r = kvm_arch_vcpu_precreate(kvm, id);
2739         if (r)
2740                 goto vcpu_decrement;
2741
2742         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2743         if (!vcpu) {
2744                 r = -ENOMEM;
2745                 goto vcpu_decrement;
2746         }
2747
2748         r = kvm_vcpu_init(vcpu, kvm, id);
2749         if (r)
2750                 goto vcpu_free;
2751
2752         r = kvm_arch_vcpu_create(vcpu);
2753         if (r)
2754                 goto vcpu_uninit;
2755
2756         kvm_create_vcpu_debugfs(vcpu);
2757
2758         mutex_lock(&kvm->lock);
2759         if (kvm_get_vcpu_by_id(kvm, id)) {
2760                 r = -EEXIST;
2761                 goto unlock_vcpu_destroy;
2762         }
2763
2764         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2765         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2766
2767         /* Now it's all set up, let userspace reach it */
2768         kvm_get_kvm(kvm);
2769         r = create_vcpu_fd(vcpu);
2770         if (r < 0) {
2771                 kvm_put_kvm_no_destroy(kvm);
2772                 goto unlock_vcpu_destroy;
2773         }
2774
2775         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2776
2777         /*
2778          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2779          * before kvm->online_vcpu's incremented value.
2780          */
2781         smp_wmb();
2782         atomic_inc(&kvm->online_vcpus);
2783
2784         mutex_unlock(&kvm->lock);
2785         kvm_arch_vcpu_postcreate(vcpu);
2786         return r;
2787
2788 unlock_vcpu_destroy:
2789         mutex_unlock(&kvm->lock);
2790         debugfs_remove_recursive(vcpu->debugfs_dentry);
2791         kvm_arch_vcpu_destroy(vcpu);
2792 vcpu_uninit:
2793         kvm_vcpu_uninit(vcpu);
2794 vcpu_free:
2795         kmem_cache_free(kvm_vcpu_cache, vcpu);
2796 vcpu_decrement:
2797         mutex_lock(&kvm->lock);
2798         kvm->created_vcpus--;
2799         mutex_unlock(&kvm->lock);
2800         return r;
2801 }
2802
2803 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2804 {
2805         if (sigset) {
2806                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2807                 vcpu->sigset_active = 1;
2808                 vcpu->sigset = *sigset;
2809         } else
2810                 vcpu->sigset_active = 0;
2811         return 0;
2812 }
2813
2814 static long kvm_vcpu_ioctl(struct file *filp,
2815                            unsigned int ioctl, unsigned long arg)
2816 {
2817         struct kvm_vcpu *vcpu = filp->private_data;
2818         void __user *argp = (void __user *)arg;
2819         int r;
2820         struct kvm_fpu *fpu = NULL;
2821         struct kvm_sregs *kvm_sregs = NULL;
2822
2823         if (vcpu->kvm->mm != current->mm)
2824                 return -EIO;
2825
2826         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2827                 return -EINVAL;
2828
2829         /*
2830          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2831          * execution; mutex_lock() would break them.
2832          */
2833         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2834         if (r != -ENOIOCTLCMD)
2835                 return r;
2836
2837         if (mutex_lock_killable(&vcpu->mutex))
2838                 return -EINTR;
2839         switch (ioctl) {
2840         case KVM_RUN: {
2841                 struct pid *oldpid;
2842                 r = -EINVAL;
2843                 if (arg)
2844                         goto out;
2845                 oldpid = rcu_access_pointer(vcpu->pid);
2846                 if (unlikely(oldpid != task_pid(current))) {
2847                         /* The thread running this VCPU changed. */
2848                         struct pid *newpid;
2849
2850                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2851                         if (r)
2852                                 break;
2853
2854                         newpid = get_task_pid(current, PIDTYPE_PID);
2855                         rcu_assign_pointer(vcpu->pid, newpid);
2856                         if (oldpid)
2857                                 synchronize_rcu();
2858                         put_pid(oldpid);
2859                 }
2860                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2861                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2862                 break;
2863         }
2864         case KVM_GET_REGS: {
2865                 struct kvm_regs *kvm_regs;
2866
2867                 r = -ENOMEM;
2868                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2869                 if (!kvm_regs)
2870                         goto out;
2871                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2872                 if (r)
2873                         goto out_free1;
2874                 r = -EFAULT;
2875                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2876                         goto out_free1;
2877                 r = 0;
2878 out_free1:
2879                 kfree(kvm_regs);
2880                 break;
2881         }
2882         case KVM_SET_REGS: {
2883                 struct kvm_regs *kvm_regs;
2884
2885                 r = -ENOMEM;
2886                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2887                 if (IS_ERR(kvm_regs)) {
2888                         r = PTR_ERR(kvm_regs);
2889                         goto out;
2890                 }
2891                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2892                 kfree(kvm_regs);
2893                 break;
2894         }
2895         case KVM_GET_SREGS: {
2896                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2897                                     GFP_KERNEL_ACCOUNT);
2898                 r = -ENOMEM;
2899                 if (!kvm_sregs)
2900                         goto out;
2901                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2902                 if (r)
2903                         goto out;
2904                 r = -EFAULT;
2905                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2906                         goto out;
2907                 r = 0;
2908                 break;
2909         }
2910         case KVM_SET_SREGS: {
2911                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2912                 if (IS_ERR(kvm_sregs)) {
2913                         r = PTR_ERR(kvm_sregs);
2914                         kvm_sregs = NULL;
2915                         goto out;
2916                 }
2917                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2918                 break;
2919         }
2920         case KVM_GET_MP_STATE: {
2921                 struct kvm_mp_state mp_state;
2922
2923                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2924                 if (r)
2925                         goto out;
2926                 r = -EFAULT;
2927                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2928                         goto out;
2929                 r = 0;
2930                 break;
2931         }
2932         case KVM_SET_MP_STATE: {
2933                 struct kvm_mp_state mp_state;
2934
2935                 r = -EFAULT;
2936                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2937                         goto out;
2938                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2939                 break;
2940         }
2941         case KVM_TRANSLATE: {
2942                 struct kvm_translation tr;
2943
2944                 r = -EFAULT;
2945                 if (copy_from_user(&tr, argp, sizeof(tr)))
2946                         goto out;
2947                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2948                 if (r)
2949                         goto out;
2950                 r = -EFAULT;
2951                 if (copy_to_user(argp, &tr, sizeof(tr)))
2952                         goto out;
2953                 r = 0;
2954                 break;
2955         }
2956         case KVM_SET_GUEST_DEBUG: {
2957                 struct kvm_guest_debug dbg;
2958
2959                 r = -EFAULT;
2960                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2961                         goto out;
2962                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2963                 break;
2964         }
2965         case KVM_SET_SIGNAL_MASK: {
2966                 struct kvm_signal_mask __user *sigmask_arg = argp;
2967                 struct kvm_signal_mask kvm_sigmask;
2968                 sigset_t sigset, *p;
2969
2970                 p = NULL;
2971                 if (argp) {
2972                         r = -EFAULT;
2973                         if (copy_from_user(&kvm_sigmask, argp,
2974                                            sizeof(kvm_sigmask)))
2975                                 goto out;
2976                         r = -EINVAL;
2977                         if (kvm_sigmask.len != sizeof(sigset))
2978                                 goto out;
2979                         r = -EFAULT;
2980                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2981                                            sizeof(sigset)))
2982                                 goto out;
2983                         p = &sigset;
2984                 }
2985                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2986                 break;
2987         }
2988         case KVM_GET_FPU: {
2989                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2990                 r = -ENOMEM;
2991                 if (!fpu)
2992                         goto out;
2993                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2994                 if (r)
2995                         goto out;
2996                 r = -EFAULT;
2997                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2998                         goto out;
2999                 r = 0;
3000                 break;
3001         }
3002         case KVM_SET_FPU: {
3003                 fpu = memdup_user(argp, sizeof(*fpu));
3004                 if (IS_ERR(fpu)) {
3005                         r = PTR_ERR(fpu);
3006                         fpu = NULL;
3007                         goto out;
3008                 }
3009                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3010                 break;
3011         }
3012         default:
3013                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3014         }
3015 out:
3016         mutex_unlock(&vcpu->mutex);
3017         kfree(fpu);
3018         kfree(kvm_sregs);
3019         return r;
3020 }
3021
3022 #ifdef CONFIG_KVM_COMPAT
3023 static long kvm_vcpu_compat_ioctl(struct file *filp,
3024                                   unsigned int ioctl, unsigned long arg)
3025 {
3026         struct kvm_vcpu *vcpu = filp->private_data;
3027         void __user *argp = compat_ptr(arg);
3028         int r;
3029
3030         if (vcpu->kvm->mm != current->mm)
3031                 return -EIO;
3032
3033         switch (ioctl) {
3034         case KVM_SET_SIGNAL_MASK: {
3035                 struct kvm_signal_mask __user *sigmask_arg = argp;
3036                 struct kvm_signal_mask kvm_sigmask;
3037                 sigset_t sigset;
3038
3039                 if (argp) {
3040                         r = -EFAULT;
3041                         if (copy_from_user(&kvm_sigmask, argp,
3042                                            sizeof(kvm_sigmask)))
3043                                 goto out;
3044                         r = -EINVAL;
3045                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3046                                 goto out;
3047                         r = -EFAULT;
3048                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3049                                 goto out;
3050                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3051                 } else
3052                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3053                 break;
3054         }
3055         default:
3056                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3057         }
3058
3059 out:
3060         return r;
3061 }
3062 #endif
3063
3064 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3065 {
3066         struct kvm_device *dev = filp->private_data;
3067
3068         if (dev->ops->mmap)
3069                 return dev->ops->mmap(dev, vma);
3070
3071         return -ENODEV;
3072 }
3073
3074 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3075                                  int (*accessor)(struct kvm_device *dev,
3076                                                  struct kvm_device_attr *attr),
3077                                  unsigned long arg)
3078 {
3079         struct kvm_device_attr attr;
3080
3081         if (!accessor)
3082                 return -EPERM;
3083
3084         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3085                 return -EFAULT;
3086
3087         return accessor(dev, &attr);
3088 }
3089
3090 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3091                              unsigned long arg)
3092 {
3093         struct kvm_device *dev = filp->private_data;
3094
3095         if (dev->kvm->mm != current->mm)
3096                 return -EIO;
3097
3098         switch (ioctl) {
3099         case KVM_SET_DEVICE_ATTR:
3100                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3101         case KVM_GET_DEVICE_ATTR:
3102                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3103         case KVM_HAS_DEVICE_ATTR:
3104                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3105         default:
3106                 if (dev->ops->ioctl)
3107                         return dev->ops->ioctl(dev, ioctl, arg);
3108
3109                 return -ENOTTY;
3110         }
3111 }
3112
3113 static int kvm_device_release(struct inode *inode, struct file *filp)
3114 {
3115         struct kvm_device *dev = filp->private_data;
3116         struct kvm *kvm = dev->kvm;
3117
3118         if (dev->ops->release) {
3119                 mutex_lock(&kvm->lock);
3120                 list_del(&dev->vm_node);
3121                 dev->ops->release(dev);
3122                 mutex_unlock(&kvm->lock);
3123         }
3124
3125         kvm_put_kvm(kvm);
3126         return 0;
3127 }
3128
3129 static const struct file_operations kvm_device_fops = {
3130         .unlocked_ioctl = kvm_device_ioctl,
3131         .release = kvm_device_release,
3132         KVM_COMPAT(kvm_device_ioctl),
3133         .mmap = kvm_device_mmap,
3134 };
3135
3136 struct kvm_device *kvm_device_from_filp(struct file *filp)
3137 {
3138         if (filp->f_op != &kvm_device_fops)
3139                 return NULL;
3140
3141         return filp->private_data;
3142 }
3143
3144 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3145 #ifdef CONFIG_KVM_MPIC
3146         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3147         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3148 #endif
3149 };
3150
3151 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3152 {
3153         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3154                 return -ENOSPC;
3155
3156         if (kvm_device_ops_table[type] != NULL)
3157                 return -EEXIST;
3158
3159         kvm_device_ops_table[type] = ops;
3160         return 0;
3161 }
3162
3163 void kvm_unregister_device_ops(u32 type)
3164 {
3165         if (kvm_device_ops_table[type] != NULL)
3166                 kvm_device_ops_table[type] = NULL;
3167 }
3168
3169 static int kvm_ioctl_create_device(struct kvm *kvm,
3170                                    struct kvm_create_device *cd)
3171 {
3172         const struct kvm_device_ops *ops = NULL;
3173         struct kvm_device *dev;
3174         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3175         int type;
3176         int ret;
3177
3178         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3179                 return -ENODEV;
3180
3181         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3182         ops = kvm_device_ops_table[type];
3183         if (ops == NULL)
3184                 return -ENODEV;
3185
3186         if (test)
3187                 return 0;
3188
3189         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3190         if (!dev)
3191                 return -ENOMEM;
3192
3193         dev->ops = ops;
3194         dev->kvm = kvm;
3195
3196         mutex_lock(&kvm->lock);
3197         ret = ops->create(dev, type);
3198         if (ret < 0) {
3199                 mutex_unlock(&kvm->lock);
3200                 kfree(dev);
3201                 return ret;
3202         }
3203         list_add(&dev->vm_node, &kvm->devices);
3204         mutex_unlock(&kvm->lock);
3205
3206         if (ops->init)
3207                 ops->init(dev);
3208
3209         kvm_get_kvm(kvm);
3210         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3211         if (ret < 0) {
3212                 kvm_put_kvm_no_destroy(kvm);
3213                 mutex_lock(&kvm->lock);
3214                 list_del(&dev->vm_node);
3215                 mutex_unlock(&kvm->lock);
3216                 ops->destroy(dev);
3217                 return ret;
3218         }
3219
3220         cd->fd = ret;
3221         return 0;
3222 }
3223
3224 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3225 {
3226         switch (arg) {
3227         case KVM_CAP_USER_MEMORY:
3228         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3229         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3230         case KVM_CAP_INTERNAL_ERROR_DATA:
3231 #ifdef CONFIG_HAVE_KVM_MSI
3232         case KVM_CAP_SIGNAL_MSI:
3233 #endif
3234 #ifdef CONFIG_HAVE_KVM_IRQFD
3235         case KVM_CAP_IRQFD:
3236         case KVM_CAP_IRQFD_RESAMPLE:
3237 #endif
3238         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3239         case KVM_CAP_CHECK_EXTENSION_VM:
3240         case KVM_CAP_ENABLE_CAP_VM:
3241 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3242         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3243 #endif
3244                 return 1;
3245 #ifdef CONFIG_KVM_MMIO
3246         case KVM_CAP_COALESCED_MMIO:
3247                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3248         case KVM_CAP_COALESCED_PIO:
3249                 return 1;
3250 #endif
3251 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3252         case KVM_CAP_IRQ_ROUTING:
3253                 return KVM_MAX_IRQ_ROUTES;
3254 #endif
3255 #if KVM_ADDRESS_SPACE_NUM > 1
3256         case KVM_CAP_MULTI_ADDRESS_SPACE:
3257                 return KVM_ADDRESS_SPACE_NUM;
3258 #endif
3259         case KVM_CAP_NR_MEMSLOTS:
3260                 return KVM_USER_MEM_SLOTS;
3261         default:
3262                 break;
3263         }
3264         return kvm_vm_ioctl_check_extension(kvm, arg);
3265 }
3266
3267 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3268                                                   struct kvm_enable_cap *cap)
3269 {
3270         return -EINVAL;
3271 }
3272
3273 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3274                                            struct kvm_enable_cap *cap)
3275 {
3276         switch (cap->cap) {
3277 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3278         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3279                 if (cap->flags || (cap->args[0] & ~1))
3280                         return -EINVAL;
3281                 kvm->manual_dirty_log_protect = cap->args[0];
3282                 return 0;
3283 #endif
3284         default:
3285                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3286         }
3287 }
3288
3289 static long kvm_vm_ioctl(struct file *filp,
3290                            unsigned int ioctl, unsigned long arg)
3291 {
3292         struct kvm *kvm = filp->private_data;
3293         void __user *argp = (void __user *)arg;
3294         int r;
3295
3296         if (kvm->mm != current->mm)
3297                 return -EIO;
3298         switch (ioctl) {
3299         case KVM_CREATE_VCPU:
3300                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3301                 break;
3302         case KVM_ENABLE_CAP: {
3303                 struct kvm_enable_cap cap;
3304
3305                 r = -EFAULT;
3306                 if (copy_from_user(&cap, argp, sizeof(cap)))
3307                         goto out;
3308                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3309                 break;
3310         }
3311         case KVM_SET_USER_MEMORY_REGION: {
3312                 struct kvm_userspace_memory_region kvm_userspace_mem;
3313
3314                 r = -EFAULT;
3315                 if (copy_from_user(&kvm_userspace_mem, argp,
3316                                                 sizeof(kvm_userspace_mem)))
3317                         goto out;
3318
3319                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3320                 break;
3321         }
3322         case KVM_GET_DIRTY_LOG: {
3323                 struct kvm_dirty_log log;
3324
3325                 r = -EFAULT;
3326                 if (copy_from_user(&log, argp, sizeof(log)))
3327                         goto out;
3328                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3329                 break;
3330         }
3331 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3332         case KVM_CLEAR_DIRTY_LOG: {
3333                 struct kvm_clear_dirty_log log;
3334
3335                 r = -EFAULT;
3336                 if (copy_from_user(&log, argp, sizeof(log)))
3337                         goto out;
3338                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3339                 break;
3340         }
3341 #endif
3342 #ifdef CONFIG_KVM_MMIO
3343         case KVM_REGISTER_COALESCED_MMIO: {
3344                 struct kvm_coalesced_mmio_zone zone;
3345
3346                 r = -EFAULT;
3347                 if (copy_from_user(&zone, argp, sizeof(zone)))
3348                         goto out;
3349                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3350                 break;
3351         }
3352         case KVM_UNREGISTER_COALESCED_MMIO: {
3353                 struct kvm_coalesced_mmio_zone zone;
3354
3355                 r = -EFAULT;
3356                 if (copy_from_user(&zone, argp, sizeof(zone)))
3357                         goto out;
3358                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3359                 break;
3360         }
3361 #endif
3362         case KVM_IRQFD: {
3363                 struct kvm_irqfd data;
3364
3365                 r = -EFAULT;
3366                 if (copy_from_user(&data, argp, sizeof(data)))
3367                         goto out;
3368                 r = kvm_irqfd(kvm, &data);
3369                 break;
3370         }
3371         case KVM_IOEVENTFD: {
3372                 struct kvm_ioeventfd data;
3373
3374                 r = -EFAULT;
3375                 if (copy_from_user(&data, argp, sizeof(data)))
3376                         goto out;
3377                 r = kvm_ioeventfd(kvm, &data);
3378                 break;
3379         }
3380 #ifdef CONFIG_HAVE_KVM_MSI
3381         case KVM_SIGNAL_MSI: {
3382                 struct kvm_msi msi;
3383
3384                 r = -EFAULT;
3385                 if (copy_from_user(&msi, argp, sizeof(msi)))
3386                         goto out;
3387                 r = kvm_send_userspace_msi(kvm, &msi);
3388                 break;
3389         }
3390 #endif
3391 #ifdef __KVM_HAVE_IRQ_LINE
3392         case KVM_IRQ_LINE_STATUS:
3393         case KVM_IRQ_LINE: {
3394                 struct kvm_irq_level irq_event;
3395
3396                 r = -EFAULT;
3397                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3398                         goto out;
3399
3400                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3401                                         ioctl == KVM_IRQ_LINE_STATUS);
3402                 if (r)
3403                         goto out;
3404
3405                 r = -EFAULT;
3406                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3407                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3408                                 goto out;
3409                 }
3410
3411                 r = 0;
3412                 break;
3413         }
3414 #endif
3415 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3416         case KVM_SET_GSI_ROUTING: {
3417                 struct kvm_irq_routing routing;
3418                 struct kvm_irq_routing __user *urouting;
3419                 struct kvm_irq_routing_entry *entries = NULL;
3420
3421                 r = -EFAULT;
3422                 if (copy_from_user(&routing, argp, sizeof(routing)))
3423                         goto out;
3424                 r = -EINVAL;
3425                 if (!kvm_arch_can_set_irq_routing(kvm))
3426                         goto out;
3427                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3428                         goto out;
3429                 if (routing.flags)
3430                         goto out;
3431                 if (routing.nr) {
3432                         r = -ENOMEM;
3433                         entries = vmalloc(array_size(sizeof(*entries),
3434                                                      routing.nr));
3435                         if (!entries)
3436                                 goto out;
3437                         r = -EFAULT;
3438                         urouting = argp;
3439                         if (copy_from_user(entries, urouting->entries,
3440                                            routing.nr * sizeof(*entries)))
3441                                 goto out_free_irq_routing;
3442                 }
3443                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3444                                         routing.flags);
3445 out_free_irq_routing:
3446                 vfree(entries);
3447                 break;
3448         }
3449 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3450         case KVM_CREATE_DEVICE: {
3451                 struct kvm_create_device cd;
3452
3453                 r = -EFAULT;
3454                 if (copy_from_user(&cd, argp, sizeof(cd)))
3455                         goto out;
3456
3457                 r = kvm_ioctl_create_device(kvm, &cd);
3458                 if (r)
3459                         goto out;
3460
3461                 r = -EFAULT;
3462                 if (copy_to_user(argp, &cd, sizeof(cd)))
3463                         goto out;
3464
3465                 r = 0;
3466                 break;
3467         }
3468         case KVM_CHECK_EXTENSION:
3469                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3470                 break;
3471         default:
3472                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3473         }
3474 out:
3475         return r;
3476 }
3477
3478 #ifdef CONFIG_KVM_COMPAT
3479 struct compat_kvm_dirty_log {
3480         __u32 slot;
3481         __u32 padding1;
3482         union {
3483                 compat_uptr_t dirty_bitmap; /* one bit per page */
3484                 __u64 padding2;
3485         };
3486 };
3487
3488 static long kvm_vm_compat_ioctl(struct file *filp,
3489                            unsigned int ioctl, unsigned long arg)
3490 {
3491         struct kvm *kvm = filp->private_data;
3492         int r;
3493
3494         if (kvm->mm != current->mm)
3495                 return -EIO;
3496         switch (ioctl) {
3497         case KVM_GET_DIRTY_LOG: {
3498                 struct compat_kvm_dirty_log compat_log;
3499                 struct kvm_dirty_log log;
3500
3501                 if (copy_from_user(&compat_log, (void __user *)arg,
3502                                    sizeof(compat_log)))
3503                         return -EFAULT;
3504                 log.slot         = compat_log.slot;
3505                 log.padding1     = compat_log.padding1;
3506                 log.padding2     = compat_log.padding2;
3507                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3508
3509                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3510                 break;
3511         }
3512         default:
3513                 r = kvm_vm_ioctl(filp, ioctl, arg);
3514         }
3515         return r;
3516 }
3517 #endif
3518
3519 static struct file_operations kvm_vm_fops = {
3520         .release        = kvm_vm_release,
3521         .unlocked_ioctl = kvm_vm_ioctl,
3522         .llseek         = noop_llseek,
3523         KVM_COMPAT(kvm_vm_compat_ioctl),
3524 };
3525
3526 static int kvm_dev_ioctl_create_vm(unsigned long type)
3527 {
3528         int r;
3529         struct kvm *kvm;
3530         struct file *file;
3531
3532         kvm = kvm_create_vm(type);
3533         if (IS_ERR(kvm))
3534                 return PTR_ERR(kvm);
3535 #ifdef CONFIG_KVM_MMIO
3536         r = kvm_coalesced_mmio_init(kvm);
3537         if (r < 0)
3538                 goto put_kvm;
3539 #endif
3540         r = get_unused_fd_flags(O_CLOEXEC);
3541         if (r < 0)
3542                 goto put_kvm;
3543
3544         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3545         if (IS_ERR(file)) {
3546                 put_unused_fd(r);
3547                 r = PTR_ERR(file);
3548                 goto put_kvm;
3549         }
3550
3551         /*
3552          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3553          * already set, with ->release() being kvm_vm_release().  In error
3554          * cases it will be called by the final fput(file) and will take
3555          * care of doing kvm_put_kvm(kvm).
3556          */
3557         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3558                 put_unused_fd(r);
3559                 fput(file);
3560                 return -ENOMEM;
3561         }
3562         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3563
3564         fd_install(r, file);
3565         return r;
3566
3567 put_kvm:
3568         kvm_put_kvm(kvm);
3569         return r;
3570 }
3571
3572 static long kvm_dev_ioctl(struct file *filp,
3573                           unsigned int ioctl, unsigned long arg)
3574 {
3575         long r = -EINVAL;
3576
3577         switch (ioctl) {
3578         case KVM_GET_API_VERSION:
3579                 if (arg)
3580                         goto out;
3581                 r = KVM_API_VERSION;
3582                 break;
3583         case KVM_CREATE_VM:
3584                 r = kvm_dev_ioctl_create_vm(arg);
3585                 break;
3586         case KVM_CHECK_EXTENSION:
3587                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3588                 break;
3589         case KVM_GET_VCPU_MMAP_SIZE:
3590                 if (arg)
3591                         goto out;
3592                 r = PAGE_SIZE;     /* struct kvm_run */
3593 #ifdef CONFIG_X86
3594                 r += PAGE_SIZE;    /* pio data page */
3595 #endif
3596 #ifdef CONFIG_KVM_MMIO
3597                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3598 #endif
3599                 break;
3600         case KVM_TRACE_ENABLE:
3601         case KVM_TRACE_PAUSE:
3602         case KVM_TRACE_DISABLE:
3603                 r = -EOPNOTSUPP;
3604                 break;
3605         default:
3606                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3607         }
3608 out:
3609         return r;
3610 }
3611
3612 static struct file_operations kvm_chardev_ops = {
3613         .unlocked_ioctl = kvm_dev_ioctl,
3614         .llseek         = noop_llseek,
3615         KVM_COMPAT(kvm_dev_ioctl),
3616 };
3617
3618 static struct miscdevice kvm_dev = {
3619         KVM_MINOR,
3620         "kvm",
3621         &kvm_chardev_ops,
3622 };
3623
3624 static void hardware_enable_nolock(void *junk)
3625 {
3626         int cpu = raw_smp_processor_id();
3627         int r;
3628
3629         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3630                 return;
3631
3632         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3633
3634         r = kvm_arch_hardware_enable();
3635
3636         if (r) {
3637                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3638                 atomic_inc(&hardware_enable_failed);
3639                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3640         }
3641 }
3642
3643 static int kvm_starting_cpu(unsigned int cpu)
3644 {
3645         raw_spin_lock(&kvm_count_lock);
3646         if (kvm_usage_count)
3647                 hardware_enable_nolock(NULL);
3648         raw_spin_unlock(&kvm_count_lock);
3649         return 0;
3650 }
3651
3652 static void hardware_disable_nolock(void *junk)
3653 {
3654         int cpu = raw_smp_processor_id();
3655
3656         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3657                 return;
3658         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3659         kvm_arch_hardware_disable();
3660 }
3661
3662 static int kvm_dying_cpu(unsigned int cpu)
3663 {
3664         raw_spin_lock(&kvm_count_lock);
3665         if (kvm_usage_count)
3666                 hardware_disable_nolock(NULL);
3667         raw_spin_unlock(&kvm_count_lock);
3668         return 0;
3669 }
3670
3671 static void hardware_disable_all_nolock(void)
3672 {
3673         BUG_ON(!kvm_usage_count);
3674
3675         kvm_usage_count--;
3676         if (!kvm_usage_count)
3677                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3678 }
3679
3680 static void hardware_disable_all(void)
3681 {
3682         raw_spin_lock(&kvm_count_lock);
3683         hardware_disable_all_nolock();
3684         raw_spin_unlock(&kvm_count_lock);
3685 }
3686
3687 static int hardware_enable_all(void)
3688 {
3689         int r = 0;
3690
3691         raw_spin_lock(&kvm_count_lock);
3692
3693         kvm_usage_count++;
3694         if (kvm_usage_count == 1) {
3695                 atomic_set(&hardware_enable_failed, 0);
3696                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3697
3698                 if (atomic_read(&hardware_enable_failed)) {
3699                         hardware_disable_all_nolock();
3700                         r = -EBUSY;
3701                 }
3702         }
3703
3704         raw_spin_unlock(&kvm_count_lock);
3705
3706         return r;
3707 }
3708
3709 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3710                       void *v)
3711 {
3712         /*
3713          * Some (well, at least mine) BIOSes hang on reboot if
3714          * in vmx root mode.
3715          *
3716          * And Intel TXT required VMX off for all cpu when system shutdown.
3717          */
3718         pr_info("kvm: exiting hardware virtualization\n");
3719         kvm_rebooting = true;
3720         on_each_cpu(hardware_disable_nolock, NULL, 1);
3721         return NOTIFY_OK;
3722 }
3723
3724 static struct notifier_block kvm_reboot_notifier = {
3725         .notifier_call = kvm_reboot,
3726         .priority = 0,
3727 };
3728
3729 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3730 {
3731         int i;
3732
3733         for (i = 0; i < bus->dev_count; i++) {
3734                 struct kvm_io_device *pos = bus->range[i].dev;
3735
3736                 kvm_iodevice_destructor(pos);
3737         }
3738         kfree(bus);
3739 }
3740
3741 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3742                                  const struct kvm_io_range *r2)
3743 {
3744         gpa_t addr1 = r1->addr;
3745         gpa_t addr2 = r2->addr;
3746
3747         if (addr1 < addr2)
3748                 return -1;
3749
3750         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3751          * accept any overlapping write.  Any order is acceptable for
3752          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3753          * we process all of them.
3754          */
3755         if (r2->len) {
3756                 addr1 += r1->len;
3757                 addr2 += r2->len;
3758         }
3759
3760         if (addr1 > addr2)
3761                 return 1;
3762
3763         return 0;
3764 }
3765
3766 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3767 {
3768         return kvm_io_bus_cmp(p1, p2);
3769 }
3770
3771 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3772                              gpa_t addr, int len)
3773 {
3774         struct kvm_io_range *range, key;
3775         int off;
3776
3777         key = (struct kvm_io_range) {
3778                 .addr = addr,
3779                 .len = len,
3780         };
3781
3782         range = bsearch(&key, bus->range, bus->dev_count,
3783                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3784         if (range == NULL)
3785                 return -ENOENT;
3786
3787         off = range - bus->range;
3788
3789         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3790                 off--;
3791
3792         return off;
3793 }
3794
3795 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3796                               struct kvm_io_range *range, const void *val)
3797 {
3798         int idx;
3799
3800         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3801         if (idx < 0)
3802                 return -EOPNOTSUPP;
3803
3804         while (idx < bus->dev_count &&
3805                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3806                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3807                                         range->len, val))
3808                         return idx;
3809                 idx++;
3810         }
3811
3812         return -EOPNOTSUPP;
3813 }
3814
3815 /* kvm_io_bus_write - called under kvm->slots_lock */
3816 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3817                      int len, const void *val)
3818 {
3819         struct kvm_io_bus *bus;
3820         struct kvm_io_range range;
3821         int r;
3822
3823         range = (struct kvm_io_range) {
3824                 .addr = addr,
3825                 .len = len,
3826         };
3827
3828         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3829         if (!bus)
3830                 return -ENOMEM;
3831         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3832         return r < 0 ? r : 0;
3833 }
3834 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3835
3836 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3837 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3838                             gpa_t addr, int len, const void *val, long cookie)
3839 {
3840         struct kvm_io_bus *bus;
3841         struct kvm_io_range range;
3842
3843         range = (struct kvm_io_range) {
3844                 .addr = addr,
3845                 .len = len,
3846         };
3847
3848         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3849         if (!bus)
3850                 return -ENOMEM;
3851
3852         /* First try the device referenced by cookie. */
3853         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3854             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3855                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3856                                         val))
3857                         return cookie;
3858
3859         /*
3860          * cookie contained garbage; fall back to search and return the
3861          * correct cookie value.
3862          */
3863         return __kvm_io_bus_write(vcpu, bus, &range, val);
3864 }
3865
3866 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3867                              struct kvm_io_range *range, void *val)
3868 {
3869         int idx;
3870
3871         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3872         if (idx < 0)
3873                 return -EOPNOTSUPP;
3874
3875         while (idx < bus->dev_count &&
3876                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3877                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3878                                        range->len, val))
3879                         return idx;
3880                 idx++;
3881         }
3882
3883         return -EOPNOTSUPP;
3884 }
3885
3886 /* kvm_io_bus_read - called under kvm->slots_lock */
3887 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3888                     int len, void *val)
3889 {
3890         struct kvm_io_bus *bus;
3891         struct kvm_io_range range;
3892         int r;
3893
3894         range = (struct kvm_io_range) {
3895                 .addr = addr,
3896                 .len = len,
3897         };
3898
3899         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3900         if (!bus)
3901                 return -ENOMEM;
3902         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3903         return r < 0 ? r : 0;
3904 }
3905
3906 /* Caller must hold slots_lock. */
3907 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3908                             int len, struct kvm_io_device *dev)
3909 {
3910         int i;
3911         struct kvm_io_bus *new_bus, *bus;
3912         struct kvm_io_range range;
3913
3914         bus = kvm_get_bus(kvm, bus_idx);
3915         if (!bus)
3916                 return -ENOMEM;
3917
3918         /* exclude ioeventfd which is limited by maximum fd */
3919         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3920                 return -ENOSPC;
3921
3922         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3923                           GFP_KERNEL_ACCOUNT);
3924         if (!new_bus)
3925                 return -ENOMEM;
3926
3927         range = (struct kvm_io_range) {
3928                 .addr = addr,
3929                 .len = len,
3930                 .dev = dev,
3931         };
3932
3933         for (i = 0; i < bus->dev_count; i++)
3934                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3935                         break;
3936
3937         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3938         new_bus->dev_count++;
3939         new_bus->range[i] = range;
3940         memcpy(new_bus->range + i + 1, bus->range + i,
3941                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3942         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3943         synchronize_srcu_expedited(&kvm->srcu);
3944         kfree(bus);
3945
3946         return 0;
3947 }
3948
3949 /* Caller must hold slots_lock. */
3950 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3951                                struct kvm_io_device *dev)
3952 {
3953         int i;
3954         struct kvm_io_bus *new_bus, *bus;
3955
3956         bus = kvm_get_bus(kvm, bus_idx);
3957         if (!bus)
3958                 return;
3959
3960         for (i = 0; i < bus->dev_count; i++)
3961                 if (bus->range[i].dev == dev) {
3962                         break;
3963                 }
3964
3965         if (i == bus->dev_count)
3966                 return;
3967
3968         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3969                           GFP_KERNEL_ACCOUNT);
3970         if (!new_bus)  {
3971                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3972                 goto broken;
3973         }
3974
3975         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3976         new_bus->dev_count--;
3977         memcpy(new_bus->range + i, bus->range + i + 1,
3978                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3979
3980 broken:
3981         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3982         synchronize_srcu_expedited(&kvm->srcu);
3983         kfree(bus);
3984         return;
3985 }
3986
3987 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3988                                          gpa_t addr)
3989 {
3990         struct kvm_io_bus *bus;
3991         int dev_idx, srcu_idx;
3992         struct kvm_io_device *iodev = NULL;
3993
3994         srcu_idx = srcu_read_lock(&kvm->srcu);
3995
3996         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3997         if (!bus)
3998                 goto out_unlock;
3999
4000         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4001         if (dev_idx < 0)
4002                 goto out_unlock;
4003
4004         iodev = bus->range[dev_idx].dev;
4005
4006 out_unlock:
4007         srcu_read_unlock(&kvm->srcu, srcu_idx);
4008
4009         return iodev;
4010 }
4011 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4012
4013 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4014                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4015                            const char *fmt)
4016 {
4017         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4018                                           inode->i_private;
4019
4020         /* The debugfs files are a reference to the kvm struct which
4021          * is still valid when kvm_destroy_vm is called.
4022          * To avoid the race between open and the removal of the debugfs
4023          * directory we test against the users count.
4024          */
4025         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4026                 return -ENOENT;
4027
4028         if (simple_attr_open(inode, file, get,
4029                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4030                     ? set : NULL,
4031                     fmt)) {
4032                 kvm_put_kvm(stat_data->kvm);
4033                 return -ENOMEM;
4034         }
4035
4036         return 0;
4037 }
4038
4039 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4040 {
4041         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4042                                           inode->i_private;
4043
4044         simple_attr_release(inode, file);
4045         kvm_put_kvm(stat_data->kvm);
4046
4047         return 0;
4048 }
4049
4050 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4051 {
4052         *val = *(ulong *)((void *)kvm + offset);
4053
4054         return 0;
4055 }
4056
4057 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4058 {
4059         *(ulong *)((void *)kvm + offset) = 0;
4060
4061         return 0;
4062 }
4063
4064 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4065 {
4066         int i;
4067         struct kvm_vcpu *vcpu;
4068
4069         *val = 0;
4070
4071         kvm_for_each_vcpu(i, vcpu, kvm)
4072                 *val += *(u64 *)((void *)vcpu + offset);
4073
4074         return 0;
4075 }
4076
4077 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4078 {
4079         int i;
4080         struct kvm_vcpu *vcpu;
4081
4082         kvm_for_each_vcpu(i, vcpu, kvm)
4083                 *(u64 *)((void *)vcpu + offset) = 0;
4084
4085         return 0;
4086 }
4087
4088 static int kvm_stat_data_get(void *data, u64 *val)
4089 {
4090         int r = -EFAULT;
4091         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4092
4093         switch (stat_data->dbgfs_item->kind) {
4094         case KVM_STAT_VM:
4095                 r = kvm_get_stat_per_vm(stat_data->kvm,
4096                                         stat_data->dbgfs_item->offset, val);
4097                 break;
4098         case KVM_STAT_VCPU:
4099                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4100                                           stat_data->dbgfs_item->offset, val);
4101                 break;
4102         }
4103
4104         return r;
4105 }
4106
4107 static int kvm_stat_data_clear(void *data, u64 val)
4108 {
4109         int r = -EFAULT;
4110         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4111
4112         if (val)
4113                 return -EINVAL;
4114
4115         switch (stat_data->dbgfs_item->kind) {
4116         case KVM_STAT_VM:
4117                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4118                                           stat_data->dbgfs_item->offset);
4119                 break;
4120         case KVM_STAT_VCPU:
4121                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4122                                             stat_data->dbgfs_item->offset);
4123                 break;
4124         }
4125
4126         return r;
4127 }
4128
4129 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4130 {
4131         __simple_attr_check_format("%llu\n", 0ull);
4132         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4133                                 kvm_stat_data_clear, "%llu\n");
4134 }
4135
4136 static const struct file_operations stat_fops_per_vm = {
4137         .owner = THIS_MODULE,
4138         .open = kvm_stat_data_open,
4139         .release = kvm_debugfs_release,
4140         .read = simple_attr_read,
4141         .write = simple_attr_write,
4142         .llseek = no_llseek,
4143 };
4144
4145 static int vm_stat_get(void *_offset, u64 *val)
4146 {
4147         unsigned offset = (long)_offset;
4148         struct kvm *kvm;
4149         u64 tmp_val;
4150
4151         *val = 0;
4152         mutex_lock(&kvm_lock);
4153         list_for_each_entry(kvm, &vm_list, vm_list) {
4154                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4155                 *val += tmp_val;
4156         }
4157         mutex_unlock(&kvm_lock);
4158         return 0;
4159 }
4160
4161 static int vm_stat_clear(void *_offset, u64 val)
4162 {
4163         unsigned offset = (long)_offset;
4164         struct kvm *kvm;
4165
4166         if (val)
4167                 return -EINVAL;
4168
4169         mutex_lock(&kvm_lock);
4170         list_for_each_entry(kvm, &vm_list, vm_list) {
4171                 kvm_clear_stat_per_vm(kvm, offset);
4172         }
4173         mutex_unlock(&kvm_lock);
4174
4175         return 0;
4176 }
4177
4178 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4179
4180 static int vcpu_stat_get(void *_offset, u64 *val)
4181 {
4182         unsigned offset = (long)_offset;
4183         struct kvm *kvm;
4184         u64 tmp_val;
4185
4186         *val = 0;
4187         mutex_lock(&kvm_lock);
4188         list_for_each_entry(kvm, &vm_list, vm_list) {
4189                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4190                 *val += tmp_val;
4191         }
4192         mutex_unlock(&kvm_lock);
4193         return 0;
4194 }
4195
4196 static int vcpu_stat_clear(void *_offset, u64 val)
4197 {
4198         unsigned offset = (long)_offset;
4199         struct kvm *kvm;
4200
4201         if (val)
4202                 return -EINVAL;
4203
4204         mutex_lock(&kvm_lock);
4205         list_for_each_entry(kvm, &vm_list, vm_list) {
4206                 kvm_clear_stat_per_vcpu(kvm, offset);
4207         }
4208         mutex_unlock(&kvm_lock);
4209
4210         return 0;
4211 }
4212
4213 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4214                         "%llu\n");
4215
4216 static const struct file_operations *stat_fops[] = {
4217         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4218         [KVM_STAT_VM]   = &vm_stat_fops,
4219 };
4220
4221 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4222 {
4223         struct kobj_uevent_env *env;
4224         unsigned long long created, active;
4225
4226         if (!kvm_dev.this_device || !kvm)
4227                 return;
4228
4229         mutex_lock(&kvm_lock);
4230         if (type == KVM_EVENT_CREATE_VM) {
4231                 kvm_createvm_count++;
4232                 kvm_active_vms++;
4233         } else if (type == KVM_EVENT_DESTROY_VM) {
4234                 kvm_active_vms--;
4235         }
4236         created = kvm_createvm_count;
4237         active = kvm_active_vms;
4238         mutex_unlock(&kvm_lock);
4239
4240         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4241         if (!env)
4242                 return;
4243
4244         add_uevent_var(env, "CREATED=%llu", created);
4245         add_uevent_var(env, "COUNT=%llu", active);
4246
4247         if (type == KVM_EVENT_CREATE_VM) {
4248                 add_uevent_var(env, "EVENT=create");
4249                 kvm->userspace_pid = task_pid_nr(current);
4250         } else if (type == KVM_EVENT_DESTROY_VM) {
4251                 add_uevent_var(env, "EVENT=destroy");
4252         }
4253         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4254
4255         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4256                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4257
4258                 if (p) {
4259                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4260                         if (!IS_ERR(tmp))
4261                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4262                         kfree(p);
4263                 }
4264         }
4265         /* no need for checks, since we are adding at most only 5 keys */
4266         env->envp[env->envp_idx++] = NULL;
4267         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4268         kfree(env);
4269 }
4270
4271 static void kvm_init_debug(void)
4272 {
4273         struct kvm_stats_debugfs_item *p;
4274
4275         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4276
4277         kvm_debugfs_num_entries = 0;
4278         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4279                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4280                                     kvm_debugfs_dir, (void *)(long)p->offset,
4281                                     stat_fops[p->kind]);
4282         }
4283 }
4284
4285 static int kvm_suspend(void)
4286 {
4287         if (kvm_usage_count)
4288                 hardware_disable_nolock(NULL);
4289         return 0;
4290 }
4291
4292 static void kvm_resume(void)
4293 {
4294         if (kvm_usage_count) {
4295 #ifdef CONFIG_LOCKDEP
4296                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4297 #endif
4298                 hardware_enable_nolock(NULL);
4299         }
4300 }
4301
4302 static struct syscore_ops kvm_syscore_ops = {
4303         .suspend = kvm_suspend,
4304         .resume = kvm_resume,
4305 };
4306
4307 static inline
4308 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4309 {
4310         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4311 }
4312
4313 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4314 {
4315         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4316
4317         WRITE_ONCE(vcpu->preempted, false);
4318         WRITE_ONCE(vcpu->ready, false);
4319
4320         kvm_arch_sched_in(vcpu, cpu);
4321
4322         kvm_arch_vcpu_load(vcpu, cpu);
4323 }
4324
4325 static void kvm_sched_out(struct preempt_notifier *pn,
4326                           struct task_struct *next)
4327 {
4328         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4329
4330         if (current->state == TASK_RUNNING) {
4331                 WRITE_ONCE(vcpu->preempted, true);
4332                 WRITE_ONCE(vcpu->ready, true);
4333         }
4334         kvm_arch_vcpu_put(vcpu);
4335 }
4336
4337 static void check_processor_compat(void *rtn)
4338 {
4339         *(int *)rtn = kvm_arch_check_processor_compat();
4340 }
4341
4342 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4343                   struct module *module)
4344 {
4345         int r;
4346         int cpu;
4347
4348         r = kvm_arch_init(opaque);
4349         if (r)
4350                 goto out_fail;
4351
4352         /*
4353          * kvm_arch_init makes sure there's at most one caller
4354          * for architectures that support multiple implementations,
4355          * like intel and amd on x86.
4356          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4357          * conflicts in case kvm is already setup for another implementation.
4358          */
4359         r = kvm_irqfd_init();
4360         if (r)
4361                 goto out_irqfd;
4362
4363         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4364                 r = -ENOMEM;
4365                 goto out_free_0;
4366         }
4367
4368         r = kvm_arch_hardware_setup();
4369         if (r < 0)
4370                 goto out_free_1;
4371
4372         for_each_online_cpu(cpu) {
4373                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4374                 if (r < 0)
4375                         goto out_free_2;
4376         }
4377
4378         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4379                                       kvm_starting_cpu, kvm_dying_cpu);
4380         if (r)
4381                 goto out_free_2;
4382         register_reboot_notifier(&kvm_reboot_notifier);
4383
4384         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4385         if (!vcpu_align)
4386                 vcpu_align = __alignof__(struct kvm_vcpu);
4387         kvm_vcpu_cache =
4388                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4389                                            SLAB_ACCOUNT,
4390                                            offsetof(struct kvm_vcpu, arch),
4391                                            sizeof_field(struct kvm_vcpu, arch),
4392                                            NULL);
4393         if (!kvm_vcpu_cache) {
4394                 r = -ENOMEM;
4395                 goto out_free_3;
4396         }
4397
4398         r = kvm_async_pf_init();
4399         if (r)
4400                 goto out_free;
4401
4402         kvm_chardev_ops.owner = module;
4403         kvm_vm_fops.owner = module;
4404         kvm_vcpu_fops.owner = module;
4405
4406         r = misc_register(&kvm_dev);
4407         if (r) {
4408                 pr_err("kvm: misc device register failed\n");
4409                 goto out_unreg;
4410         }
4411
4412         register_syscore_ops(&kvm_syscore_ops);
4413
4414         kvm_preempt_ops.sched_in = kvm_sched_in;
4415         kvm_preempt_ops.sched_out = kvm_sched_out;
4416
4417         kvm_init_debug();
4418
4419         r = kvm_vfio_ops_init();
4420         WARN_ON(r);
4421
4422         return 0;
4423
4424 out_unreg:
4425         kvm_async_pf_deinit();
4426 out_free:
4427         kmem_cache_destroy(kvm_vcpu_cache);
4428 out_free_3:
4429         unregister_reboot_notifier(&kvm_reboot_notifier);
4430         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4431 out_free_2:
4432         kvm_arch_hardware_unsetup();
4433 out_free_1:
4434         free_cpumask_var(cpus_hardware_enabled);
4435 out_free_0:
4436         kvm_irqfd_exit();
4437 out_irqfd:
4438         kvm_arch_exit();
4439 out_fail:
4440         return r;
4441 }
4442 EXPORT_SYMBOL_GPL(kvm_init);
4443
4444 void kvm_exit(void)
4445 {
4446         debugfs_remove_recursive(kvm_debugfs_dir);
4447         misc_deregister(&kvm_dev);
4448         kmem_cache_destroy(kvm_vcpu_cache);
4449         kvm_async_pf_deinit();
4450         unregister_syscore_ops(&kvm_syscore_ops);
4451         unregister_reboot_notifier(&kvm_reboot_notifier);
4452         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4453         on_each_cpu(hardware_disable_nolock, NULL, 1);
4454         kvm_arch_hardware_unsetup();
4455         kvm_arch_exit();
4456         kvm_irqfd_exit();
4457         free_cpumask_var(cpus_hardware_enabled);
4458         kvm_vfio_ops_exit();
4459 }
4460 EXPORT_SYMBOL_GPL(kvm_exit);
4461
4462 struct kvm_vm_worker_thread_context {
4463         struct kvm *kvm;
4464         struct task_struct *parent;
4465         struct completion init_done;
4466         kvm_vm_thread_fn_t thread_fn;
4467         uintptr_t data;
4468         int err;
4469 };
4470
4471 static int kvm_vm_worker_thread(void *context)
4472 {
4473         /*
4474          * The init_context is allocated on the stack of the parent thread, so
4475          * we have to locally copy anything that is needed beyond initialization
4476          */
4477         struct kvm_vm_worker_thread_context *init_context = context;
4478         struct kvm *kvm = init_context->kvm;
4479         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4480         uintptr_t data = init_context->data;
4481         int err;
4482
4483         err = kthread_park(current);
4484         /* kthread_park(current) is never supposed to return an error */
4485         WARN_ON(err != 0);
4486         if (err)
4487                 goto init_complete;
4488
4489         err = cgroup_attach_task_all(init_context->parent, current);
4490         if (err) {
4491                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4492                         __func__, err);
4493                 goto init_complete;
4494         }
4495
4496         set_user_nice(current, task_nice(init_context->parent));
4497
4498 init_complete:
4499         init_context->err = err;
4500         complete(&init_context->init_done);
4501         init_context = NULL;
4502
4503         if (err)
4504                 return err;
4505
4506         /* Wait to be woken up by the spawner before proceeding. */
4507         kthread_parkme();
4508
4509         if (!kthread_should_stop())
4510                 err = thread_fn(kvm, data);
4511
4512         return err;
4513 }
4514
4515 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4516                                 uintptr_t data, const char *name,
4517                                 struct task_struct **thread_ptr)
4518 {
4519         struct kvm_vm_worker_thread_context init_context = {};
4520         struct task_struct *thread;
4521
4522         *thread_ptr = NULL;
4523         init_context.kvm = kvm;
4524         init_context.parent = current;
4525         init_context.thread_fn = thread_fn;
4526         init_context.data = data;
4527         init_completion(&init_context.init_done);
4528
4529         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4530                              "%s-%d", name, task_pid_nr(current));
4531         if (IS_ERR(thread))
4532                 return PTR_ERR(thread);
4533
4534         /* kthread_run is never supposed to return NULL */
4535         WARN_ON(thread == NULL);
4536
4537         wait_for_completion(&init_context.init_done);
4538
4539         if (!init_context.err)
4540                 *thread_ptr = thread;
4541
4542         return init_context.err;
4543 }