]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/kvm_main.c
KVM: Fix some grammar mistakes
[linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 static bool largepages_enabled = true;
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                 unsigned long start, unsigned long end, bool blockable)
162 {
163         return 0;
164 }
165
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168         /*
169          * The metadata used by is_zone_device_page() to determine whether or
170          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171          * the device has been pinned, e.g. by get_user_pages().  WARN if the
172          * page_count() is zero to help detect bad usage of this helper.
173          */
174         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175                 return false;
176
177         return is_zone_device_page(pfn_to_page(pfn));
178 }
179
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182         /*
183          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184          * perspective they are "normal" pages, albeit with slightly different
185          * usage rules.
186          */
187         if (pfn_valid(pfn))
188                 return PageReserved(pfn_to_page(pfn)) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200         preempt_notifier_register(&vcpu->preempt_notifier);
201         kvm_arch_vcpu_load(vcpu, cpu);
202         put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208         preempt_disable();
209         kvm_arch_vcpu_put(vcpu);
210         preempt_notifier_unregister(&vcpu->preempt_notifier);
211         preempt_enable();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_put);
214
215 /* TODO: merge with kvm_arch_vcpu_should_kick */
216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217 {
218         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219
220         /*
221          * We need to wait for the VCPU to reenable interrupts and get out of
222          * READING_SHADOW_PAGE_TABLES mode.
223          */
224         if (req & KVM_REQUEST_WAIT)
225                 return mode != OUTSIDE_GUEST_MODE;
226
227         /*
228          * Need to kick a running VCPU, but otherwise there is nothing to do.
229          */
230         return mode == IN_GUEST_MODE;
231 }
232
233 static void ack_flush(void *_completed)
234 {
235 }
236
237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238 {
239         if (unlikely(!cpus))
240                 cpus = cpu_online_mask;
241
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251 {
252         int i, cpu, me;
253         struct kvm_vcpu *vcpu;
254         bool called;
255
256         me = get_cpu();
257
258         kvm_for_each_vcpu(i, vcpu, kvm) {
259                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260                         continue;
261
262                 kvm_make_request(req, vcpu);
263                 cpu = vcpu->cpu;
264
265                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266                         continue;
267
268                 if (tmp != NULL && cpu != -1 && cpu != me &&
269                     kvm_request_needs_ipi(vcpu, req))
270                         __cpumask_set_cpu(cpu, tmp);
271         }
272
273         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274         put_cpu();
275
276         return called;
277 }
278
279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280 {
281         cpumask_var_t cpus;
282         bool called;
283
284         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285
286         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287
288         free_cpumask_var(cpus);
289         return called;
290 }
291
292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295         /*
296          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297          * kvm_make_all_cpus_request.
298          */
299         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300
301         /*
302          * We want to publish modifications to the page tables before reading
303          * mode. Pairs with a memory barrier in arch-specific code.
304          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305          * and smp_mb in walk_shadow_page_lockless_begin/end.
306          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307          *
308          * There is already an smp_mb__after_atomic() before
309          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310          * barrier here.
311          */
312         if (!kvm_arch_flush_remote_tlb(kvm)
313             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314                 ++kvm->stat.remote_tlb_flush;
315         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316 }
317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318 #endif
319
320 void kvm_reload_remote_mmus(struct kvm *kvm)
321 {
322         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323 }
324
325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326 {
327         struct page *page;
328         int r;
329
330         mutex_init(&vcpu->mutex);
331         vcpu->cpu = -1;
332         vcpu->kvm = kvm;
333         vcpu->vcpu_id = id;
334         vcpu->pid = NULL;
335         init_swait_queue_head(&vcpu->wq);
336         kvm_async_pf_vcpu_init(vcpu);
337
338         vcpu->pre_pcpu = -1;
339         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340
341         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342         if (!page) {
343                 r = -ENOMEM;
344                 goto fail;
345         }
346         vcpu->run = page_address(page);
347
348         kvm_vcpu_set_in_spin_loop(vcpu, false);
349         kvm_vcpu_set_dy_eligible(vcpu, false);
350         vcpu->preempted = false;
351         vcpu->ready = false;
352
353         r = kvm_arch_vcpu_init(vcpu);
354         if (r < 0)
355                 goto fail_free_run;
356         return 0;
357
358 fail_free_run:
359         free_page((unsigned long)vcpu->run);
360 fail:
361         return r;
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364
365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366 {
367         /*
368          * no need for rcu_read_lock as VCPU_RUN is the only place that
369          * will change the vcpu->pid pointer and on uninit all file
370          * descriptors are already gone.
371          */
372         put_pid(rcu_dereference_protected(vcpu->pid, 1));
373         kvm_arch_vcpu_uninit(vcpu);
374         free_page((unsigned long)vcpu->run);
375 }
376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377
378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380 {
381         return container_of(mn, struct kvm, mmu_notifier);
382 }
383
384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385                                         struct mm_struct *mm,
386                                         unsigned long address,
387                                         pte_t pte)
388 {
389         struct kvm *kvm = mmu_notifier_to_kvm(mn);
390         int idx;
391
392         idx = srcu_read_lock(&kvm->srcu);
393         spin_lock(&kvm->mmu_lock);
394         kvm->mmu_notifier_seq++;
395
396         if (kvm_set_spte_hva(kvm, address, pte))
397                 kvm_flush_remote_tlbs(kvm);
398
399         spin_unlock(&kvm->mmu_lock);
400         srcu_read_unlock(&kvm->srcu, idx);
401 }
402
403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404                                         const struct mmu_notifier_range *range)
405 {
406         struct kvm *kvm = mmu_notifier_to_kvm(mn);
407         int need_tlb_flush = 0, idx;
408         int ret;
409
410         idx = srcu_read_lock(&kvm->srcu);
411         spin_lock(&kvm->mmu_lock);
412         /*
413          * The count increase must become visible at unlock time as no
414          * spte can be established without taking the mmu_lock and
415          * count is also read inside the mmu_lock critical section.
416          */
417         kvm->mmu_notifier_count++;
418         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419         need_tlb_flush |= kvm->tlbs_dirty;
420         /* we've to flush the tlb before the pages can be freed */
421         if (need_tlb_flush)
422                 kvm_flush_remote_tlbs(kvm);
423
424         spin_unlock(&kvm->mmu_lock);
425
426         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427                                         range->end,
428                                         mmu_notifier_range_blockable(range));
429
430         srcu_read_unlock(&kvm->srcu, idx);
431
432         return ret;
433 }
434
435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436                                         const struct mmu_notifier_range *range)
437 {
438         struct kvm *kvm = mmu_notifier_to_kvm(mn);
439
440         spin_lock(&kvm->mmu_lock);
441         /*
442          * This sequence increase will notify the kvm page fault that
443          * the page that is going to be mapped in the spte could have
444          * been freed.
445          */
446         kvm->mmu_notifier_seq++;
447         smp_wmb();
448         /*
449          * The above sequence increase must be visible before the
450          * below count decrease, which is ensured by the smp_wmb above
451          * in conjunction with the smp_rmb in mmu_notifier_retry().
452          */
453         kvm->mmu_notifier_count--;
454         spin_unlock(&kvm->mmu_lock);
455
456         BUG_ON(kvm->mmu_notifier_count < 0);
457 }
458
459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460                                               struct mm_struct *mm,
461                                               unsigned long start,
462                                               unsigned long end)
463 {
464         struct kvm *kvm = mmu_notifier_to_kvm(mn);
465         int young, idx;
466
467         idx = srcu_read_lock(&kvm->srcu);
468         spin_lock(&kvm->mmu_lock);
469
470         young = kvm_age_hva(kvm, start, end);
471         if (young)
472                 kvm_flush_remote_tlbs(kvm);
473
474         spin_unlock(&kvm->mmu_lock);
475         srcu_read_unlock(&kvm->srcu, idx);
476
477         return young;
478 }
479
480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481                                         struct mm_struct *mm,
482                                         unsigned long start,
483                                         unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int young, idx;
487
488         idx = srcu_read_lock(&kvm->srcu);
489         spin_lock(&kvm->mmu_lock);
490         /*
491          * Even though we do not flush TLB, this will still adversely
492          * affect performance on pre-Haswell Intel EPT, where there is
493          * no EPT Access Bit to clear so that we have to tear down EPT
494          * tables instead. If we find this unacceptable, we can always
495          * add a parameter to kvm_age_hva so that it effectively doesn't
496          * do anything on clear_young.
497          *
498          * Also note that currently we never issue secondary TLB flushes
499          * from clear_young, leaving this job up to the regular system
500          * cadence. If we find this inaccurate, we might come up with a
501          * more sophisticated heuristic later.
502          */
503         young = kvm_age_hva(kvm, start, end);
504         spin_unlock(&kvm->mmu_lock);
505         srcu_read_unlock(&kvm->srcu, idx);
506
507         return young;
508 }
509
510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511                                        struct mm_struct *mm,
512                                        unsigned long address)
513 {
514         struct kvm *kvm = mmu_notifier_to_kvm(mn);
515         int young, idx;
516
517         idx = srcu_read_lock(&kvm->srcu);
518         spin_lock(&kvm->mmu_lock);
519         young = kvm_test_age_hva(kvm, address);
520         spin_unlock(&kvm->mmu_lock);
521         srcu_read_unlock(&kvm->srcu, idx);
522
523         return young;
524 }
525
526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527                                      struct mm_struct *mm)
528 {
529         struct kvm *kvm = mmu_notifier_to_kvm(mn);
530         int idx;
531
532         idx = srcu_read_lock(&kvm->srcu);
533         kvm_arch_flush_shadow_all(kvm);
534         srcu_read_unlock(&kvm->srcu, idx);
535 }
536
537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
539         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
540         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
541         .clear_young            = kvm_mmu_notifier_clear_young,
542         .test_young             = kvm_mmu_notifier_test_young,
543         .change_pte             = kvm_mmu_notifier_change_pte,
544         .release                = kvm_mmu_notifier_release,
545 };
546
547 static int kvm_init_mmu_notifier(struct kvm *kvm)
548 {
549         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551 }
552
553 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557         return 0;
558 }
559
560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561
562 static struct kvm_memslots *kvm_alloc_memslots(void)
563 {
564         int i;
565         struct kvm_memslots *slots;
566
567         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568         if (!slots)
569                 return NULL;
570
571         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572                 slots->id_to_index[i] = slots->memslots[i].id = i;
573
574         return slots;
575 }
576
577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578 {
579         if (!memslot->dirty_bitmap)
580                 return;
581
582         kvfree(memslot->dirty_bitmap);
583         memslot->dirty_bitmap = NULL;
584 }
585
586 /*
587  * Free any memory in @free but not in @dont.
588  */
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590                               struct kvm_memory_slot *dont)
591 {
592         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593                 kvm_destroy_dirty_bitmap(free);
594
595         kvm_arch_free_memslot(kvm, free, dont);
596
597         free->npages = 0;
598 }
599
600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601 {
602         struct kvm_memory_slot *memslot;
603
604         if (!slots)
605                 return;
606
607         kvm_for_each_memslot(memslot, slots)
608                 kvm_free_memslot(kvm, memslot, NULL);
609
610         kvfree(slots);
611 }
612
613 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614 {
615         int i;
616
617         if (!kvm->debugfs_dentry)
618                 return;
619
620         debugfs_remove_recursive(kvm->debugfs_dentry);
621
622         if (kvm->debugfs_stat_data) {
623                 for (i = 0; i < kvm_debugfs_num_entries; i++)
624                         kfree(kvm->debugfs_stat_data[i]);
625                 kfree(kvm->debugfs_stat_data);
626         }
627 }
628
629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630 {
631         char dir_name[ITOA_MAX_LEN * 2];
632         struct kvm_stat_data *stat_data;
633         struct kvm_stats_debugfs_item *p;
634
635         if (!debugfs_initialized())
636                 return 0;
637
638         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640
641         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642                                          sizeof(*kvm->debugfs_stat_data),
643                                          GFP_KERNEL_ACCOUNT);
644         if (!kvm->debugfs_stat_data)
645                 return -ENOMEM;
646
647         for (p = debugfs_entries; p->name; p++) {
648                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649                 if (!stat_data)
650                         return -ENOMEM;
651
652                 stat_data->kvm = kvm;
653                 stat_data->offset = p->offset;
654                 stat_data->mode = p->mode ? p->mode : 0644;
655                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657                                     stat_data, stat_fops_per_vm[p->kind]);
658         }
659         return 0;
660 }
661
662 /*
663  * Called after the VM is otherwise initialized, but just before adding it to
664  * the vm_list.
665  */
666 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667 {
668         return 0;
669 }
670
671 /*
672  * Called just after removing the VM from the vm_list, but before doing any
673  * other destruction.
674  */
675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676 {
677 }
678
679 static struct kvm *kvm_create_vm(unsigned long type)
680 {
681         struct kvm *kvm = kvm_arch_alloc_vm();
682         int r = -ENOMEM;
683         int i;
684
685         if (!kvm)
686                 return ERR_PTR(-ENOMEM);
687
688         spin_lock_init(&kvm->mmu_lock);
689         mmgrab(current->mm);
690         kvm->mm = current->mm;
691         kvm_eventfd_init(kvm);
692         mutex_init(&kvm->lock);
693         mutex_init(&kvm->irq_lock);
694         mutex_init(&kvm->slots_lock);
695         INIT_LIST_HEAD(&kvm->devices);
696
697         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698
699         if (init_srcu_struct(&kvm->srcu))
700                 goto out_err_no_srcu;
701         if (init_srcu_struct(&kvm->irq_srcu))
702                 goto out_err_no_irq_srcu;
703
704         refcount_set(&kvm->users_count, 1);
705         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706                 struct kvm_memslots *slots = kvm_alloc_memslots();
707
708                 if (!slots)
709                         goto out_err_no_arch_destroy_vm;
710                 /* Generations must be different for each address space. */
711                 slots->generation = i;
712                 rcu_assign_pointer(kvm->memslots[i], slots);
713         }
714
715         for (i = 0; i < KVM_NR_BUSES; i++) {
716                 rcu_assign_pointer(kvm->buses[i],
717                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718                 if (!kvm->buses[i])
719                         goto out_err_no_arch_destroy_vm;
720         }
721
722         r = kvm_arch_init_vm(kvm, type);
723         if (r)
724                 goto out_err_no_arch_destroy_vm;
725
726         r = hardware_enable_all();
727         if (r)
728                 goto out_err_no_disable;
729
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733
734         r = kvm_init_mmu_notifier(kvm);
735         if (r)
736                 goto out_err_no_mmu_notifier;
737
738         r = kvm_arch_post_init_vm(kvm);
739         if (r)
740                 goto out_err;
741
742         mutex_lock(&kvm_lock);
743         list_add(&kvm->vm_list, &vm_list);
744         mutex_unlock(&kvm_lock);
745
746         preempt_notifier_inc();
747
748         return kvm;
749
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752         if (kvm->mmu_notifier.ops)
753                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756         hardware_disable_all();
757 out_err_no_disable:
758         kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761         for (i = 0; i < KVM_NR_BUSES; i++)
762                 kfree(kvm_get_bus(kvm, i));
763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765         cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767         cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769         kvm_arch_free_vm(kvm);
770         mmdrop(current->mm);
771         return ERR_PTR(r);
772 }
773
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776         struct kvm_device *dev, *tmp;
777
778         /*
779          * We do not need to take the kvm->lock here, because nobody else
780          * has a reference to the struct kvm at this point and therefore
781          * cannot access the devices list anyhow.
782          */
783         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784                 list_del(&dev->vm_node);
785                 dev->ops->destroy(dev);
786         }
787 }
788
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791         int i;
792         struct mm_struct *mm = kvm->mm;
793
794         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795         kvm_destroy_vm_debugfs(kvm);
796         kvm_arch_sync_events(kvm);
797         mutex_lock(&kvm_lock);
798         list_del(&kvm->vm_list);
799         mutex_unlock(&kvm_lock);
800         kvm_arch_pre_destroy_vm(kvm);
801
802         kvm_free_irq_routing(kvm);
803         for (i = 0; i < KVM_NR_BUSES; i++) {
804                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805
806                 if (bus)
807                         kvm_io_bus_destroy(bus);
808                 kvm->buses[i] = NULL;
809         }
810         kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814         kvm_arch_flush_shadow_all(kvm);
815 #endif
816         kvm_arch_destroy_vm(kvm);
817         kvm_destroy_devices(kvm);
818         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820         cleanup_srcu_struct(&kvm->irq_srcu);
821         cleanup_srcu_struct(&kvm->srcu);
822         kvm_arch_free_vm(kvm);
823         preempt_notifier_dec();
824         hardware_disable_all();
825         mmdrop(mm);
826 }
827
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830         refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836         if (refcount_dec_and_test(&kvm->users_count))
837                 kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840
841 /*
842  * Used to put a reference that was taken on behalf of an object associated
843  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
844  * of the new file descriptor fails and the reference cannot be transferred to
845  * its final owner.  In such cases, the caller is still actively using @kvm and
846  * will fail miserably if the refcount unexpectedly hits zero.
847  */
848 void kvm_put_kvm_no_destroy(struct kvm *kvm)
849 {
850         WARN_ON(refcount_dec_and_test(&kvm->users_count));
851 }
852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
853
854 static int kvm_vm_release(struct inode *inode, struct file *filp)
855 {
856         struct kvm *kvm = filp->private_data;
857
858         kvm_irqfd_release(kvm);
859
860         kvm_put_kvm(kvm);
861         return 0;
862 }
863
864 /*
865  * Allocation size is twice as large as the actual dirty bitmap size.
866  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
867  */
868 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
869 {
870         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
871
872         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
873         if (!memslot->dirty_bitmap)
874                 return -ENOMEM;
875
876         return 0;
877 }
878
879 /*
880  * Insert memslot and re-sort memslots based on their GFN,
881  * so binary search could be used to lookup GFN.
882  * Sorting algorithm takes advantage of having initially
883  * sorted array and known changed memslot position.
884  */
885 static void update_memslots(struct kvm_memslots *slots,
886                             struct kvm_memory_slot *new,
887                             enum kvm_mr_change change)
888 {
889         int id = new->id;
890         int i = slots->id_to_index[id];
891         struct kvm_memory_slot *mslots = slots->memslots;
892
893         WARN_ON(mslots[i].id != id);
894         switch (change) {
895         case KVM_MR_CREATE:
896                 slots->used_slots++;
897                 WARN_ON(mslots[i].npages || !new->npages);
898                 break;
899         case KVM_MR_DELETE:
900                 slots->used_slots--;
901                 WARN_ON(new->npages || !mslots[i].npages);
902                 break;
903         default:
904                 break;
905         }
906
907         while (i < KVM_MEM_SLOTS_NUM - 1 &&
908                new->base_gfn <= mslots[i + 1].base_gfn) {
909                 if (!mslots[i + 1].npages)
910                         break;
911                 mslots[i] = mslots[i + 1];
912                 slots->id_to_index[mslots[i].id] = i;
913                 i++;
914         }
915
916         /*
917          * The ">=" is needed when creating a slot with base_gfn == 0,
918          * so that it moves before all those with base_gfn == npages == 0.
919          *
920          * On the other hand, if new->npages is zero, the above loop has
921          * already left i pointing to the beginning of the empty part of
922          * mslots, and the ">=" would move the hole backwards in this
923          * case---which is wrong.  So skip the loop when deleting a slot.
924          */
925         if (new->npages) {
926                 while (i > 0 &&
927                        new->base_gfn >= mslots[i - 1].base_gfn) {
928                         mslots[i] = mslots[i - 1];
929                         slots->id_to_index[mslots[i].id] = i;
930                         i--;
931                 }
932         } else
933                 WARN_ON_ONCE(i != slots->used_slots);
934
935         mslots[i] = *new;
936         slots->id_to_index[mslots[i].id] = i;
937 }
938
939 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
940 {
941         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
942
943 #ifdef __KVM_HAVE_READONLY_MEM
944         valid_flags |= KVM_MEM_READONLY;
945 #endif
946
947         if (mem->flags & ~valid_flags)
948                 return -EINVAL;
949
950         return 0;
951 }
952
953 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
954                 int as_id, struct kvm_memslots *slots)
955 {
956         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
957         u64 gen = old_memslots->generation;
958
959         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
960         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
961
962         rcu_assign_pointer(kvm->memslots[as_id], slots);
963         synchronize_srcu_expedited(&kvm->srcu);
964
965         /*
966          * Increment the new memslot generation a second time, dropping the
967          * update in-progress flag and incrementing the generation based on
968          * the number of address spaces.  This provides a unique and easily
969          * identifiable generation number while the memslots are in flux.
970          */
971         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
972
973         /*
974          * Generations must be unique even across address spaces.  We do not need
975          * a global counter for that, instead the generation space is evenly split
976          * across address spaces.  For example, with two address spaces, address
977          * space 0 will use generations 0, 2, 4, ... while address space 1 will
978          * use generations 1, 3, 5, ...
979          */
980         gen += KVM_ADDRESS_SPACE_NUM;
981
982         kvm_arch_memslots_updated(kvm, gen);
983
984         slots->generation = gen;
985
986         return old_memslots;
987 }
988
989 /*
990  * Allocate some memory and give it an address in the guest physical address
991  * space.
992  *
993  * Discontiguous memory is allowed, mostly for framebuffers.
994  *
995  * Must be called holding kvm->slots_lock for write.
996  */
997 int __kvm_set_memory_region(struct kvm *kvm,
998                             const struct kvm_userspace_memory_region *mem)
999 {
1000         int r;
1001         gfn_t base_gfn;
1002         unsigned long npages;
1003         struct kvm_memory_slot *slot;
1004         struct kvm_memory_slot old, new;
1005         struct kvm_memslots *slots = NULL, *old_memslots;
1006         int as_id, id;
1007         enum kvm_mr_change change;
1008
1009         r = check_memory_region_flags(mem);
1010         if (r)
1011                 goto out;
1012
1013         r = -EINVAL;
1014         as_id = mem->slot >> 16;
1015         id = (u16)mem->slot;
1016
1017         /* General sanity checks */
1018         if (mem->memory_size & (PAGE_SIZE - 1))
1019                 goto out;
1020         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1021                 goto out;
1022         /* We can read the guest memory with __xxx_user() later on. */
1023         if ((id < KVM_USER_MEM_SLOTS) &&
1024             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1025              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1026                         mem->memory_size)))
1027                 goto out;
1028         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1029                 goto out;
1030         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1031                 goto out;
1032
1033         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1034         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1035         npages = mem->memory_size >> PAGE_SHIFT;
1036
1037         if (npages > KVM_MEM_MAX_NR_PAGES)
1038                 goto out;
1039
1040         new = old = *slot;
1041
1042         new.id = id;
1043         new.base_gfn = base_gfn;
1044         new.npages = npages;
1045         new.flags = mem->flags;
1046
1047         if (npages) {
1048                 if (!old.npages)
1049                         change = KVM_MR_CREATE;
1050                 else { /* Modify an existing slot. */
1051                         if ((mem->userspace_addr != old.userspace_addr) ||
1052                             (npages != old.npages) ||
1053                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1054                                 goto out;
1055
1056                         if (base_gfn != old.base_gfn)
1057                                 change = KVM_MR_MOVE;
1058                         else if (new.flags != old.flags)
1059                                 change = KVM_MR_FLAGS_ONLY;
1060                         else { /* Nothing to change. */
1061                                 r = 0;
1062                                 goto out;
1063                         }
1064                 }
1065         } else {
1066                 if (!old.npages)
1067                         goto out;
1068
1069                 change = KVM_MR_DELETE;
1070                 new.base_gfn = 0;
1071                 new.flags = 0;
1072         }
1073
1074         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1075                 /* Check for overlaps */
1076                 r = -EEXIST;
1077                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1078                         if (slot->id == id)
1079                                 continue;
1080                         if (!((base_gfn + npages <= slot->base_gfn) ||
1081                               (base_gfn >= slot->base_gfn + slot->npages)))
1082                                 goto out;
1083                 }
1084         }
1085
1086         /* Free page dirty bitmap if unneeded */
1087         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1088                 new.dirty_bitmap = NULL;
1089
1090         r = -ENOMEM;
1091         if (change == KVM_MR_CREATE) {
1092                 new.userspace_addr = mem->userspace_addr;
1093
1094                 if (kvm_arch_create_memslot(kvm, &new, npages))
1095                         goto out_free;
1096         }
1097
1098         /* Allocate page dirty bitmap if needed */
1099         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1100                 if (kvm_create_dirty_bitmap(&new) < 0)
1101                         goto out_free;
1102         }
1103
1104         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1105         if (!slots)
1106                 goto out_free;
1107         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1108
1109         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1110                 slot = id_to_memslot(slots, id);
1111                 slot->flags |= KVM_MEMSLOT_INVALID;
1112
1113                 old_memslots = install_new_memslots(kvm, as_id, slots);
1114
1115                 /* From this point no new shadow pages pointing to a deleted,
1116                  * or moved, memslot will be created.
1117                  *
1118                  * validation of sp->gfn happens in:
1119                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1120                  *      - kvm_is_visible_gfn (mmu_check_root)
1121                  */
1122                 kvm_arch_flush_shadow_memslot(kvm, slot);
1123
1124                 /*
1125                  * We can re-use the old_memslots from above, the only difference
1126                  * from the currently installed memslots is the invalid flag.  This
1127                  * will get overwritten by update_memslots anyway.
1128                  */
1129                 slots = old_memslots;
1130         }
1131
1132         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1133         if (r)
1134                 goto out_slots;
1135
1136         /* actual memory is freed via old in kvm_free_memslot below */
1137         if (change == KVM_MR_DELETE) {
1138                 new.dirty_bitmap = NULL;
1139                 memset(&new.arch, 0, sizeof(new.arch));
1140         }
1141
1142         update_memslots(slots, &new, change);
1143         old_memslots = install_new_memslots(kvm, as_id, slots);
1144
1145         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1146
1147         kvm_free_memslot(kvm, &old, &new);
1148         kvfree(old_memslots);
1149         return 0;
1150
1151 out_slots:
1152         kvfree(slots);
1153 out_free:
1154         kvm_free_memslot(kvm, &new, &old);
1155 out:
1156         return r;
1157 }
1158 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1159
1160 int kvm_set_memory_region(struct kvm *kvm,
1161                           const struct kvm_userspace_memory_region *mem)
1162 {
1163         int r;
1164
1165         mutex_lock(&kvm->slots_lock);
1166         r = __kvm_set_memory_region(kvm, mem);
1167         mutex_unlock(&kvm->slots_lock);
1168         return r;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1171
1172 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1173                                           struct kvm_userspace_memory_region *mem)
1174 {
1175         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1176                 return -EINVAL;
1177
1178         return kvm_set_memory_region(kvm, mem);
1179 }
1180
1181 int kvm_get_dirty_log(struct kvm *kvm,
1182                         struct kvm_dirty_log *log, int *is_dirty)
1183 {
1184         struct kvm_memslots *slots;
1185         struct kvm_memory_slot *memslot;
1186         int i, as_id, id;
1187         unsigned long n;
1188         unsigned long any = 0;
1189
1190         as_id = log->slot >> 16;
1191         id = (u16)log->slot;
1192         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1193                 return -EINVAL;
1194
1195         slots = __kvm_memslots(kvm, as_id);
1196         memslot = id_to_memslot(slots, id);
1197         if (!memslot->dirty_bitmap)
1198                 return -ENOENT;
1199
1200         n = kvm_dirty_bitmap_bytes(memslot);
1201
1202         for (i = 0; !any && i < n/sizeof(long); ++i)
1203                 any = memslot->dirty_bitmap[i];
1204
1205         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1206                 return -EFAULT;
1207
1208         if (any)
1209                 *is_dirty = 1;
1210         return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1213
1214 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1215 /**
1216  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1217  *      and reenable dirty page tracking for the corresponding pages.
1218  * @kvm:        pointer to kvm instance
1219  * @log:        slot id and address to which we copy the log
1220  * @flush:      true if TLB flush is needed by caller
1221  *
1222  * We need to keep it in mind that VCPU threads can write to the bitmap
1223  * concurrently. So, to avoid losing track of dirty pages we keep the
1224  * following order:
1225  *
1226  *    1. Take a snapshot of the bit and clear it if needed.
1227  *    2. Write protect the corresponding page.
1228  *    3. Copy the snapshot to the userspace.
1229  *    4. Upon return caller flushes TLB's if needed.
1230  *
1231  * Between 2 and 4, the guest may write to the page using the remaining TLB
1232  * entry.  This is not a problem because the page is reported dirty using
1233  * the snapshot taken before and step 4 ensures that writes done after
1234  * exiting to userspace will be logged for the next call.
1235  *
1236  */
1237 int kvm_get_dirty_log_protect(struct kvm *kvm,
1238                         struct kvm_dirty_log *log, bool *flush)
1239 {
1240         struct kvm_memslots *slots;
1241         struct kvm_memory_slot *memslot;
1242         int i, as_id, id;
1243         unsigned long n;
1244         unsigned long *dirty_bitmap;
1245         unsigned long *dirty_bitmap_buffer;
1246
1247         as_id = log->slot >> 16;
1248         id = (u16)log->slot;
1249         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1250                 return -EINVAL;
1251
1252         slots = __kvm_memslots(kvm, as_id);
1253         memslot = id_to_memslot(slots, id);
1254
1255         dirty_bitmap = memslot->dirty_bitmap;
1256         if (!dirty_bitmap)
1257                 return -ENOENT;
1258
1259         n = kvm_dirty_bitmap_bytes(memslot);
1260         *flush = false;
1261         if (kvm->manual_dirty_log_protect) {
1262                 /*
1263                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1264                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1265                  * is some code duplication between this function and
1266                  * kvm_get_dirty_log, but hopefully all architecture
1267                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1268                  * can be eliminated.
1269                  */
1270                 dirty_bitmap_buffer = dirty_bitmap;
1271         } else {
1272                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1273                 memset(dirty_bitmap_buffer, 0, n);
1274
1275                 spin_lock(&kvm->mmu_lock);
1276                 for (i = 0; i < n / sizeof(long); i++) {
1277                         unsigned long mask;
1278                         gfn_t offset;
1279
1280                         if (!dirty_bitmap[i])
1281                                 continue;
1282
1283                         *flush = true;
1284                         mask = xchg(&dirty_bitmap[i], 0);
1285                         dirty_bitmap_buffer[i] = mask;
1286
1287                         offset = i * BITS_PER_LONG;
1288                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1289                                                                 offset, mask);
1290                 }
1291                 spin_unlock(&kvm->mmu_lock);
1292         }
1293
1294         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1295                 return -EFAULT;
1296         return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1299
1300 /**
1301  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1302  *      and reenable dirty page tracking for the corresponding pages.
1303  * @kvm:        pointer to kvm instance
1304  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1305  * @flush:      true if TLB flush is needed by caller
1306  */
1307 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1308                                 struct kvm_clear_dirty_log *log, bool *flush)
1309 {
1310         struct kvm_memslots *slots;
1311         struct kvm_memory_slot *memslot;
1312         int as_id, id;
1313         gfn_t offset;
1314         unsigned long i, n;
1315         unsigned long *dirty_bitmap;
1316         unsigned long *dirty_bitmap_buffer;
1317
1318         as_id = log->slot >> 16;
1319         id = (u16)log->slot;
1320         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1321                 return -EINVAL;
1322
1323         if (log->first_page & 63)
1324                 return -EINVAL;
1325
1326         slots = __kvm_memslots(kvm, as_id);
1327         memslot = id_to_memslot(slots, id);
1328
1329         dirty_bitmap = memslot->dirty_bitmap;
1330         if (!dirty_bitmap)
1331                 return -ENOENT;
1332
1333         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1334
1335         if (log->first_page > memslot->npages ||
1336             log->num_pages > memslot->npages - log->first_page ||
1337             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1338             return -EINVAL;
1339
1340         *flush = false;
1341         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1342         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1343                 return -EFAULT;
1344
1345         spin_lock(&kvm->mmu_lock);
1346         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1347                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1348              i++, offset += BITS_PER_LONG) {
1349                 unsigned long mask = *dirty_bitmap_buffer++;
1350                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1351                 if (!mask)
1352                         continue;
1353
1354                 mask &= atomic_long_fetch_andnot(mask, p);
1355
1356                 /*
1357                  * mask contains the bits that really have been cleared.  This
1358                  * never includes any bits beyond the length of the memslot (if
1359                  * the length is not aligned to 64 pages), therefore it is not
1360                  * a problem if userspace sets them in log->dirty_bitmap.
1361                 */
1362                 if (mask) {
1363                         *flush = true;
1364                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1365                                                                 offset, mask);
1366                 }
1367         }
1368         spin_unlock(&kvm->mmu_lock);
1369
1370         return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1373 #endif
1374
1375 bool kvm_largepages_enabled(void)
1376 {
1377         return largepages_enabled;
1378 }
1379
1380 void kvm_disable_largepages(void)
1381 {
1382         largepages_enabled = false;
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1385
1386 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1387 {
1388         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1391
1392 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1395 }
1396
1397 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1398 {
1399         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1400
1401         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1402               memslot->flags & KVM_MEMSLOT_INVALID)
1403                 return false;
1404
1405         return true;
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1408
1409 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1410 {
1411         struct vm_area_struct *vma;
1412         unsigned long addr, size;
1413
1414         size = PAGE_SIZE;
1415
1416         addr = gfn_to_hva(kvm, gfn);
1417         if (kvm_is_error_hva(addr))
1418                 return PAGE_SIZE;
1419
1420         down_read(&current->mm->mmap_sem);
1421         vma = find_vma(current->mm, addr);
1422         if (!vma)
1423                 goto out;
1424
1425         size = vma_kernel_pagesize(vma);
1426
1427 out:
1428         up_read(&current->mm->mmap_sem);
1429
1430         return size;
1431 }
1432
1433 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1434 {
1435         return slot->flags & KVM_MEM_READONLY;
1436 }
1437
1438 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1439                                        gfn_t *nr_pages, bool write)
1440 {
1441         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1442                 return KVM_HVA_ERR_BAD;
1443
1444         if (memslot_is_readonly(slot) && write)
1445                 return KVM_HVA_ERR_RO_BAD;
1446
1447         if (nr_pages)
1448                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1449
1450         return __gfn_to_hva_memslot(slot, gfn);
1451 }
1452
1453 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1454                                      gfn_t *nr_pages)
1455 {
1456         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1457 }
1458
1459 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1460                                         gfn_t gfn)
1461 {
1462         return gfn_to_hva_many(slot, gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1465
1466 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1467 {
1468         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1469 }
1470 EXPORT_SYMBOL_GPL(gfn_to_hva);
1471
1472 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1473 {
1474         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1477
1478 /*
1479  * Return the hva of a @gfn and the R/W attribute if possible.
1480  *
1481  * @slot: the kvm_memory_slot which contains @gfn
1482  * @gfn: the gfn to be translated
1483  * @writable: used to return the read/write attribute of the @slot if the hva
1484  * is valid and @writable is not NULL
1485  */
1486 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1487                                       gfn_t gfn, bool *writable)
1488 {
1489         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1490
1491         if (!kvm_is_error_hva(hva) && writable)
1492                 *writable = !memslot_is_readonly(slot);
1493
1494         return hva;
1495 }
1496
1497 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1498 {
1499         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1500
1501         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1502 }
1503
1504 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1505 {
1506         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1507
1508         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1509 }
1510
1511 static inline int check_user_page_hwpoison(unsigned long addr)
1512 {
1513         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1514
1515         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1516         return rc == -EHWPOISON;
1517 }
1518
1519 /*
1520  * The fast path to get the writable pfn which will be stored in @pfn,
1521  * true indicates success, otherwise false is returned.  It's also the
1522  * only part that runs if we can are in atomic context.
1523  */
1524 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1525                             bool *writable, kvm_pfn_t *pfn)
1526 {
1527         struct page *page[1];
1528         int npages;
1529
1530         /*
1531          * Fast pin a writable pfn only if it is a write fault request
1532          * or the caller allows to map a writable pfn for a read fault
1533          * request.
1534          */
1535         if (!(write_fault || writable))
1536                 return false;
1537
1538         npages = __get_user_pages_fast(addr, 1, 1, page);
1539         if (npages == 1) {
1540                 *pfn = page_to_pfn(page[0]);
1541
1542                 if (writable)
1543                         *writable = true;
1544                 return true;
1545         }
1546
1547         return false;
1548 }
1549
1550 /*
1551  * The slow path to get the pfn of the specified host virtual address,
1552  * 1 indicates success, -errno is returned if error is detected.
1553  */
1554 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1555                            bool *writable, kvm_pfn_t *pfn)
1556 {
1557         unsigned int flags = FOLL_HWPOISON;
1558         struct page *page;
1559         int npages = 0;
1560
1561         might_sleep();
1562
1563         if (writable)
1564                 *writable = write_fault;
1565
1566         if (write_fault)
1567                 flags |= FOLL_WRITE;
1568         if (async)
1569                 flags |= FOLL_NOWAIT;
1570
1571         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1572         if (npages != 1)
1573                 return npages;
1574
1575         /* map read fault as writable if possible */
1576         if (unlikely(!write_fault) && writable) {
1577                 struct page *wpage;
1578
1579                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1580                         *writable = true;
1581                         put_page(page);
1582                         page = wpage;
1583                 }
1584         }
1585         *pfn = page_to_pfn(page);
1586         return npages;
1587 }
1588
1589 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1590 {
1591         if (unlikely(!(vma->vm_flags & VM_READ)))
1592                 return false;
1593
1594         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1595                 return false;
1596
1597         return true;
1598 }
1599
1600 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1601                                unsigned long addr, bool *async,
1602                                bool write_fault, bool *writable,
1603                                kvm_pfn_t *p_pfn)
1604 {
1605         unsigned long pfn;
1606         int r;
1607
1608         r = follow_pfn(vma, addr, &pfn);
1609         if (r) {
1610                 /*
1611                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1612                  * not call the fault handler, so do it here.
1613                  */
1614                 bool unlocked = false;
1615                 r = fixup_user_fault(current, current->mm, addr,
1616                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1617                                      &unlocked);
1618                 if (unlocked)
1619                         return -EAGAIN;
1620                 if (r)
1621                         return r;
1622
1623                 r = follow_pfn(vma, addr, &pfn);
1624                 if (r)
1625                         return r;
1626
1627         }
1628
1629         if (writable)
1630                 *writable = true;
1631
1632         /*
1633          * Get a reference here because callers of *hva_to_pfn* and
1634          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1635          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1636          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1637          * simply do nothing for reserved pfns.
1638          *
1639          * Whoever called remap_pfn_range is also going to call e.g.
1640          * unmap_mapping_range before the underlying pages are freed,
1641          * causing a call to our MMU notifier.
1642          */ 
1643         kvm_get_pfn(pfn);
1644
1645         *p_pfn = pfn;
1646         return 0;
1647 }
1648
1649 /*
1650  * Pin guest page in memory and return its pfn.
1651  * @addr: host virtual address which maps memory to the guest
1652  * @atomic: whether this function can sleep
1653  * @async: whether this function need to wait IO complete if the
1654  *         host page is not in the memory
1655  * @write_fault: whether we should get a writable host page
1656  * @writable: whether it allows to map a writable host page for !@write_fault
1657  *
1658  * The function will map a writable host page for these two cases:
1659  * 1): @write_fault = true
1660  * 2): @write_fault = false && @writable, @writable will tell the caller
1661  *     whether the mapping is writable.
1662  */
1663 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1664                         bool write_fault, bool *writable)
1665 {
1666         struct vm_area_struct *vma;
1667         kvm_pfn_t pfn = 0;
1668         int npages, r;
1669
1670         /* we can do it either atomically or asynchronously, not both */
1671         BUG_ON(atomic && async);
1672
1673         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1674                 return pfn;
1675
1676         if (atomic)
1677                 return KVM_PFN_ERR_FAULT;
1678
1679         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1680         if (npages == 1)
1681                 return pfn;
1682
1683         down_read(&current->mm->mmap_sem);
1684         if (npages == -EHWPOISON ||
1685               (!async && check_user_page_hwpoison(addr))) {
1686                 pfn = KVM_PFN_ERR_HWPOISON;
1687                 goto exit;
1688         }
1689
1690 retry:
1691         vma = find_vma_intersection(current->mm, addr, addr + 1);
1692
1693         if (vma == NULL)
1694                 pfn = KVM_PFN_ERR_FAULT;
1695         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1696                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1697                 if (r == -EAGAIN)
1698                         goto retry;
1699                 if (r < 0)
1700                         pfn = KVM_PFN_ERR_FAULT;
1701         } else {
1702                 if (async && vma_is_valid(vma, write_fault))
1703                         *async = true;
1704                 pfn = KVM_PFN_ERR_FAULT;
1705         }
1706 exit:
1707         up_read(&current->mm->mmap_sem);
1708         return pfn;
1709 }
1710
1711 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1712                                bool atomic, bool *async, bool write_fault,
1713                                bool *writable)
1714 {
1715         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1716
1717         if (addr == KVM_HVA_ERR_RO_BAD) {
1718                 if (writable)
1719                         *writable = false;
1720                 return KVM_PFN_ERR_RO_FAULT;
1721         }
1722
1723         if (kvm_is_error_hva(addr)) {
1724                 if (writable)
1725                         *writable = false;
1726                 return KVM_PFN_NOSLOT;
1727         }
1728
1729         /* Do not map writable pfn in the readonly memslot. */
1730         if (writable && memslot_is_readonly(slot)) {
1731                 *writable = false;
1732                 writable = NULL;
1733         }
1734
1735         return hva_to_pfn(addr, atomic, async, write_fault,
1736                           writable);
1737 }
1738 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1739
1740 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1741                       bool *writable)
1742 {
1743         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1744                                     write_fault, writable);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1747
1748 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1749 {
1750         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1753
1754 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1755 {
1756         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1759
1760 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1761 {
1762         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1765
1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1767 {
1768         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1771
1772 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1773 {
1774         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1775 }
1776 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1777
1778 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1783
1784 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1785                             struct page **pages, int nr_pages)
1786 {
1787         unsigned long addr;
1788         gfn_t entry = 0;
1789
1790         addr = gfn_to_hva_many(slot, gfn, &entry);
1791         if (kvm_is_error_hva(addr))
1792                 return -1;
1793
1794         if (entry < nr_pages)
1795                 return 0;
1796
1797         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1798 }
1799 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1800
1801 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1802 {
1803         if (is_error_noslot_pfn(pfn))
1804                 return KVM_ERR_PTR_BAD_PAGE;
1805
1806         if (kvm_is_reserved_pfn(pfn)) {
1807                 WARN_ON(1);
1808                 return KVM_ERR_PTR_BAD_PAGE;
1809         }
1810
1811         return pfn_to_page(pfn);
1812 }
1813
1814 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1815 {
1816         kvm_pfn_t pfn;
1817
1818         pfn = gfn_to_pfn(kvm, gfn);
1819
1820         return kvm_pfn_to_page(pfn);
1821 }
1822 EXPORT_SYMBOL_GPL(gfn_to_page);
1823
1824 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1825                          struct kvm_host_map *map)
1826 {
1827         kvm_pfn_t pfn;
1828         void *hva = NULL;
1829         struct page *page = KVM_UNMAPPED_PAGE;
1830
1831         if (!map)
1832                 return -EINVAL;
1833
1834         pfn = gfn_to_pfn_memslot(slot, gfn);
1835         if (is_error_noslot_pfn(pfn))
1836                 return -EINVAL;
1837
1838         if (pfn_valid(pfn)) {
1839                 page = pfn_to_page(pfn);
1840                 hva = kmap(page);
1841 #ifdef CONFIG_HAS_IOMEM
1842         } else {
1843                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1844 #endif
1845         }
1846
1847         if (!hva)
1848                 return -EFAULT;
1849
1850         map->page = page;
1851         map->hva = hva;
1852         map->pfn = pfn;
1853         map->gfn = gfn;
1854
1855         return 0;
1856 }
1857
1858 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1859 {
1860         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1861 }
1862 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1863
1864 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1865                     bool dirty)
1866 {
1867         if (!map)
1868                 return;
1869
1870         if (!map->hva)
1871                 return;
1872
1873         if (map->page != KVM_UNMAPPED_PAGE)
1874                 kunmap(map->page);
1875 #ifdef CONFIG_HAS_IOMEM
1876         else
1877                 memunmap(map->hva);
1878 #endif
1879
1880         if (dirty) {
1881                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1882                 kvm_release_pfn_dirty(map->pfn);
1883         } else {
1884                 kvm_release_pfn_clean(map->pfn);
1885         }
1886
1887         map->hva = NULL;
1888         map->page = NULL;
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1891
1892 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1893 {
1894         kvm_pfn_t pfn;
1895
1896         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1897
1898         return kvm_pfn_to_page(pfn);
1899 }
1900 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1901
1902 void kvm_release_page_clean(struct page *page)
1903 {
1904         WARN_ON(is_error_page(page));
1905
1906         kvm_release_pfn_clean(page_to_pfn(page));
1907 }
1908 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1909
1910 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1911 {
1912         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1913                 put_page(pfn_to_page(pfn));
1914 }
1915 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1916
1917 void kvm_release_page_dirty(struct page *page)
1918 {
1919         WARN_ON(is_error_page(page));
1920
1921         kvm_release_pfn_dirty(page_to_pfn(page));
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1924
1925 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1926 {
1927         kvm_set_pfn_dirty(pfn);
1928         kvm_release_pfn_clean(pfn);
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1931
1932 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1933 {
1934         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1935                 SetPageDirty(pfn_to_page(pfn));
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1938
1939 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1940 {
1941         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1942                 mark_page_accessed(pfn_to_page(pfn));
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1945
1946 void kvm_get_pfn(kvm_pfn_t pfn)
1947 {
1948         if (!kvm_is_reserved_pfn(pfn))
1949                 get_page(pfn_to_page(pfn));
1950 }
1951 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1952
1953 static int next_segment(unsigned long len, int offset)
1954 {
1955         if (len > PAGE_SIZE - offset)
1956                 return PAGE_SIZE - offset;
1957         else
1958                 return len;
1959 }
1960
1961 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1962                                  void *data, int offset, int len)
1963 {
1964         int r;
1965         unsigned long addr;
1966
1967         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1968         if (kvm_is_error_hva(addr))
1969                 return -EFAULT;
1970         r = __copy_from_user(data, (void __user *)addr + offset, len);
1971         if (r)
1972                 return -EFAULT;
1973         return 0;
1974 }
1975
1976 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1977                         int len)
1978 {
1979         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1980
1981         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1982 }
1983 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1984
1985 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1986                              int offset, int len)
1987 {
1988         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1989
1990         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1991 }
1992 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1993
1994 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1995 {
1996         gfn_t gfn = gpa >> PAGE_SHIFT;
1997         int seg;
1998         int offset = offset_in_page(gpa);
1999         int ret;
2000
2001         while ((seg = next_segment(len, offset)) != 0) {
2002                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2003                 if (ret < 0)
2004                         return ret;
2005                 offset = 0;
2006                 len -= seg;
2007                 data += seg;
2008                 ++gfn;
2009         }
2010         return 0;
2011 }
2012 EXPORT_SYMBOL_GPL(kvm_read_guest);
2013
2014 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2015 {
2016         gfn_t gfn = gpa >> PAGE_SHIFT;
2017         int seg;
2018         int offset = offset_in_page(gpa);
2019         int ret;
2020
2021         while ((seg = next_segment(len, offset)) != 0) {
2022                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2023                 if (ret < 0)
2024                         return ret;
2025                 offset = 0;
2026                 len -= seg;
2027                 data += seg;
2028                 ++gfn;
2029         }
2030         return 0;
2031 }
2032 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2033
2034 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2035                                    void *data, int offset, unsigned long len)
2036 {
2037         int r;
2038         unsigned long addr;
2039
2040         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2041         if (kvm_is_error_hva(addr))
2042                 return -EFAULT;
2043         pagefault_disable();
2044         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2045         pagefault_enable();
2046         if (r)
2047                 return -EFAULT;
2048         return 0;
2049 }
2050
2051 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2052                           unsigned long len)
2053 {
2054         gfn_t gfn = gpa >> PAGE_SHIFT;
2055         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2056         int offset = offset_in_page(gpa);
2057
2058         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2059 }
2060 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2061
2062 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2063                                void *data, unsigned long len)
2064 {
2065         gfn_t gfn = gpa >> PAGE_SHIFT;
2066         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2067         int offset = offset_in_page(gpa);
2068
2069         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2072
2073 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2074                                   const void *data, int offset, int len)
2075 {
2076         int r;
2077         unsigned long addr;
2078
2079         addr = gfn_to_hva_memslot(memslot, gfn);
2080         if (kvm_is_error_hva(addr))
2081                 return -EFAULT;
2082         r = __copy_to_user((void __user *)addr + offset, data, len);
2083         if (r)
2084                 return -EFAULT;
2085         mark_page_dirty_in_slot(memslot, gfn);
2086         return 0;
2087 }
2088
2089 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2090                          const void *data, int offset, int len)
2091 {
2092         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2093
2094         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2095 }
2096 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2097
2098 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2099                               const void *data, int offset, int len)
2100 {
2101         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2102
2103         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2104 }
2105 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2106
2107 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2108                     unsigned long len)
2109 {
2110         gfn_t gfn = gpa >> PAGE_SHIFT;
2111         int seg;
2112         int offset = offset_in_page(gpa);
2113         int ret;
2114
2115         while ((seg = next_segment(len, offset)) != 0) {
2116                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2117                 if (ret < 0)
2118                         return ret;
2119                 offset = 0;
2120                 len -= seg;
2121                 data += seg;
2122                 ++gfn;
2123         }
2124         return 0;
2125 }
2126 EXPORT_SYMBOL_GPL(kvm_write_guest);
2127
2128 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2129                          unsigned long len)
2130 {
2131         gfn_t gfn = gpa >> PAGE_SHIFT;
2132         int seg;
2133         int offset = offset_in_page(gpa);
2134         int ret;
2135
2136         while ((seg = next_segment(len, offset)) != 0) {
2137                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2138                 if (ret < 0)
2139                         return ret;
2140                 offset = 0;
2141                 len -= seg;
2142                 data += seg;
2143                 ++gfn;
2144         }
2145         return 0;
2146 }
2147 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2148
2149 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2150                                        struct gfn_to_hva_cache *ghc,
2151                                        gpa_t gpa, unsigned long len)
2152 {
2153         int offset = offset_in_page(gpa);
2154         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2155         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2156         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2157         gfn_t nr_pages_avail;
2158         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2159
2160         ghc->gpa = gpa;
2161         ghc->generation = slots->generation;
2162         ghc->len = len;
2163         ghc->hva = KVM_HVA_ERR_BAD;
2164
2165         /*
2166          * If the requested region crosses two memslots, we still
2167          * verify that the entire region is valid here.
2168          */
2169         while (!r && start_gfn <= end_gfn) {
2170                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2171                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2172                                            &nr_pages_avail);
2173                 if (kvm_is_error_hva(ghc->hva))
2174                         r = -EFAULT;
2175                 start_gfn += nr_pages_avail;
2176         }
2177
2178         /* Use the slow path for cross page reads and writes. */
2179         if (!r && nr_pages_needed == 1)
2180                 ghc->hva += offset;
2181         else
2182                 ghc->memslot = NULL;
2183
2184         return r;
2185 }
2186
2187 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2188                               gpa_t gpa, unsigned long len)
2189 {
2190         struct kvm_memslots *slots = kvm_memslots(kvm);
2191         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2192 }
2193 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2194
2195 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2196                                   void *data, unsigned int offset,
2197                                   unsigned long len)
2198 {
2199         struct kvm_memslots *slots = kvm_memslots(kvm);
2200         int r;
2201         gpa_t gpa = ghc->gpa + offset;
2202
2203         BUG_ON(len + offset > ghc->len);
2204
2205         if (slots->generation != ghc->generation)
2206                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2207
2208         if (unlikely(!ghc->memslot))
2209                 return kvm_write_guest(kvm, gpa, data, len);
2210
2211         if (kvm_is_error_hva(ghc->hva))
2212                 return -EFAULT;
2213
2214         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2215         if (r)
2216                 return -EFAULT;
2217         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2218
2219         return 0;
2220 }
2221 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2222
2223 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2224                            void *data, unsigned long len)
2225 {
2226         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2227 }
2228 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2229
2230 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2231                            void *data, unsigned long len)
2232 {
2233         struct kvm_memslots *slots = kvm_memslots(kvm);
2234         int r;
2235
2236         BUG_ON(len > ghc->len);
2237
2238         if (slots->generation != ghc->generation)
2239                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2240
2241         if (unlikely(!ghc->memslot))
2242                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2243
2244         if (kvm_is_error_hva(ghc->hva))
2245                 return -EFAULT;
2246
2247         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2248         if (r)
2249                 return -EFAULT;
2250
2251         return 0;
2252 }
2253 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2254
2255 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2256 {
2257         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2258
2259         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2260 }
2261 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2262
2263 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2264 {
2265         gfn_t gfn = gpa >> PAGE_SHIFT;
2266         int seg;
2267         int offset = offset_in_page(gpa);
2268         int ret;
2269
2270         while ((seg = next_segment(len, offset)) != 0) {
2271                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2272                 if (ret < 0)
2273                         return ret;
2274                 offset = 0;
2275                 len -= seg;
2276                 ++gfn;
2277         }
2278         return 0;
2279 }
2280 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2281
2282 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2283                                     gfn_t gfn)
2284 {
2285         if (memslot && memslot->dirty_bitmap) {
2286                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2287
2288                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2289         }
2290 }
2291
2292 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2293 {
2294         struct kvm_memory_slot *memslot;
2295
2296         memslot = gfn_to_memslot(kvm, gfn);
2297         mark_page_dirty_in_slot(memslot, gfn);
2298 }
2299 EXPORT_SYMBOL_GPL(mark_page_dirty);
2300
2301 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2302 {
2303         struct kvm_memory_slot *memslot;
2304
2305         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2306         mark_page_dirty_in_slot(memslot, gfn);
2307 }
2308 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2309
2310 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2311 {
2312         if (!vcpu->sigset_active)
2313                 return;
2314
2315         /*
2316          * This does a lockless modification of ->real_blocked, which is fine
2317          * because, only current can change ->real_blocked and all readers of
2318          * ->real_blocked don't care as long ->real_blocked is always a subset
2319          * of ->blocked.
2320          */
2321         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2322 }
2323
2324 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2325 {
2326         if (!vcpu->sigset_active)
2327                 return;
2328
2329         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2330         sigemptyset(&current->real_blocked);
2331 }
2332
2333 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2334 {
2335         unsigned int old, val, grow, grow_start;
2336
2337         old = val = vcpu->halt_poll_ns;
2338         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2339         grow = READ_ONCE(halt_poll_ns_grow);
2340         if (!grow)
2341                 goto out;
2342
2343         val *= grow;
2344         if (val < grow_start)
2345                 val = grow_start;
2346
2347         if (val > halt_poll_ns)
2348                 val = halt_poll_ns;
2349
2350         vcpu->halt_poll_ns = val;
2351 out:
2352         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2353 }
2354
2355 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2356 {
2357         unsigned int old, val, shrink;
2358
2359         old = val = vcpu->halt_poll_ns;
2360         shrink = READ_ONCE(halt_poll_ns_shrink);
2361         if (shrink == 0)
2362                 val = 0;
2363         else
2364                 val /= shrink;
2365
2366         vcpu->halt_poll_ns = val;
2367         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2368 }
2369
2370 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2371 {
2372         int ret = -EINTR;
2373         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2374
2375         if (kvm_arch_vcpu_runnable(vcpu)) {
2376                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2377                 goto out;
2378         }
2379         if (kvm_cpu_has_pending_timer(vcpu))
2380                 goto out;
2381         if (signal_pending(current))
2382                 goto out;
2383
2384         ret = 0;
2385 out:
2386         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2387         return ret;
2388 }
2389
2390 /*
2391  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2392  */
2393 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2394 {
2395         ktime_t start, cur;
2396         DECLARE_SWAITQUEUE(wait);
2397         bool waited = false;
2398         u64 block_ns;
2399
2400         kvm_arch_vcpu_blocking(vcpu);
2401
2402         start = cur = ktime_get();
2403         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2404                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2405
2406                 ++vcpu->stat.halt_attempted_poll;
2407                 do {
2408                         /*
2409                          * This sets KVM_REQ_UNHALT if an interrupt
2410                          * arrives.
2411                          */
2412                         if (kvm_vcpu_check_block(vcpu) < 0) {
2413                                 ++vcpu->stat.halt_successful_poll;
2414                                 if (!vcpu_valid_wakeup(vcpu))
2415                                         ++vcpu->stat.halt_poll_invalid;
2416                                 goto out;
2417                         }
2418                         cur = ktime_get();
2419                 } while (single_task_running() && ktime_before(cur, stop));
2420         }
2421
2422         for (;;) {
2423                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2424
2425                 if (kvm_vcpu_check_block(vcpu) < 0)
2426                         break;
2427
2428                 waited = true;
2429                 schedule();
2430         }
2431
2432         finish_swait(&vcpu->wq, &wait);
2433         cur = ktime_get();
2434 out:
2435         kvm_arch_vcpu_unblocking(vcpu);
2436         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2437
2438         if (!kvm_arch_no_poll(vcpu)) {
2439                 if (!vcpu_valid_wakeup(vcpu)) {
2440                         shrink_halt_poll_ns(vcpu);
2441                 } else if (halt_poll_ns) {
2442                         if (block_ns <= vcpu->halt_poll_ns)
2443                                 ;
2444                         /* we had a long block, shrink polling */
2445                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2446                                 shrink_halt_poll_ns(vcpu);
2447                         /* we had a short halt and our poll time is too small */
2448                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2449                                 block_ns < halt_poll_ns)
2450                                 grow_halt_poll_ns(vcpu);
2451                 } else {
2452                         vcpu->halt_poll_ns = 0;
2453                 }
2454         }
2455
2456         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2457         kvm_arch_vcpu_block_finish(vcpu);
2458 }
2459 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2460
2461 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2462 {
2463         struct swait_queue_head *wqp;
2464
2465         wqp = kvm_arch_vcpu_wq(vcpu);
2466         if (swq_has_sleeper(wqp)) {
2467                 swake_up_one(wqp);
2468                 WRITE_ONCE(vcpu->ready, true);
2469                 ++vcpu->stat.halt_wakeup;
2470                 return true;
2471         }
2472
2473         return false;
2474 }
2475 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2476
2477 #ifndef CONFIG_S390
2478 /*
2479  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2480  */
2481 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2482 {
2483         int me;
2484         int cpu = vcpu->cpu;
2485
2486         if (kvm_vcpu_wake_up(vcpu))
2487                 return;
2488
2489         me = get_cpu();
2490         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2491                 if (kvm_arch_vcpu_should_kick(vcpu))
2492                         smp_send_reschedule(cpu);
2493         put_cpu();
2494 }
2495 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2496 #endif /* !CONFIG_S390 */
2497
2498 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2499 {
2500         struct pid *pid;
2501         struct task_struct *task = NULL;
2502         int ret = 0;
2503
2504         rcu_read_lock();
2505         pid = rcu_dereference(target->pid);
2506         if (pid)
2507                 task = get_pid_task(pid, PIDTYPE_PID);
2508         rcu_read_unlock();
2509         if (!task)
2510                 return ret;
2511         ret = yield_to(task, 1);
2512         put_task_struct(task);
2513
2514         return ret;
2515 }
2516 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2517
2518 /*
2519  * Helper that checks whether a VCPU is eligible for directed yield.
2520  * Most eligible candidate to yield is decided by following heuristics:
2521  *
2522  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2523  *  (preempted lock holder), indicated by @in_spin_loop.
2524  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2525  *
2526  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2527  *  chance last time (mostly it has become eligible now since we have probably
2528  *  yielded to lockholder in last iteration. This is done by toggling
2529  *  @dy_eligible each time a VCPU checked for eligibility.)
2530  *
2531  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2532  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2533  *  burning. Giving priority for a potential lock-holder increases lock
2534  *  progress.
2535  *
2536  *  Since algorithm is based on heuristics, accessing another VCPU data without
2537  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2538  *  and continue with next VCPU and so on.
2539  */
2540 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2541 {
2542 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2543         bool eligible;
2544
2545         eligible = !vcpu->spin_loop.in_spin_loop ||
2546                     vcpu->spin_loop.dy_eligible;
2547
2548         if (vcpu->spin_loop.in_spin_loop)
2549                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2550
2551         return eligible;
2552 #else
2553         return true;
2554 #endif
2555 }
2556
2557 /*
2558  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2559  * a vcpu_load/vcpu_put pair.  However, for most architectures
2560  * kvm_arch_vcpu_runnable does not require vcpu_load.
2561  */
2562 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2563 {
2564         return kvm_arch_vcpu_runnable(vcpu);
2565 }
2566
2567 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2568 {
2569         if (kvm_arch_dy_runnable(vcpu))
2570                 return true;
2571
2572 #ifdef CONFIG_KVM_ASYNC_PF
2573         if (!list_empty_careful(&vcpu->async_pf.done))
2574                 return true;
2575 #endif
2576
2577         return false;
2578 }
2579
2580 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2581 {
2582         struct kvm *kvm = me->kvm;
2583         struct kvm_vcpu *vcpu;
2584         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2585         int yielded = 0;
2586         int try = 3;
2587         int pass;
2588         int i;
2589
2590         kvm_vcpu_set_in_spin_loop(me, true);
2591         /*
2592          * We boost the priority of a VCPU that is runnable but not
2593          * currently running, because it got preempted by something
2594          * else and called schedule in __vcpu_run.  Hopefully that
2595          * VCPU is holding the lock that we need and will release it.
2596          * We approximate round-robin by starting at the last boosted VCPU.
2597          */
2598         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2599                 kvm_for_each_vcpu(i, vcpu, kvm) {
2600                         if (!pass && i <= last_boosted_vcpu) {
2601                                 i = last_boosted_vcpu;
2602                                 continue;
2603                         } else if (pass && i > last_boosted_vcpu)
2604                                 break;
2605                         if (!READ_ONCE(vcpu->ready))
2606                                 continue;
2607                         if (vcpu == me)
2608                                 continue;
2609                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2610                                 continue;
2611                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2612                                 !kvm_arch_vcpu_in_kernel(vcpu))
2613                                 continue;
2614                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2615                                 continue;
2616
2617                         yielded = kvm_vcpu_yield_to(vcpu);
2618                         if (yielded > 0) {
2619                                 kvm->last_boosted_vcpu = i;
2620                                 break;
2621                         } else if (yielded < 0) {
2622                                 try--;
2623                                 if (!try)
2624                                         break;
2625                         }
2626                 }
2627         }
2628         kvm_vcpu_set_in_spin_loop(me, false);
2629
2630         /* Ensure vcpu is not eligible during next spinloop */
2631         kvm_vcpu_set_dy_eligible(me, false);
2632 }
2633 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2634
2635 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2636 {
2637         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2638         struct page *page;
2639
2640         if (vmf->pgoff == 0)
2641                 page = virt_to_page(vcpu->run);
2642 #ifdef CONFIG_X86
2643         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2644                 page = virt_to_page(vcpu->arch.pio_data);
2645 #endif
2646 #ifdef CONFIG_KVM_MMIO
2647         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2648                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2649 #endif
2650         else
2651                 return kvm_arch_vcpu_fault(vcpu, vmf);
2652         get_page(page);
2653         vmf->page = page;
2654         return 0;
2655 }
2656
2657 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2658         .fault = kvm_vcpu_fault,
2659 };
2660
2661 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2662 {
2663         vma->vm_ops = &kvm_vcpu_vm_ops;
2664         return 0;
2665 }
2666
2667 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2668 {
2669         struct kvm_vcpu *vcpu = filp->private_data;
2670
2671         debugfs_remove_recursive(vcpu->debugfs_dentry);
2672         kvm_put_kvm(vcpu->kvm);
2673         return 0;
2674 }
2675
2676 static struct file_operations kvm_vcpu_fops = {
2677         .release        = kvm_vcpu_release,
2678         .unlocked_ioctl = kvm_vcpu_ioctl,
2679         .mmap           = kvm_vcpu_mmap,
2680         .llseek         = noop_llseek,
2681         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2682 };
2683
2684 /*
2685  * Allocates an inode for the vcpu.
2686  */
2687 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2688 {
2689         char name[8 + 1 + ITOA_MAX_LEN + 1];
2690
2691         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2692         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2693 }
2694
2695 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2696 {
2697 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2698         char dir_name[ITOA_MAX_LEN * 2];
2699
2700         if (!debugfs_initialized())
2701                 return;
2702
2703         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2704         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2705                                                   vcpu->kvm->debugfs_dentry);
2706
2707         kvm_arch_create_vcpu_debugfs(vcpu);
2708 #endif
2709 }
2710
2711 /*
2712  * Creates some virtual cpus.  Good luck creating more than one.
2713  */
2714 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2715 {
2716         int r;
2717         struct kvm_vcpu *vcpu;
2718
2719         if (id >= KVM_MAX_VCPU_ID)
2720                 return -EINVAL;
2721
2722         mutex_lock(&kvm->lock);
2723         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2724                 mutex_unlock(&kvm->lock);
2725                 return -EINVAL;
2726         }
2727
2728         kvm->created_vcpus++;
2729         mutex_unlock(&kvm->lock);
2730
2731         vcpu = kvm_arch_vcpu_create(kvm, id);
2732         if (IS_ERR(vcpu)) {
2733                 r = PTR_ERR(vcpu);
2734                 goto vcpu_decrement;
2735         }
2736
2737         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2738
2739         r = kvm_arch_vcpu_setup(vcpu);
2740         if (r)
2741                 goto vcpu_destroy;
2742
2743         kvm_create_vcpu_debugfs(vcpu);
2744
2745         mutex_lock(&kvm->lock);
2746         if (kvm_get_vcpu_by_id(kvm, id)) {
2747                 r = -EEXIST;
2748                 goto unlock_vcpu_destroy;
2749         }
2750
2751         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2752         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2753
2754         /* Now it's all set up, let userspace reach it */
2755         kvm_get_kvm(kvm);
2756         r = create_vcpu_fd(vcpu);
2757         if (r < 0) {
2758                 kvm_put_kvm_no_destroy(kvm);
2759                 goto unlock_vcpu_destroy;
2760         }
2761
2762         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2763
2764         /*
2765          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2766          * before kvm->online_vcpu's incremented value.
2767          */
2768         smp_wmb();
2769         atomic_inc(&kvm->online_vcpus);
2770
2771         mutex_unlock(&kvm->lock);
2772         kvm_arch_vcpu_postcreate(vcpu);
2773         return r;
2774
2775 unlock_vcpu_destroy:
2776         mutex_unlock(&kvm->lock);
2777         debugfs_remove_recursive(vcpu->debugfs_dentry);
2778 vcpu_destroy:
2779         kvm_arch_vcpu_destroy(vcpu);
2780 vcpu_decrement:
2781         mutex_lock(&kvm->lock);
2782         kvm->created_vcpus--;
2783         mutex_unlock(&kvm->lock);
2784         return r;
2785 }
2786
2787 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2788 {
2789         if (sigset) {
2790                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2791                 vcpu->sigset_active = 1;
2792                 vcpu->sigset = *sigset;
2793         } else
2794                 vcpu->sigset_active = 0;
2795         return 0;
2796 }
2797
2798 static long kvm_vcpu_ioctl(struct file *filp,
2799                            unsigned int ioctl, unsigned long arg)
2800 {
2801         struct kvm_vcpu *vcpu = filp->private_data;
2802         void __user *argp = (void __user *)arg;
2803         int r;
2804         struct kvm_fpu *fpu = NULL;
2805         struct kvm_sregs *kvm_sregs = NULL;
2806
2807         if (vcpu->kvm->mm != current->mm)
2808                 return -EIO;
2809
2810         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2811                 return -EINVAL;
2812
2813         /*
2814          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2815          * execution; mutex_lock() would break them.
2816          */
2817         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2818         if (r != -ENOIOCTLCMD)
2819                 return r;
2820
2821         if (mutex_lock_killable(&vcpu->mutex))
2822                 return -EINTR;
2823         switch (ioctl) {
2824         case KVM_RUN: {
2825                 struct pid *oldpid;
2826                 r = -EINVAL;
2827                 if (arg)
2828                         goto out;
2829                 oldpid = rcu_access_pointer(vcpu->pid);
2830                 if (unlikely(oldpid != task_pid(current))) {
2831                         /* The thread running this VCPU changed. */
2832                         struct pid *newpid;
2833
2834                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2835                         if (r)
2836                                 break;
2837
2838                         newpid = get_task_pid(current, PIDTYPE_PID);
2839                         rcu_assign_pointer(vcpu->pid, newpid);
2840                         if (oldpid)
2841                                 synchronize_rcu();
2842                         put_pid(oldpid);
2843                 }
2844                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2845                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2846                 break;
2847         }
2848         case KVM_GET_REGS: {
2849                 struct kvm_regs *kvm_regs;
2850
2851                 r = -ENOMEM;
2852                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2853                 if (!kvm_regs)
2854                         goto out;
2855                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2856                 if (r)
2857                         goto out_free1;
2858                 r = -EFAULT;
2859                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2860                         goto out_free1;
2861                 r = 0;
2862 out_free1:
2863                 kfree(kvm_regs);
2864                 break;
2865         }
2866         case KVM_SET_REGS: {
2867                 struct kvm_regs *kvm_regs;
2868
2869                 r = -ENOMEM;
2870                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2871                 if (IS_ERR(kvm_regs)) {
2872                         r = PTR_ERR(kvm_regs);
2873                         goto out;
2874                 }
2875                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2876                 kfree(kvm_regs);
2877                 break;
2878         }
2879         case KVM_GET_SREGS: {
2880                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2881                                     GFP_KERNEL_ACCOUNT);
2882                 r = -ENOMEM;
2883                 if (!kvm_sregs)
2884                         goto out;
2885                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2886                 if (r)
2887                         goto out;
2888                 r = -EFAULT;
2889                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2890                         goto out;
2891                 r = 0;
2892                 break;
2893         }
2894         case KVM_SET_SREGS: {
2895                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2896                 if (IS_ERR(kvm_sregs)) {
2897                         r = PTR_ERR(kvm_sregs);
2898                         kvm_sregs = NULL;
2899                         goto out;
2900                 }
2901                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2902                 break;
2903         }
2904         case KVM_GET_MP_STATE: {
2905                 struct kvm_mp_state mp_state;
2906
2907                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2908                 if (r)
2909                         goto out;
2910                 r = -EFAULT;
2911                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2912                         goto out;
2913                 r = 0;
2914                 break;
2915         }
2916         case KVM_SET_MP_STATE: {
2917                 struct kvm_mp_state mp_state;
2918
2919                 r = -EFAULT;
2920                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2921                         goto out;
2922                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2923                 break;
2924         }
2925         case KVM_TRANSLATE: {
2926                 struct kvm_translation tr;
2927
2928                 r = -EFAULT;
2929                 if (copy_from_user(&tr, argp, sizeof(tr)))
2930                         goto out;
2931                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2932                 if (r)
2933                         goto out;
2934                 r = -EFAULT;
2935                 if (copy_to_user(argp, &tr, sizeof(tr)))
2936                         goto out;
2937                 r = 0;
2938                 break;
2939         }
2940         case KVM_SET_GUEST_DEBUG: {
2941                 struct kvm_guest_debug dbg;
2942
2943                 r = -EFAULT;
2944                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2945                         goto out;
2946                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2947                 break;
2948         }
2949         case KVM_SET_SIGNAL_MASK: {
2950                 struct kvm_signal_mask __user *sigmask_arg = argp;
2951                 struct kvm_signal_mask kvm_sigmask;
2952                 sigset_t sigset, *p;
2953
2954                 p = NULL;
2955                 if (argp) {
2956                         r = -EFAULT;
2957                         if (copy_from_user(&kvm_sigmask, argp,
2958                                            sizeof(kvm_sigmask)))
2959                                 goto out;
2960                         r = -EINVAL;
2961                         if (kvm_sigmask.len != sizeof(sigset))
2962                                 goto out;
2963                         r = -EFAULT;
2964                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2965                                            sizeof(sigset)))
2966                                 goto out;
2967                         p = &sigset;
2968                 }
2969                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2970                 break;
2971         }
2972         case KVM_GET_FPU: {
2973                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2974                 r = -ENOMEM;
2975                 if (!fpu)
2976                         goto out;
2977                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2978                 if (r)
2979                         goto out;
2980                 r = -EFAULT;
2981                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2982                         goto out;
2983                 r = 0;
2984                 break;
2985         }
2986         case KVM_SET_FPU: {
2987                 fpu = memdup_user(argp, sizeof(*fpu));
2988                 if (IS_ERR(fpu)) {
2989                         r = PTR_ERR(fpu);
2990                         fpu = NULL;
2991                         goto out;
2992                 }
2993                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2994                 break;
2995         }
2996         default:
2997                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2998         }
2999 out:
3000         mutex_unlock(&vcpu->mutex);
3001         kfree(fpu);
3002         kfree(kvm_sregs);
3003         return r;
3004 }
3005
3006 #ifdef CONFIG_KVM_COMPAT
3007 static long kvm_vcpu_compat_ioctl(struct file *filp,
3008                                   unsigned int ioctl, unsigned long arg)
3009 {
3010         struct kvm_vcpu *vcpu = filp->private_data;
3011         void __user *argp = compat_ptr(arg);
3012         int r;
3013
3014         if (vcpu->kvm->mm != current->mm)
3015                 return -EIO;
3016
3017         switch (ioctl) {
3018         case KVM_SET_SIGNAL_MASK: {
3019                 struct kvm_signal_mask __user *sigmask_arg = argp;
3020                 struct kvm_signal_mask kvm_sigmask;
3021                 sigset_t sigset;
3022
3023                 if (argp) {
3024                         r = -EFAULT;
3025                         if (copy_from_user(&kvm_sigmask, argp,
3026                                            sizeof(kvm_sigmask)))
3027                                 goto out;
3028                         r = -EINVAL;
3029                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3030                                 goto out;
3031                         r = -EFAULT;
3032                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3033                                 goto out;
3034                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3035                 } else
3036                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3037                 break;
3038         }
3039         default:
3040                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3041         }
3042
3043 out:
3044         return r;
3045 }
3046 #endif
3047
3048 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3049 {
3050         struct kvm_device *dev = filp->private_data;
3051
3052         if (dev->ops->mmap)
3053                 return dev->ops->mmap(dev, vma);
3054
3055         return -ENODEV;
3056 }
3057
3058 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3059                                  int (*accessor)(struct kvm_device *dev,
3060                                                  struct kvm_device_attr *attr),
3061                                  unsigned long arg)
3062 {
3063         struct kvm_device_attr attr;
3064
3065         if (!accessor)
3066                 return -EPERM;
3067
3068         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3069                 return -EFAULT;
3070
3071         return accessor(dev, &attr);
3072 }
3073
3074 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3075                              unsigned long arg)
3076 {
3077         struct kvm_device *dev = filp->private_data;
3078
3079         if (dev->kvm->mm != current->mm)
3080                 return -EIO;
3081
3082         switch (ioctl) {
3083         case KVM_SET_DEVICE_ATTR:
3084                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3085         case KVM_GET_DEVICE_ATTR:
3086                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3087         case KVM_HAS_DEVICE_ATTR:
3088                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3089         default:
3090                 if (dev->ops->ioctl)
3091                         return dev->ops->ioctl(dev, ioctl, arg);
3092
3093                 return -ENOTTY;
3094         }
3095 }
3096
3097 static int kvm_device_release(struct inode *inode, struct file *filp)
3098 {
3099         struct kvm_device *dev = filp->private_data;
3100         struct kvm *kvm = dev->kvm;
3101
3102         if (dev->ops->release) {
3103                 mutex_lock(&kvm->lock);
3104                 list_del(&dev->vm_node);
3105                 dev->ops->release(dev);
3106                 mutex_unlock(&kvm->lock);
3107         }
3108
3109         kvm_put_kvm(kvm);
3110         return 0;
3111 }
3112
3113 static const struct file_operations kvm_device_fops = {
3114         .unlocked_ioctl = kvm_device_ioctl,
3115         .release = kvm_device_release,
3116         KVM_COMPAT(kvm_device_ioctl),
3117         .mmap = kvm_device_mmap,
3118 };
3119
3120 struct kvm_device *kvm_device_from_filp(struct file *filp)
3121 {
3122         if (filp->f_op != &kvm_device_fops)
3123                 return NULL;
3124
3125         return filp->private_data;
3126 }
3127
3128 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3129 #ifdef CONFIG_KVM_MPIC
3130         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3131         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3132 #endif
3133 };
3134
3135 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3136 {
3137         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3138                 return -ENOSPC;
3139
3140         if (kvm_device_ops_table[type] != NULL)
3141                 return -EEXIST;
3142
3143         kvm_device_ops_table[type] = ops;
3144         return 0;
3145 }
3146
3147 void kvm_unregister_device_ops(u32 type)
3148 {
3149         if (kvm_device_ops_table[type] != NULL)
3150                 kvm_device_ops_table[type] = NULL;
3151 }
3152
3153 static int kvm_ioctl_create_device(struct kvm *kvm,
3154                                    struct kvm_create_device *cd)
3155 {
3156         const struct kvm_device_ops *ops = NULL;
3157         struct kvm_device *dev;
3158         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3159         int type;
3160         int ret;
3161
3162         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3163                 return -ENODEV;
3164
3165         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3166         ops = kvm_device_ops_table[type];
3167         if (ops == NULL)
3168                 return -ENODEV;
3169
3170         if (test)
3171                 return 0;
3172
3173         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3174         if (!dev)
3175                 return -ENOMEM;
3176
3177         dev->ops = ops;
3178         dev->kvm = kvm;
3179
3180         mutex_lock(&kvm->lock);
3181         ret = ops->create(dev, type);
3182         if (ret < 0) {
3183                 mutex_unlock(&kvm->lock);
3184                 kfree(dev);
3185                 return ret;
3186         }
3187         list_add(&dev->vm_node, &kvm->devices);
3188         mutex_unlock(&kvm->lock);
3189
3190         if (ops->init)
3191                 ops->init(dev);
3192
3193         kvm_get_kvm(kvm);
3194         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3195         if (ret < 0) {
3196                 kvm_put_kvm_no_destroy(kvm);
3197                 mutex_lock(&kvm->lock);
3198                 list_del(&dev->vm_node);
3199                 mutex_unlock(&kvm->lock);
3200                 ops->destroy(dev);
3201                 return ret;
3202         }
3203
3204         cd->fd = ret;
3205         return 0;
3206 }
3207
3208 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3209 {
3210         switch (arg) {
3211         case KVM_CAP_USER_MEMORY:
3212         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3213         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3214         case KVM_CAP_INTERNAL_ERROR_DATA:
3215 #ifdef CONFIG_HAVE_KVM_MSI
3216         case KVM_CAP_SIGNAL_MSI:
3217 #endif
3218 #ifdef CONFIG_HAVE_KVM_IRQFD
3219         case KVM_CAP_IRQFD:
3220         case KVM_CAP_IRQFD_RESAMPLE:
3221 #endif
3222         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3223         case KVM_CAP_CHECK_EXTENSION_VM:
3224         case KVM_CAP_ENABLE_CAP_VM:
3225 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3226         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3227 #endif
3228                 return 1;
3229 #ifdef CONFIG_KVM_MMIO
3230         case KVM_CAP_COALESCED_MMIO:
3231                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3232         case KVM_CAP_COALESCED_PIO:
3233                 return 1;
3234 #endif
3235 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3236         case KVM_CAP_IRQ_ROUTING:
3237                 return KVM_MAX_IRQ_ROUTES;
3238 #endif
3239 #if KVM_ADDRESS_SPACE_NUM > 1
3240         case KVM_CAP_MULTI_ADDRESS_SPACE:
3241                 return KVM_ADDRESS_SPACE_NUM;
3242 #endif
3243         case KVM_CAP_NR_MEMSLOTS:
3244                 return KVM_USER_MEM_SLOTS;
3245         default:
3246                 break;
3247         }
3248         return kvm_vm_ioctl_check_extension(kvm, arg);
3249 }
3250
3251 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3252                                                   struct kvm_enable_cap *cap)
3253 {
3254         return -EINVAL;
3255 }
3256
3257 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3258                                            struct kvm_enable_cap *cap)
3259 {
3260         switch (cap->cap) {
3261 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3262         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3263                 if (cap->flags || (cap->args[0] & ~1))
3264                         return -EINVAL;
3265                 kvm->manual_dirty_log_protect = cap->args[0];
3266                 return 0;
3267 #endif
3268         default:
3269                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3270         }
3271 }
3272
3273 static long kvm_vm_ioctl(struct file *filp,
3274                            unsigned int ioctl, unsigned long arg)
3275 {
3276         struct kvm *kvm = filp->private_data;
3277         void __user *argp = (void __user *)arg;
3278         int r;
3279
3280         if (kvm->mm != current->mm)
3281                 return -EIO;
3282         switch (ioctl) {
3283         case KVM_CREATE_VCPU:
3284                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3285                 break;
3286         case KVM_ENABLE_CAP: {
3287                 struct kvm_enable_cap cap;
3288
3289                 r = -EFAULT;
3290                 if (copy_from_user(&cap, argp, sizeof(cap)))
3291                         goto out;
3292                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3293                 break;
3294         }
3295         case KVM_SET_USER_MEMORY_REGION: {
3296                 struct kvm_userspace_memory_region kvm_userspace_mem;
3297
3298                 r = -EFAULT;
3299                 if (copy_from_user(&kvm_userspace_mem, argp,
3300                                                 sizeof(kvm_userspace_mem)))
3301                         goto out;
3302
3303                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3304                 break;
3305         }
3306         case KVM_GET_DIRTY_LOG: {
3307                 struct kvm_dirty_log log;
3308
3309                 r = -EFAULT;
3310                 if (copy_from_user(&log, argp, sizeof(log)))
3311                         goto out;
3312                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3313                 break;
3314         }
3315 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3316         case KVM_CLEAR_DIRTY_LOG: {
3317                 struct kvm_clear_dirty_log log;
3318
3319                 r = -EFAULT;
3320                 if (copy_from_user(&log, argp, sizeof(log)))
3321                         goto out;
3322                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3323                 break;
3324         }
3325 #endif
3326 #ifdef CONFIG_KVM_MMIO
3327         case KVM_REGISTER_COALESCED_MMIO: {
3328                 struct kvm_coalesced_mmio_zone zone;
3329
3330                 r = -EFAULT;
3331                 if (copy_from_user(&zone, argp, sizeof(zone)))
3332                         goto out;
3333                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3334                 break;
3335         }
3336         case KVM_UNREGISTER_COALESCED_MMIO: {
3337                 struct kvm_coalesced_mmio_zone zone;
3338
3339                 r = -EFAULT;
3340                 if (copy_from_user(&zone, argp, sizeof(zone)))
3341                         goto out;
3342                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3343                 break;
3344         }
3345 #endif
3346         case KVM_IRQFD: {
3347                 struct kvm_irqfd data;
3348
3349                 r = -EFAULT;
3350                 if (copy_from_user(&data, argp, sizeof(data)))
3351                         goto out;
3352                 r = kvm_irqfd(kvm, &data);
3353                 break;
3354         }
3355         case KVM_IOEVENTFD: {
3356                 struct kvm_ioeventfd data;
3357
3358                 r = -EFAULT;
3359                 if (copy_from_user(&data, argp, sizeof(data)))
3360                         goto out;
3361                 r = kvm_ioeventfd(kvm, &data);
3362                 break;
3363         }
3364 #ifdef CONFIG_HAVE_KVM_MSI
3365         case KVM_SIGNAL_MSI: {
3366                 struct kvm_msi msi;
3367
3368                 r = -EFAULT;
3369                 if (copy_from_user(&msi, argp, sizeof(msi)))
3370                         goto out;
3371                 r = kvm_send_userspace_msi(kvm, &msi);
3372                 break;
3373         }
3374 #endif
3375 #ifdef __KVM_HAVE_IRQ_LINE
3376         case KVM_IRQ_LINE_STATUS:
3377         case KVM_IRQ_LINE: {
3378                 struct kvm_irq_level irq_event;
3379
3380                 r = -EFAULT;
3381                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3382                         goto out;
3383
3384                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3385                                         ioctl == KVM_IRQ_LINE_STATUS);
3386                 if (r)
3387                         goto out;
3388
3389                 r = -EFAULT;
3390                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3391                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3392                                 goto out;
3393                 }
3394
3395                 r = 0;
3396                 break;
3397         }
3398 #endif
3399 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3400         case KVM_SET_GSI_ROUTING: {
3401                 struct kvm_irq_routing routing;
3402                 struct kvm_irq_routing __user *urouting;
3403                 struct kvm_irq_routing_entry *entries = NULL;
3404
3405                 r = -EFAULT;
3406                 if (copy_from_user(&routing, argp, sizeof(routing)))
3407                         goto out;
3408                 r = -EINVAL;
3409                 if (!kvm_arch_can_set_irq_routing(kvm))
3410                         goto out;
3411                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3412                         goto out;
3413                 if (routing.flags)
3414                         goto out;
3415                 if (routing.nr) {
3416                         r = -ENOMEM;
3417                         entries = vmalloc(array_size(sizeof(*entries),
3418                                                      routing.nr));
3419                         if (!entries)
3420                                 goto out;
3421                         r = -EFAULT;
3422                         urouting = argp;
3423                         if (copy_from_user(entries, urouting->entries,
3424                                            routing.nr * sizeof(*entries)))
3425                                 goto out_free_irq_routing;
3426                 }
3427                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3428                                         routing.flags);
3429 out_free_irq_routing:
3430                 vfree(entries);
3431                 break;
3432         }
3433 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3434         case KVM_CREATE_DEVICE: {
3435                 struct kvm_create_device cd;
3436
3437                 r = -EFAULT;
3438                 if (copy_from_user(&cd, argp, sizeof(cd)))
3439                         goto out;
3440
3441                 r = kvm_ioctl_create_device(kvm, &cd);
3442                 if (r)
3443                         goto out;
3444
3445                 r = -EFAULT;
3446                 if (copy_to_user(argp, &cd, sizeof(cd)))
3447                         goto out;
3448
3449                 r = 0;
3450                 break;
3451         }
3452         case KVM_CHECK_EXTENSION:
3453                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3454                 break;
3455         default:
3456                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3457         }
3458 out:
3459         return r;
3460 }
3461
3462 #ifdef CONFIG_KVM_COMPAT
3463 struct compat_kvm_dirty_log {
3464         __u32 slot;
3465         __u32 padding1;
3466         union {
3467                 compat_uptr_t dirty_bitmap; /* one bit per page */
3468                 __u64 padding2;
3469         };
3470 };
3471
3472 static long kvm_vm_compat_ioctl(struct file *filp,
3473                            unsigned int ioctl, unsigned long arg)
3474 {
3475         struct kvm *kvm = filp->private_data;
3476         int r;
3477
3478         if (kvm->mm != current->mm)
3479                 return -EIO;
3480         switch (ioctl) {
3481         case KVM_GET_DIRTY_LOG: {
3482                 struct compat_kvm_dirty_log compat_log;
3483                 struct kvm_dirty_log log;
3484
3485                 if (copy_from_user(&compat_log, (void __user *)arg,
3486                                    sizeof(compat_log)))
3487                         return -EFAULT;
3488                 log.slot         = compat_log.slot;
3489                 log.padding1     = compat_log.padding1;
3490                 log.padding2     = compat_log.padding2;
3491                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3492
3493                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3494                 break;
3495         }
3496         default:
3497                 r = kvm_vm_ioctl(filp, ioctl, arg);
3498         }
3499         return r;
3500 }
3501 #endif
3502
3503 static struct file_operations kvm_vm_fops = {
3504         .release        = kvm_vm_release,
3505         .unlocked_ioctl = kvm_vm_ioctl,
3506         .llseek         = noop_llseek,
3507         KVM_COMPAT(kvm_vm_compat_ioctl),
3508 };
3509
3510 static int kvm_dev_ioctl_create_vm(unsigned long type)
3511 {
3512         int r;
3513         struct kvm *kvm;
3514         struct file *file;
3515
3516         kvm = kvm_create_vm(type);
3517         if (IS_ERR(kvm))
3518                 return PTR_ERR(kvm);
3519 #ifdef CONFIG_KVM_MMIO
3520         r = kvm_coalesced_mmio_init(kvm);
3521         if (r < 0)
3522                 goto put_kvm;
3523 #endif
3524         r = get_unused_fd_flags(O_CLOEXEC);
3525         if (r < 0)
3526                 goto put_kvm;
3527
3528         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3529         if (IS_ERR(file)) {
3530                 put_unused_fd(r);
3531                 r = PTR_ERR(file);
3532                 goto put_kvm;
3533         }
3534
3535         /*
3536          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3537          * already set, with ->release() being kvm_vm_release().  In error
3538          * cases it will be called by the final fput(file) and will take
3539          * care of doing kvm_put_kvm(kvm).
3540          */
3541         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3542                 put_unused_fd(r);
3543                 fput(file);
3544                 return -ENOMEM;
3545         }
3546         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3547
3548         fd_install(r, file);
3549         return r;
3550
3551 put_kvm:
3552         kvm_put_kvm(kvm);
3553         return r;
3554 }
3555
3556 static long kvm_dev_ioctl(struct file *filp,
3557                           unsigned int ioctl, unsigned long arg)
3558 {
3559         long r = -EINVAL;
3560
3561         switch (ioctl) {
3562         case KVM_GET_API_VERSION:
3563                 if (arg)
3564                         goto out;
3565                 r = KVM_API_VERSION;
3566                 break;
3567         case KVM_CREATE_VM:
3568                 r = kvm_dev_ioctl_create_vm(arg);
3569                 break;
3570         case KVM_CHECK_EXTENSION:
3571                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3572                 break;
3573         case KVM_GET_VCPU_MMAP_SIZE:
3574                 if (arg)
3575                         goto out;
3576                 r = PAGE_SIZE;     /* struct kvm_run */
3577 #ifdef CONFIG_X86
3578                 r += PAGE_SIZE;    /* pio data page */
3579 #endif
3580 #ifdef CONFIG_KVM_MMIO
3581                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3582 #endif
3583                 break;
3584         case KVM_TRACE_ENABLE:
3585         case KVM_TRACE_PAUSE:
3586         case KVM_TRACE_DISABLE:
3587                 r = -EOPNOTSUPP;
3588                 break;
3589         default:
3590                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3591         }
3592 out:
3593         return r;
3594 }
3595
3596 static struct file_operations kvm_chardev_ops = {
3597         .unlocked_ioctl = kvm_dev_ioctl,
3598         .llseek         = noop_llseek,
3599         KVM_COMPAT(kvm_dev_ioctl),
3600 };
3601
3602 static struct miscdevice kvm_dev = {
3603         KVM_MINOR,
3604         "kvm",
3605         &kvm_chardev_ops,
3606 };
3607
3608 static void hardware_enable_nolock(void *junk)
3609 {
3610         int cpu = raw_smp_processor_id();
3611         int r;
3612
3613         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3614                 return;
3615
3616         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3617
3618         r = kvm_arch_hardware_enable();
3619
3620         if (r) {
3621                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3622                 atomic_inc(&hardware_enable_failed);
3623                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3624         }
3625 }
3626
3627 static int kvm_starting_cpu(unsigned int cpu)
3628 {
3629         raw_spin_lock(&kvm_count_lock);
3630         if (kvm_usage_count)
3631                 hardware_enable_nolock(NULL);
3632         raw_spin_unlock(&kvm_count_lock);
3633         return 0;
3634 }
3635
3636 static void hardware_disable_nolock(void *junk)
3637 {
3638         int cpu = raw_smp_processor_id();
3639
3640         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3641                 return;
3642         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3643         kvm_arch_hardware_disable();
3644 }
3645
3646 static int kvm_dying_cpu(unsigned int cpu)
3647 {
3648         raw_spin_lock(&kvm_count_lock);
3649         if (kvm_usage_count)
3650                 hardware_disable_nolock(NULL);
3651         raw_spin_unlock(&kvm_count_lock);
3652         return 0;
3653 }
3654
3655 static void hardware_disable_all_nolock(void)
3656 {
3657         BUG_ON(!kvm_usage_count);
3658
3659         kvm_usage_count--;
3660         if (!kvm_usage_count)
3661                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3662 }
3663
3664 static void hardware_disable_all(void)
3665 {
3666         raw_spin_lock(&kvm_count_lock);
3667         hardware_disable_all_nolock();
3668         raw_spin_unlock(&kvm_count_lock);
3669 }
3670
3671 static int hardware_enable_all(void)
3672 {
3673         int r = 0;
3674
3675         raw_spin_lock(&kvm_count_lock);
3676
3677         kvm_usage_count++;
3678         if (kvm_usage_count == 1) {
3679                 atomic_set(&hardware_enable_failed, 0);
3680                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3681
3682                 if (atomic_read(&hardware_enable_failed)) {
3683                         hardware_disable_all_nolock();
3684                         r = -EBUSY;
3685                 }
3686         }
3687
3688         raw_spin_unlock(&kvm_count_lock);
3689
3690         return r;
3691 }
3692
3693 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3694                       void *v)
3695 {
3696         /*
3697          * Some (well, at least mine) BIOSes hang on reboot if
3698          * in vmx root mode.
3699          *
3700          * And Intel TXT required VMX off for all cpu when system shutdown.
3701          */
3702         pr_info("kvm: exiting hardware virtualization\n");
3703         kvm_rebooting = true;
3704         on_each_cpu(hardware_disable_nolock, NULL, 1);
3705         return NOTIFY_OK;
3706 }
3707
3708 static struct notifier_block kvm_reboot_notifier = {
3709         .notifier_call = kvm_reboot,
3710         .priority = 0,
3711 };
3712
3713 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3714 {
3715         int i;
3716
3717         for (i = 0; i < bus->dev_count; i++) {
3718                 struct kvm_io_device *pos = bus->range[i].dev;
3719
3720                 kvm_iodevice_destructor(pos);
3721         }
3722         kfree(bus);
3723 }
3724
3725 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3726                                  const struct kvm_io_range *r2)
3727 {
3728         gpa_t addr1 = r1->addr;
3729         gpa_t addr2 = r2->addr;
3730
3731         if (addr1 < addr2)
3732                 return -1;
3733
3734         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3735          * accept any overlapping write.  Any order is acceptable for
3736          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3737          * we process all of them.
3738          */
3739         if (r2->len) {
3740                 addr1 += r1->len;
3741                 addr2 += r2->len;
3742         }
3743
3744         if (addr1 > addr2)
3745                 return 1;
3746
3747         return 0;
3748 }
3749
3750 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3751 {
3752         return kvm_io_bus_cmp(p1, p2);
3753 }
3754
3755 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3756                              gpa_t addr, int len)
3757 {
3758         struct kvm_io_range *range, key;
3759         int off;
3760
3761         key = (struct kvm_io_range) {
3762                 .addr = addr,
3763                 .len = len,
3764         };
3765
3766         range = bsearch(&key, bus->range, bus->dev_count,
3767                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3768         if (range == NULL)
3769                 return -ENOENT;
3770
3771         off = range - bus->range;
3772
3773         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3774                 off--;
3775
3776         return off;
3777 }
3778
3779 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3780                               struct kvm_io_range *range, const void *val)
3781 {
3782         int idx;
3783
3784         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3785         if (idx < 0)
3786                 return -EOPNOTSUPP;
3787
3788         while (idx < bus->dev_count &&
3789                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3790                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3791                                         range->len, val))
3792                         return idx;
3793                 idx++;
3794         }
3795
3796         return -EOPNOTSUPP;
3797 }
3798
3799 /* kvm_io_bus_write - called under kvm->slots_lock */
3800 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3801                      int len, const void *val)
3802 {
3803         struct kvm_io_bus *bus;
3804         struct kvm_io_range range;
3805         int r;
3806
3807         range = (struct kvm_io_range) {
3808                 .addr = addr,
3809                 .len = len,
3810         };
3811
3812         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3813         if (!bus)
3814                 return -ENOMEM;
3815         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3816         return r < 0 ? r : 0;
3817 }
3818 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3819
3820 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3821 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3822                             gpa_t addr, int len, const void *val, long cookie)
3823 {
3824         struct kvm_io_bus *bus;
3825         struct kvm_io_range range;
3826
3827         range = (struct kvm_io_range) {
3828                 .addr = addr,
3829                 .len = len,
3830         };
3831
3832         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3833         if (!bus)
3834                 return -ENOMEM;
3835
3836         /* First try the device referenced by cookie. */
3837         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3838             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3839                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3840                                         val))
3841                         return cookie;
3842
3843         /*
3844          * cookie contained garbage; fall back to search and return the
3845          * correct cookie value.
3846          */
3847         return __kvm_io_bus_write(vcpu, bus, &range, val);
3848 }
3849
3850 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3851                              struct kvm_io_range *range, void *val)
3852 {
3853         int idx;
3854
3855         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3856         if (idx < 0)
3857                 return -EOPNOTSUPP;
3858
3859         while (idx < bus->dev_count &&
3860                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3861                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3862                                        range->len, val))
3863                         return idx;
3864                 idx++;
3865         }
3866
3867         return -EOPNOTSUPP;
3868 }
3869
3870 /* kvm_io_bus_read - called under kvm->slots_lock */
3871 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3872                     int len, void *val)
3873 {
3874         struct kvm_io_bus *bus;
3875         struct kvm_io_range range;
3876         int r;
3877
3878         range = (struct kvm_io_range) {
3879                 .addr = addr,
3880                 .len = len,
3881         };
3882
3883         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3884         if (!bus)
3885                 return -ENOMEM;
3886         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3887         return r < 0 ? r : 0;
3888 }
3889
3890 /* Caller must hold slots_lock. */
3891 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3892                             int len, struct kvm_io_device *dev)
3893 {
3894         int i;
3895         struct kvm_io_bus *new_bus, *bus;
3896         struct kvm_io_range range;
3897
3898         bus = kvm_get_bus(kvm, bus_idx);
3899         if (!bus)
3900                 return -ENOMEM;
3901
3902         /* exclude ioeventfd which is limited by maximum fd */
3903         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3904                 return -ENOSPC;
3905
3906         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3907                           GFP_KERNEL_ACCOUNT);
3908         if (!new_bus)
3909                 return -ENOMEM;
3910
3911         range = (struct kvm_io_range) {
3912                 .addr = addr,
3913                 .len = len,
3914                 .dev = dev,
3915         };
3916
3917         for (i = 0; i < bus->dev_count; i++)
3918                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3919                         break;
3920
3921         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3922         new_bus->dev_count++;
3923         new_bus->range[i] = range;
3924         memcpy(new_bus->range + i + 1, bus->range + i,
3925                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3926         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3927         synchronize_srcu_expedited(&kvm->srcu);
3928         kfree(bus);
3929
3930         return 0;
3931 }
3932
3933 /* Caller must hold slots_lock. */
3934 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3935                                struct kvm_io_device *dev)
3936 {
3937         int i;
3938         struct kvm_io_bus *new_bus, *bus;
3939
3940         bus = kvm_get_bus(kvm, bus_idx);
3941         if (!bus)
3942                 return;
3943
3944         for (i = 0; i < bus->dev_count; i++)
3945                 if (bus->range[i].dev == dev) {
3946                         break;
3947                 }
3948
3949         if (i == bus->dev_count)
3950                 return;
3951
3952         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3953                           GFP_KERNEL_ACCOUNT);
3954         if (!new_bus)  {
3955                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3956                 goto broken;
3957         }
3958
3959         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3960         new_bus->dev_count--;
3961         memcpy(new_bus->range + i, bus->range + i + 1,
3962                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3963
3964 broken:
3965         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3966         synchronize_srcu_expedited(&kvm->srcu);
3967         kfree(bus);
3968         return;
3969 }
3970
3971 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3972                                          gpa_t addr)
3973 {
3974         struct kvm_io_bus *bus;
3975         int dev_idx, srcu_idx;
3976         struct kvm_io_device *iodev = NULL;
3977
3978         srcu_idx = srcu_read_lock(&kvm->srcu);
3979
3980         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3981         if (!bus)
3982                 goto out_unlock;
3983
3984         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3985         if (dev_idx < 0)
3986                 goto out_unlock;
3987
3988         iodev = bus->range[dev_idx].dev;
3989
3990 out_unlock:
3991         srcu_read_unlock(&kvm->srcu, srcu_idx);
3992
3993         return iodev;
3994 }
3995 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3996
3997 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3998                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3999                            const char *fmt)
4000 {
4001         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4002                                           inode->i_private;
4003
4004         /* The debugfs files are a reference to the kvm struct which
4005          * is still valid when kvm_destroy_vm is called.
4006          * To avoid the race between open and the removal of the debugfs
4007          * directory we test against the users count.
4008          */
4009         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4010                 return -ENOENT;
4011
4012         if (simple_attr_open(inode, file, get,
4013                              stat_data->mode & S_IWUGO ? set : NULL,
4014                              fmt)) {
4015                 kvm_put_kvm(stat_data->kvm);
4016                 return -ENOMEM;
4017         }
4018
4019         return 0;
4020 }
4021
4022 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4023 {
4024         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4025                                           inode->i_private;
4026
4027         simple_attr_release(inode, file);
4028         kvm_put_kvm(stat_data->kvm);
4029
4030         return 0;
4031 }
4032
4033 static int vm_stat_get_per_vm(void *data, u64 *val)
4034 {
4035         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4036
4037         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4038
4039         return 0;
4040 }
4041
4042 static int vm_stat_clear_per_vm(void *data, u64 val)
4043 {
4044         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4045
4046         if (val)
4047                 return -EINVAL;
4048
4049         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4050
4051         return 0;
4052 }
4053
4054 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4055 {
4056         __simple_attr_check_format("%llu\n", 0ull);
4057         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4058                                 vm_stat_clear_per_vm, "%llu\n");
4059 }
4060
4061 static const struct file_operations vm_stat_get_per_vm_fops = {
4062         .owner   = THIS_MODULE,
4063         .open    = vm_stat_get_per_vm_open,
4064         .release = kvm_debugfs_release,
4065         .read    = simple_attr_read,
4066         .write   = simple_attr_write,
4067         .llseek  = no_llseek,
4068 };
4069
4070 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4071 {
4072         int i;
4073         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4074         struct kvm_vcpu *vcpu;
4075
4076         *val = 0;
4077
4078         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4079                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4080
4081         return 0;
4082 }
4083
4084 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4085 {
4086         int i;
4087         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4088         struct kvm_vcpu *vcpu;
4089
4090         if (val)
4091                 return -EINVAL;
4092
4093         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4094                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4095
4096         return 0;
4097 }
4098
4099 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4100 {
4101         __simple_attr_check_format("%llu\n", 0ull);
4102         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4103                                  vcpu_stat_clear_per_vm, "%llu\n");
4104 }
4105
4106 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4107         .owner   = THIS_MODULE,
4108         .open    = vcpu_stat_get_per_vm_open,
4109         .release = kvm_debugfs_release,
4110         .read    = simple_attr_read,
4111         .write   = simple_attr_write,
4112         .llseek  = no_llseek,
4113 };
4114
4115 static const struct file_operations *stat_fops_per_vm[] = {
4116         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4117         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4118 };
4119
4120 static int vm_stat_get(void *_offset, u64 *val)
4121 {
4122         unsigned offset = (long)_offset;
4123         struct kvm *kvm;
4124         struct kvm_stat_data stat_tmp = {.offset = offset};
4125         u64 tmp_val;
4126
4127         *val = 0;
4128         mutex_lock(&kvm_lock);
4129         list_for_each_entry(kvm, &vm_list, vm_list) {
4130                 stat_tmp.kvm = kvm;
4131                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4132                 *val += tmp_val;
4133         }
4134         mutex_unlock(&kvm_lock);
4135         return 0;
4136 }
4137
4138 static int vm_stat_clear(void *_offset, u64 val)
4139 {
4140         unsigned offset = (long)_offset;
4141         struct kvm *kvm;
4142         struct kvm_stat_data stat_tmp = {.offset = offset};
4143
4144         if (val)
4145                 return -EINVAL;
4146
4147         mutex_lock(&kvm_lock);
4148         list_for_each_entry(kvm, &vm_list, vm_list) {
4149                 stat_tmp.kvm = kvm;
4150                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4151         }
4152         mutex_unlock(&kvm_lock);
4153
4154         return 0;
4155 }
4156
4157 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4158
4159 static int vcpu_stat_get(void *_offset, u64 *val)
4160 {
4161         unsigned offset = (long)_offset;
4162         struct kvm *kvm;
4163         struct kvm_stat_data stat_tmp = {.offset = offset};
4164         u64 tmp_val;
4165
4166         *val = 0;
4167         mutex_lock(&kvm_lock);
4168         list_for_each_entry(kvm, &vm_list, vm_list) {
4169                 stat_tmp.kvm = kvm;
4170                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4171                 *val += tmp_val;
4172         }
4173         mutex_unlock(&kvm_lock);
4174         return 0;
4175 }
4176
4177 static int vcpu_stat_clear(void *_offset, u64 val)
4178 {
4179         unsigned offset = (long)_offset;
4180         struct kvm *kvm;
4181         struct kvm_stat_data stat_tmp = {.offset = offset};
4182
4183         if (val)
4184                 return -EINVAL;
4185
4186         mutex_lock(&kvm_lock);
4187         list_for_each_entry(kvm, &vm_list, vm_list) {
4188                 stat_tmp.kvm = kvm;
4189                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4190         }
4191         mutex_unlock(&kvm_lock);
4192
4193         return 0;
4194 }
4195
4196 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4197                         "%llu\n");
4198
4199 static const struct file_operations *stat_fops[] = {
4200         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4201         [KVM_STAT_VM]   = &vm_stat_fops,
4202 };
4203
4204 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4205 {
4206         struct kobj_uevent_env *env;
4207         unsigned long long created, active;
4208
4209         if (!kvm_dev.this_device || !kvm)
4210                 return;
4211
4212         mutex_lock(&kvm_lock);
4213         if (type == KVM_EVENT_CREATE_VM) {
4214                 kvm_createvm_count++;
4215                 kvm_active_vms++;
4216         } else if (type == KVM_EVENT_DESTROY_VM) {
4217                 kvm_active_vms--;
4218         }
4219         created = kvm_createvm_count;
4220         active = kvm_active_vms;
4221         mutex_unlock(&kvm_lock);
4222
4223         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4224         if (!env)
4225                 return;
4226
4227         add_uevent_var(env, "CREATED=%llu", created);
4228         add_uevent_var(env, "COUNT=%llu", active);
4229
4230         if (type == KVM_EVENT_CREATE_VM) {
4231                 add_uevent_var(env, "EVENT=create");
4232                 kvm->userspace_pid = task_pid_nr(current);
4233         } else if (type == KVM_EVENT_DESTROY_VM) {
4234                 add_uevent_var(env, "EVENT=destroy");
4235         }
4236         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4237
4238         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4239                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4240
4241                 if (p) {
4242                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4243                         if (!IS_ERR(tmp))
4244                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4245                         kfree(p);
4246                 }
4247         }
4248         /* no need for checks, since we are adding at most only 5 keys */
4249         env->envp[env->envp_idx++] = NULL;
4250         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4251         kfree(env);
4252 }
4253
4254 static void kvm_init_debug(void)
4255 {
4256         struct kvm_stats_debugfs_item *p;
4257
4258         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4259
4260         kvm_debugfs_num_entries = 0;
4261         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4262                 int mode = p->mode ? p->mode : 0644;
4263                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4264                                     (void *)(long)p->offset,
4265                                     stat_fops[p->kind]);
4266         }
4267 }
4268
4269 static int kvm_suspend(void)
4270 {
4271         if (kvm_usage_count)
4272                 hardware_disable_nolock(NULL);
4273         return 0;
4274 }
4275
4276 static void kvm_resume(void)
4277 {
4278         if (kvm_usage_count) {
4279 #ifdef CONFIG_LOCKDEP
4280                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4281 #endif
4282                 hardware_enable_nolock(NULL);
4283         }
4284 }
4285
4286 static struct syscore_ops kvm_syscore_ops = {
4287         .suspend = kvm_suspend,
4288         .resume = kvm_resume,
4289 };
4290
4291 static inline
4292 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4293 {
4294         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4295 }
4296
4297 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4298 {
4299         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4300
4301         WRITE_ONCE(vcpu->preempted, false);
4302         WRITE_ONCE(vcpu->ready, false);
4303
4304         kvm_arch_sched_in(vcpu, cpu);
4305
4306         kvm_arch_vcpu_load(vcpu, cpu);
4307 }
4308
4309 static void kvm_sched_out(struct preempt_notifier *pn,
4310                           struct task_struct *next)
4311 {
4312         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4313
4314         if (current->state == TASK_RUNNING) {
4315                 WRITE_ONCE(vcpu->preempted, true);
4316                 WRITE_ONCE(vcpu->ready, true);
4317         }
4318         kvm_arch_vcpu_put(vcpu);
4319 }
4320
4321 static void check_processor_compat(void *rtn)
4322 {
4323         *(int *)rtn = kvm_arch_check_processor_compat();
4324 }
4325
4326 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4327                   struct module *module)
4328 {
4329         int r;
4330         int cpu;
4331
4332         r = kvm_arch_init(opaque);
4333         if (r)
4334                 goto out_fail;
4335
4336         /*
4337          * kvm_arch_init makes sure there's at most one caller
4338          * for architectures that support multiple implementations,
4339          * like intel and amd on x86.
4340          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4341          * conflicts in case kvm is already setup for another implementation.
4342          */
4343         r = kvm_irqfd_init();
4344         if (r)
4345                 goto out_irqfd;
4346
4347         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4348                 r = -ENOMEM;
4349                 goto out_free_0;
4350         }
4351
4352         r = kvm_arch_hardware_setup();
4353         if (r < 0)
4354                 goto out_free_1;
4355
4356         for_each_online_cpu(cpu) {
4357                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4358                 if (r < 0)
4359                         goto out_free_2;
4360         }
4361
4362         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4363                                       kvm_starting_cpu, kvm_dying_cpu);
4364         if (r)
4365                 goto out_free_2;
4366         register_reboot_notifier(&kvm_reboot_notifier);
4367
4368         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4369         if (!vcpu_align)
4370                 vcpu_align = __alignof__(struct kvm_vcpu);
4371         kvm_vcpu_cache =
4372                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4373                                            SLAB_ACCOUNT,
4374                                            offsetof(struct kvm_vcpu, arch),
4375                                            sizeof_field(struct kvm_vcpu, arch),
4376                                            NULL);
4377         if (!kvm_vcpu_cache) {
4378                 r = -ENOMEM;
4379                 goto out_free_3;
4380         }
4381
4382         r = kvm_async_pf_init();
4383         if (r)
4384                 goto out_free;
4385
4386         kvm_chardev_ops.owner = module;
4387         kvm_vm_fops.owner = module;
4388         kvm_vcpu_fops.owner = module;
4389
4390         r = misc_register(&kvm_dev);
4391         if (r) {
4392                 pr_err("kvm: misc device register failed\n");
4393                 goto out_unreg;
4394         }
4395
4396         register_syscore_ops(&kvm_syscore_ops);
4397
4398         kvm_preempt_ops.sched_in = kvm_sched_in;
4399         kvm_preempt_ops.sched_out = kvm_sched_out;
4400
4401         kvm_init_debug();
4402
4403         r = kvm_vfio_ops_init();
4404         WARN_ON(r);
4405
4406         return 0;
4407
4408 out_unreg:
4409         kvm_async_pf_deinit();
4410 out_free:
4411         kmem_cache_destroy(kvm_vcpu_cache);
4412 out_free_3:
4413         unregister_reboot_notifier(&kvm_reboot_notifier);
4414         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4415 out_free_2:
4416         kvm_arch_hardware_unsetup();
4417 out_free_1:
4418         free_cpumask_var(cpus_hardware_enabled);
4419 out_free_0:
4420         kvm_irqfd_exit();
4421 out_irqfd:
4422         kvm_arch_exit();
4423 out_fail:
4424         return r;
4425 }
4426 EXPORT_SYMBOL_GPL(kvm_init);
4427
4428 void kvm_exit(void)
4429 {
4430         debugfs_remove_recursive(kvm_debugfs_dir);
4431         misc_deregister(&kvm_dev);
4432         kmem_cache_destroy(kvm_vcpu_cache);
4433         kvm_async_pf_deinit();
4434         unregister_syscore_ops(&kvm_syscore_ops);
4435         unregister_reboot_notifier(&kvm_reboot_notifier);
4436         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4437         on_each_cpu(hardware_disable_nolock, NULL, 1);
4438         kvm_arch_hardware_unsetup();
4439         kvm_arch_exit();
4440         kvm_irqfd_exit();
4441         free_cpumask_var(cpus_hardware_enabled);
4442         kvm_vfio_ops_exit();
4443 }
4444 EXPORT_SYMBOL_GPL(kvm_exit);
4445
4446 struct kvm_vm_worker_thread_context {
4447         struct kvm *kvm;
4448         struct task_struct *parent;
4449         struct completion init_done;
4450         kvm_vm_thread_fn_t thread_fn;
4451         uintptr_t data;
4452         int err;
4453 };
4454
4455 static int kvm_vm_worker_thread(void *context)
4456 {
4457         /*
4458          * The init_context is allocated on the stack of the parent thread, so
4459          * we have to locally copy anything that is needed beyond initialization
4460          */
4461         struct kvm_vm_worker_thread_context *init_context = context;
4462         struct kvm *kvm = init_context->kvm;
4463         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4464         uintptr_t data = init_context->data;
4465         int err;
4466
4467         err = kthread_park(current);
4468         /* kthread_park(current) is never supposed to return an error */
4469         WARN_ON(err != 0);
4470         if (err)
4471                 goto init_complete;
4472
4473         err = cgroup_attach_task_all(init_context->parent, current);
4474         if (err) {
4475                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4476                         __func__, err);
4477                 goto init_complete;
4478         }
4479
4480         set_user_nice(current, task_nice(init_context->parent));
4481
4482 init_complete:
4483         init_context->err = err;
4484         complete(&init_context->init_done);
4485         init_context = NULL;
4486
4487         if (err)
4488                 return err;
4489
4490         /* Wait to be woken up by the spawner before proceeding. */
4491         kthread_parkme();
4492
4493         if (!kthread_should_stop())
4494                 err = thread_fn(kvm, data);
4495
4496         return err;
4497 }
4498
4499 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4500                                 uintptr_t data, const char *name,
4501                                 struct task_struct **thread_ptr)
4502 {
4503         struct kvm_vm_worker_thread_context init_context = {};
4504         struct task_struct *thread;
4505
4506         *thread_ptr = NULL;
4507         init_context.kvm = kvm;
4508         init_context.parent = current;
4509         init_context.thread_fn = thread_fn;
4510         init_context.data = data;
4511         init_completion(&init_context.init_done);
4512
4513         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4514                              "%s-%d", name, task_pid_nr(current));
4515         if (IS_ERR(thread))
4516                 return PTR_ERR(thread);
4517
4518         /* kthread_run is never supposed to return NULL */
4519         WARN_ON(thread == NULL);
4520
4521         wait_for_completion(&init_context.init_done);
4522
4523         if (!init_context.err)
4524                 *thread_ptr = thread;
4525
4526         return init_context.err;
4527 }