]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/kvm_main.c
KVM: Move running VCPU from ARM to common code
[linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 static bool largepages_enabled = true;
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                 unsigned long start, unsigned long end, bool blockable)
162 {
163         return 0;
164 }
165
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168         /*
169          * The metadata used by is_zone_device_page() to determine whether or
170          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171          * the device has been pinned, e.g. by get_user_pages().  WARN if the
172          * page_count() is zero to help detect bad usage of this helper.
173          */
174         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175                 return false;
176
177         return is_zone_device_page(pfn_to_page(pfn));
178 }
179
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182         /*
183          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184          * perspective they are "normal" pages, albeit with slightly different
185          * usage rules.
186          */
187         if (pfn_valid(pfn))
188                 return PageReserved(pfn_to_page(pfn)) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200
201         __this_cpu_write(kvm_running_vcpu, vcpu);
202         preempt_notifier_register(&vcpu->preempt_notifier);
203         kvm_arch_vcpu_load(vcpu, cpu);
204         put_cpu();
205 }
206 EXPORT_SYMBOL_GPL(vcpu_load);
207
208 void vcpu_put(struct kvm_vcpu *vcpu)
209 {
210         preempt_disable();
211         kvm_arch_vcpu_put(vcpu);
212         preempt_notifier_unregister(&vcpu->preempt_notifier);
213         __this_cpu_write(kvm_running_vcpu, NULL);
214         preempt_enable();
215 }
216 EXPORT_SYMBOL_GPL(vcpu_put);
217
218 /* TODO: merge with kvm_arch_vcpu_should_kick */
219 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
220 {
221         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
222
223         /*
224          * We need to wait for the VCPU to reenable interrupts and get out of
225          * READING_SHADOW_PAGE_TABLES mode.
226          */
227         if (req & KVM_REQUEST_WAIT)
228                 return mode != OUTSIDE_GUEST_MODE;
229
230         /*
231          * Need to kick a running VCPU, but otherwise there is nothing to do.
232          */
233         return mode == IN_GUEST_MODE;
234 }
235
236 static void ack_flush(void *_completed)
237 {
238 }
239
240 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
241 {
242         if (unlikely(!cpus))
243                 cpus = cpu_online_mask;
244
245         if (cpumask_empty(cpus))
246                 return false;
247
248         smp_call_function_many(cpus, ack_flush, NULL, wait);
249         return true;
250 }
251
252 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
253                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
254 {
255         int i, cpu, me;
256         struct kvm_vcpu *vcpu;
257         bool called;
258
259         me = get_cpu();
260
261         kvm_for_each_vcpu(i, vcpu, kvm) {
262                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
263                         continue;
264
265                 kvm_make_request(req, vcpu);
266                 cpu = vcpu->cpu;
267
268                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269                         continue;
270
271                 if (tmp != NULL && cpu != -1 && cpu != me &&
272                     kvm_request_needs_ipi(vcpu, req))
273                         __cpumask_set_cpu(cpu, tmp);
274         }
275
276         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
277         put_cpu();
278
279         return called;
280 }
281
282 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
283 {
284         cpumask_var_t cpus;
285         bool called;
286
287         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
288
289         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
290
291         free_cpumask_var(cpus);
292         return called;
293 }
294
295 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
296 void kvm_flush_remote_tlbs(struct kvm *kvm)
297 {
298         /*
299          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
300          * kvm_make_all_cpus_request.
301          */
302         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
303
304         /*
305          * We want to publish modifications to the page tables before reading
306          * mode. Pairs with a memory barrier in arch-specific code.
307          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
308          * and smp_mb in walk_shadow_page_lockless_begin/end.
309          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
310          *
311          * There is already an smp_mb__after_atomic() before
312          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
313          * barrier here.
314          */
315         if (!kvm_arch_flush_remote_tlb(kvm)
316             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
317                 ++kvm->stat.remote_tlb_flush;
318         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
319 }
320 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
321 #endif
322
323 void kvm_reload_remote_mmus(struct kvm *kvm)
324 {
325         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
326 }
327
328 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
329 {
330         mutex_init(&vcpu->mutex);
331         vcpu->cpu = -1;
332         vcpu->kvm = kvm;
333         vcpu->vcpu_id = id;
334         vcpu->pid = NULL;
335         init_swait_queue_head(&vcpu->wq);
336         kvm_async_pf_vcpu_init(vcpu);
337
338         vcpu->pre_pcpu = -1;
339         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340
341         kvm_vcpu_set_in_spin_loop(vcpu, false);
342         kvm_vcpu_set_dy_eligible(vcpu, false);
343         vcpu->preempted = false;
344         vcpu->ready = false;
345         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
346 }
347
348 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
349 {
350         kvm_arch_vcpu_destroy(vcpu);
351
352         /*
353          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
354          * the vcpu->pid pointer, and at destruction time all file descriptors
355          * are already gone.
356          */
357         put_pid(rcu_dereference_protected(vcpu->pid, 1));
358
359         free_page((unsigned long)vcpu->run);
360         kmem_cache_free(kvm_vcpu_cache, vcpu);
361 }
362 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
363
364 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
365 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
366 {
367         return container_of(mn, struct kvm, mmu_notifier);
368 }
369
370 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
371                                         struct mm_struct *mm,
372                                         unsigned long address,
373                                         pte_t pte)
374 {
375         struct kvm *kvm = mmu_notifier_to_kvm(mn);
376         int idx;
377
378         idx = srcu_read_lock(&kvm->srcu);
379         spin_lock(&kvm->mmu_lock);
380         kvm->mmu_notifier_seq++;
381
382         if (kvm_set_spte_hva(kvm, address, pte))
383                 kvm_flush_remote_tlbs(kvm);
384
385         spin_unlock(&kvm->mmu_lock);
386         srcu_read_unlock(&kvm->srcu, idx);
387 }
388
389 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
390                                         const struct mmu_notifier_range *range)
391 {
392         struct kvm *kvm = mmu_notifier_to_kvm(mn);
393         int need_tlb_flush = 0, idx;
394         int ret;
395
396         idx = srcu_read_lock(&kvm->srcu);
397         spin_lock(&kvm->mmu_lock);
398         /*
399          * The count increase must become visible at unlock time as no
400          * spte can be established without taking the mmu_lock and
401          * count is also read inside the mmu_lock critical section.
402          */
403         kvm->mmu_notifier_count++;
404         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
405         need_tlb_flush |= kvm->tlbs_dirty;
406         /* we've to flush the tlb before the pages can be freed */
407         if (need_tlb_flush)
408                 kvm_flush_remote_tlbs(kvm);
409
410         spin_unlock(&kvm->mmu_lock);
411
412         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
413                                         range->end,
414                                         mmu_notifier_range_blockable(range));
415
416         srcu_read_unlock(&kvm->srcu, idx);
417
418         return ret;
419 }
420
421 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
422                                         const struct mmu_notifier_range *range)
423 {
424         struct kvm *kvm = mmu_notifier_to_kvm(mn);
425
426         spin_lock(&kvm->mmu_lock);
427         /*
428          * This sequence increase will notify the kvm page fault that
429          * the page that is going to be mapped in the spte could have
430          * been freed.
431          */
432         kvm->mmu_notifier_seq++;
433         smp_wmb();
434         /*
435          * The above sequence increase must be visible before the
436          * below count decrease, which is ensured by the smp_wmb above
437          * in conjunction with the smp_rmb in mmu_notifier_retry().
438          */
439         kvm->mmu_notifier_count--;
440         spin_unlock(&kvm->mmu_lock);
441
442         BUG_ON(kvm->mmu_notifier_count < 0);
443 }
444
445 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
446                                               struct mm_struct *mm,
447                                               unsigned long start,
448                                               unsigned long end)
449 {
450         struct kvm *kvm = mmu_notifier_to_kvm(mn);
451         int young, idx;
452
453         idx = srcu_read_lock(&kvm->srcu);
454         spin_lock(&kvm->mmu_lock);
455
456         young = kvm_age_hva(kvm, start, end);
457         if (young)
458                 kvm_flush_remote_tlbs(kvm);
459
460         spin_unlock(&kvm->mmu_lock);
461         srcu_read_unlock(&kvm->srcu, idx);
462
463         return young;
464 }
465
466 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
467                                         struct mm_struct *mm,
468                                         unsigned long start,
469                                         unsigned long end)
470 {
471         struct kvm *kvm = mmu_notifier_to_kvm(mn);
472         int young, idx;
473
474         idx = srcu_read_lock(&kvm->srcu);
475         spin_lock(&kvm->mmu_lock);
476         /*
477          * Even though we do not flush TLB, this will still adversely
478          * affect performance on pre-Haswell Intel EPT, where there is
479          * no EPT Access Bit to clear so that we have to tear down EPT
480          * tables instead. If we find this unacceptable, we can always
481          * add a parameter to kvm_age_hva so that it effectively doesn't
482          * do anything on clear_young.
483          *
484          * Also note that currently we never issue secondary TLB flushes
485          * from clear_young, leaving this job up to the regular system
486          * cadence. If we find this inaccurate, we might come up with a
487          * more sophisticated heuristic later.
488          */
489         young = kvm_age_hva(kvm, start, end);
490         spin_unlock(&kvm->mmu_lock);
491         srcu_read_unlock(&kvm->srcu, idx);
492
493         return young;
494 }
495
496 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
497                                        struct mm_struct *mm,
498                                        unsigned long address)
499 {
500         struct kvm *kvm = mmu_notifier_to_kvm(mn);
501         int young, idx;
502
503         idx = srcu_read_lock(&kvm->srcu);
504         spin_lock(&kvm->mmu_lock);
505         young = kvm_test_age_hva(kvm, address);
506         spin_unlock(&kvm->mmu_lock);
507         srcu_read_unlock(&kvm->srcu, idx);
508
509         return young;
510 }
511
512 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
513                                      struct mm_struct *mm)
514 {
515         struct kvm *kvm = mmu_notifier_to_kvm(mn);
516         int idx;
517
518         idx = srcu_read_lock(&kvm->srcu);
519         kvm_arch_flush_shadow_all(kvm);
520         srcu_read_unlock(&kvm->srcu, idx);
521 }
522
523 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
524         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
525         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
526         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
527         .clear_young            = kvm_mmu_notifier_clear_young,
528         .test_young             = kvm_mmu_notifier_test_young,
529         .change_pte             = kvm_mmu_notifier_change_pte,
530         .release                = kvm_mmu_notifier_release,
531 };
532
533 static int kvm_init_mmu_notifier(struct kvm *kvm)
534 {
535         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
536         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
537 }
538
539 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
540
541 static int kvm_init_mmu_notifier(struct kvm *kvm)
542 {
543         return 0;
544 }
545
546 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
547
548 static struct kvm_memslots *kvm_alloc_memslots(void)
549 {
550         int i;
551         struct kvm_memslots *slots;
552
553         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
554         if (!slots)
555                 return NULL;
556
557         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
558                 slots->id_to_index[i] = slots->memslots[i].id = i;
559
560         return slots;
561 }
562
563 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
564 {
565         if (!memslot->dirty_bitmap)
566                 return;
567
568         kvfree(memslot->dirty_bitmap);
569         memslot->dirty_bitmap = NULL;
570 }
571
572 /*
573  * Free any memory in @free but not in @dont.
574  */
575 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
576                               struct kvm_memory_slot *dont)
577 {
578         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
579                 kvm_destroy_dirty_bitmap(free);
580
581         kvm_arch_free_memslot(kvm, free, dont);
582
583         free->npages = 0;
584 }
585
586 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
587 {
588         struct kvm_memory_slot *memslot;
589
590         if (!slots)
591                 return;
592
593         kvm_for_each_memslot(memslot, slots)
594                 kvm_free_memslot(kvm, memslot, NULL);
595
596         kvfree(slots);
597 }
598
599 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
600 {
601         int i;
602
603         if (!kvm->debugfs_dentry)
604                 return;
605
606         debugfs_remove_recursive(kvm->debugfs_dentry);
607
608         if (kvm->debugfs_stat_data) {
609                 for (i = 0; i < kvm_debugfs_num_entries; i++)
610                         kfree(kvm->debugfs_stat_data[i]);
611                 kfree(kvm->debugfs_stat_data);
612         }
613 }
614
615 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
616 {
617         char dir_name[ITOA_MAX_LEN * 2];
618         struct kvm_stat_data *stat_data;
619         struct kvm_stats_debugfs_item *p;
620
621         if (!debugfs_initialized())
622                 return 0;
623
624         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
625         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
626
627         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
628                                          sizeof(*kvm->debugfs_stat_data),
629                                          GFP_KERNEL_ACCOUNT);
630         if (!kvm->debugfs_stat_data)
631                 return -ENOMEM;
632
633         for (p = debugfs_entries; p->name; p++) {
634                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
635                 if (!stat_data)
636                         return -ENOMEM;
637
638                 stat_data->kvm = kvm;
639                 stat_data->dbgfs_item = p;
640                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
641                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
642                                     kvm->debugfs_dentry, stat_data,
643                                     &stat_fops_per_vm);
644         }
645         return 0;
646 }
647
648 /*
649  * Called after the VM is otherwise initialized, but just before adding it to
650  * the vm_list.
651  */
652 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
653 {
654         return 0;
655 }
656
657 /*
658  * Called just after removing the VM from the vm_list, but before doing any
659  * other destruction.
660  */
661 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
662 {
663 }
664
665 static struct kvm *kvm_create_vm(unsigned long type)
666 {
667         struct kvm *kvm = kvm_arch_alloc_vm();
668         int r = -ENOMEM;
669         int i;
670
671         if (!kvm)
672                 return ERR_PTR(-ENOMEM);
673
674         spin_lock_init(&kvm->mmu_lock);
675         mmgrab(current->mm);
676         kvm->mm = current->mm;
677         kvm_eventfd_init(kvm);
678         mutex_init(&kvm->lock);
679         mutex_init(&kvm->irq_lock);
680         mutex_init(&kvm->slots_lock);
681         INIT_LIST_HEAD(&kvm->devices);
682
683         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
684
685         if (init_srcu_struct(&kvm->srcu))
686                 goto out_err_no_srcu;
687         if (init_srcu_struct(&kvm->irq_srcu))
688                 goto out_err_no_irq_srcu;
689
690         refcount_set(&kvm->users_count, 1);
691         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
692                 struct kvm_memslots *slots = kvm_alloc_memslots();
693
694                 if (!slots)
695                         goto out_err_no_arch_destroy_vm;
696                 /* Generations must be different for each address space. */
697                 slots->generation = i;
698                 rcu_assign_pointer(kvm->memslots[i], slots);
699         }
700
701         for (i = 0; i < KVM_NR_BUSES; i++) {
702                 rcu_assign_pointer(kvm->buses[i],
703                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
704                 if (!kvm->buses[i])
705                         goto out_err_no_arch_destroy_vm;
706         }
707
708         r = kvm_arch_init_vm(kvm, type);
709         if (r)
710                 goto out_err_no_arch_destroy_vm;
711
712         r = hardware_enable_all();
713         if (r)
714                 goto out_err_no_disable;
715
716 #ifdef CONFIG_HAVE_KVM_IRQFD
717         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
718 #endif
719
720         r = kvm_init_mmu_notifier(kvm);
721         if (r)
722                 goto out_err_no_mmu_notifier;
723
724         r = kvm_arch_post_init_vm(kvm);
725         if (r)
726                 goto out_err;
727
728         mutex_lock(&kvm_lock);
729         list_add(&kvm->vm_list, &vm_list);
730         mutex_unlock(&kvm_lock);
731
732         preempt_notifier_inc();
733
734         return kvm;
735
736 out_err:
737 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
738         if (kvm->mmu_notifier.ops)
739                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
740 #endif
741 out_err_no_mmu_notifier:
742         hardware_disable_all();
743 out_err_no_disable:
744         kvm_arch_destroy_vm(kvm);
745 out_err_no_arch_destroy_vm:
746         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
747         for (i = 0; i < KVM_NR_BUSES; i++)
748                 kfree(kvm_get_bus(kvm, i));
749         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
750                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
751         cleanup_srcu_struct(&kvm->irq_srcu);
752 out_err_no_irq_srcu:
753         cleanup_srcu_struct(&kvm->srcu);
754 out_err_no_srcu:
755         kvm_arch_free_vm(kvm);
756         mmdrop(current->mm);
757         return ERR_PTR(r);
758 }
759
760 static void kvm_destroy_devices(struct kvm *kvm)
761 {
762         struct kvm_device *dev, *tmp;
763
764         /*
765          * We do not need to take the kvm->lock here, because nobody else
766          * has a reference to the struct kvm at this point and therefore
767          * cannot access the devices list anyhow.
768          */
769         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
770                 list_del(&dev->vm_node);
771                 dev->ops->destroy(dev);
772         }
773 }
774
775 static void kvm_destroy_vm(struct kvm *kvm)
776 {
777         int i;
778         struct mm_struct *mm = kvm->mm;
779
780         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
781         kvm_destroy_vm_debugfs(kvm);
782         kvm_arch_sync_events(kvm);
783         mutex_lock(&kvm_lock);
784         list_del(&kvm->vm_list);
785         mutex_unlock(&kvm_lock);
786         kvm_arch_pre_destroy_vm(kvm);
787
788         kvm_free_irq_routing(kvm);
789         for (i = 0; i < KVM_NR_BUSES; i++) {
790                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
791
792                 if (bus)
793                         kvm_io_bus_destroy(bus);
794                 kvm->buses[i] = NULL;
795         }
796         kvm_coalesced_mmio_free(kvm);
797 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
798         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
799 #else
800         kvm_arch_flush_shadow_all(kvm);
801 #endif
802         kvm_arch_destroy_vm(kvm);
803         kvm_destroy_devices(kvm);
804         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
805                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
806         cleanup_srcu_struct(&kvm->irq_srcu);
807         cleanup_srcu_struct(&kvm->srcu);
808         kvm_arch_free_vm(kvm);
809         preempt_notifier_dec();
810         hardware_disable_all();
811         mmdrop(mm);
812 }
813
814 void kvm_get_kvm(struct kvm *kvm)
815 {
816         refcount_inc(&kvm->users_count);
817 }
818 EXPORT_SYMBOL_GPL(kvm_get_kvm);
819
820 void kvm_put_kvm(struct kvm *kvm)
821 {
822         if (refcount_dec_and_test(&kvm->users_count))
823                 kvm_destroy_vm(kvm);
824 }
825 EXPORT_SYMBOL_GPL(kvm_put_kvm);
826
827 /*
828  * Used to put a reference that was taken on behalf of an object associated
829  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
830  * of the new file descriptor fails and the reference cannot be transferred to
831  * its final owner.  In such cases, the caller is still actively using @kvm and
832  * will fail miserably if the refcount unexpectedly hits zero.
833  */
834 void kvm_put_kvm_no_destroy(struct kvm *kvm)
835 {
836         WARN_ON(refcount_dec_and_test(&kvm->users_count));
837 }
838 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
839
840 static int kvm_vm_release(struct inode *inode, struct file *filp)
841 {
842         struct kvm *kvm = filp->private_data;
843
844         kvm_irqfd_release(kvm);
845
846         kvm_put_kvm(kvm);
847         return 0;
848 }
849
850 /*
851  * Allocation size is twice as large as the actual dirty bitmap size.
852  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
853  */
854 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
855 {
856         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
857
858         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
859         if (!memslot->dirty_bitmap)
860                 return -ENOMEM;
861
862         return 0;
863 }
864
865 /*
866  * Insert memslot and re-sort memslots based on their GFN,
867  * so binary search could be used to lookup GFN.
868  * Sorting algorithm takes advantage of having initially
869  * sorted array and known changed memslot position.
870  */
871 static void update_memslots(struct kvm_memslots *slots,
872                             struct kvm_memory_slot *new,
873                             enum kvm_mr_change change)
874 {
875         int id = new->id;
876         int i = slots->id_to_index[id];
877         struct kvm_memory_slot *mslots = slots->memslots;
878
879         WARN_ON(mslots[i].id != id);
880         switch (change) {
881         case KVM_MR_CREATE:
882                 slots->used_slots++;
883                 WARN_ON(mslots[i].npages || !new->npages);
884                 break;
885         case KVM_MR_DELETE:
886                 slots->used_slots--;
887                 WARN_ON(new->npages || !mslots[i].npages);
888                 break;
889         default:
890                 break;
891         }
892
893         while (i < KVM_MEM_SLOTS_NUM - 1 &&
894                new->base_gfn <= mslots[i + 1].base_gfn) {
895                 if (!mslots[i + 1].npages)
896                         break;
897                 mslots[i] = mslots[i + 1];
898                 slots->id_to_index[mslots[i].id] = i;
899                 i++;
900         }
901
902         /*
903          * The ">=" is needed when creating a slot with base_gfn == 0,
904          * so that it moves before all those with base_gfn == npages == 0.
905          *
906          * On the other hand, if new->npages is zero, the above loop has
907          * already left i pointing to the beginning of the empty part of
908          * mslots, and the ">=" would move the hole backwards in this
909          * case---which is wrong.  So skip the loop when deleting a slot.
910          */
911         if (new->npages) {
912                 while (i > 0 &&
913                        new->base_gfn >= mslots[i - 1].base_gfn) {
914                         mslots[i] = mslots[i - 1];
915                         slots->id_to_index[mslots[i].id] = i;
916                         i--;
917                 }
918         } else
919                 WARN_ON_ONCE(i != slots->used_slots);
920
921         mslots[i] = *new;
922         slots->id_to_index[mslots[i].id] = i;
923 }
924
925 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
926 {
927         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
928
929 #ifdef __KVM_HAVE_READONLY_MEM
930         valid_flags |= KVM_MEM_READONLY;
931 #endif
932
933         if (mem->flags & ~valid_flags)
934                 return -EINVAL;
935
936         return 0;
937 }
938
939 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
940                 int as_id, struct kvm_memslots *slots)
941 {
942         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
943         u64 gen = old_memslots->generation;
944
945         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
946         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
947
948         rcu_assign_pointer(kvm->memslots[as_id], slots);
949         synchronize_srcu_expedited(&kvm->srcu);
950
951         /*
952          * Increment the new memslot generation a second time, dropping the
953          * update in-progress flag and incrementing the generation based on
954          * the number of address spaces.  This provides a unique and easily
955          * identifiable generation number while the memslots are in flux.
956          */
957         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
958
959         /*
960          * Generations must be unique even across address spaces.  We do not need
961          * a global counter for that, instead the generation space is evenly split
962          * across address spaces.  For example, with two address spaces, address
963          * space 0 will use generations 0, 2, 4, ... while address space 1 will
964          * use generations 1, 3, 5, ...
965          */
966         gen += KVM_ADDRESS_SPACE_NUM;
967
968         kvm_arch_memslots_updated(kvm, gen);
969
970         slots->generation = gen;
971
972         return old_memslots;
973 }
974
975 /*
976  * Allocate some memory and give it an address in the guest physical address
977  * space.
978  *
979  * Discontiguous memory is allowed, mostly for framebuffers.
980  *
981  * Must be called holding kvm->slots_lock for write.
982  */
983 int __kvm_set_memory_region(struct kvm *kvm,
984                             const struct kvm_userspace_memory_region *mem)
985 {
986         int r;
987         gfn_t base_gfn;
988         unsigned long npages;
989         struct kvm_memory_slot *slot;
990         struct kvm_memory_slot old, new;
991         struct kvm_memslots *slots = NULL, *old_memslots;
992         int as_id, id;
993         enum kvm_mr_change change;
994
995         r = check_memory_region_flags(mem);
996         if (r)
997                 goto out;
998
999         r = -EINVAL;
1000         as_id = mem->slot >> 16;
1001         id = (u16)mem->slot;
1002
1003         /* General sanity checks */
1004         if (mem->memory_size & (PAGE_SIZE - 1))
1005                 goto out;
1006         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1007                 goto out;
1008         /* We can read the guest memory with __xxx_user() later on. */
1009         if ((id < KVM_USER_MEM_SLOTS) &&
1010             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1011              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1012                         mem->memory_size)))
1013                 goto out;
1014         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1015                 goto out;
1016         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1017                 goto out;
1018
1019         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1020         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1021         npages = mem->memory_size >> PAGE_SHIFT;
1022
1023         if (npages > KVM_MEM_MAX_NR_PAGES)
1024                 goto out;
1025
1026         new = old = *slot;
1027
1028         new.id = id;
1029         new.base_gfn = base_gfn;
1030         new.npages = npages;
1031         new.flags = mem->flags;
1032
1033         if (npages) {
1034                 if (!old.npages)
1035                         change = KVM_MR_CREATE;
1036                 else { /* Modify an existing slot. */
1037                         if ((mem->userspace_addr != old.userspace_addr) ||
1038                             (npages != old.npages) ||
1039                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1040                                 goto out;
1041
1042                         if (base_gfn != old.base_gfn)
1043                                 change = KVM_MR_MOVE;
1044                         else if (new.flags != old.flags)
1045                                 change = KVM_MR_FLAGS_ONLY;
1046                         else { /* Nothing to change. */
1047                                 r = 0;
1048                                 goto out;
1049                         }
1050                 }
1051         } else {
1052                 if (!old.npages)
1053                         goto out;
1054
1055                 change = KVM_MR_DELETE;
1056                 new.base_gfn = 0;
1057                 new.flags = 0;
1058         }
1059
1060         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1061                 /* Check for overlaps */
1062                 r = -EEXIST;
1063                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1064                         if (slot->id == id)
1065                                 continue;
1066                         if (!((base_gfn + npages <= slot->base_gfn) ||
1067                               (base_gfn >= slot->base_gfn + slot->npages)))
1068                                 goto out;
1069                 }
1070         }
1071
1072         /* Free page dirty bitmap if unneeded */
1073         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1074                 new.dirty_bitmap = NULL;
1075
1076         r = -ENOMEM;
1077         if (change == KVM_MR_CREATE) {
1078                 new.userspace_addr = mem->userspace_addr;
1079
1080                 if (kvm_arch_create_memslot(kvm, &new, npages))
1081                         goto out_free;
1082         }
1083
1084         /* Allocate page dirty bitmap if needed */
1085         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1086                 if (kvm_create_dirty_bitmap(&new) < 0)
1087                         goto out_free;
1088         }
1089
1090         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1091         if (!slots)
1092                 goto out_free;
1093         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1094
1095         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1096                 slot = id_to_memslot(slots, id);
1097                 slot->flags |= KVM_MEMSLOT_INVALID;
1098
1099                 old_memslots = install_new_memslots(kvm, as_id, slots);
1100
1101                 /* From this point no new shadow pages pointing to a deleted,
1102                  * or moved, memslot will be created.
1103                  *
1104                  * validation of sp->gfn happens in:
1105                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1106                  *      - kvm_is_visible_gfn (mmu_check_root)
1107                  */
1108                 kvm_arch_flush_shadow_memslot(kvm, slot);
1109
1110                 /*
1111                  * We can re-use the old_memslots from above, the only difference
1112                  * from the currently installed memslots is the invalid flag.  This
1113                  * will get overwritten by update_memslots anyway.
1114                  */
1115                 slots = old_memslots;
1116         }
1117
1118         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1119         if (r)
1120                 goto out_slots;
1121
1122         /* actual memory is freed via old in kvm_free_memslot below */
1123         if (change == KVM_MR_DELETE) {
1124                 new.dirty_bitmap = NULL;
1125                 memset(&new.arch, 0, sizeof(new.arch));
1126         }
1127
1128         update_memslots(slots, &new, change);
1129         old_memslots = install_new_memslots(kvm, as_id, slots);
1130
1131         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1132
1133         kvm_free_memslot(kvm, &old, &new);
1134         kvfree(old_memslots);
1135         return 0;
1136
1137 out_slots:
1138         kvfree(slots);
1139 out_free:
1140         kvm_free_memslot(kvm, &new, &old);
1141 out:
1142         return r;
1143 }
1144 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1145
1146 int kvm_set_memory_region(struct kvm *kvm,
1147                           const struct kvm_userspace_memory_region *mem)
1148 {
1149         int r;
1150
1151         mutex_lock(&kvm->slots_lock);
1152         r = __kvm_set_memory_region(kvm, mem);
1153         mutex_unlock(&kvm->slots_lock);
1154         return r;
1155 }
1156 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1157
1158 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1159                                           struct kvm_userspace_memory_region *mem)
1160 {
1161         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1162                 return -EINVAL;
1163
1164         return kvm_set_memory_region(kvm, mem);
1165 }
1166
1167 int kvm_get_dirty_log(struct kvm *kvm,
1168                         struct kvm_dirty_log *log, int *is_dirty)
1169 {
1170         struct kvm_memslots *slots;
1171         struct kvm_memory_slot *memslot;
1172         int i, as_id, id;
1173         unsigned long n;
1174         unsigned long any = 0;
1175
1176         as_id = log->slot >> 16;
1177         id = (u16)log->slot;
1178         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1179                 return -EINVAL;
1180
1181         slots = __kvm_memslots(kvm, as_id);
1182         memslot = id_to_memslot(slots, id);
1183         if (!memslot->dirty_bitmap)
1184                 return -ENOENT;
1185
1186         n = kvm_dirty_bitmap_bytes(memslot);
1187
1188         for (i = 0; !any && i < n/sizeof(long); ++i)
1189                 any = memslot->dirty_bitmap[i];
1190
1191         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1192                 return -EFAULT;
1193
1194         if (any)
1195                 *is_dirty = 1;
1196         return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1199
1200 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1201 /**
1202  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1203  *      and reenable dirty page tracking for the corresponding pages.
1204  * @kvm:        pointer to kvm instance
1205  * @log:        slot id and address to which we copy the log
1206  * @flush:      true if TLB flush is needed by caller
1207  *
1208  * We need to keep it in mind that VCPU threads can write to the bitmap
1209  * concurrently. So, to avoid losing track of dirty pages we keep the
1210  * following order:
1211  *
1212  *    1. Take a snapshot of the bit and clear it if needed.
1213  *    2. Write protect the corresponding page.
1214  *    3. Copy the snapshot to the userspace.
1215  *    4. Upon return caller flushes TLB's if needed.
1216  *
1217  * Between 2 and 4, the guest may write to the page using the remaining TLB
1218  * entry.  This is not a problem because the page is reported dirty using
1219  * the snapshot taken before and step 4 ensures that writes done after
1220  * exiting to userspace will be logged for the next call.
1221  *
1222  */
1223 int kvm_get_dirty_log_protect(struct kvm *kvm,
1224                         struct kvm_dirty_log *log, bool *flush)
1225 {
1226         struct kvm_memslots *slots;
1227         struct kvm_memory_slot *memslot;
1228         int i, as_id, id;
1229         unsigned long n;
1230         unsigned long *dirty_bitmap;
1231         unsigned long *dirty_bitmap_buffer;
1232
1233         as_id = log->slot >> 16;
1234         id = (u16)log->slot;
1235         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1236                 return -EINVAL;
1237
1238         slots = __kvm_memslots(kvm, as_id);
1239         memslot = id_to_memslot(slots, id);
1240
1241         dirty_bitmap = memslot->dirty_bitmap;
1242         if (!dirty_bitmap)
1243                 return -ENOENT;
1244
1245         n = kvm_dirty_bitmap_bytes(memslot);
1246         *flush = false;
1247         if (kvm->manual_dirty_log_protect) {
1248                 /*
1249                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1250                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1251                  * is some code duplication between this function and
1252                  * kvm_get_dirty_log, but hopefully all architecture
1253                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1254                  * can be eliminated.
1255                  */
1256                 dirty_bitmap_buffer = dirty_bitmap;
1257         } else {
1258                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1259                 memset(dirty_bitmap_buffer, 0, n);
1260
1261                 spin_lock(&kvm->mmu_lock);
1262                 for (i = 0; i < n / sizeof(long); i++) {
1263                         unsigned long mask;
1264                         gfn_t offset;
1265
1266                         if (!dirty_bitmap[i])
1267                                 continue;
1268
1269                         *flush = true;
1270                         mask = xchg(&dirty_bitmap[i], 0);
1271                         dirty_bitmap_buffer[i] = mask;
1272
1273                         offset = i * BITS_PER_LONG;
1274                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1275                                                                 offset, mask);
1276                 }
1277                 spin_unlock(&kvm->mmu_lock);
1278         }
1279
1280         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1281                 return -EFAULT;
1282         return 0;
1283 }
1284 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1285
1286 /**
1287  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1288  *      and reenable dirty page tracking for the corresponding pages.
1289  * @kvm:        pointer to kvm instance
1290  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1291  * @flush:      true if TLB flush is needed by caller
1292  */
1293 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1294                                 struct kvm_clear_dirty_log *log, bool *flush)
1295 {
1296         struct kvm_memslots *slots;
1297         struct kvm_memory_slot *memslot;
1298         int as_id, id;
1299         gfn_t offset;
1300         unsigned long i, n;
1301         unsigned long *dirty_bitmap;
1302         unsigned long *dirty_bitmap_buffer;
1303
1304         as_id = log->slot >> 16;
1305         id = (u16)log->slot;
1306         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1307                 return -EINVAL;
1308
1309         if (log->first_page & 63)
1310                 return -EINVAL;
1311
1312         slots = __kvm_memslots(kvm, as_id);
1313         memslot = id_to_memslot(slots, id);
1314
1315         dirty_bitmap = memslot->dirty_bitmap;
1316         if (!dirty_bitmap)
1317                 return -ENOENT;
1318
1319         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1320
1321         if (log->first_page > memslot->npages ||
1322             log->num_pages > memslot->npages - log->first_page ||
1323             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1324             return -EINVAL;
1325
1326         *flush = false;
1327         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1328         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1329                 return -EFAULT;
1330
1331         spin_lock(&kvm->mmu_lock);
1332         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1333                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1334              i++, offset += BITS_PER_LONG) {
1335                 unsigned long mask = *dirty_bitmap_buffer++;
1336                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1337                 if (!mask)
1338                         continue;
1339
1340                 mask &= atomic_long_fetch_andnot(mask, p);
1341
1342                 /*
1343                  * mask contains the bits that really have been cleared.  This
1344                  * never includes any bits beyond the length of the memslot (if
1345                  * the length is not aligned to 64 pages), therefore it is not
1346                  * a problem if userspace sets them in log->dirty_bitmap.
1347                 */
1348                 if (mask) {
1349                         *flush = true;
1350                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1351                                                                 offset, mask);
1352                 }
1353         }
1354         spin_unlock(&kvm->mmu_lock);
1355
1356         return 0;
1357 }
1358 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1359 #endif
1360
1361 bool kvm_largepages_enabled(void)
1362 {
1363         return largepages_enabled;
1364 }
1365
1366 void kvm_disable_largepages(void)
1367 {
1368         largepages_enabled = false;
1369 }
1370 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1371
1372 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1373 {
1374         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1375 }
1376 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1377
1378 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1379 {
1380         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1381 }
1382
1383 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1384 {
1385         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1386
1387         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1388               memslot->flags & KVM_MEMSLOT_INVALID)
1389                 return false;
1390
1391         return true;
1392 }
1393 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1394
1395 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1396 {
1397         struct vm_area_struct *vma;
1398         unsigned long addr, size;
1399
1400         size = PAGE_SIZE;
1401
1402         addr = gfn_to_hva(kvm, gfn);
1403         if (kvm_is_error_hva(addr))
1404                 return PAGE_SIZE;
1405
1406         down_read(&current->mm->mmap_sem);
1407         vma = find_vma(current->mm, addr);
1408         if (!vma)
1409                 goto out;
1410
1411         size = vma_kernel_pagesize(vma);
1412
1413 out:
1414         up_read(&current->mm->mmap_sem);
1415
1416         return size;
1417 }
1418
1419 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1420 {
1421         return slot->flags & KVM_MEM_READONLY;
1422 }
1423
1424 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1425                                        gfn_t *nr_pages, bool write)
1426 {
1427         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1428                 return KVM_HVA_ERR_BAD;
1429
1430         if (memslot_is_readonly(slot) && write)
1431                 return KVM_HVA_ERR_RO_BAD;
1432
1433         if (nr_pages)
1434                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1435
1436         return __gfn_to_hva_memslot(slot, gfn);
1437 }
1438
1439 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1440                                      gfn_t *nr_pages)
1441 {
1442         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1443 }
1444
1445 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1446                                         gfn_t gfn)
1447 {
1448         return gfn_to_hva_many(slot, gfn, NULL);
1449 }
1450 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1451
1452 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1453 {
1454         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1455 }
1456 EXPORT_SYMBOL_GPL(gfn_to_hva);
1457
1458 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1459 {
1460         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1461 }
1462 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1463
1464 /*
1465  * Return the hva of a @gfn and the R/W attribute if possible.
1466  *
1467  * @slot: the kvm_memory_slot which contains @gfn
1468  * @gfn: the gfn to be translated
1469  * @writable: used to return the read/write attribute of the @slot if the hva
1470  * is valid and @writable is not NULL
1471  */
1472 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1473                                       gfn_t gfn, bool *writable)
1474 {
1475         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1476
1477         if (!kvm_is_error_hva(hva) && writable)
1478                 *writable = !memslot_is_readonly(slot);
1479
1480         return hva;
1481 }
1482
1483 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1484 {
1485         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1486
1487         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1488 }
1489
1490 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1491 {
1492         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1493
1494         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1495 }
1496
1497 static inline int check_user_page_hwpoison(unsigned long addr)
1498 {
1499         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1500
1501         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1502         return rc == -EHWPOISON;
1503 }
1504
1505 /*
1506  * The fast path to get the writable pfn which will be stored in @pfn,
1507  * true indicates success, otherwise false is returned.  It's also the
1508  * only part that runs if we can in atomic context.
1509  */
1510 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1511                             bool *writable, kvm_pfn_t *pfn)
1512 {
1513         struct page *page[1];
1514         int npages;
1515
1516         /*
1517          * Fast pin a writable pfn only if it is a write fault request
1518          * or the caller allows to map a writable pfn for a read fault
1519          * request.
1520          */
1521         if (!(write_fault || writable))
1522                 return false;
1523
1524         npages = __get_user_pages_fast(addr, 1, 1, page);
1525         if (npages == 1) {
1526                 *pfn = page_to_pfn(page[0]);
1527
1528                 if (writable)
1529                         *writable = true;
1530                 return true;
1531         }
1532
1533         return false;
1534 }
1535
1536 /*
1537  * The slow path to get the pfn of the specified host virtual address,
1538  * 1 indicates success, -errno is returned if error is detected.
1539  */
1540 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1541                            bool *writable, kvm_pfn_t *pfn)
1542 {
1543         unsigned int flags = FOLL_HWPOISON;
1544         struct page *page;
1545         int npages = 0;
1546
1547         might_sleep();
1548
1549         if (writable)
1550                 *writable = write_fault;
1551
1552         if (write_fault)
1553                 flags |= FOLL_WRITE;
1554         if (async)
1555                 flags |= FOLL_NOWAIT;
1556
1557         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1558         if (npages != 1)
1559                 return npages;
1560
1561         /* map read fault as writable if possible */
1562         if (unlikely(!write_fault) && writable) {
1563                 struct page *wpage;
1564
1565                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1566                         *writable = true;
1567                         put_page(page);
1568                         page = wpage;
1569                 }
1570         }
1571         *pfn = page_to_pfn(page);
1572         return npages;
1573 }
1574
1575 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1576 {
1577         if (unlikely(!(vma->vm_flags & VM_READ)))
1578                 return false;
1579
1580         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1581                 return false;
1582
1583         return true;
1584 }
1585
1586 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1587                                unsigned long addr, bool *async,
1588                                bool write_fault, bool *writable,
1589                                kvm_pfn_t *p_pfn)
1590 {
1591         unsigned long pfn;
1592         int r;
1593
1594         r = follow_pfn(vma, addr, &pfn);
1595         if (r) {
1596                 /*
1597                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1598                  * not call the fault handler, so do it here.
1599                  */
1600                 bool unlocked = false;
1601                 r = fixup_user_fault(current, current->mm, addr,
1602                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1603                                      &unlocked);
1604                 if (unlocked)
1605                         return -EAGAIN;
1606                 if (r)
1607                         return r;
1608
1609                 r = follow_pfn(vma, addr, &pfn);
1610                 if (r)
1611                         return r;
1612
1613         }
1614
1615         if (writable)
1616                 *writable = true;
1617
1618         /*
1619          * Get a reference here because callers of *hva_to_pfn* and
1620          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1621          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1622          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1623          * simply do nothing for reserved pfns.
1624          *
1625          * Whoever called remap_pfn_range is also going to call e.g.
1626          * unmap_mapping_range before the underlying pages are freed,
1627          * causing a call to our MMU notifier.
1628          */ 
1629         kvm_get_pfn(pfn);
1630
1631         *p_pfn = pfn;
1632         return 0;
1633 }
1634
1635 /*
1636  * Pin guest page in memory and return its pfn.
1637  * @addr: host virtual address which maps memory to the guest
1638  * @atomic: whether this function can sleep
1639  * @async: whether this function need to wait IO complete if the
1640  *         host page is not in the memory
1641  * @write_fault: whether we should get a writable host page
1642  * @writable: whether it allows to map a writable host page for !@write_fault
1643  *
1644  * The function will map a writable host page for these two cases:
1645  * 1): @write_fault = true
1646  * 2): @write_fault = false && @writable, @writable will tell the caller
1647  *     whether the mapping is writable.
1648  */
1649 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1650                         bool write_fault, bool *writable)
1651 {
1652         struct vm_area_struct *vma;
1653         kvm_pfn_t pfn = 0;
1654         int npages, r;
1655
1656         /* we can do it either atomically or asynchronously, not both */
1657         BUG_ON(atomic && async);
1658
1659         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1660                 return pfn;
1661
1662         if (atomic)
1663                 return KVM_PFN_ERR_FAULT;
1664
1665         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1666         if (npages == 1)
1667                 return pfn;
1668
1669         down_read(&current->mm->mmap_sem);
1670         if (npages == -EHWPOISON ||
1671               (!async && check_user_page_hwpoison(addr))) {
1672                 pfn = KVM_PFN_ERR_HWPOISON;
1673                 goto exit;
1674         }
1675
1676 retry:
1677         vma = find_vma_intersection(current->mm, addr, addr + 1);
1678
1679         if (vma == NULL)
1680                 pfn = KVM_PFN_ERR_FAULT;
1681         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1682                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1683                 if (r == -EAGAIN)
1684                         goto retry;
1685                 if (r < 0)
1686                         pfn = KVM_PFN_ERR_FAULT;
1687         } else {
1688                 if (async && vma_is_valid(vma, write_fault))
1689                         *async = true;
1690                 pfn = KVM_PFN_ERR_FAULT;
1691         }
1692 exit:
1693         up_read(&current->mm->mmap_sem);
1694         return pfn;
1695 }
1696
1697 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1698                                bool atomic, bool *async, bool write_fault,
1699                                bool *writable)
1700 {
1701         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1702
1703         if (addr == KVM_HVA_ERR_RO_BAD) {
1704                 if (writable)
1705                         *writable = false;
1706                 return KVM_PFN_ERR_RO_FAULT;
1707         }
1708
1709         if (kvm_is_error_hva(addr)) {
1710                 if (writable)
1711                         *writable = false;
1712                 return KVM_PFN_NOSLOT;
1713         }
1714
1715         /* Do not map writable pfn in the readonly memslot. */
1716         if (writable && memslot_is_readonly(slot)) {
1717                 *writable = false;
1718                 writable = NULL;
1719         }
1720
1721         return hva_to_pfn(addr, atomic, async, write_fault,
1722                           writable);
1723 }
1724 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1725
1726 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1727                       bool *writable)
1728 {
1729         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1730                                     write_fault, writable);
1731 }
1732 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1733
1734 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1735 {
1736         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1737 }
1738 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1739
1740 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1741 {
1742         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1743 }
1744 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1745
1746 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1747 {
1748         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1749 }
1750 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1751
1752 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1753 {
1754         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1755 }
1756 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1757
1758 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1759 {
1760         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1761 }
1762 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1763
1764 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1765 {
1766         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1767 }
1768 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1769
1770 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1771                             struct page **pages, int nr_pages)
1772 {
1773         unsigned long addr;
1774         gfn_t entry = 0;
1775
1776         addr = gfn_to_hva_many(slot, gfn, &entry);
1777         if (kvm_is_error_hva(addr))
1778                 return -1;
1779
1780         if (entry < nr_pages)
1781                 return 0;
1782
1783         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1784 }
1785 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1786
1787 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1788 {
1789         if (is_error_noslot_pfn(pfn))
1790                 return KVM_ERR_PTR_BAD_PAGE;
1791
1792         if (kvm_is_reserved_pfn(pfn)) {
1793                 WARN_ON(1);
1794                 return KVM_ERR_PTR_BAD_PAGE;
1795         }
1796
1797         return pfn_to_page(pfn);
1798 }
1799
1800 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1801 {
1802         kvm_pfn_t pfn;
1803
1804         pfn = gfn_to_pfn(kvm, gfn);
1805
1806         return kvm_pfn_to_page(pfn);
1807 }
1808 EXPORT_SYMBOL_GPL(gfn_to_page);
1809
1810 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1811                          struct kvm_host_map *map)
1812 {
1813         kvm_pfn_t pfn;
1814         void *hva = NULL;
1815         struct page *page = KVM_UNMAPPED_PAGE;
1816
1817         if (!map)
1818                 return -EINVAL;
1819
1820         pfn = gfn_to_pfn_memslot(slot, gfn);
1821         if (is_error_noslot_pfn(pfn))
1822                 return -EINVAL;
1823
1824         if (pfn_valid(pfn)) {
1825                 page = pfn_to_page(pfn);
1826                 hva = kmap(page);
1827 #ifdef CONFIG_HAS_IOMEM
1828         } else {
1829                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1830 #endif
1831         }
1832
1833         if (!hva)
1834                 return -EFAULT;
1835
1836         map->page = page;
1837         map->hva = hva;
1838         map->pfn = pfn;
1839         map->gfn = gfn;
1840
1841         return 0;
1842 }
1843
1844 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1845 {
1846         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1847 }
1848 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1849
1850 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1851                     bool dirty)
1852 {
1853         if (!map)
1854                 return;
1855
1856         if (!map->hva)
1857                 return;
1858
1859         if (map->page != KVM_UNMAPPED_PAGE)
1860                 kunmap(map->page);
1861 #ifdef CONFIG_HAS_IOMEM
1862         else
1863                 memunmap(map->hva);
1864 #endif
1865
1866         if (dirty) {
1867                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1868                 kvm_release_pfn_dirty(map->pfn);
1869         } else {
1870                 kvm_release_pfn_clean(map->pfn);
1871         }
1872
1873         map->hva = NULL;
1874         map->page = NULL;
1875 }
1876 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1877
1878 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1879 {
1880         kvm_pfn_t pfn;
1881
1882         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1883
1884         return kvm_pfn_to_page(pfn);
1885 }
1886 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1887
1888 void kvm_release_page_clean(struct page *page)
1889 {
1890         WARN_ON(is_error_page(page));
1891
1892         kvm_release_pfn_clean(page_to_pfn(page));
1893 }
1894 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1895
1896 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1897 {
1898         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1899                 put_page(pfn_to_page(pfn));
1900 }
1901 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1902
1903 void kvm_release_page_dirty(struct page *page)
1904 {
1905         WARN_ON(is_error_page(page));
1906
1907         kvm_release_pfn_dirty(page_to_pfn(page));
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1910
1911 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1912 {
1913         kvm_set_pfn_dirty(pfn);
1914         kvm_release_pfn_clean(pfn);
1915 }
1916 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1917
1918 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1919 {
1920         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1921                 SetPageDirty(pfn_to_page(pfn));
1922 }
1923 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1924
1925 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1926 {
1927         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1928                 mark_page_accessed(pfn_to_page(pfn));
1929 }
1930 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1931
1932 void kvm_get_pfn(kvm_pfn_t pfn)
1933 {
1934         if (!kvm_is_reserved_pfn(pfn))
1935                 get_page(pfn_to_page(pfn));
1936 }
1937 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1938
1939 static int next_segment(unsigned long len, int offset)
1940 {
1941         if (len > PAGE_SIZE - offset)
1942                 return PAGE_SIZE - offset;
1943         else
1944                 return len;
1945 }
1946
1947 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1948                                  void *data, int offset, int len)
1949 {
1950         int r;
1951         unsigned long addr;
1952
1953         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1954         if (kvm_is_error_hva(addr))
1955                 return -EFAULT;
1956         r = __copy_from_user(data, (void __user *)addr + offset, len);
1957         if (r)
1958                 return -EFAULT;
1959         return 0;
1960 }
1961
1962 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1963                         int len)
1964 {
1965         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1966
1967         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1968 }
1969 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1970
1971 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1972                              int offset, int len)
1973 {
1974         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1975
1976         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1977 }
1978 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1979
1980 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1981 {
1982         gfn_t gfn = gpa >> PAGE_SHIFT;
1983         int seg;
1984         int offset = offset_in_page(gpa);
1985         int ret;
1986
1987         while ((seg = next_segment(len, offset)) != 0) {
1988                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1989                 if (ret < 0)
1990                         return ret;
1991                 offset = 0;
1992                 len -= seg;
1993                 data += seg;
1994                 ++gfn;
1995         }
1996         return 0;
1997 }
1998 EXPORT_SYMBOL_GPL(kvm_read_guest);
1999
2000 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2001 {
2002         gfn_t gfn = gpa >> PAGE_SHIFT;
2003         int seg;
2004         int offset = offset_in_page(gpa);
2005         int ret;
2006
2007         while ((seg = next_segment(len, offset)) != 0) {
2008                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2009                 if (ret < 0)
2010                         return ret;
2011                 offset = 0;
2012                 len -= seg;
2013                 data += seg;
2014                 ++gfn;
2015         }
2016         return 0;
2017 }
2018 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2019
2020 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2021                                    void *data, int offset, unsigned long len)
2022 {
2023         int r;
2024         unsigned long addr;
2025
2026         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2027         if (kvm_is_error_hva(addr))
2028                 return -EFAULT;
2029         pagefault_disable();
2030         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2031         pagefault_enable();
2032         if (r)
2033                 return -EFAULT;
2034         return 0;
2035 }
2036
2037 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2038                                void *data, unsigned long len)
2039 {
2040         gfn_t gfn = gpa >> PAGE_SHIFT;
2041         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2042         int offset = offset_in_page(gpa);
2043
2044         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2045 }
2046 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2047
2048 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2049                                   const void *data, int offset, int len)
2050 {
2051         int r;
2052         unsigned long addr;
2053
2054         addr = gfn_to_hva_memslot(memslot, gfn);
2055         if (kvm_is_error_hva(addr))
2056                 return -EFAULT;
2057         r = __copy_to_user((void __user *)addr + offset, data, len);
2058         if (r)
2059                 return -EFAULT;
2060         mark_page_dirty_in_slot(memslot, gfn);
2061         return 0;
2062 }
2063
2064 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2065                          const void *data, int offset, int len)
2066 {
2067         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2068
2069         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2070 }
2071 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2072
2073 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2074                               const void *data, int offset, int len)
2075 {
2076         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2077
2078         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2079 }
2080 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2081
2082 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2083                     unsigned long len)
2084 {
2085         gfn_t gfn = gpa >> PAGE_SHIFT;
2086         int seg;
2087         int offset = offset_in_page(gpa);
2088         int ret;
2089
2090         while ((seg = next_segment(len, offset)) != 0) {
2091                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2092                 if (ret < 0)
2093                         return ret;
2094                 offset = 0;
2095                 len -= seg;
2096                 data += seg;
2097                 ++gfn;
2098         }
2099         return 0;
2100 }
2101 EXPORT_SYMBOL_GPL(kvm_write_guest);
2102
2103 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2104                          unsigned long len)
2105 {
2106         gfn_t gfn = gpa >> PAGE_SHIFT;
2107         int seg;
2108         int offset = offset_in_page(gpa);
2109         int ret;
2110
2111         while ((seg = next_segment(len, offset)) != 0) {
2112                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2113                 if (ret < 0)
2114                         return ret;
2115                 offset = 0;
2116                 len -= seg;
2117                 data += seg;
2118                 ++gfn;
2119         }
2120         return 0;
2121 }
2122 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2123
2124 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2125                                        struct gfn_to_hva_cache *ghc,
2126                                        gpa_t gpa, unsigned long len)
2127 {
2128         int offset = offset_in_page(gpa);
2129         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2130         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2131         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2132         gfn_t nr_pages_avail;
2133         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2134
2135         ghc->gpa = gpa;
2136         ghc->generation = slots->generation;
2137         ghc->len = len;
2138         ghc->hva = KVM_HVA_ERR_BAD;
2139
2140         /*
2141          * If the requested region crosses two memslots, we still
2142          * verify that the entire region is valid here.
2143          */
2144         while (!r && start_gfn <= end_gfn) {
2145                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2146                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2147                                            &nr_pages_avail);
2148                 if (kvm_is_error_hva(ghc->hva))
2149                         r = -EFAULT;
2150                 start_gfn += nr_pages_avail;
2151         }
2152
2153         /* Use the slow path for cross page reads and writes. */
2154         if (!r && nr_pages_needed == 1)
2155                 ghc->hva += offset;
2156         else
2157                 ghc->memslot = NULL;
2158
2159         return r;
2160 }
2161
2162 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2163                               gpa_t gpa, unsigned long len)
2164 {
2165         struct kvm_memslots *slots = kvm_memslots(kvm);
2166         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2167 }
2168 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2169
2170 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2171                                   void *data, unsigned int offset,
2172                                   unsigned long len)
2173 {
2174         struct kvm_memslots *slots = kvm_memslots(kvm);
2175         int r;
2176         gpa_t gpa = ghc->gpa + offset;
2177
2178         BUG_ON(len + offset > ghc->len);
2179
2180         if (slots->generation != ghc->generation)
2181                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2182
2183         if (unlikely(!ghc->memslot))
2184                 return kvm_write_guest(kvm, gpa, data, len);
2185
2186         if (kvm_is_error_hva(ghc->hva))
2187                 return -EFAULT;
2188
2189         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2190         if (r)
2191                 return -EFAULT;
2192         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2193
2194         return 0;
2195 }
2196 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2197
2198 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2199                            void *data, unsigned long len)
2200 {
2201         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2202 }
2203 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2204
2205 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2206                            void *data, unsigned long len)
2207 {
2208         struct kvm_memslots *slots = kvm_memslots(kvm);
2209         int r;
2210
2211         BUG_ON(len > ghc->len);
2212
2213         if (slots->generation != ghc->generation)
2214                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2215
2216         if (unlikely(!ghc->memslot))
2217                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2218
2219         if (kvm_is_error_hva(ghc->hva))
2220                 return -EFAULT;
2221
2222         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2223         if (r)
2224                 return -EFAULT;
2225
2226         return 0;
2227 }
2228 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2229
2230 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2231 {
2232         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2233
2234         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2235 }
2236 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2237
2238 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2239 {
2240         gfn_t gfn = gpa >> PAGE_SHIFT;
2241         int seg;
2242         int offset = offset_in_page(gpa);
2243         int ret;
2244
2245         while ((seg = next_segment(len, offset)) != 0) {
2246                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2247                 if (ret < 0)
2248                         return ret;
2249                 offset = 0;
2250                 len -= seg;
2251                 ++gfn;
2252         }
2253         return 0;
2254 }
2255 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2256
2257 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2258                                     gfn_t gfn)
2259 {
2260         if (memslot && memslot->dirty_bitmap) {
2261                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2262
2263                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2264         }
2265 }
2266
2267 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2268 {
2269         struct kvm_memory_slot *memslot;
2270
2271         memslot = gfn_to_memslot(kvm, gfn);
2272         mark_page_dirty_in_slot(memslot, gfn);
2273 }
2274 EXPORT_SYMBOL_GPL(mark_page_dirty);
2275
2276 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2277 {
2278         struct kvm_memory_slot *memslot;
2279
2280         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2281         mark_page_dirty_in_slot(memslot, gfn);
2282 }
2283 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2284
2285 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2286 {
2287         if (!vcpu->sigset_active)
2288                 return;
2289
2290         /*
2291          * This does a lockless modification of ->real_blocked, which is fine
2292          * because, only current can change ->real_blocked and all readers of
2293          * ->real_blocked don't care as long ->real_blocked is always a subset
2294          * of ->blocked.
2295          */
2296         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2297 }
2298
2299 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2300 {
2301         if (!vcpu->sigset_active)
2302                 return;
2303
2304         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2305         sigemptyset(&current->real_blocked);
2306 }
2307
2308 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2309 {
2310         unsigned int old, val, grow, grow_start;
2311
2312         old = val = vcpu->halt_poll_ns;
2313         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2314         grow = READ_ONCE(halt_poll_ns_grow);
2315         if (!grow)
2316                 goto out;
2317
2318         val *= grow;
2319         if (val < grow_start)
2320                 val = grow_start;
2321
2322         if (val > halt_poll_ns)
2323                 val = halt_poll_ns;
2324
2325         vcpu->halt_poll_ns = val;
2326 out:
2327         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2328 }
2329
2330 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2331 {
2332         unsigned int old, val, shrink;
2333
2334         old = val = vcpu->halt_poll_ns;
2335         shrink = READ_ONCE(halt_poll_ns_shrink);
2336         if (shrink == 0)
2337                 val = 0;
2338         else
2339                 val /= shrink;
2340
2341         vcpu->halt_poll_ns = val;
2342         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2343 }
2344
2345 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2346 {
2347         int ret = -EINTR;
2348         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2349
2350         if (kvm_arch_vcpu_runnable(vcpu)) {
2351                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2352                 goto out;
2353         }
2354         if (kvm_cpu_has_pending_timer(vcpu))
2355                 goto out;
2356         if (signal_pending(current))
2357                 goto out;
2358
2359         ret = 0;
2360 out:
2361         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2362         return ret;
2363 }
2364
2365 /*
2366  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2367  */
2368 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2369 {
2370         ktime_t start, cur;
2371         DECLARE_SWAITQUEUE(wait);
2372         bool waited = false;
2373         u64 block_ns;
2374
2375         kvm_arch_vcpu_blocking(vcpu);
2376
2377         start = cur = ktime_get();
2378         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2379                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2380
2381                 ++vcpu->stat.halt_attempted_poll;
2382                 do {
2383                         /*
2384                          * This sets KVM_REQ_UNHALT if an interrupt
2385                          * arrives.
2386                          */
2387                         if (kvm_vcpu_check_block(vcpu) < 0) {
2388                                 ++vcpu->stat.halt_successful_poll;
2389                                 if (!vcpu_valid_wakeup(vcpu))
2390                                         ++vcpu->stat.halt_poll_invalid;
2391                                 goto out;
2392                         }
2393                         cur = ktime_get();
2394                 } while (single_task_running() && ktime_before(cur, stop));
2395         }
2396
2397         for (;;) {
2398                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2399
2400                 if (kvm_vcpu_check_block(vcpu) < 0)
2401                         break;
2402
2403                 waited = true;
2404                 schedule();
2405         }
2406
2407         finish_swait(&vcpu->wq, &wait);
2408         cur = ktime_get();
2409 out:
2410         kvm_arch_vcpu_unblocking(vcpu);
2411         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2412
2413         if (!kvm_arch_no_poll(vcpu)) {
2414                 if (!vcpu_valid_wakeup(vcpu)) {
2415                         shrink_halt_poll_ns(vcpu);
2416                 } else if (halt_poll_ns) {
2417                         if (block_ns <= vcpu->halt_poll_ns)
2418                                 ;
2419                         /* we had a long block, shrink polling */
2420                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2421                                 shrink_halt_poll_ns(vcpu);
2422                         /* we had a short halt and our poll time is too small */
2423                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2424                                 block_ns < halt_poll_ns)
2425                                 grow_halt_poll_ns(vcpu);
2426                 } else {
2427                         vcpu->halt_poll_ns = 0;
2428                 }
2429         }
2430
2431         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2432         kvm_arch_vcpu_block_finish(vcpu);
2433 }
2434 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2435
2436 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2437 {
2438         struct swait_queue_head *wqp;
2439
2440         wqp = kvm_arch_vcpu_wq(vcpu);
2441         if (swq_has_sleeper(wqp)) {
2442                 swake_up_one(wqp);
2443                 WRITE_ONCE(vcpu->ready, true);
2444                 ++vcpu->stat.halt_wakeup;
2445                 return true;
2446         }
2447
2448         return false;
2449 }
2450 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2451
2452 #ifndef CONFIG_S390
2453 /*
2454  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2455  */
2456 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2457 {
2458         int me;
2459         int cpu = vcpu->cpu;
2460
2461         if (kvm_vcpu_wake_up(vcpu))
2462                 return;
2463
2464         me = get_cpu();
2465         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2466                 if (kvm_arch_vcpu_should_kick(vcpu))
2467                         smp_send_reschedule(cpu);
2468         put_cpu();
2469 }
2470 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2471 #endif /* !CONFIG_S390 */
2472
2473 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2474 {
2475         struct pid *pid;
2476         struct task_struct *task = NULL;
2477         int ret = 0;
2478
2479         rcu_read_lock();
2480         pid = rcu_dereference(target->pid);
2481         if (pid)
2482                 task = get_pid_task(pid, PIDTYPE_PID);
2483         rcu_read_unlock();
2484         if (!task)
2485                 return ret;
2486         ret = yield_to(task, 1);
2487         put_task_struct(task);
2488
2489         return ret;
2490 }
2491 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2492
2493 /*
2494  * Helper that checks whether a VCPU is eligible for directed yield.
2495  * Most eligible candidate to yield is decided by following heuristics:
2496  *
2497  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2498  *  (preempted lock holder), indicated by @in_spin_loop.
2499  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2500  *
2501  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2502  *  chance last time (mostly it has become eligible now since we have probably
2503  *  yielded to lockholder in last iteration. This is done by toggling
2504  *  @dy_eligible each time a VCPU checked for eligibility.)
2505  *
2506  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2507  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2508  *  burning. Giving priority for a potential lock-holder increases lock
2509  *  progress.
2510  *
2511  *  Since algorithm is based on heuristics, accessing another VCPU data without
2512  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2513  *  and continue with next VCPU and so on.
2514  */
2515 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2516 {
2517 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2518         bool eligible;
2519
2520         eligible = !vcpu->spin_loop.in_spin_loop ||
2521                     vcpu->spin_loop.dy_eligible;
2522
2523         if (vcpu->spin_loop.in_spin_loop)
2524                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2525
2526         return eligible;
2527 #else
2528         return true;
2529 #endif
2530 }
2531
2532 /*
2533  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2534  * a vcpu_load/vcpu_put pair.  However, for most architectures
2535  * kvm_arch_vcpu_runnable does not require vcpu_load.
2536  */
2537 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2538 {
2539         return kvm_arch_vcpu_runnable(vcpu);
2540 }
2541
2542 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2543 {
2544         if (kvm_arch_dy_runnable(vcpu))
2545                 return true;
2546
2547 #ifdef CONFIG_KVM_ASYNC_PF
2548         if (!list_empty_careful(&vcpu->async_pf.done))
2549                 return true;
2550 #endif
2551
2552         return false;
2553 }
2554
2555 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2556 {
2557         struct kvm *kvm = me->kvm;
2558         struct kvm_vcpu *vcpu;
2559         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2560         int yielded = 0;
2561         int try = 3;
2562         int pass;
2563         int i;
2564
2565         kvm_vcpu_set_in_spin_loop(me, true);
2566         /*
2567          * We boost the priority of a VCPU that is runnable but not
2568          * currently running, because it got preempted by something
2569          * else and called schedule in __vcpu_run.  Hopefully that
2570          * VCPU is holding the lock that we need and will release it.
2571          * We approximate round-robin by starting at the last boosted VCPU.
2572          */
2573         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2574                 kvm_for_each_vcpu(i, vcpu, kvm) {
2575                         if (!pass && i <= last_boosted_vcpu) {
2576                                 i = last_boosted_vcpu;
2577                                 continue;
2578                         } else if (pass && i > last_boosted_vcpu)
2579                                 break;
2580                         if (!READ_ONCE(vcpu->ready))
2581                                 continue;
2582                         if (vcpu == me)
2583                                 continue;
2584                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2585                                 continue;
2586                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2587                                 !kvm_arch_vcpu_in_kernel(vcpu))
2588                                 continue;
2589                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2590                                 continue;
2591
2592                         yielded = kvm_vcpu_yield_to(vcpu);
2593                         if (yielded > 0) {
2594                                 kvm->last_boosted_vcpu = i;
2595                                 break;
2596                         } else if (yielded < 0) {
2597                                 try--;
2598                                 if (!try)
2599                                         break;
2600                         }
2601                 }
2602         }
2603         kvm_vcpu_set_in_spin_loop(me, false);
2604
2605         /* Ensure vcpu is not eligible during next spinloop */
2606         kvm_vcpu_set_dy_eligible(me, false);
2607 }
2608 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2609
2610 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2611 {
2612         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2613         struct page *page;
2614
2615         if (vmf->pgoff == 0)
2616                 page = virt_to_page(vcpu->run);
2617 #ifdef CONFIG_X86
2618         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2619                 page = virt_to_page(vcpu->arch.pio_data);
2620 #endif
2621 #ifdef CONFIG_KVM_MMIO
2622         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2623                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2624 #endif
2625         else
2626                 return kvm_arch_vcpu_fault(vcpu, vmf);
2627         get_page(page);
2628         vmf->page = page;
2629         return 0;
2630 }
2631
2632 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2633         .fault = kvm_vcpu_fault,
2634 };
2635
2636 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2637 {
2638         vma->vm_ops = &kvm_vcpu_vm_ops;
2639         return 0;
2640 }
2641
2642 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2643 {
2644         struct kvm_vcpu *vcpu = filp->private_data;
2645
2646         debugfs_remove_recursive(vcpu->debugfs_dentry);
2647         kvm_put_kvm(vcpu->kvm);
2648         return 0;
2649 }
2650
2651 static struct file_operations kvm_vcpu_fops = {
2652         .release        = kvm_vcpu_release,
2653         .unlocked_ioctl = kvm_vcpu_ioctl,
2654         .mmap           = kvm_vcpu_mmap,
2655         .llseek         = noop_llseek,
2656         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2657 };
2658
2659 /*
2660  * Allocates an inode for the vcpu.
2661  */
2662 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2663 {
2664         char name[8 + 1 + ITOA_MAX_LEN + 1];
2665
2666         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2667         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2668 }
2669
2670 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2671 {
2672 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2673         char dir_name[ITOA_MAX_LEN * 2];
2674
2675         if (!debugfs_initialized())
2676                 return;
2677
2678         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2679         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2680                                                   vcpu->kvm->debugfs_dentry);
2681
2682         kvm_arch_create_vcpu_debugfs(vcpu);
2683 #endif
2684 }
2685
2686 /*
2687  * Creates some virtual cpus.  Good luck creating more than one.
2688  */
2689 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2690 {
2691         int r;
2692         struct kvm_vcpu *vcpu;
2693         struct page *page;
2694
2695         if (id >= KVM_MAX_VCPU_ID)
2696                 return -EINVAL;
2697
2698         mutex_lock(&kvm->lock);
2699         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2700                 mutex_unlock(&kvm->lock);
2701                 return -EINVAL;
2702         }
2703
2704         kvm->created_vcpus++;
2705         mutex_unlock(&kvm->lock);
2706
2707         r = kvm_arch_vcpu_precreate(kvm, id);
2708         if (r)
2709                 goto vcpu_decrement;
2710
2711         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2712         if (!vcpu) {
2713                 r = -ENOMEM;
2714                 goto vcpu_decrement;
2715         }
2716
2717         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
2718         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2719         if (!page) {
2720                 r = -ENOMEM;
2721                 goto vcpu_free;
2722         }
2723         vcpu->run = page_address(page);
2724
2725         kvm_vcpu_init(vcpu, kvm, id);
2726
2727         r = kvm_arch_vcpu_create(vcpu);
2728         if (r)
2729                 goto vcpu_free_run_page;
2730
2731         kvm_create_vcpu_debugfs(vcpu);
2732
2733         mutex_lock(&kvm->lock);
2734         if (kvm_get_vcpu_by_id(kvm, id)) {
2735                 r = -EEXIST;
2736                 goto unlock_vcpu_destroy;
2737         }
2738
2739         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2740         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2741
2742         /* Now it's all set up, let userspace reach it */
2743         kvm_get_kvm(kvm);
2744         r = create_vcpu_fd(vcpu);
2745         if (r < 0) {
2746                 kvm_put_kvm_no_destroy(kvm);
2747                 goto unlock_vcpu_destroy;
2748         }
2749
2750         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2751
2752         /*
2753          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2754          * before kvm->online_vcpu's incremented value.
2755          */
2756         smp_wmb();
2757         atomic_inc(&kvm->online_vcpus);
2758
2759         mutex_unlock(&kvm->lock);
2760         kvm_arch_vcpu_postcreate(vcpu);
2761         return r;
2762
2763 unlock_vcpu_destroy:
2764         mutex_unlock(&kvm->lock);
2765         debugfs_remove_recursive(vcpu->debugfs_dentry);
2766         kvm_arch_vcpu_destroy(vcpu);
2767 vcpu_free_run_page:
2768         free_page((unsigned long)vcpu->run);
2769 vcpu_free:
2770         kmem_cache_free(kvm_vcpu_cache, vcpu);
2771 vcpu_decrement:
2772         mutex_lock(&kvm->lock);
2773         kvm->created_vcpus--;
2774         mutex_unlock(&kvm->lock);
2775         return r;
2776 }
2777
2778 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2779 {
2780         if (sigset) {
2781                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2782                 vcpu->sigset_active = 1;
2783                 vcpu->sigset = *sigset;
2784         } else
2785                 vcpu->sigset_active = 0;
2786         return 0;
2787 }
2788
2789 static long kvm_vcpu_ioctl(struct file *filp,
2790                            unsigned int ioctl, unsigned long arg)
2791 {
2792         struct kvm_vcpu *vcpu = filp->private_data;
2793         void __user *argp = (void __user *)arg;
2794         int r;
2795         struct kvm_fpu *fpu = NULL;
2796         struct kvm_sregs *kvm_sregs = NULL;
2797
2798         if (vcpu->kvm->mm != current->mm)
2799                 return -EIO;
2800
2801         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2802                 return -EINVAL;
2803
2804         /*
2805          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2806          * execution; mutex_lock() would break them.
2807          */
2808         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2809         if (r != -ENOIOCTLCMD)
2810                 return r;
2811
2812         if (mutex_lock_killable(&vcpu->mutex))
2813                 return -EINTR;
2814         switch (ioctl) {
2815         case KVM_RUN: {
2816                 struct pid *oldpid;
2817                 r = -EINVAL;
2818                 if (arg)
2819                         goto out;
2820                 oldpid = rcu_access_pointer(vcpu->pid);
2821                 if (unlikely(oldpid != task_pid(current))) {
2822                         /* The thread running this VCPU changed. */
2823                         struct pid *newpid;
2824
2825                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2826                         if (r)
2827                                 break;
2828
2829                         newpid = get_task_pid(current, PIDTYPE_PID);
2830                         rcu_assign_pointer(vcpu->pid, newpid);
2831                         if (oldpid)
2832                                 synchronize_rcu();
2833                         put_pid(oldpid);
2834                 }
2835                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2836                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2837                 break;
2838         }
2839         case KVM_GET_REGS: {
2840                 struct kvm_regs *kvm_regs;
2841
2842                 r = -ENOMEM;
2843                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2844                 if (!kvm_regs)
2845                         goto out;
2846                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2847                 if (r)
2848                         goto out_free1;
2849                 r = -EFAULT;
2850                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2851                         goto out_free1;
2852                 r = 0;
2853 out_free1:
2854                 kfree(kvm_regs);
2855                 break;
2856         }
2857         case KVM_SET_REGS: {
2858                 struct kvm_regs *kvm_regs;
2859
2860                 r = -ENOMEM;
2861                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2862                 if (IS_ERR(kvm_regs)) {
2863                         r = PTR_ERR(kvm_regs);
2864                         goto out;
2865                 }
2866                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2867                 kfree(kvm_regs);
2868                 break;
2869         }
2870         case KVM_GET_SREGS: {
2871                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2872                                     GFP_KERNEL_ACCOUNT);
2873                 r = -ENOMEM;
2874                 if (!kvm_sregs)
2875                         goto out;
2876                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2877                 if (r)
2878                         goto out;
2879                 r = -EFAULT;
2880                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2881                         goto out;
2882                 r = 0;
2883                 break;
2884         }
2885         case KVM_SET_SREGS: {
2886                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2887                 if (IS_ERR(kvm_sregs)) {
2888                         r = PTR_ERR(kvm_sregs);
2889                         kvm_sregs = NULL;
2890                         goto out;
2891                 }
2892                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2893                 break;
2894         }
2895         case KVM_GET_MP_STATE: {
2896                 struct kvm_mp_state mp_state;
2897
2898                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2899                 if (r)
2900                         goto out;
2901                 r = -EFAULT;
2902                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2903                         goto out;
2904                 r = 0;
2905                 break;
2906         }
2907         case KVM_SET_MP_STATE: {
2908                 struct kvm_mp_state mp_state;
2909
2910                 r = -EFAULT;
2911                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2912                         goto out;
2913                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2914                 break;
2915         }
2916         case KVM_TRANSLATE: {
2917                 struct kvm_translation tr;
2918
2919                 r = -EFAULT;
2920                 if (copy_from_user(&tr, argp, sizeof(tr)))
2921                         goto out;
2922                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2923                 if (r)
2924                         goto out;
2925                 r = -EFAULT;
2926                 if (copy_to_user(argp, &tr, sizeof(tr)))
2927                         goto out;
2928                 r = 0;
2929                 break;
2930         }
2931         case KVM_SET_GUEST_DEBUG: {
2932                 struct kvm_guest_debug dbg;
2933
2934                 r = -EFAULT;
2935                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2936                         goto out;
2937                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2938                 break;
2939         }
2940         case KVM_SET_SIGNAL_MASK: {
2941                 struct kvm_signal_mask __user *sigmask_arg = argp;
2942                 struct kvm_signal_mask kvm_sigmask;
2943                 sigset_t sigset, *p;
2944
2945                 p = NULL;
2946                 if (argp) {
2947                         r = -EFAULT;
2948                         if (copy_from_user(&kvm_sigmask, argp,
2949                                            sizeof(kvm_sigmask)))
2950                                 goto out;
2951                         r = -EINVAL;
2952                         if (kvm_sigmask.len != sizeof(sigset))
2953                                 goto out;
2954                         r = -EFAULT;
2955                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2956                                            sizeof(sigset)))
2957                                 goto out;
2958                         p = &sigset;
2959                 }
2960                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2961                 break;
2962         }
2963         case KVM_GET_FPU: {
2964                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2965                 r = -ENOMEM;
2966                 if (!fpu)
2967                         goto out;
2968                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2969                 if (r)
2970                         goto out;
2971                 r = -EFAULT;
2972                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2973                         goto out;
2974                 r = 0;
2975                 break;
2976         }
2977         case KVM_SET_FPU: {
2978                 fpu = memdup_user(argp, sizeof(*fpu));
2979                 if (IS_ERR(fpu)) {
2980                         r = PTR_ERR(fpu);
2981                         fpu = NULL;
2982                         goto out;
2983                 }
2984                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2985                 break;
2986         }
2987         default:
2988                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2989         }
2990 out:
2991         mutex_unlock(&vcpu->mutex);
2992         kfree(fpu);
2993         kfree(kvm_sregs);
2994         return r;
2995 }
2996
2997 #ifdef CONFIG_KVM_COMPAT
2998 static long kvm_vcpu_compat_ioctl(struct file *filp,
2999                                   unsigned int ioctl, unsigned long arg)
3000 {
3001         struct kvm_vcpu *vcpu = filp->private_data;
3002         void __user *argp = compat_ptr(arg);
3003         int r;
3004
3005         if (vcpu->kvm->mm != current->mm)
3006                 return -EIO;
3007
3008         switch (ioctl) {
3009         case KVM_SET_SIGNAL_MASK: {
3010                 struct kvm_signal_mask __user *sigmask_arg = argp;
3011                 struct kvm_signal_mask kvm_sigmask;
3012                 sigset_t sigset;
3013
3014                 if (argp) {
3015                         r = -EFAULT;
3016                         if (copy_from_user(&kvm_sigmask, argp,
3017                                            sizeof(kvm_sigmask)))
3018                                 goto out;
3019                         r = -EINVAL;
3020                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3021                                 goto out;
3022                         r = -EFAULT;
3023                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3024                                 goto out;
3025                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3026                 } else
3027                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3028                 break;
3029         }
3030         default:
3031                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3032         }
3033
3034 out:
3035         return r;
3036 }
3037 #endif
3038
3039 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3040 {
3041         struct kvm_device *dev = filp->private_data;
3042
3043         if (dev->ops->mmap)
3044                 return dev->ops->mmap(dev, vma);
3045
3046         return -ENODEV;
3047 }
3048
3049 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3050                                  int (*accessor)(struct kvm_device *dev,
3051                                                  struct kvm_device_attr *attr),
3052                                  unsigned long arg)
3053 {
3054         struct kvm_device_attr attr;
3055
3056         if (!accessor)
3057                 return -EPERM;
3058
3059         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3060                 return -EFAULT;
3061
3062         return accessor(dev, &attr);
3063 }
3064
3065 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3066                              unsigned long arg)
3067 {
3068         struct kvm_device *dev = filp->private_data;
3069
3070         if (dev->kvm->mm != current->mm)
3071                 return -EIO;
3072
3073         switch (ioctl) {
3074         case KVM_SET_DEVICE_ATTR:
3075                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3076         case KVM_GET_DEVICE_ATTR:
3077                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3078         case KVM_HAS_DEVICE_ATTR:
3079                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3080         default:
3081                 if (dev->ops->ioctl)
3082                         return dev->ops->ioctl(dev, ioctl, arg);
3083
3084                 return -ENOTTY;
3085         }
3086 }
3087
3088 static int kvm_device_release(struct inode *inode, struct file *filp)
3089 {
3090         struct kvm_device *dev = filp->private_data;
3091         struct kvm *kvm = dev->kvm;
3092
3093         if (dev->ops->release) {
3094                 mutex_lock(&kvm->lock);
3095                 list_del(&dev->vm_node);
3096                 dev->ops->release(dev);
3097                 mutex_unlock(&kvm->lock);
3098         }
3099
3100         kvm_put_kvm(kvm);
3101         return 0;
3102 }
3103
3104 static const struct file_operations kvm_device_fops = {
3105         .unlocked_ioctl = kvm_device_ioctl,
3106         .release = kvm_device_release,
3107         KVM_COMPAT(kvm_device_ioctl),
3108         .mmap = kvm_device_mmap,
3109 };
3110
3111 struct kvm_device *kvm_device_from_filp(struct file *filp)
3112 {
3113         if (filp->f_op != &kvm_device_fops)
3114                 return NULL;
3115
3116         return filp->private_data;
3117 }
3118
3119 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3120 #ifdef CONFIG_KVM_MPIC
3121         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3122         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3123 #endif
3124 };
3125
3126 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3127 {
3128         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3129                 return -ENOSPC;
3130
3131         if (kvm_device_ops_table[type] != NULL)
3132                 return -EEXIST;
3133
3134         kvm_device_ops_table[type] = ops;
3135         return 0;
3136 }
3137
3138 void kvm_unregister_device_ops(u32 type)
3139 {
3140         if (kvm_device_ops_table[type] != NULL)
3141                 kvm_device_ops_table[type] = NULL;
3142 }
3143
3144 static int kvm_ioctl_create_device(struct kvm *kvm,
3145                                    struct kvm_create_device *cd)
3146 {
3147         const struct kvm_device_ops *ops = NULL;
3148         struct kvm_device *dev;
3149         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3150         int type;
3151         int ret;
3152
3153         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3154                 return -ENODEV;
3155
3156         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3157         ops = kvm_device_ops_table[type];
3158         if (ops == NULL)
3159                 return -ENODEV;
3160
3161         if (test)
3162                 return 0;
3163
3164         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3165         if (!dev)
3166                 return -ENOMEM;
3167
3168         dev->ops = ops;
3169         dev->kvm = kvm;
3170
3171         mutex_lock(&kvm->lock);
3172         ret = ops->create(dev, type);
3173         if (ret < 0) {
3174                 mutex_unlock(&kvm->lock);
3175                 kfree(dev);
3176                 return ret;
3177         }
3178         list_add(&dev->vm_node, &kvm->devices);
3179         mutex_unlock(&kvm->lock);
3180
3181         if (ops->init)
3182                 ops->init(dev);
3183
3184         kvm_get_kvm(kvm);
3185         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3186         if (ret < 0) {
3187                 kvm_put_kvm_no_destroy(kvm);
3188                 mutex_lock(&kvm->lock);
3189                 list_del(&dev->vm_node);
3190                 mutex_unlock(&kvm->lock);
3191                 ops->destroy(dev);
3192                 return ret;
3193         }
3194
3195         cd->fd = ret;
3196         return 0;
3197 }
3198
3199 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3200 {
3201         switch (arg) {
3202         case KVM_CAP_USER_MEMORY:
3203         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3204         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3205         case KVM_CAP_INTERNAL_ERROR_DATA:
3206 #ifdef CONFIG_HAVE_KVM_MSI
3207         case KVM_CAP_SIGNAL_MSI:
3208 #endif
3209 #ifdef CONFIG_HAVE_KVM_IRQFD
3210         case KVM_CAP_IRQFD:
3211         case KVM_CAP_IRQFD_RESAMPLE:
3212 #endif
3213         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3214         case KVM_CAP_CHECK_EXTENSION_VM:
3215         case KVM_CAP_ENABLE_CAP_VM:
3216 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3217         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3218 #endif
3219                 return 1;
3220 #ifdef CONFIG_KVM_MMIO
3221         case KVM_CAP_COALESCED_MMIO:
3222                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3223         case KVM_CAP_COALESCED_PIO:
3224                 return 1;
3225 #endif
3226 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3227         case KVM_CAP_IRQ_ROUTING:
3228                 return KVM_MAX_IRQ_ROUTES;
3229 #endif
3230 #if KVM_ADDRESS_SPACE_NUM > 1
3231         case KVM_CAP_MULTI_ADDRESS_SPACE:
3232                 return KVM_ADDRESS_SPACE_NUM;
3233 #endif
3234         case KVM_CAP_NR_MEMSLOTS:
3235                 return KVM_USER_MEM_SLOTS;
3236         default:
3237                 break;
3238         }
3239         return kvm_vm_ioctl_check_extension(kvm, arg);
3240 }
3241
3242 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3243                                                   struct kvm_enable_cap *cap)
3244 {
3245         return -EINVAL;
3246 }
3247
3248 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3249                                            struct kvm_enable_cap *cap)
3250 {
3251         switch (cap->cap) {
3252 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3253         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3254                 if (cap->flags || (cap->args[0] & ~1))
3255                         return -EINVAL;
3256                 kvm->manual_dirty_log_protect = cap->args[0];
3257                 return 0;
3258 #endif
3259         default:
3260                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3261         }
3262 }
3263
3264 static long kvm_vm_ioctl(struct file *filp,
3265                            unsigned int ioctl, unsigned long arg)
3266 {
3267         struct kvm *kvm = filp->private_data;
3268         void __user *argp = (void __user *)arg;
3269         int r;
3270
3271         if (kvm->mm != current->mm)
3272                 return -EIO;
3273         switch (ioctl) {
3274         case KVM_CREATE_VCPU:
3275                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3276                 break;
3277         case KVM_ENABLE_CAP: {
3278                 struct kvm_enable_cap cap;
3279
3280                 r = -EFAULT;
3281                 if (copy_from_user(&cap, argp, sizeof(cap)))
3282                         goto out;
3283                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3284                 break;
3285         }
3286         case KVM_SET_USER_MEMORY_REGION: {
3287                 struct kvm_userspace_memory_region kvm_userspace_mem;
3288
3289                 r = -EFAULT;
3290                 if (copy_from_user(&kvm_userspace_mem, argp,
3291                                                 sizeof(kvm_userspace_mem)))
3292                         goto out;
3293
3294                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3295                 break;
3296         }
3297         case KVM_GET_DIRTY_LOG: {
3298                 struct kvm_dirty_log log;
3299
3300                 r = -EFAULT;
3301                 if (copy_from_user(&log, argp, sizeof(log)))
3302                         goto out;
3303                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3304                 break;
3305         }
3306 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3307         case KVM_CLEAR_DIRTY_LOG: {
3308                 struct kvm_clear_dirty_log log;
3309
3310                 r = -EFAULT;
3311                 if (copy_from_user(&log, argp, sizeof(log)))
3312                         goto out;
3313                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3314                 break;
3315         }
3316 #endif
3317 #ifdef CONFIG_KVM_MMIO
3318         case KVM_REGISTER_COALESCED_MMIO: {
3319                 struct kvm_coalesced_mmio_zone zone;
3320
3321                 r = -EFAULT;
3322                 if (copy_from_user(&zone, argp, sizeof(zone)))
3323                         goto out;
3324                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3325                 break;
3326         }
3327         case KVM_UNREGISTER_COALESCED_MMIO: {
3328                 struct kvm_coalesced_mmio_zone zone;
3329
3330                 r = -EFAULT;
3331                 if (copy_from_user(&zone, argp, sizeof(zone)))
3332                         goto out;
3333                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3334                 break;
3335         }
3336 #endif
3337         case KVM_IRQFD: {
3338                 struct kvm_irqfd data;
3339
3340                 r = -EFAULT;
3341                 if (copy_from_user(&data, argp, sizeof(data)))
3342                         goto out;
3343                 r = kvm_irqfd(kvm, &data);
3344                 break;
3345         }
3346         case KVM_IOEVENTFD: {
3347                 struct kvm_ioeventfd data;
3348
3349                 r = -EFAULT;
3350                 if (copy_from_user(&data, argp, sizeof(data)))
3351                         goto out;
3352                 r = kvm_ioeventfd(kvm, &data);
3353                 break;
3354         }
3355 #ifdef CONFIG_HAVE_KVM_MSI
3356         case KVM_SIGNAL_MSI: {
3357                 struct kvm_msi msi;
3358
3359                 r = -EFAULT;
3360                 if (copy_from_user(&msi, argp, sizeof(msi)))
3361                         goto out;
3362                 r = kvm_send_userspace_msi(kvm, &msi);
3363                 break;
3364         }
3365 #endif
3366 #ifdef __KVM_HAVE_IRQ_LINE
3367         case KVM_IRQ_LINE_STATUS:
3368         case KVM_IRQ_LINE: {
3369                 struct kvm_irq_level irq_event;
3370
3371                 r = -EFAULT;
3372                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3373                         goto out;
3374
3375                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3376                                         ioctl == KVM_IRQ_LINE_STATUS);
3377                 if (r)
3378                         goto out;
3379
3380                 r = -EFAULT;
3381                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3382                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3383                                 goto out;
3384                 }
3385
3386                 r = 0;
3387                 break;
3388         }
3389 #endif
3390 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3391         case KVM_SET_GSI_ROUTING: {
3392                 struct kvm_irq_routing routing;
3393                 struct kvm_irq_routing __user *urouting;
3394                 struct kvm_irq_routing_entry *entries = NULL;
3395
3396                 r = -EFAULT;
3397                 if (copy_from_user(&routing, argp, sizeof(routing)))
3398                         goto out;
3399                 r = -EINVAL;
3400                 if (!kvm_arch_can_set_irq_routing(kvm))
3401                         goto out;
3402                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3403                         goto out;
3404                 if (routing.flags)
3405                         goto out;
3406                 if (routing.nr) {
3407                         r = -ENOMEM;
3408                         entries = vmalloc(array_size(sizeof(*entries),
3409                                                      routing.nr));
3410                         if (!entries)
3411                                 goto out;
3412                         r = -EFAULT;
3413                         urouting = argp;
3414                         if (copy_from_user(entries, urouting->entries,
3415                                            routing.nr * sizeof(*entries)))
3416                                 goto out_free_irq_routing;
3417                 }
3418                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3419                                         routing.flags);
3420 out_free_irq_routing:
3421                 vfree(entries);
3422                 break;
3423         }
3424 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3425         case KVM_CREATE_DEVICE: {
3426                 struct kvm_create_device cd;
3427
3428                 r = -EFAULT;
3429                 if (copy_from_user(&cd, argp, sizeof(cd)))
3430                         goto out;
3431
3432                 r = kvm_ioctl_create_device(kvm, &cd);
3433                 if (r)
3434                         goto out;
3435
3436                 r = -EFAULT;
3437                 if (copy_to_user(argp, &cd, sizeof(cd)))
3438                         goto out;
3439
3440                 r = 0;
3441                 break;
3442         }
3443         case KVM_CHECK_EXTENSION:
3444                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3445                 break;
3446         default:
3447                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3448         }
3449 out:
3450         return r;
3451 }
3452
3453 #ifdef CONFIG_KVM_COMPAT
3454 struct compat_kvm_dirty_log {
3455         __u32 slot;
3456         __u32 padding1;
3457         union {
3458                 compat_uptr_t dirty_bitmap; /* one bit per page */
3459                 __u64 padding2;
3460         };
3461 };
3462
3463 static long kvm_vm_compat_ioctl(struct file *filp,
3464                            unsigned int ioctl, unsigned long arg)
3465 {
3466         struct kvm *kvm = filp->private_data;
3467         int r;
3468
3469         if (kvm->mm != current->mm)
3470                 return -EIO;
3471         switch (ioctl) {
3472         case KVM_GET_DIRTY_LOG: {
3473                 struct compat_kvm_dirty_log compat_log;
3474                 struct kvm_dirty_log log;
3475
3476                 if (copy_from_user(&compat_log, (void __user *)arg,
3477                                    sizeof(compat_log)))
3478                         return -EFAULT;
3479                 log.slot         = compat_log.slot;
3480                 log.padding1     = compat_log.padding1;
3481                 log.padding2     = compat_log.padding2;
3482                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3483
3484                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3485                 break;
3486         }
3487         default:
3488                 r = kvm_vm_ioctl(filp, ioctl, arg);
3489         }
3490         return r;
3491 }
3492 #endif
3493
3494 static struct file_operations kvm_vm_fops = {
3495         .release        = kvm_vm_release,
3496         .unlocked_ioctl = kvm_vm_ioctl,
3497         .llseek         = noop_llseek,
3498         KVM_COMPAT(kvm_vm_compat_ioctl),
3499 };
3500
3501 static int kvm_dev_ioctl_create_vm(unsigned long type)
3502 {
3503         int r;
3504         struct kvm *kvm;
3505         struct file *file;
3506
3507         kvm = kvm_create_vm(type);
3508         if (IS_ERR(kvm))
3509                 return PTR_ERR(kvm);
3510 #ifdef CONFIG_KVM_MMIO
3511         r = kvm_coalesced_mmio_init(kvm);
3512         if (r < 0)
3513                 goto put_kvm;
3514 #endif
3515         r = get_unused_fd_flags(O_CLOEXEC);
3516         if (r < 0)
3517                 goto put_kvm;
3518
3519         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3520         if (IS_ERR(file)) {
3521                 put_unused_fd(r);
3522                 r = PTR_ERR(file);
3523                 goto put_kvm;
3524         }
3525
3526         /*
3527          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3528          * already set, with ->release() being kvm_vm_release().  In error
3529          * cases it will be called by the final fput(file) and will take
3530          * care of doing kvm_put_kvm(kvm).
3531          */
3532         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3533                 put_unused_fd(r);
3534                 fput(file);
3535                 return -ENOMEM;
3536         }
3537         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3538
3539         fd_install(r, file);
3540         return r;
3541
3542 put_kvm:
3543         kvm_put_kvm(kvm);
3544         return r;
3545 }
3546
3547 static long kvm_dev_ioctl(struct file *filp,
3548                           unsigned int ioctl, unsigned long arg)
3549 {
3550         long r = -EINVAL;
3551
3552         switch (ioctl) {
3553         case KVM_GET_API_VERSION:
3554                 if (arg)
3555                         goto out;
3556                 r = KVM_API_VERSION;
3557                 break;
3558         case KVM_CREATE_VM:
3559                 r = kvm_dev_ioctl_create_vm(arg);
3560                 break;
3561         case KVM_CHECK_EXTENSION:
3562                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3563                 break;
3564         case KVM_GET_VCPU_MMAP_SIZE:
3565                 if (arg)
3566                         goto out;
3567                 r = PAGE_SIZE;     /* struct kvm_run */
3568 #ifdef CONFIG_X86
3569                 r += PAGE_SIZE;    /* pio data page */
3570 #endif
3571 #ifdef CONFIG_KVM_MMIO
3572                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3573 #endif
3574                 break;
3575         case KVM_TRACE_ENABLE:
3576         case KVM_TRACE_PAUSE:
3577         case KVM_TRACE_DISABLE:
3578                 r = -EOPNOTSUPP;
3579                 break;
3580         default:
3581                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3582         }
3583 out:
3584         return r;
3585 }
3586
3587 static struct file_operations kvm_chardev_ops = {
3588         .unlocked_ioctl = kvm_dev_ioctl,
3589         .llseek         = noop_llseek,
3590         KVM_COMPAT(kvm_dev_ioctl),
3591 };
3592
3593 static struct miscdevice kvm_dev = {
3594         KVM_MINOR,
3595         "kvm",
3596         &kvm_chardev_ops,
3597 };
3598
3599 static void hardware_enable_nolock(void *junk)
3600 {
3601         int cpu = raw_smp_processor_id();
3602         int r;
3603
3604         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3605                 return;
3606
3607         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3608
3609         r = kvm_arch_hardware_enable();
3610
3611         if (r) {
3612                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3613                 atomic_inc(&hardware_enable_failed);
3614                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3615         }
3616 }
3617
3618 static int kvm_starting_cpu(unsigned int cpu)
3619 {
3620         raw_spin_lock(&kvm_count_lock);
3621         if (kvm_usage_count)
3622                 hardware_enable_nolock(NULL);
3623         raw_spin_unlock(&kvm_count_lock);
3624         return 0;
3625 }
3626
3627 static void hardware_disable_nolock(void *junk)
3628 {
3629         int cpu = raw_smp_processor_id();
3630
3631         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3632                 return;
3633         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3634         kvm_arch_hardware_disable();
3635 }
3636
3637 static int kvm_dying_cpu(unsigned int cpu)
3638 {
3639         raw_spin_lock(&kvm_count_lock);
3640         if (kvm_usage_count)
3641                 hardware_disable_nolock(NULL);
3642         raw_spin_unlock(&kvm_count_lock);
3643         return 0;
3644 }
3645
3646 static void hardware_disable_all_nolock(void)
3647 {
3648         BUG_ON(!kvm_usage_count);
3649
3650         kvm_usage_count--;
3651         if (!kvm_usage_count)
3652                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3653 }
3654
3655 static void hardware_disable_all(void)
3656 {
3657         raw_spin_lock(&kvm_count_lock);
3658         hardware_disable_all_nolock();
3659         raw_spin_unlock(&kvm_count_lock);
3660 }
3661
3662 static int hardware_enable_all(void)
3663 {
3664         int r = 0;
3665
3666         raw_spin_lock(&kvm_count_lock);
3667
3668         kvm_usage_count++;
3669         if (kvm_usage_count == 1) {
3670                 atomic_set(&hardware_enable_failed, 0);
3671                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3672
3673                 if (atomic_read(&hardware_enable_failed)) {
3674                         hardware_disable_all_nolock();
3675                         r = -EBUSY;
3676                 }
3677         }
3678
3679         raw_spin_unlock(&kvm_count_lock);
3680
3681         return r;
3682 }
3683
3684 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3685                       void *v)
3686 {
3687         /*
3688          * Some (well, at least mine) BIOSes hang on reboot if
3689          * in vmx root mode.
3690          *
3691          * And Intel TXT required VMX off for all cpu when system shutdown.
3692          */
3693         pr_info("kvm: exiting hardware virtualization\n");
3694         kvm_rebooting = true;
3695         on_each_cpu(hardware_disable_nolock, NULL, 1);
3696         return NOTIFY_OK;
3697 }
3698
3699 static struct notifier_block kvm_reboot_notifier = {
3700         .notifier_call = kvm_reboot,
3701         .priority = 0,
3702 };
3703
3704 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3705 {
3706         int i;
3707
3708         for (i = 0; i < bus->dev_count; i++) {
3709                 struct kvm_io_device *pos = bus->range[i].dev;
3710
3711                 kvm_iodevice_destructor(pos);
3712         }
3713         kfree(bus);
3714 }
3715
3716 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3717                                  const struct kvm_io_range *r2)
3718 {
3719         gpa_t addr1 = r1->addr;
3720         gpa_t addr2 = r2->addr;
3721
3722         if (addr1 < addr2)
3723                 return -1;
3724
3725         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3726          * accept any overlapping write.  Any order is acceptable for
3727          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3728          * we process all of them.
3729          */
3730         if (r2->len) {
3731                 addr1 += r1->len;
3732                 addr2 += r2->len;
3733         }
3734
3735         if (addr1 > addr2)
3736                 return 1;
3737
3738         return 0;
3739 }
3740
3741 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3742 {
3743         return kvm_io_bus_cmp(p1, p2);
3744 }
3745
3746 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3747                              gpa_t addr, int len)
3748 {
3749         struct kvm_io_range *range, key;
3750         int off;
3751
3752         key = (struct kvm_io_range) {
3753                 .addr = addr,
3754                 .len = len,
3755         };
3756
3757         range = bsearch(&key, bus->range, bus->dev_count,
3758                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3759         if (range == NULL)
3760                 return -ENOENT;
3761
3762         off = range - bus->range;
3763
3764         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3765                 off--;
3766
3767         return off;
3768 }
3769
3770 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3771                               struct kvm_io_range *range, const void *val)
3772 {
3773         int idx;
3774
3775         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3776         if (idx < 0)
3777                 return -EOPNOTSUPP;
3778
3779         while (idx < bus->dev_count &&
3780                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3781                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3782                                         range->len, val))
3783                         return idx;
3784                 idx++;
3785         }
3786
3787         return -EOPNOTSUPP;
3788 }
3789
3790 /* kvm_io_bus_write - called under kvm->slots_lock */
3791 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3792                      int len, const void *val)
3793 {
3794         struct kvm_io_bus *bus;
3795         struct kvm_io_range range;
3796         int r;
3797
3798         range = (struct kvm_io_range) {
3799                 .addr = addr,
3800                 .len = len,
3801         };
3802
3803         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3804         if (!bus)
3805                 return -ENOMEM;
3806         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3807         return r < 0 ? r : 0;
3808 }
3809 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3810
3811 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3812 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3813                             gpa_t addr, int len, const void *val, long cookie)
3814 {
3815         struct kvm_io_bus *bus;
3816         struct kvm_io_range range;
3817
3818         range = (struct kvm_io_range) {
3819                 .addr = addr,
3820                 .len = len,
3821         };
3822
3823         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3824         if (!bus)
3825                 return -ENOMEM;
3826
3827         /* First try the device referenced by cookie. */
3828         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3829             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3830                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3831                                         val))
3832                         return cookie;
3833
3834         /*
3835          * cookie contained garbage; fall back to search and return the
3836          * correct cookie value.
3837          */
3838         return __kvm_io_bus_write(vcpu, bus, &range, val);
3839 }
3840
3841 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3842                              struct kvm_io_range *range, void *val)
3843 {
3844         int idx;
3845
3846         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3847         if (idx < 0)
3848                 return -EOPNOTSUPP;
3849
3850         while (idx < bus->dev_count &&
3851                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3852                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3853                                        range->len, val))
3854                         return idx;
3855                 idx++;
3856         }
3857
3858         return -EOPNOTSUPP;
3859 }
3860
3861 /* kvm_io_bus_read - called under kvm->slots_lock */
3862 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3863                     int len, void *val)
3864 {
3865         struct kvm_io_bus *bus;
3866         struct kvm_io_range range;
3867         int r;
3868
3869         range = (struct kvm_io_range) {
3870                 .addr = addr,
3871                 .len = len,
3872         };
3873
3874         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3875         if (!bus)
3876                 return -ENOMEM;
3877         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3878         return r < 0 ? r : 0;
3879 }
3880
3881 /* Caller must hold slots_lock. */
3882 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3883                             int len, struct kvm_io_device *dev)
3884 {
3885         int i;
3886         struct kvm_io_bus *new_bus, *bus;
3887         struct kvm_io_range range;
3888
3889         bus = kvm_get_bus(kvm, bus_idx);
3890         if (!bus)
3891                 return -ENOMEM;
3892
3893         /* exclude ioeventfd which is limited by maximum fd */
3894         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3895                 return -ENOSPC;
3896
3897         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3898                           GFP_KERNEL_ACCOUNT);
3899         if (!new_bus)
3900                 return -ENOMEM;
3901
3902         range = (struct kvm_io_range) {
3903                 .addr = addr,
3904                 .len = len,
3905                 .dev = dev,
3906         };
3907
3908         for (i = 0; i < bus->dev_count; i++)
3909                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3910                         break;
3911
3912         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3913         new_bus->dev_count++;
3914         new_bus->range[i] = range;
3915         memcpy(new_bus->range + i + 1, bus->range + i,
3916                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3917         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3918         synchronize_srcu_expedited(&kvm->srcu);
3919         kfree(bus);
3920
3921         return 0;
3922 }
3923
3924 /* Caller must hold slots_lock. */
3925 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3926                                struct kvm_io_device *dev)
3927 {
3928         int i;
3929         struct kvm_io_bus *new_bus, *bus;
3930
3931         bus = kvm_get_bus(kvm, bus_idx);
3932         if (!bus)
3933                 return;
3934
3935         for (i = 0; i < bus->dev_count; i++)
3936                 if (bus->range[i].dev == dev) {
3937                         break;
3938                 }
3939
3940         if (i == bus->dev_count)
3941                 return;
3942
3943         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3944                           GFP_KERNEL_ACCOUNT);
3945         if (!new_bus)  {
3946                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3947                 goto broken;
3948         }
3949
3950         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3951         new_bus->dev_count--;
3952         memcpy(new_bus->range + i, bus->range + i + 1,
3953                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3954
3955 broken:
3956         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3957         synchronize_srcu_expedited(&kvm->srcu);
3958         kfree(bus);
3959         return;
3960 }
3961
3962 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3963                                          gpa_t addr)
3964 {
3965         struct kvm_io_bus *bus;
3966         int dev_idx, srcu_idx;
3967         struct kvm_io_device *iodev = NULL;
3968
3969         srcu_idx = srcu_read_lock(&kvm->srcu);
3970
3971         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3972         if (!bus)
3973                 goto out_unlock;
3974
3975         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3976         if (dev_idx < 0)
3977                 goto out_unlock;
3978
3979         iodev = bus->range[dev_idx].dev;
3980
3981 out_unlock:
3982         srcu_read_unlock(&kvm->srcu, srcu_idx);
3983
3984         return iodev;
3985 }
3986 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3987
3988 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3989                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3990                            const char *fmt)
3991 {
3992         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3993                                           inode->i_private;
3994
3995         /* The debugfs files are a reference to the kvm struct which
3996          * is still valid when kvm_destroy_vm is called.
3997          * To avoid the race between open and the removal of the debugfs
3998          * directory we test against the users count.
3999          */
4000         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4001                 return -ENOENT;
4002
4003         if (simple_attr_open(inode, file, get,
4004                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4005                     ? set : NULL,
4006                     fmt)) {
4007                 kvm_put_kvm(stat_data->kvm);
4008                 return -ENOMEM;
4009         }
4010
4011         return 0;
4012 }
4013
4014 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4015 {
4016         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4017                                           inode->i_private;
4018
4019         simple_attr_release(inode, file);
4020         kvm_put_kvm(stat_data->kvm);
4021
4022         return 0;
4023 }
4024
4025 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4026 {
4027         *val = *(ulong *)((void *)kvm + offset);
4028
4029         return 0;
4030 }
4031
4032 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4033 {
4034         *(ulong *)((void *)kvm + offset) = 0;
4035
4036         return 0;
4037 }
4038
4039 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4040 {
4041         int i;
4042         struct kvm_vcpu *vcpu;
4043
4044         *val = 0;
4045
4046         kvm_for_each_vcpu(i, vcpu, kvm)
4047                 *val += *(u64 *)((void *)vcpu + offset);
4048
4049         return 0;
4050 }
4051
4052 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4053 {
4054         int i;
4055         struct kvm_vcpu *vcpu;
4056
4057         kvm_for_each_vcpu(i, vcpu, kvm)
4058                 *(u64 *)((void *)vcpu + offset) = 0;
4059
4060         return 0;
4061 }
4062
4063 static int kvm_stat_data_get(void *data, u64 *val)
4064 {
4065         int r = -EFAULT;
4066         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4067
4068         switch (stat_data->dbgfs_item->kind) {
4069         case KVM_STAT_VM:
4070                 r = kvm_get_stat_per_vm(stat_data->kvm,
4071                                         stat_data->dbgfs_item->offset, val);
4072                 break;
4073         case KVM_STAT_VCPU:
4074                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4075                                           stat_data->dbgfs_item->offset, val);
4076                 break;
4077         }
4078
4079         return r;
4080 }
4081
4082 static int kvm_stat_data_clear(void *data, u64 val)
4083 {
4084         int r = -EFAULT;
4085         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4086
4087         if (val)
4088                 return -EINVAL;
4089
4090         switch (stat_data->dbgfs_item->kind) {
4091         case KVM_STAT_VM:
4092                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4093                                           stat_data->dbgfs_item->offset);
4094                 break;
4095         case KVM_STAT_VCPU:
4096                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4097                                             stat_data->dbgfs_item->offset);
4098                 break;
4099         }
4100
4101         return r;
4102 }
4103
4104 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4105 {
4106         __simple_attr_check_format("%llu\n", 0ull);
4107         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4108                                 kvm_stat_data_clear, "%llu\n");
4109 }
4110
4111 static const struct file_operations stat_fops_per_vm = {
4112         .owner = THIS_MODULE,
4113         .open = kvm_stat_data_open,
4114         .release = kvm_debugfs_release,
4115         .read = simple_attr_read,
4116         .write = simple_attr_write,
4117         .llseek = no_llseek,
4118 };
4119
4120 static int vm_stat_get(void *_offset, u64 *val)
4121 {
4122         unsigned offset = (long)_offset;
4123         struct kvm *kvm;
4124         u64 tmp_val;
4125
4126         *val = 0;
4127         mutex_lock(&kvm_lock);
4128         list_for_each_entry(kvm, &vm_list, vm_list) {
4129                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4130                 *val += tmp_val;
4131         }
4132         mutex_unlock(&kvm_lock);
4133         return 0;
4134 }
4135
4136 static int vm_stat_clear(void *_offset, u64 val)
4137 {
4138         unsigned offset = (long)_offset;
4139         struct kvm *kvm;
4140
4141         if (val)
4142                 return -EINVAL;
4143
4144         mutex_lock(&kvm_lock);
4145         list_for_each_entry(kvm, &vm_list, vm_list) {
4146                 kvm_clear_stat_per_vm(kvm, offset);
4147         }
4148         mutex_unlock(&kvm_lock);
4149
4150         return 0;
4151 }
4152
4153 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4154
4155 static int vcpu_stat_get(void *_offset, u64 *val)
4156 {
4157         unsigned offset = (long)_offset;
4158         struct kvm *kvm;
4159         u64 tmp_val;
4160
4161         *val = 0;
4162         mutex_lock(&kvm_lock);
4163         list_for_each_entry(kvm, &vm_list, vm_list) {
4164                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4165                 *val += tmp_val;
4166         }
4167         mutex_unlock(&kvm_lock);
4168         return 0;
4169 }
4170
4171 static int vcpu_stat_clear(void *_offset, u64 val)
4172 {
4173         unsigned offset = (long)_offset;
4174         struct kvm *kvm;
4175
4176         if (val)
4177                 return -EINVAL;
4178
4179         mutex_lock(&kvm_lock);
4180         list_for_each_entry(kvm, &vm_list, vm_list) {
4181                 kvm_clear_stat_per_vcpu(kvm, offset);
4182         }
4183         mutex_unlock(&kvm_lock);
4184
4185         return 0;
4186 }
4187
4188 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4189                         "%llu\n");
4190
4191 static const struct file_operations *stat_fops[] = {
4192         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4193         [KVM_STAT_VM]   = &vm_stat_fops,
4194 };
4195
4196 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4197 {
4198         struct kobj_uevent_env *env;
4199         unsigned long long created, active;
4200
4201         if (!kvm_dev.this_device || !kvm)
4202                 return;
4203
4204         mutex_lock(&kvm_lock);
4205         if (type == KVM_EVENT_CREATE_VM) {
4206                 kvm_createvm_count++;
4207                 kvm_active_vms++;
4208         } else if (type == KVM_EVENT_DESTROY_VM) {
4209                 kvm_active_vms--;
4210         }
4211         created = kvm_createvm_count;
4212         active = kvm_active_vms;
4213         mutex_unlock(&kvm_lock);
4214
4215         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4216         if (!env)
4217                 return;
4218
4219         add_uevent_var(env, "CREATED=%llu", created);
4220         add_uevent_var(env, "COUNT=%llu", active);
4221
4222         if (type == KVM_EVENT_CREATE_VM) {
4223                 add_uevent_var(env, "EVENT=create");
4224                 kvm->userspace_pid = task_pid_nr(current);
4225         } else if (type == KVM_EVENT_DESTROY_VM) {
4226                 add_uevent_var(env, "EVENT=destroy");
4227         }
4228         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4229
4230         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4231                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4232
4233                 if (p) {
4234                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4235                         if (!IS_ERR(tmp))
4236                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4237                         kfree(p);
4238                 }
4239         }
4240         /* no need for checks, since we are adding at most only 5 keys */
4241         env->envp[env->envp_idx++] = NULL;
4242         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4243         kfree(env);
4244 }
4245
4246 static void kvm_init_debug(void)
4247 {
4248         struct kvm_stats_debugfs_item *p;
4249
4250         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4251
4252         kvm_debugfs_num_entries = 0;
4253         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4254                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4255                                     kvm_debugfs_dir, (void *)(long)p->offset,
4256                                     stat_fops[p->kind]);
4257         }
4258 }
4259
4260 static int kvm_suspend(void)
4261 {
4262         if (kvm_usage_count)
4263                 hardware_disable_nolock(NULL);
4264         return 0;
4265 }
4266
4267 static void kvm_resume(void)
4268 {
4269         if (kvm_usage_count) {
4270 #ifdef CONFIG_LOCKDEP
4271                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4272 #endif
4273                 hardware_enable_nolock(NULL);
4274         }
4275 }
4276
4277 static struct syscore_ops kvm_syscore_ops = {
4278         .suspend = kvm_suspend,
4279         .resume = kvm_resume,
4280 };
4281
4282 static inline
4283 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4284 {
4285         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4286 }
4287
4288 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4289 {
4290         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4291
4292         WRITE_ONCE(vcpu->preempted, false);
4293         WRITE_ONCE(vcpu->ready, false);
4294
4295         __this_cpu_write(kvm_running_vcpu, vcpu);
4296         kvm_arch_sched_in(vcpu, cpu);
4297         kvm_arch_vcpu_load(vcpu, cpu);
4298 }
4299
4300 static void kvm_sched_out(struct preempt_notifier *pn,
4301                           struct task_struct *next)
4302 {
4303         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4304
4305         if (current->state == TASK_RUNNING) {
4306                 WRITE_ONCE(vcpu->preempted, true);
4307                 WRITE_ONCE(vcpu->ready, true);
4308         }
4309         kvm_arch_vcpu_put(vcpu);
4310         __this_cpu_write(kvm_running_vcpu, NULL);
4311 }
4312
4313 /**
4314  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
4315  * Thanks to preempt notifiers, this can also be called from
4316  * preemptible context.
4317  */
4318 struct kvm_vcpu *kvm_get_running_vcpu(void)
4319 {
4320         return __this_cpu_read(kvm_running_vcpu);
4321 }
4322
4323 /**
4324  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
4325  */
4326 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
4327 {
4328         return &kvm_running_vcpu;
4329 }
4330
4331 static void check_processor_compat(void *rtn)
4332 {
4333         *(int *)rtn = kvm_arch_check_processor_compat();
4334 }
4335
4336 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4337                   struct module *module)
4338 {
4339         int r;
4340         int cpu;
4341
4342         r = kvm_arch_init(opaque);
4343         if (r)
4344                 goto out_fail;
4345
4346         /*
4347          * kvm_arch_init makes sure there's at most one caller
4348          * for architectures that support multiple implementations,
4349          * like intel and amd on x86.
4350          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4351          * conflicts in case kvm is already setup for another implementation.
4352          */
4353         r = kvm_irqfd_init();
4354         if (r)
4355                 goto out_irqfd;
4356
4357         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4358                 r = -ENOMEM;
4359                 goto out_free_0;
4360         }
4361
4362         r = kvm_arch_hardware_setup();
4363         if (r < 0)
4364                 goto out_free_1;
4365
4366         for_each_online_cpu(cpu) {
4367                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4368                 if (r < 0)
4369                         goto out_free_2;
4370         }
4371
4372         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4373                                       kvm_starting_cpu, kvm_dying_cpu);
4374         if (r)
4375                 goto out_free_2;
4376         register_reboot_notifier(&kvm_reboot_notifier);
4377
4378         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4379         if (!vcpu_align)
4380                 vcpu_align = __alignof__(struct kvm_vcpu);
4381         kvm_vcpu_cache =
4382                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4383                                            SLAB_ACCOUNT,
4384                                            offsetof(struct kvm_vcpu, arch),
4385                                            sizeof_field(struct kvm_vcpu, arch),
4386                                            NULL);
4387         if (!kvm_vcpu_cache) {
4388                 r = -ENOMEM;
4389                 goto out_free_3;
4390         }
4391
4392         r = kvm_async_pf_init();
4393         if (r)
4394                 goto out_free;
4395
4396         kvm_chardev_ops.owner = module;
4397         kvm_vm_fops.owner = module;
4398         kvm_vcpu_fops.owner = module;
4399
4400         r = misc_register(&kvm_dev);
4401         if (r) {
4402                 pr_err("kvm: misc device register failed\n");
4403                 goto out_unreg;
4404         }
4405
4406         register_syscore_ops(&kvm_syscore_ops);
4407
4408         kvm_preempt_ops.sched_in = kvm_sched_in;
4409         kvm_preempt_ops.sched_out = kvm_sched_out;
4410
4411         kvm_init_debug();
4412
4413         r = kvm_vfio_ops_init();
4414         WARN_ON(r);
4415
4416         return 0;
4417
4418 out_unreg:
4419         kvm_async_pf_deinit();
4420 out_free:
4421         kmem_cache_destroy(kvm_vcpu_cache);
4422 out_free_3:
4423         unregister_reboot_notifier(&kvm_reboot_notifier);
4424         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4425 out_free_2:
4426         kvm_arch_hardware_unsetup();
4427 out_free_1:
4428         free_cpumask_var(cpus_hardware_enabled);
4429 out_free_0:
4430         kvm_irqfd_exit();
4431 out_irqfd:
4432         kvm_arch_exit();
4433 out_fail:
4434         return r;
4435 }
4436 EXPORT_SYMBOL_GPL(kvm_init);
4437
4438 void kvm_exit(void)
4439 {
4440         debugfs_remove_recursive(kvm_debugfs_dir);
4441         misc_deregister(&kvm_dev);
4442         kmem_cache_destroy(kvm_vcpu_cache);
4443         kvm_async_pf_deinit();
4444         unregister_syscore_ops(&kvm_syscore_ops);
4445         unregister_reboot_notifier(&kvm_reboot_notifier);
4446         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4447         on_each_cpu(hardware_disable_nolock, NULL, 1);
4448         kvm_arch_hardware_unsetup();
4449         kvm_arch_exit();
4450         kvm_irqfd_exit();
4451         free_cpumask_var(cpus_hardware_enabled);
4452         kvm_vfio_ops_exit();
4453 }
4454 EXPORT_SYMBOL_GPL(kvm_exit);
4455
4456 struct kvm_vm_worker_thread_context {
4457         struct kvm *kvm;
4458         struct task_struct *parent;
4459         struct completion init_done;
4460         kvm_vm_thread_fn_t thread_fn;
4461         uintptr_t data;
4462         int err;
4463 };
4464
4465 static int kvm_vm_worker_thread(void *context)
4466 {
4467         /*
4468          * The init_context is allocated on the stack of the parent thread, so
4469          * we have to locally copy anything that is needed beyond initialization
4470          */
4471         struct kvm_vm_worker_thread_context *init_context = context;
4472         struct kvm *kvm = init_context->kvm;
4473         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4474         uintptr_t data = init_context->data;
4475         int err;
4476
4477         err = kthread_park(current);
4478         /* kthread_park(current) is never supposed to return an error */
4479         WARN_ON(err != 0);
4480         if (err)
4481                 goto init_complete;
4482
4483         err = cgroup_attach_task_all(init_context->parent, current);
4484         if (err) {
4485                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4486                         __func__, err);
4487                 goto init_complete;
4488         }
4489
4490         set_user_nice(current, task_nice(init_context->parent));
4491
4492 init_complete:
4493         init_context->err = err;
4494         complete(&init_context->init_done);
4495         init_context = NULL;
4496
4497         if (err)
4498                 return err;
4499
4500         /* Wait to be woken up by the spawner before proceeding. */
4501         kthread_parkme();
4502
4503         if (!kthread_should_stop())
4504                 err = thread_fn(kvm, data);
4505
4506         return err;
4507 }
4508
4509 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4510                                 uintptr_t data, const char *name,
4511                                 struct task_struct **thread_ptr)
4512 {
4513         struct kvm_vm_worker_thread_context init_context = {};
4514         struct task_struct *thread;
4515
4516         *thread_ptr = NULL;
4517         init_context.kvm = kvm;
4518         init_context.parent = current;
4519         init_context.thread_fn = thread_fn;
4520         init_context.data = data;
4521         init_completion(&init_context.init_done);
4522
4523         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4524                              "%s-%d", name, task_pid_nr(current));
4525         if (IS_ERR(thread))
4526                 return PTR_ERR(thread);
4527
4528         /* kthread_run is never supposed to return NULL */
4529         WARN_ON(thread == NULL);
4530
4531         wait_for_completion(&init_context.init_done);
4532
4533         if (!init_context.err)
4534                 *thread_ptr = thread;
4535
4536         return init_context.err;
4537 }