]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/kvm_main.c
x86/kvm: Cache gfn to pfn translation
[linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 struct kmem_cache *kvm_vcpu_cache;
108 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111
112 struct dentry *kvm_debugfs_dir;
113 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
114
115 static int kvm_debugfs_num_entries;
116 static const struct file_operations *stat_fops_per_vm[];
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
148
149 __visible bool kvm_rebooting;
150 EXPORT_SYMBOL_GPL(kvm_rebooting);
151
152 static bool largepages_enabled = true;
153
154 #define KVM_EVENT_CREATE_VM 0
155 #define KVM_EVENT_DESTROY_VM 1
156 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
157 static unsigned long long kvm_createvm_count;
158 static unsigned long long kvm_active_vms;
159
160 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
161                 unsigned long start, unsigned long end, bool blockable)
162 {
163         return 0;
164 }
165
166 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
167 {
168         /*
169          * The metadata used by is_zone_device_page() to determine whether or
170          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171          * the device has been pinned, e.g. by get_user_pages().  WARN if the
172          * page_count() is zero to help detect bad usage of this helper.
173          */
174         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
175                 return false;
176
177         return is_zone_device_page(pfn_to_page(pfn));
178 }
179
180 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
181 {
182         /*
183          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
184          * perspective they are "normal" pages, albeit with slightly different
185          * usage rules.
186          */
187         if (pfn_valid(pfn))
188                 return PageReserved(pfn_to_page(pfn)) &&
189                        !kvm_is_zone_device_pfn(pfn);
190
191         return true;
192 }
193
194 /*
195  * Switches to specified vcpu, until a matching vcpu_put()
196  */
197 void vcpu_load(struct kvm_vcpu *vcpu)
198 {
199         int cpu = get_cpu();
200         preempt_notifier_register(&vcpu->preempt_notifier);
201         kvm_arch_vcpu_load(vcpu, cpu);
202         put_cpu();
203 }
204 EXPORT_SYMBOL_GPL(vcpu_load);
205
206 void vcpu_put(struct kvm_vcpu *vcpu)
207 {
208         preempt_disable();
209         kvm_arch_vcpu_put(vcpu);
210         preempt_notifier_unregister(&vcpu->preempt_notifier);
211         preempt_enable();
212 }
213 EXPORT_SYMBOL_GPL(vcpu_put);
214
215 /* TODO: merge with kvm_arch_vcpu_should_kick */
216 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
217 {
218         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
219
220         /*
221          * We need to wait for the VCPU to reenable interrupts and get out of
222          * READING_SHADOW_PAGE_TABLES mode.
223          */
224         if (req & KVM_REQUEST_WAIT)
225                 return mode != OUTSIDE_GUEST_MODE;
226
227         /*
228          * Need to kick a running VCPU, but otherwise there is nothing to do.
229          */
230         return mode == IN_GUEST_MODE;
231 }
232
233 static void ack_flush(void *_completed)
234 {
235 }
236
237 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
238 {
239         if (unlikely(!cpus))
240                 cpus = cpu_online_mask;
241
242         if (cpumask_empty(cpus))
243                 return false;
244
245         smp_call_function_many(cpus, ack_flush, NULL, wait);
246         return true;
247 }
248
249 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
250                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
251 {
252         int i, cpu, me;
253         struct kvm_vcpu *vcpu;
254         bool called;
255
256         me = get_cpu();
257
258         kvm_for_each_vcpu(i, vcpu, kvm) {
259                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
260                         continue;
261
262                 kvm_make_request(req, vcpu);
263                 cpu = vcpu->cpu;
264
265                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
266                         continue;
267
268                 if (tmp != NULL && cpu != -1 && cpu != me &&
269                     kvm_request_needs_ipi(vcpu, req))
270                         __cpumask_set_cpu(cpu, tmp);
271         }
272
273         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
274         put_cpu();
275
276         return called;
277 }
278
279 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
280 {
281         cpumask_var_t cpus;
282         bool called;
283
284         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
285
286         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
287
288         free_cpumask_var(cpus);
289         return called;
290 }
291
292 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
293 void kvm_flush_remote_tlbs(struct kvm *kvm)
294 {
295         /*
296          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
297          * kvm_make_all_cpus_request.
298          */
299         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
300
301         /*
302          * We want to publish modifications to the page tables before reading
303          * mode. Pairs with a memory barrier in arch-specific code.
304          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
305          * and smp_mb in walk_shadow_page_lockless_begin/end.
306          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
307          *
308          * There is already an smp_mb__after_atomic() before
309          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
310          * barrier here.
311          */
312         if (!kvm_arch_flush_remote_tlb(kvm)
313             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
314                 ++kvm->stat.remote_tlb_flush;
315         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
316 }
317 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
318 #endif
319
320 void kvm_reload_remote_mmus(struct kvm *kvm)
321 {
322         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
323 }
324
325 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
326 {
327         struct page *page;
328         int r;
329
330         mutex_init(&vcpu->mutex);
331         vcpu->cpu = -1;
332         vcpu->kvm = kvm;
333         vcpu->vcpu_id = id;
334         vcpu->pid = NULL;
335         init_swait_queue_head(&vcpu->wq);
336         kvm_async_pf_vcpu_init(vcpu);
337
338         vcpu->pre_pcpu = -1;
339         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
340
341         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
342         if (!page) {
343                 r = -ENOMEM;
344                 goto fail;
345         }
346         vcpu->run = page_address(page);
347
348         kvm_vcpu_set_in_spin_loop(vcpu, false);
349         kvm_vcpu_set_dy_eligible(vcpu, false);
350         vcpu->preempted = false;
351         vcpu->ready = false;
352
353         r = kvm_arch_vcpu_init(vcpu);
354         if (r < 0)
355                 goto fail_free_run;
356         return 0;
357
358 fail_free_run:
359         free_page((unsigned long)vcpu->run);
360 fail:
361         return r;
362 }
363 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
364
365 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
366 {
367         /*
368          * no need for rcu_read_lock as VCPU_RUN is the only place that
369          * will change the vcpu->pid pointer and on uninit all file
370          * descriptors are already gone.
371          */
372         put_pid(rcu_dereference_protected(vcpu->pid, 1));
373         kvm_arch_vcpu_uninit(vcpu);
374         free_page((unsigned long)vcpu->run);
375 }
376 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
377
378 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
379 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
380 {
381         return container_of(mn, struct kvm, mmu_notifier);
382 }
383
384 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
385                                         struct mm_struct *mm,
386                                         unsigned long address,
387                                         pte_t pte)
388 {
389         struct kvm *kvm = mmu_notifier_to_kvm(mn);
390         int idx;
391
392         idx = srcu_read_lock(&kvm->srcu);
393         spin_lock(&kvm->mmu_lock);
394         kvm->mmu_notifier_seq++;
395
396         if (kvm_set_spte_hva(kvm, address, pte))
397                 kvm_flush_remote_tlbs(kvm);
398
399         spin_unlock(&kvm->mmu_lock);
400         srcu_read_unlock(&kvm->srcu, idx);
401 }
402
403 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
404                                         const struct mmu_notifier_range *range)
405 {
406         struct kvm *kvm = mmu_notifier_to_kvm(mn);
407         int need_tlb_flush = 0, idx;
408         int ret;
409
410         idx = srcu_read_lock(&kvm->srcu);
411         spin_lock(&kvm->mmu_lock);
412         /*
413          * The count increase must become visible at unlock time as no
414          * spte can be established without taking the mmu_lock and
415          * count is also read inside the mmu_lock critical section.
416          */
417         kvm->mmu_notifier_count++;
418         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
419         need_tlb_flush |= kvm->tlbs_dirty;
420         /* we've to flush the tlb before the pages can be freed */
421         if (need_tlb_flush)
422                 kvm_flush_remote_tlbs(kvm);
423
424         spin_unlock(&kvm->mmu_lock);
425
426         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
427                                         range->end,
428                                         mmu_notifier_range_blockable(range));
429
430         srcu_read_unlock(&kvm->srcu, idx);
431
432         return ret;
433 }
434
435 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
436                                         const struct mmu_notifier_range *range)
437 {
438         struct kvm *kvm = mmu_notifier_to_kvm(mn);
439
440         spin_lock(&kvm->mmu_lock);
441         /*
442          * This sequence increase will notify the kvm page fault that
443          * the page that is going to be mapped in the spte could have
444          * been freed.
445          */
446         kvm->mmu_notifier_seq++;
447         smp_wmb();
448         /*
449          * The above sequence increase must be visible before the
450          * below count decrease, which is ensured by the smp_wmb above
451          * in conjunction with the smp_rmb in mmu_notifier_retry().
452          */
453         kvm->mmu_notifier_count--;
454         spin_unlock(&kvm->mmu_lock);
455
456         BUG_ON(kvm->mmu_notifier_count < 0);
457 }
458
459 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
460                                               struct mm_struct *mm,
461                                               unsigned long start,
462                                               unsigned long end)
463 {
464         struct kvm *kvm = mmu_notifier_to_kvm(mn);
465         int young, idx;
466
467         idx = srcu_read_lock(&kvm->srcu);
468         spin_lock(&kvm->mmu_lock);
469
470         young = kvm_age_hva(kvm, start, end);
471         if (young)
472                 kvm_flush_remote_tlbs(kvm);
473
474         spin_unlock(&kvm->mmu_lock);
475         srcu_read_unlock(&kvm->srcu, idx);
476
477         return young;
478 }
479
480 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
481                                         struct mm_struct *mm,
482                                         unsigned long start,
483                                         unsigned long end)
484 {
485         struct kvm *kvm = mmu_notifier_to_kvm(mn);
486         int young, idx;
487
488         idx = srcu_read_lock(&kvm->srcu);
489         spin_lock(&kvm->mmu_lock);
490         /*
491          * Even though we do not flush TLB, this will still adversely
492          * affect performance on pre-Haswell Intel EPT, where there is
493          * no EPT Access Bit to clear so that we have to tear down EPT
494          * tables instead. If we find this unacceptable, we can always
495          * add a parameter to kvm_age_hva so that it effectively doesn't
496          * do anything on clear_young.
497          *
498          * Also note that currently we never issue secondary TLB flushes
499          * from clear_young, leaving this job up to the regular system
500          * cadence. If we find this inaccurate, we might come up with a
501          * more sophisticated heuristic later.
502          */
503         young = kvm_age_hva(kvm, start, end);
504         spin_unlock(&kvm->mmu_lock);
505         srcu_read_unlock(&kvm->srcu, idx);
506
507         return young;
508 }
509
510 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
511                                        struct mm_struct *mm,
512                                        unsigned long address)
513 {
514         struct kvm *kvm = mmu_notifier_to_kvm(mn);
515         int young, idx;
516
517         idx = srcu_read_lock(&kvm->srcu);
518         spin_lock(&kvm->mmu_lock);
519         young = kvm_test_age_hva(kvm, address);
520         spin_unlock(&kvm->mmu_lock);
521         srcu_read_unlock(&kvm->srcu, idx);
522
523         return young;
524 }
525
526 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
527                                      struct mm_struct *mm)
528 {
529         struct kvm *kvm = mmu_notifier_to_kvm(mn);
530         int idx;
531
532         idx = srcu_read_lock(&kvm->srcu);
533         kvm_arch_flush_shadow_all(kvm);
534         srcu_read_unlock(&kvm->srcu, idx);
535 }
536
537 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
538         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
539         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
540         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
541         .clear_young            = kvm_mmu_notifier_clear_young,
542         .test_young             = kvm_mmu_notifier_test_young,
543         .change_pte             = kvm_mmu_notifier_change_pte,
544         .release                = kvm_mmu_notifier_release,
545 };
546
547 static int kvm_init_mmu_notifier(struct kvm *kvm)
548 {
549         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
550         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
551 }
552
553 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
554
555 static int kvm_init_mmu_notifier(struct kvm *kvm)
556 {
557         return 0;
558 }
559
560 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
561
562 static struct kvm_memslots *kvm_alloc_memslots(void)
563 {
564         int i;
565         struct kvm_memslots *slots;
566
567         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
568         if (!slots)
569                 return NULL;
570
571         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
572                 slots->id_to_index[i] = slots->memslots[i].id = i;
573
574         return slots;
575 }
576
577 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
578 {
579         if (!memslot->dirty_bitmap)
580                 return;
581
582         kvfree(memslot->dirty_bitmap);
583         memslot->dirty_bitmap = NULL;
584 }
585
586 /*
587  * Free any memory in @free but not in @dont.
588  */
589 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
590                               struct kvm_memory_slot *dont)
591 {
592         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
593                 kvm_destroy_dirty_bitmap(free);
594
595         kvm_arch_free_memslot(kvm, free, dont);
596
597         free->npages = 0;
598 }
599
600 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
601 {
602         struct kvm_memory_slot *memslot;
603
604         if (!slots)
605                 return;
606
607         kvm_for_each_memslot(memslot, slots)
608                 kvm_free_memslot(kvm, memslot, NULL);
609
610         kvfree(slots);
611 }
612
613 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
614 {
615         int i;
616
617         if (!kvm->debugfs_dentry)
618                 return;
619
620         debugfs_remove_recursive(kvm->debugfs_dentry);
621
622         if (kvm->debugfs_stat_data) {
623                 for (i = 0; i < kvm_debugfs_num_entries; i++)
624                         kfree(kvm->debugfs_stat_data[i]);
625                 kfree(kvm->debugfs_stat_data);
626         }
627 }
628
629 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
630 {
631         char dir_name[ITOA_MAX_LEN * 2];
632         struct kvm_stat_data *stat_data;
633         struct kvm_stats_debugfs_item *p;
634
635         if (!debugfs_initialized())
636                 return 0;
637
638         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
639         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
640
641         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
642                                          sizeof(*kvm->debugfs_stat_data),
643                                          GFP_KERNEL_ACCOUNT);
644         if (!kvm->debugfs_stat_data)
645                 return -ENOMEM;
646
647         for (p = debugfs_entries; p->name; p++) {
648                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
649                 if (!stat_data)
650                         return -ENOMEM;
651
652                 stat_data->kvm = kvm;
653                 stat_data->offset = p->offset;
654                 stat_data->mode = p->mode ? p->mode : 0644;
655                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
656                 debugfs_create_file(p->name, stat_data->mode, kvm->debugfs_dentry,
657                                     stat_data, stat_fops_per_vm[p->kind]);
658         }
659         return 0;
660 }
661
662 /*
663  * Called after the VM is otherwise initialized, but just before adding it to
664  * the vm_list.
665  */
666 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
667 {
668         return 0;
669 }
670
671 /*
672  * Called just after removing the VM from the vm_list, but before doing any
673  * other destruction.
674  */
675 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
676 {
677 }
678
679 static struct kvm *kvm_create_vm(unsigned long type)
680 {
681         struct kvm *kvm = kvm_arch_alloc_vm();
682         int r = -ENOMEM;
683         int i;
684
685         if (!kvm)
686                 return ERR_PTR(-ENOMEM);
687
688         spin_lock_init(&kvm->mmu_lock);
689         mmgrab(current->mm);
690         kvm->mm = current->mm;
691         kvm_eventfd_init(kvm);
692         mutex_init(&kvm->lock);
693         mutex_init(&kvm->irq_lock);
694         mutex_init(&kvm->slots_lock);
695         INIT_LIST_HEAD(&kvm->devices);
696
697         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
698
699         if (init_srcu_struct(&kvm->srcu))
700                 goto out_err_no_srcu;
701         if (init_srcu_struct(&kvm->irq_srcu))
702                 goto out_err_no_irq_srcu;
703
704         refcount_set(&kvm->users_count, 1);
705         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
706                 struct kvm_memslots *slots = kvm_alloc_memslots();
707
708                 if (!slots)
709                         goto out_err_no_arch_destroy_vm;
710                 /* Generations must be different for each address space. */
711                 slots->generation = i;
712                 rcu_assign_pointer(kvm->memslots[i], slots);
713         }
714
715         for (i = 0; i < KVM_NR_BUSES; i++) {
716                 rcu_assign_pointer(kvm->buses[i],
717                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
718                 if (!kvm->buses[i])
719                         goto out_err_no_arch_destroy_vm;
720         }
721
722         r = kvm_arch_init_vm(kvm, type);
723         if (r)
724                 goto out_err_no_arch_destroy_vm;
725
726         r = hardware_enable_all();
727         if (r)
728                 goto out_err_no_disable;
729
730 #ifdef CONFIG_HAVE_KVM_IRQFD
731         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
732 #endif
733
734         r = kvm_init_mmu_notifier(kvm);
735         if (r)
736                 goto out_err_no_mmu_notifier;
737
738         r = kvm_arch_post_init_vm(kvm);
739         if (r)
740                 goto out_err;
741
742         mutex_lock(&kvm_lock);
743         list_add(&kvm->vm_list, &vm_list);
744         mutex_unlock(&kvm_lock);
745
746         preempt_notifier_inc();
747
748         return kvm;
749
750 out_err:
751 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
752         if (kvm->mmu_notifier.ops)
753                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
754 #endif
755 out_err_no_mmu_notifier:
756         hardware_disable_all();
757 out_err_no_disable:
758         kvm_arch_destroy_vm(kvm);
759 out_err_no_arch_destroy_vm:
760         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
761         for (i = 0; i < KVM_NR_BUSES; i++)
762                 kfree(kvm_get_bus(kvm, i));
763         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
764                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
765         cleanup_srcu_struct(&kvm->irq_srcu);
766 out_err_no_irq_srcu:
767         cleanup_srcu_struct(&kvm->srcu);
768 out_err_no_srcu:
769         kvm_arch_free_vm(kvm);
770         mmdrop(current->mm);
771         return ERR_PTR(r);
772 }
773
774 static void kvm_destroy_devices(struct kvm *kvm)
775 {
776         struct kvm_device *dev, *tmp;
777
778         /*
779          * We do not need to take the kvm->lock here, because nobody else
780          * has a reference to the struct kvm at this point and therefore
781          * cannot access the devices list anyhow.
782          */
783         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
784                 list_del(&dev->vm_node);
785                 dev->ops->destroy(dev);
786         }
787 }
788
789 static void kvm_destroy_vm(struct kvm *kvm)
790 {
791         int i;
792         struct mm_struct *mm = kvm->mm;
793
794         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
795         kvm_destroy_vm_debugfs(kvm);
796         kvm_arch_sync_events(kvm);
797         mutex_lock(&kvm_lock);
798         list_del(&kvm->vm_list);
799         mutex_unlock(&kvm_lock);
800         kvm_arch_pre_destroy_vm(kvm);
801
802         kvm_free_irq_routing(kvm);
803         for (i = 0; i < KVM_NR_BUSES; i++) {
804                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
805
806                 if (bus)
807                         kvm_io_bus_destroy(bus);
808                 kvm->buses[i] = NULL;
809         }
810         kvm_coalesced_mmio_free(kvm);
811 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
812         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
813 #else
814         kvm_arch_flush_shadow_all(kvm);
815 #endif
816         kvm_arch_destroy_vm(kvm);
817         kvm_destroy_devices(kvm);
818         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
819                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
820         cleanup_srcu_struct(&kvm->irq_srcu);
821         cleanup_srcu_struct(&kvm->srcu);
822         kvm_arch_free_vm(kvm);
823         preempt_notifier_dec();
824         hardware_disable_all();
825         mmdrop(mm);
826 }
827
828 void kvm_get_kvm(struct kvm *kvm)
829 {
830         refcount_inc(&kvm->users_count);
831 }
832 EXPORT_SYMBOL_GPL(kvm_get_kvm);
833
834 void kvm_put_kvm(struct kvm *kvm)
835 {
836         if (refcount_dec_and_test(&kvm->users_count))
837                 kvm_destroy_vm(kvm);
838 }
839 EXPORT_SYMBOL_GPL(kvm_put_kvm);
840
841 /*
842  * Used to put a reference that was taken on behalf of an object associated
843  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
844  * of the new file descriptor fails and the reference cannot be transferred to
845  * its final owner.  In such cases, the caller is still actively using @kvm and
846  * will fail miserably if the refcount unexpectedly hits zero.
847  */
848 void kvm_put_kvm_no_destroy(struct kvm *kvm)
849 {
850         WARN_ON(refcount_dec_and_test(&kvm->users_count));
851 }
852 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
853
854 static int kvm_vm_release(struct inode *inode, struct file *filp)
855 {
856         struct kvm *kvm = filp->private_data;
857
858         kvm_irqfd_release(kvm);
859
860         kvm_put_kvm(kvm);
861         return 0;
862 }
863
864 /*
865  * Allocation size is twice as large as the actual dirty bitmap size.
866  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
867  */
868 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
869 {
870         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
871
872         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
873         if (!memslot->dirty_bitmap)
874                 return -ENOMEM;
875
876         return 0;
877 }
878
879 /*
880  * Insert memslot and re-sort memslots based on their GFN,
881  * so binary search could be used to lookup GFN.
882  * Sorting algorithm takes advantage of having initially
883  * sorted array and known changed memslot position.
884  */
885 static void update_memslots(struct kvm_memslots *slots,
886                             struct kvm_memory_slot *new,
887                             enum kvm_mr_change change)
888 {
889         int id = new->id;
890         int i = slots->id_to_index[id];
891         struct kvm_memory_slot *mslots = slots->memslots;
892
893         WARN_ON(mslots[i].id != id);
894         switch (change) {
895         case KVM_MR_CREATE:
896                 slots->used_slots++;
897                 WARN_ON(mslots[i].npages || !new->npages);
898                 break;
899         case KVM_MR_DELETE:
900                 slots->used_slots--;
901                 WARN_ON(new->npages || !mslots[i].npages);
902                 break;
903         default:
904                 break;
905         }
906
907         while (i < KVM_MEM_SLOTS_NUM - 1 &&
908                new->base_gfn <= mslots[i + 1].base_gfn) {
909                 if (!mslots[i + 1].npages)
910                         break;
911                 mslots[i] = mslots[i + 1];
912                 slots->id_to_index[mslots[i].id] = i;
913                 i++;
914         }
915
916         /*
917          * The ">=" is needed when creating a slot with base_gfn == 0,
918          * so that it moves before all those with base_gfn == npages == 0.
919          *
920          * On the other hand, if new->npages is zero, the above loop has
921          * already left i pointing to the beginning of the empty part of
922          * mslots, and the ">=" would move the hole backwards in this
923          * case---which is wrong.  So skip the loop when deleting a slot.
924          */
925         if (new->npages) {
926                 while (i > 0 &&
927                        new->base_gfn >= mslots[i - 1].base_gfn) {
928                         mslots[i] = mslots[i - 1];
929                         slots->id_to_index[mslots[i].id] = i;
930                         i--;
931                 }
932         } else
933                 WARN_ON_ONCE(i != slots->used_slots);
934
935         mslots[i] = *new;
936         slots->id_to_index[mslots[i].id] = i;
937 }
938
939 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
940 {
941         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
942
943 #ifdef __KVM_HAVE_READONLY_MEM
944         valid_flags |= KVM_MEM_READONLY;
945 #endif
946
947         if (mem->flags & ~valid_flags)
948                 return -EINVAL;
949
950         return 0;
951 }
952
953 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
954                 int as_id, struct kvm_memslots *slots)
955 {
956         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
957         u64 gen = old_memslots->generation;
958
959         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
960         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
961
962         rcu_assign_pointer(kvm->memslots[as_id], slots);
963         synchronize_srcu_expedited(&kvm->srcu);
964
965         /*
966          * Increment the new memslot generation a second time, dropping the
967          * update in-progress flag and incrementing then generation based on
968          * the number of address spaces.  This provides a unique and easily
969          * identifiable generation number while the memslots are in flux.
970          */
971         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
972
973         /*
974          * Generations must be unique even across address spaces.  We do not need
975          * a global counter for that, instead the generation space is evenly split
976          * across address spaces.  For example, with two address spaces, address
977          * space 0 will use generations 0, 2, 4, ... while address space 1 will
978          * use generations 1, 3, 5, ...
979          */
980         gen += KVM_ADDRESS_SPACE_NUM;
981
982         kvm_arch_memslots_updated(kvm, gen);
983
984         slots->generation = gen;
985
986         return old_memslots;
987 }
988
989 /*
990  * Allocate some memory and give it an address in the guest physical address
991  * space.
992  *
993  * Discontiguous memory is allowed, mostly for framebuffers.
994  *
995  * Must be called holding kvm->slots_lock for write.
996  */
997 int __kvm_set_memory_region(struct kvm *kvm,
998                             const struct kvm_userspace_memory_region *mem)
999 {
1000         int r;
1001         gfn_t base_gfn;
1002         unsigned long npages;
1003         struct kvm_memory_slot *slot;
1004         struct kvm_memory_slot old, new;
1005         struct kvm_memslots *slots = NULL, *old_memslots;
1006         int as_id, id;
1007         enum kvm_mr_change change;
1008
1009         r = check_memory_region_flags(mem);
1010         if (r)
1011                 goto out;
1012
1013         r = -EINVAL;
1014         as_id = mem->slot >> 16;
1015         id = (u16)mem->slot;
1016
1017         /* General sanity checks */
1018         if (mem->memory_size & (PAGE_SIZE - 1))
1019                 goto out;
1020         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1021                 goto out;
1022         /* We can read the guest memory with __xxx_user() later on. */
1023         if ((id < KVM_USER_MEM_SLOTS) &&
1024             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1025              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1026                         mem->memory_size)))
1027                 goto out;
1028         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1029                 goto out;
1030         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1031                 goto out;
1032
1033         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1034         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1035         npages = mem->memory_size >> PAGE_SHIFT;
1036
1037         if (npages > KVM_MEM_MAX_NR_PAGES)
1038                 goto out;
1039
1040         new = old = *slot;
1041
1042         new.id = id;
1043         new.base_gfn = base_gfn;
1044         new.npages = npages;
1045         new.flags = mem->flags;
1046
1047         if (npages) {
1048                 if (!old.npages)
1049                         change = KVM_MR_CREATE;
1050                 else { /* Modify an existing slot. */
1051                         if ((mem->userspace_addr != old.userspace_addr) ||
1052                             (npages != old.npages) ||
1053                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1054                                 goto out;
1055
1056                         if (base_gfn != old.base_gfn)
1057                                 change = KVM_MR_MOVE;
1058                         else if (new.flags != old.flags)
1059                                 change = KVM_MR_FLAGS_ONLY;
1060                         else { /* Nothing to change. */
1061                                 r = 0;
1062                                 goto out;
1063                         }
1064                 }
1065         } else {
1066                 if (!old.npages)
1067                         goto out;
1068
1069                 change = KVM_MR_DELETE;
1070                 new.base_gfn = 0;
1071                 new.flags = 0;
1072         }
1073
1074         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1075                 /* Check for overlaps */
1076                 r = -EEXIST;
1077                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1078                         if (slot->id == id)
1079                                 continue;
1080                         if (!((base_gfn + npages <= slot->base_gfn) ||
1081                               (base_gfn >= slot->base_gfn + slot->npages)))
1082                                 goto out;
1083                 }
1084         }
1085
1086         /* Free page dirty bitmap if unneeded */
1087         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1088                 new.dirty_bitmap = NULL;
1089
1090         r = -ENOMEM;
1091         if (change == KVM_MR_CREATE) {
1092                 new.userspace_addr = mem->userspace_addr;
1093
1094                 if (kvm_arch_create_memslot(kvm, &new, npages))
1095                         goto out_free;
1096         }
1097
1098         /* Allocate page dirty bitmap if needed */
1099         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1100                 if (kvm_create_dirty_bitmap(&new) < 0)
1101                         goto out_free;
1102         }
1103
1104         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1105         if (!slots)
1106                 goto out_free;
1107         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1108
1109         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1110                 slot = id_to_memslot(slots, id);
1111                 slot->flags |= KVM_MEMSLOT_INVALID;
1112
1113                 old_memslots = install_new_memslots(kvm, as_id, slots);
1114
1115                 /* From this point no new shadow pages pointing to a deleted,
1116                  * or moved, memslot will be created.
1117                  *
1118                  * validation of sp->gfn happens in:
1119                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1120                  *      - kvm_is_visible_gfn (mmu_check_roots)
1121                  */
1122                 kvm_arch_flush_shadow_memslot(kvm, slot);
1123
1124                 /*
1125                  * We can re-use the old_memslots from above, the only difference
1126                  * from the currently installed memslots is the invalid flag.  This
1127                  * will get overwritten by update_memslots anyway.
1128                  */
1129                 slots = old_memslots;
1130         }
1131
1132         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1133         if (r)
1134                 goto out_slots;
1135
1136         /* actual memory is freed via old in kvm_free_memslot below */
1137         if (change == KVM_MR_DELETE) {
1138                 new.dirty_bitmap = NULL;
1139                 memset(&new.arch, 0, sizeof(new.arch));
1140         }
1141
1142         update_memslots(slots, &new, change);
1143         old_memslots = install_new_memslots(kvm, as_id, slots);
1144
1145         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1146
1147         kvm_free_memslot(kvm, &old, &new);
1148         kvfree(old_memslots);
1149         return 0;
1150
1151 out_slots:
1152         kvfree(slots);
1153 out_free:
1154         kvm_free_memslot(kvm, &new, &old);
1155 out:
1156         return r;
1157 }
1158 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1159
1160 int kvm_set_memory_region(struct kvm *kvm,
1161                           const struct kvm_userspace_memory_region *mem)
1162 {
1163         int r;
1164
1165         mutex_lock(&kvm->slots_lock);
1166         r = __kvm_set_memory_region(kvm, mem);
1167         mutex_unlock(&kvm->slots_lock);
1168         return r;
1169 }
1170 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1171
1172 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1173                                           struct kvm_userspace_memory_region *mem)
1174 {
1175         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1176                 return -EINVAL;
1177
1178         return kvm_set_memory_region(kvm, mem);
1179 }
1180
1181 int kvm_get_dirty_log(struct kvm *kvm,
1182                         struct kvm_dirty_log *log, int *is_dirty)
1183 {
1184         struct kvm_memslots *slots;
1185         struct kvm_memory_slot *memslot;
1186         int i, as_id, id;
1187         unsigned long n;
1188         unsigned long any = 0;
1189
1190         as_id = log->slot >> 16;
1191         id = (u16)log->slot;
1192         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1193                 return -EINVAL;
1194
1195         slots = __kvm_memslots(kvm, as_id);
1196         memslot = id_to_memslot(slots, id);
1197         if (!memslot->dirty_bitmap)
1198                 return -ENOENT;
1199
1200         n = kvm_dirty_bitmap_bytes(memslot);
1201
1202         for (i = 0; !any && i < n/sizeof(long); ++i)
1203                 any = memslot->dirty_bitmap[i];
1204
1205         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1206                 return -EFAULT;
1207
1208         if (any)
1209                 *is_dirty = 1;
1210         return 0;
1211 }
1212 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1213
1214 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1215 /**
1216  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1217  *      and reenable dirty page tracking for the corresponding pages.
1218  * @kvm:        pointer to kvm instance
1219  * @log:        slot id and address to which we copy the log
1220  * @flush:      true if TLB flush is needed by caller
1221  *
1222  * We need to keep it in mind that VCPU threads can write to the bitmap
1223  * concurrently. So, to avoid losing track of dirty pages we keep the
1224  * following order:
1225  *
1226  *    1. Take a snapshot of the bit and clear it if needed.
1227  *    2. Write protect the corresponding page.
1228  *    3. Copy the snapshot to the userspace.
1229  *    4. Upon return caller flushes TLB's if needed.
1230  *
1231  * Between 2 and 4, the guest may write to the page using the remaining TLB
1232  * entry.  This is not a problem because the page is reported dirty using
1233  * the snapshot taken before and step 4 ensures that writes done after
1234  * exiting to userspace will be logged for the next call.
1235  *
1236  */
1237 int kvm_get_dirty_log_protect(struct kvm *kvm,
1238                         struct kvm_dirty_log *log, bool *flush)
1239 {
1240         struct kvm_memslots *slots;
1241         struct kvm_memory_slot *memslot;
1242         int i, as_id, id;
1243         unsigned long n;
1244         unsigned long *dirty_bitmap;
1245         unsigned long *dirty_bitmap_buffer;
1246
1247         as_id = log->slot >> 16;
1248         id = (u16)log->slot;
1249         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1250                 return -EINVAL;
1251
1252         slots = __kvm_memslots(kvm, as_id);
1253         memslot = id_to_memslot(slots, id);
1254
1255         dirty_bitmap = memslot->dirty_bitmap;
1256         if (!dirty_bitmap)
1257                 return -ENOENT;
1258
1259         n = kvm_dirty_bitmap_bytes(memslot);
1260         *flush = false;
1261         if (kvm->manual_dirty_log_protect) {
1262                 /*
1263                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1264                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1265                  * is some code duplication between this function and
1266                  * kvm_get_dirty_log, but hopefully all architecture
1267                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1268                  * can be eliminated.
1269                  */
1270                 dirty_bitmap_buffer = dirty_bitmap;
1271         } else {
1272                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1273                 memset(dirty_bitmap_buffer, 0, n);
1274
1275                 spin_lock(&kvm->mmu_lock);
1276                 for (i = 0; i < n / sizeof(long); i++) {
1277                         unsigned long mask;
1278                         gfn_t offset;
1279
1280                         if (!dirty_bitmap[i])
1281                                 continue;
1282
1283                         *flush = true;
1284                         mask = xchg(&dirty_bitmap[i], 0);
1285                         dirty_bitmap_buffer[i] = mask;
1286
1287                         offset = i * BITS_PER_LONG;
1288                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1289                                                                 offset, mask);
1290                 }
1291                 spin_unlock(&kvm->mmu_lock);
1292         }
1293
1294         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1295                 return -EFAULT;
1296         return 0;
1297 }
1298 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1299
1300 /**
1301  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1302  *      and reenable dirty page tracking for the corresponding pages.
1303  * @kvm:        pointer to kvm instance
1304  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1305  * @flush:      true if TLB flush is needed by caller
1306  */
1307 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1308                                 struct kvm_clear_dirty_log *log, bool *flush)
1309 {
1310         struct kvm_memslots *slots;
1311         struct kvm_memory_slot *memslot;
1312         int as_id, id;
1313         gfn_t offset;
1314         unsigned long i, n;
1315         unsigned long *dirty_bitmap;
1316         unsigned long *dirty_bitmap_buffer;
1317
1318         as_id = log->slot >> 16;
1319         id = (u16)log->slot;
1320         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1321                 return -EINVAL;
1322
1323         if (log->first_page & 63)
1324                 return -EINVAL;
1325
1326         slots = __kvm_memslots(kvm, as_id);
1327         memslot = id_to_memslot(slots, id);
1328
1329         dirty_bitmap = memslot->dirty_bitmap;
1330         if (!dirty_bitmap)
1331                 return -ENOENT;
1332
1333         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1334
1335         if (log->first_page > memslot->npages ||
1336             log->num_pages > memslot->npages - log->first_page ||
1337             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1338             return -EINVAL;
1339
1340         *flush = false;
1341         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1342         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1343                 return -EFAULT;
1344
1345         spin_lock(&kvm->mmu_lock);
1346         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1347                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1348              i++, offset += BITS_PER_LONG) {
1349                 unsigned long mask = *dirty_bitmap_buffer++;
1350                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1351                 if (!mask)
1352                         continue;
1353
1354                 mask &= atomic_long_fetch_andnot(mask, p);
1355
1356                 /*
1357                  * mask contains the bits that really have been cleared.  This
1358                  * never includes any bits beyond the length of the memslot (if
1359                  * the length is not aligned to 64 pages), therefore it is not
1360                  * a problem if userspace sets them in log->dirty_bitmap.
1361                 */
1362                 if (mask) {
1363                         *flush = true;
1364                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1365                                                                 offset, mask);
1366                 }
1367         }
1368         spin_unlock(&kvm->mmu_lock);
1369
1370         return 0;
1371 }
1372 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1373 #endif
1374
1375 bool kvm_largepages_enabled(void)
1376 {
1377         return largepages_enabled;
1378 }
1379
1380 void kvm_disable_largepages(void)
1381 {
1382         largepages_enabled = false;
1383 }
1384 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1385
1386 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1387 {
1388         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1389 }
1390 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1391
1392 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1393 {
1394         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1395 }
1396
1397 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1398 {
1399         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1400
1401         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1402               memslot->flags & KVM_MEMSLOT_INVALID)
1403                 return false;
1404
1405         return true;
1406 }
1407 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1408
1409 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1410 {
1411         struct vm_area_struct *vma;
1412         unsigned long addr, size;
1413
1414         size = PAGE_SIZE;
1415
1416         addr = gfn_to_hva(kvm, gfn);
1417         if (kvm_is_error_hva(addr))
1418                 return PAGE_SIZE;
1419
1420         down_read(&current->mm->mmap_sem);
1421         vma = find_vma(current->mm, addr);
1422         if (!vma)
1423                 goto out;
1424
1425         size = vma_kernel_pagesize(vma);
1426
1427 out:
1428         up_read(&current->mm->mmap_sem);
1429
1430         return size;
1431 }
1432
1433 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1434 {
1435         return slot->flags & KVM_MEM_READONLY;
1436 }
1437
1438 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1439                                        gfn_t *nr_pages, bool write)
1440 {
1441         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1442                 return KVM_HVA_ERR_BAD;
1443
1444         if (memslot_is_readonly(slot) && write)
1445                 return KVM_HVA_ERR_RO_BAD;
1446
1447         if (nr_pages)
1448                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1449
1450         return __gfn_to_hva_memslot(slot, gfn);
1451 }
1452
1453 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1454                                      gfn_t *nr_pages)
1455 {
1456         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1457 }
1458
1459 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1460                                         gfn_t gfn)
1461 {
1462         return gfn_to_hva_many(slot, gfn, NULL);
1463 }
1464 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1465
1466 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1467 {
1468         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1469 }
1470 EXPORT_SYMBOL_GPL(gfn_to_hva);
1471
1472 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1473 {
1474         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1475 }
1476 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1477
1478 /*
1479  * Return the hva of a @gfn and the R/W attribute if possible.
1480  *
1481  * @slot: the kvm_memory_slot which contains @gfn
1482  * @gfn: the gfn to be translated
1483  * @writable: used to return the read/write attribute of the @slot if the hva
1484  * is valid and @writable is not NULL
1485  */
1486 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1487                                       gfn_t gfn, bool *writable)
1488 {
1489         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1490
1491         if (!kvm_is_error_hva(hva) && writable)
1492                 *writable = !memslot_is_readonly(slot);
1493
1494         return hva;
1495 }
1496
1497 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1498 {
1499         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1500
1501         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1502 }
1503
1504 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1505 {
1506         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1507
1508         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1509 }
1510
1511 static inline int check_user_page_hwpoison(unsigned long addr)
1512 {
1513         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1514
1515         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1516         return rc == -EHWPOISON;
1517 }
1518
1519 /*
1520  * The fast path to get the writable pfn which will be stored in @pfn,
1521  * true indicates success, otherwise false is returned.  It's also the
1522  * only part that runs if we can are in atomic context.
1523  */
1524 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1525                             bool *writable, kvm_pfn_t *pfn)
1526 {
1527         struct page *page[1];
1528         int npages;
1529
1530         /*
1531          * Fast pin a writable pfn only if it is a write fault request
1532          * or the caller allows to map a writable pfn for a read fault
1533          * request.
1534          */
1535         if (!(write_fault || writable))
1536                 return false;
1537
1538         npages = __get_user_pages_fast(addr, 1, 1, page);
1539         if (npages == 1) {
1540                 *pfn = page_to_pfn(page[0]);
1541
1542                 if (writable)
1543                         *writable = true;
1544                 return true;
1545         }
1546
1547         return false;
1548 }
1549
1550 /*
1551  * The slow path to get the pfn of the specified host virtual address,
1552  * 1 indicates success, -errno is returned if error is detected.
1553  */
1554 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1555                            bool *writable, kvm_pfn_t *pfn)
1556 {
1557         unsigned int flags = FOLL_HWPOISON;
1558         struct page *page;
1559         int npages = 0;
1560
1561         might_sleep();
1562
1563         if (writable)
1564                 *writable = write_fault;
1565
1566         if (write_fault)
1567                 flags |= FOLL_WRITE;
1568         if (async)
1569                 flags |= FOLL_NOWAIT;
1570
1571         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1572         if (npages != 1)
1573                 return npages;
1574
1575         /* map read fault as writable if possible */
1576         if (unlikely(!write_fault) && writable) {
1577                 struct page *wpage;
1578
1579                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1580                         *writable = true;
1581                         put_page(page);
1582                         page = wpage;
1583                 }
1584         }
1585         *pfn = page_to_pfn(page);
1586         return npages;
1587 }
1588
1589 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1590 {
1591         if (unlikely(!(vma->vm_flags & VM_READ)))
1592                 return false;
1593
1594         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1595                 return false;
1596
1597         return true;
1598 }
1599
1600 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1601                                unsigned long addr, bool *async,
1602                                bool write_fault, bool *writable,
1603                                kvm_pfn_t *p_pfn)
1604 {
1605         unsigned long pfn;
1606         int r;
1607
1608         r = follow_pfn(vma, addr, &pfn);
1609         if (r) {
1610                 /*
1611                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1612                  * not call the fault handler, so do it here.
1613                  */
1614                 bool unlocked = false;
1615                 r = fixup_user_fault(current, current->mm, addr,
1616                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1617                                      &unlocked);
1618                 if (unlocked)
1619                         return -EAGAIN;
1620                 if (r)
1621                         return r;
1622
1623                 r = follow_pfn(vma, addr, &pfn);
1624                 if (r)
1625                         return r;
1626
1627         }
1628
1629         if (writable)
1630                 *writable = true;
1631
1632         /*
1633          * Get a reference here because callers of *hva_to_pfn* and
1634          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1635          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1636          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1637          * simply do nothing for reserved pfns.
1638          *
1639          * Whoever called remap_pfn_range is also going to call e.g.
1640          * unmap_mapping_range before the underlying pages are freed,
1641          * causing a call to our MMU notifier.
1642          */ 
1643         kvm_get_pfn(pfn);
1644
1645         *p_pfn = pfn;
1646         return 0;
1647 }
1648
1649 /*
1650  * Pin guest page in memory and return its pfn.
1651  * @addr: host virtual address which maps memory to the guest
1652  * @atomic: whether this function can sleep
1653  * @async: whether this function need to wait IO complete if the
1654  *         host page is not in the memory
1655  * @write_fault: whether we should get a writable host page
1656  * @writable: whether it allows to map a writable host page for !@write_fault
1657  *
1658  * The function will map a writable host page for these two cases:
1659  * 1): @write_fault = true
1660  * 2): @write_fault = false && @writable, @writable will tell the caller
1661  *     whether the mapping is writable.
1662  */
1663 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1664                         bool write_fault, bool *writable)
1665 {
1666         struct vm_area_struct *vma;
1667         kvm_pfn_t pfn = 0;
1668         int npages, r;
1669
1670         /* we can do it either atomically or asynchronously, not both */
1671         BUG_ON(atomic && async);
1672
1673         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1674                 return pfn;
1675
1676         if (atomic)
1677                 return KVM_PFN_ERR_FAULT;
1678
1679         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1680         if (npages == 1)
1681                 return pfn;
1682
1683         down_read(&current->mm->mmap_sem);
1684         if (npages == -EHWPOISON ||
1685               (!async && check_user_page_hwpoison(addr))) {
1686                 pfn = KVM_PFN_ERR_HWPOISON;
1687                 goto exit;
1688         }
1689
1690 retry:
1691         vma = find_vma_intersection(current->mm, addr, addr + 1);
1692
1693         if (vma == NULL)
1694                 pfn = KVM_PFN_ERR_FAULT;
1695         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1696                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1697                 if (r == -EAGAIN)
1698                         goto retry;
1699                 if (r < 0)
1700                         pfn = KVM_PFN_ERR_FAULT;
1701         } else {
1702                 if (async && vma_is_valid(vma, write_fault))
1703                         *async = true;
1704                 pfn = KVM_PFN_ERR_FAULT;
1705         }
1706 exit:
1707         up_read(&current->mm->mmap_sem);
1708         return pfn;
1709 }
1710
1711 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1712                                bool atomic, bool *async, bool write_fault,
1713                                bool *writable)
1714 {
1715         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1716
1717         if (addr == KVM_HVA_ERR_RO_BAD) {
1718                 if (writable)
1719                         *writable = false;
1720                 return KVM_PFN_ERR_RO_FAULT;
1721         }
1722
1723         if (kvm_is_error_hva(addr)) {
1724                 if (writable)
1725                         *writable = false;
1726                 return KVM_PFN_NOSLOT;
1727         }
1728
1729         /* Do not map writable pfn in the readonly memslot. */
1730         if (writable && memslot_is_readonly(slot)) {
1731                 *writable = false;
1732                 writable = NULL;
1733         }
1734
1735         return hva_to_pfn(addr, atomic, async, write_fault,
1736                           writable);
1737 }
1738 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1739
1740 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1741                       bool *writable)
1742 {
1743         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1744                                     write_fault, writable);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1747
1748 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1749 {
1750         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1753
1754 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1755 {
1756         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1759
1760 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1761 {
1762         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1765
1766 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1767 {
1768         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1769 }
1770 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1771
1772 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1773 {
1774         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1775 }
1776 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1777
1778 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1779 {
1780         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1781 }
1782 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1783
1784 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1785                             struct page **pages, int nr_pages)
1786 {
1787         unsigned long addr;
1788         gfn_t entry = 0;
1789
1790         addr = gfn_to_hva_many(slot, gfn, &entry);
1791         if (kvm_is_error_hva(addr))
1792                 return -1;
1793
1794         if (entry < nr_pages)
1795                 return 0;
1796
1797         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1798 }
1799 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1800
1801 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1802 {
1803         if (is_error_noslot_pfn(pfn))
1804                 return KVM_ERR_PTR_BAD_PAGE;
1805
1806         if (kvm_is_reserved_pfn(pfn)) {
1807                 WARN_ON(1);
1808                 return KVM_ERR_PTR_BAD_PAGE;
1809         }
1810
1811         return pfn_to_page(pfn);
1812 }
1813
1814 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1815 {
1816         kvm_pfn_t pfn;
1817
1818         pfn = gfn_to_pfn(kvm, gfn);
1819
1820         return kvm_pfn_to_page(pfn);
1821 }
1822 EXPORT_SYMBOL_GPL(gfn_to_page);
1823
1824 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty, struct gfn_to_pfn_cache *cache)
1825 {
1826         if (pfn == 0)
1827                 return;
1828
1829         if (cache)
1830                 cache->pfn = cache->gfn = 0;
1831
1832         if (dirty)
1833                 kvm_release_pfn_dirty(pfn);
1834         else
1835                 kvm_release_pfn_clean(pfn);
1836 }
1837
1838 static void kvm_cache_gfn_to_pfn(struct kvm_memory_slot *slot, gfn_t gfn,
1839                                  struct gfn_to_pfn_cache *cache, u64 gen)
1840 {
1841         kvm_release_pfn(cache->pfn, cache->dirty, cache);
1842
1843         cache->pfn = gfn_to_pfn_memslot(slot, gfn);
1844         cache->gfn = gfn;
1845         cache->dirty = false;
1846         cache->generation = gen;
1847 }
1848
1849 static int __kvm_map_gfn(struct kvm_memslots *slots, gfn_t gfn,
1850                          struct kvm_host_map *map,
1851                          struct gfn_to_pfn_cache *cache,
1852                          bool atomic)
1853 {
1854         kvm_pfn_t pfn;
1855         void *hva = NULL;
1856         struct page *page = KVM_UNMAPPED_PAGE;
1857         struct kvm_memory_slot *slot = __gfn_to_memslot(slots, gfn);
1858         u64 gen = slots->generation;
1859
1860         if (!map)
1861                 return -EINVAL;
1862
1863         if (cache) {
1864                 if (!cache->pfn || cache->gfn != gfn ||
1865                         cache->generation != gen) {
1866                         if (atomic)
1867                                 return -EAGAIN;
1868                         kvm_cache_gfn_to_pfn(slot, gfn, cache, gen);
1869                 }
1870                 pfn = cache->pfn;
1871         } else {
1872                 if (atomic)
1873                         return -EAGAIN;
1874                 pfn = gfn_to_pfn_memslot(slot, gfn);
1875         }
1876         if (is_error_noslot_pfn(pfn))
1877                 return -EINVAL;
1878
1879         if (pfn_valid(pfn)) {
1880                 page = pfn_to_page(pfn);
1881                 if (atomic)
1882                         hva = kmap_atomic(page);
1883                 else
1884                         hva = kmap(page);
1885 #ifdef CONFIG_HAS_IOMEM
1886         } else if (!atomic) {
1887                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1888         } else {
1889                 return -EINVAL;
1890 #endif
1891         }
1892
1893         if (!hva)
1894                 return -EFAULT;
1895
1896         map->page = page;
1897         map->hva = hva;
1898         map->pfn = pfn;
1899         map->gfn = gfn;
1900
1901         return 0;
1902 }
1903
1904 int kvm_map_gfn(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
1905                 struct gfn_to_pfn_cache *cache, bool atomic)
1906 {
1907         return __kvm_map_gfn(kvm_memslots(vcpu->kvm), gfn, map,
1908                         cache, atomic);
1909 }
1910 EXPORT_SYMBOL_GPL(kvm_map_gfn);
1911
1912 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1913 {
1914         return __kvm_map_gfn(kvm_vcpu_memslots(vcpu), gfn, map,
1915                 NULL, false);
1916 }
1917 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1918
1919 static void __kvm_unmap_gfn(struct kvm_memory_slot *memslot,
1920                         struct kvm_host_map *map,
1921                         struct gfn_to_pfn_cache *cache,
1922                         bool dirty, bool atomic)
1923 {
1924         if (!map)
1925                 return;
1926
1927         if (!map->hva)
1928                 return;
1929
1930         if (map->page != KVM_UNMAPPED_PAGE) {
1931                 if (atomic)
1932                         kunmap_atomic(map->hva);
1933                 else
1934                         kunmap(map->page);
1935         }
1936 #ifdef CONFIG_HAS_IOMEM
1937         else if (!atomic)
1938                 memunmap(map->hva);
1939         else
1940                 WARN_ONCE(1, "Unexpected unmapping in atomic context");
1941 #endif
1942
1943         if (dirty)
1944                 mark_page_dirty_in_slot(memslot, map->gfn);
1945
1946         if (cache)
1947                 cache->dirty |= dirty;
1948         else
1949                 kvm_release_pfn(map->pfn, dirty, NULL);
1950
1951         map->hva = NULL;
1952         map->page = NULL;
1953 }
1954
1955 int kvm_unmap_gfn(struct kvm_vcpu *vcpu, struct kvm_host_map *map, 
1956                   struct gfn_to_pfn_cache *cache, bool dirty, bool atomic)
1957 {
1958         __kvm_unmap_gfn(gfn_to_memslot(vcpu->kvm, map->gfn), map,
1959                         cache, dirty, atomic);
1960         return 0;
1961 }
1962 EXPORT_SYMBOL_GPL(kvm_unmap_gfn);
1963
1964 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
1965 {
1966         __kvm_unmap_gfn(kvm_vcpu_gfn_to_memslot(vcpu, map->gfn), map, NULL,
1967                         dirty, false);
1968 }
1969 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1970
1971 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1972 {
1973         kvm_pfn_t pfn;
1974
1975         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1976
1977         return kvm_pfn_to_page(pfn);
1978 }
1979 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1980
1981 void kvm_release_page_clean(struct page *page)
1982 {
1983         WARN_ON(is_error_page(page));
1984
1985         kvm_release_pfn_clean(page_to_pfn(page));
1986 }
1987 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1988
1989 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1990 {
1991         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1992                 put_page(pfn_to_page(pfn));
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1995
1996 void kvm_release_page_dirty(struct page *page)
1997 {
1998         WARN_ON(is_error_page(page));
1999
2000         kvm_release_pfn_dirty(page_to_pfn(page));
2001 }
2002 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2003
2004 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2005 {
2006         kvm_set_pfn_dirty(pfn);
2007         kvm_release_pfn_clean(pfn);
2008 }
2009 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2010
2011 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2012 {
2013         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn)) {
2014                 struct page *page = pfn_to_page(pfn);
2015
2016                 SetPageDirty(page);
2017         }
2018 }
2019 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2020
2021 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2022 {
2023         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
2024                 mark_page_accessed(pfn_to_page(pfn));
2025 }
2026 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2027
2028 void kvm_get_pfn(kvm_pfn_t pfn)
2029 {
2030         if (!kvm_is_reserved_pfn(pfn))
2031                 get_page(pfn_to_page(pfn));
2032 }
2033 EXPORT_SYMBOL_GPL(kvm_get_pfn);
2034
2035 static int next_segment(unsigned long len, int offset)
2036 {
2037         if (len > PAGE_SIZE - offset)
2038                 return PAGE_SIZE - offset;
2039         else
2040                 return len;
2041 }
2042
2043 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2044                                  void *data, int offset, int len)
2045 {
2046         int r;
2047         unsigned long addr;
2048
2049         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2050         if (kvm_is_error_hva(addr))
2051                 return -EFAULT;
2052         r = __copy_from_user(data, (void __user *)addr + offset, len);
2053         if (r)
2054                 return -EFAULT;
2055         return 0;
2056 }
2057
2058 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
2059                         int len)
2060 {
2061         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2062
2063         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2064 }
2065 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
2066
2067 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
2068                              int offset, int len)
2069 {
2070         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2071
2072         return __kvm_read_guest_page(slot, gfn, data, offset, len);
2073 }
2074 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
2075
2076 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
2077 {
2078         gfn_t gfn = gpa >> PAGE_SHIFT;
2079         int seg;
2080         int offset = offset_in_page(gpa);
2081         int ret;
2082
2083         while ((seg = next_segment(len, offset)) != 0) {
2084                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
2085                 if (ret < 0)
2086                         return ret;
2087                 offset = 0;
2088                 len -= seg;
2089                 data += seg;
2090                 ++gfn;
2091         }
2092         return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(kvm_read_guest);
2095
2096 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
2097 {
2098         gfn_t gfn = gpa >> PAGE_SHIFT;
2099         int seg;
2100         int offset = offset_in_page(gpa);
2101         int ret;
2102
2103         while ((seg = next_segment(len, offset)) != 0) {
2104                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2105                 if (ret < 0)
2106                         return ret;
2107                 offset = 0;
2108                 len -= seg;
2109                 data += seg;
2110                 ++gfn;
2111         }
2112         return 0;
2113 }
2114 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2115
2116 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2117                                    void *data, int offset, unsigned long len)
2118 {
2119         int r;
2120         unsigned long addr;
2121
2122         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2123         if (kvm_is_error_hva(addr))
2124                 return -EFAULT;
2125         pagefault_disable();
2126         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2127         pagefault_enable();
2128         if (r)
2129                 return -EFAULT;
2130         return 0;
2131 }
2132
2133 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
2134                           unsigned long len)
2135 {
2136         gfn_t gfn = gpa >> PAGE_SHIFT;
2137         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2138         int offset = offset_in_page(gpa);
2139
2140         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2141 }
2142 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
2143
2144 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2145                                void *data, unsigned long len)
2146 {
2147         gfn_t gfn = gpa >> PAGE_SHIFT;
2148         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2149         int offset = offset_in_page(gpa);
2150
2151         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2152 }
2153 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2154
2155 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2156                                   const void *data, int offset, int len)
2157 {
2158         int r;
2159         unsigned long addr;
2160
2161         addr = gfn_to_hva_memslot(memslot, gfn);
2162         if (kvm_is_error_hva(addr))
2163                 return -EFAULT;
2164         r = __copy_to_user((void __user *)addr + offset, data, len);
2165         if (r)
2166                 return -EFAULT;
2167         mark_page_dirty_in_slot(memslot, gfn);
2168         return 0;
2169 }
2170
2171 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2172                          const void *data, int offset, int len)
2173 {
2174         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2175
2176         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2177 }
2178 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2179
2180 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2181                               const void *data, int offset, int len)
2182 {
2183         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2184
2185         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2186 }
2187 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2188
2189 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2190                     unsigned long len)
2191 {
2192         gfn_t gfn = gpa >> PAGE_SHIFT;
2193         int seg;
2194         int offset = offset_in_page(gpa);
2195         int ret;
2196
2197         while ((seg = next_segment(len, offset)) != 0) {
2198                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2199                 if (ret < 0)
2200                         return ret;
2201                 offset = 0;
2202                 len -= seg;
2203                 data += seg;
2204                 ++gfn;
2205         }
2206         return 0;
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_write_guest);
2209
2210 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2211                          unsigned long len)
2212 {
2213         gfn_t gfn = gpa >> PAGE_SHIFT;
2214         int seg;
2215         int offset = offset_in_page(gpa);
2216         int ret;
2217
2218         while ((seg = next_segment(len, offset)) != 0) {
2219                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2220                 if (ret < 0)
2221                         return ret;
2222                 offset = 0;
2223                 len -= seg;
2224                 data += seg;
2225                 ++gfn;
2226         }
2227         return 0;
2228 }
2229 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2230
2231 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2232                                        struct gfn_to_hva_cache *ghc,
2233                                        gpa_t gpa, unsigned long len)
2234 {
2235         int offset = offset_in_page(gpa);
2236         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2237         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2238         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2239         gfn_t nr_pages_avail;
2240         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2241
2242         ghc->gpa = gpa;
2243         ghc->generation = slots->generation;
2244         ghc->len = len;
2245         ghc->hva = KVM_HVA_ERR_BAD;
2246
2247         /*
2248          * If the requested region crosses two memslots, we still
2249          * verify that the entire region is valid here.
2250          */
2251         while (!r && start_gfn <= end_gfn) {
2252                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2253                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2254                                            &nr_pages_avail);
2255                 if (kvm_is_error_hva(ghc->hva))
2256                         r = -EFAULT;
2257                 start_gfn += nr_pages_avail;
2258         }
2259
2260         /* Use the slow path for cross page reads and writes. */
2261         if (!r && nr_pages_needed == 1)
2262                 ghc->hva += offset;
2263         else
2264                 ghc->memslot = NULL;
2265
2266         return r;
2267 }
2268
2269 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2270                               gpa_t gpa, unsigned long len)
2271 {
2272         struct kvm_memslots *slots = kvm_memslots(kvm);
2273         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2274 }
2275 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2276
2277 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2278                                   void *data, unsigned int offset,
2279                                   unsigned long len)
2280 {
2281         struct kvm_memslots *slots = kvm_memslots(kvm);
2282         int r;
2283         gpa_t gpa = ghc->gpa + offset;
2284
2285         BUG_ON(len + offset > ghc->len);
2286
2287         if (slots->generation != ghc->generation)
2288                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2289
2290         if (unlikely(!ghc->memslot))
2291                 return kvm_write_guest(kvm, gpa, data, len);
2292
2293         if (kvm_is_error_hva(ghc->hva))
2294                 return -EFAULT;
2295
2296         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2297         if (r)
2298                 return -EFAULT;
2299         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2300
2301         return 0;
2302 }
2303 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2304
2305 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2306                            void *data, unsigned long len)
2307 {
2308         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2309 }
2310 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2311
2312 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2313                            void *data, unsigned long len)
2314 {
2315         struct kvm_memslots *slots = kvm_memslots(kvm);
2316         int r;
2317
2318         BUG_ON(len > ghc->len);
2319
2320         if (slots->generation != ghc->generation)
2321                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2322
2323         if (unlikely(!ghc->memslot))
2324                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2325
2326         if (kvm_is_error_hva(ghc->hva))
2327                 return -EFAULT;
2328
2329         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2330         if (r)
2331                 return -EFAULT;
2332
2333         return 0;
2334 }
2335 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2336
2337 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2338 {
2339         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2340
2341         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2342 }
2343 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2344
2345 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2346 {
2347         gfn_t gfn = gpa >> PAGE_SHIFT;
2348         int seg;
2349         int offset = offset_in_page(gpa);
2350         int ret;
2351
2352         while ((seg = next_segment(len, offset)) != 0) {
2353                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2354                 if (ret < 0)
2355                         return ret;
2356                 offset = 0;
2357                 len -= seg;
2358                 ++gfn;
2359         }
2360         return 0;
2361 }
2362 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2363
2364 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2365                                     gfn_t gfn)
2366 {
2367         if (memslot && memslot->dirty_bitmap) {
2368                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2369
2370                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2371         }
2372 }
2373
2374 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2375 {
2376         struct kvm_memory_slot *memslot;
2377
2378         memslot = gfn_to_memslot(kvm, gfn);
2379         mark_page_dirty_in_slot(memslot, gfn);
2380 }
2381 EXPORT_SYMBOL_GPL(mark_page_dirty);
2382
2383 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2384 {
2385         struct kvm_memory_slot *memslot;
2386
2387         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2388         mark_page_dirty_in_slot(memslot, gfn);
2389 }
2390 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2391
2392 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2393 {
2394         if (!vcpu->sigset_active)
2395                 return;
2396
2397         /*
2398          * This does a lockless modification of ->real_blocked, which is fine
2399          * because, only current can change ->real_blocked and all readers of
2400          * ->real_blocked don't care as long ->real_blocked is always a subset
2401          * of ->blocked.
2402          */
2403         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2404 }
2405
2406 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2407 {
2408         if (!vcpu->sigset_active)
2409                 return;
2410
2411         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2412         sigemptyset(&current->real_blocked);
2413 }
2414
2415 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2416 {
2417         unsigned int old, val, grow, grow_start;
2418
2419         old = val = vcpu->halt_poll_ns;
2420         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2421         grow = READ_ONCE(halt_poll_ns_grow);
2422         if (!grow)
2423                 goto out;
2424
2425         val *= grow;
2426         if (val < grow_start)
2427                 val = grow_start;
2428
2429         if (val > halt_poll_ns)
2430                 val = halt_poll_ns;
2431
2432         vcpu->halt_poll_ns = val;
2433 out:
2434         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2435 }
2436
2437 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2438 {
2439         unsigned int old, val, shrink;
2440
2441         old = val = vcpu->halt_poll_ns;
2442         shrink = READ_ONCE(halt_poll_ns_shrink);
2443         if (shrink == 0)
2444                 val = 0;
2445         else
2446                 val /= shrink;
2447
2448         vcpu->halt_poll_ns = val;
2449         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2450 }
2451
2452 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2453 {
2454         int ret = -EINTR;
2455         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2456
2457         if (kvm_arch_vcpu_runnable(vcpu)) {
2458                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2459                 goto out;
2460         }
2461         if (kvm_cpu_has_pending_timer(vcpu))
2462                 goto out;
2463         if (signal_pending(current))
2464                 goto out;
2465
2466         ret = 0;
2467 out:
2468         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2469         return ret;
2470 }
2471
2472 /*
2473  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2474  */
2475 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2476 {
2477         ktime_t start, cur;
2478         DECLARE_SWAITQUEUE(wait);
2479         bool waited = false;
2480         u64 block_ns;
2481
2482         kvm_arch_vcpu_blocking(vcpu);
2483
2484         start = cur = ktime_get();
2485         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2486                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2487
2488                 ++vcpu->stat.halt_attempted_poll;
2489                 do {
2490                         /*
2491                          * This sets KVM_REQ_UNHALT if an interrupt
2492                          * arrives.
2493                          */
2494                         if (kvm_vcpu_check_block(vcpu) < 0) {
2495                                 ++vcpu->stat.halt_successful_poll;
2496                                 if (!vcpu_valid_wakeup(vcpu))
2497                                         ++vcpu->stat.halt_poll_invalid;
2498                                 goto out;
2499                         }
2500                         cur = ktime_get();
2501                 } while (single_task_running() && ktime_before(cur, stop));
2502         }
2503
2504         for (;;) {
2505                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2506
2507                 if (kvm_vcpu_check_block(vcpu) < 0)
2508                         break;
2509
2510                 waited = true;
2511                 schedule();
2512         }
2513
2514         finish_swait(&vcpu->wq, &wait);
2515         cur = ktime_get();
2516 out:
2517         kvm_arch_vcpu_unblocking(vcpu);
2518         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2519
2520         if (!kvm_arch_no_poll(vcpu)) {
2521                 if (!vcpu_valid_wakeup(vcpu)) {
2522                         shrink_halt_poll_ns(vcpu);
2523                 } else if (halt_poll_ns) {
2524                         if (block_ns <= vcpu->halt_poll_ns)
2525                                 ;
2526                         /* we had a long block, shrink polling */
2527                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2528                                 shrink_halt_poll_ns(vcpu);
2529                         /* we had a short halt and our poll time is too small */
2530                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2531                                 block_ns < halt_poll_ns)
2532                                 grow_halt_poll_ns(vcpu);
2533                 } else {
2534                         vcpu->halt_poll_ns = 0;
2535                 }
2536         }
2537
2538         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2539         kvm_arch_vcpu_block_finish(vcpu);
2540 }
2541 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2542
2543 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2544 {
2545         struct swait_queue_head *wqp;
2546
2547         wqp = kvm_arch_vcpu_wq(vcpu);
2548         if (swq_has_sleeper(wqp)) {
2549                 swake_up_one(wqp);
2550                 WRITE_ONCE(vcpu->ready, true);
2551                 ++vcpu->stat.halt_wakeup;
2552                 return true;
2553         }
2554
2555         return false;
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2558
2559 #ifndef CONFIG_S390
2560 /*
2561  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2562  */
2563 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2564 {
2565         int me;
2566         int cpu = vcpu->cpu;
2567
2568         if (kvm_vcpu_wake_up(vcpu))
2569                 return;
2570
2571         me = get_cpu();
2572         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2573                 if (kvm_arch_vcpu_should_kick(vcpu))
2574                         smp_send_reschedule(cpu);
2575         put_cpu();
2576 }
2577 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2578 #endif /* !CONFIG_S390 */
2579
2580 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2581 {
2582         struct pid *pid;
2583         struct task_struct *task = NULL;
2584         int ret = 0;
2585
2586         rcu_read_lock();
2587         pid = rcu_dereference(target->pid);
2588         if (pid)
2589                 task = get_pid_task(pid, PIDTYPE_PID);
2590         rcu_read_unlock();
2591         if (!task)
2592                 return ret;
2593         ret = yield_to(task, 1);
2594         put_task_struct(task);
2595
2596         return ret;
2597 }
2598 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2599
2600 /*
2601  * Helper that checks whether a VCPU is eligible for directed yield.
2602  * Most eligible candidate to yield is decided by following heuristics:
2603  *
2604  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2605  *  (preempted lock holder), indicated by @in_spin_loop.
2606  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2607  *
2608  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2609  *  chance last time (mostly it has become eligible now since we have probably
2610  *  yielded to lockholder in last iteration. This is done by toggling
2611  *  @dy_eligible each time a VCPU checked for eligibility.)
2612  *
2613  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2614  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2615  *  burning. Giving priority for a potential lock-holder increases lock
2616  *  progress.
2617  *
2618  *  Since algorithm is based on heuristics, accessing another VCPU data without
2619  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2620  *  and continue with next VCPU and so on.
2621  */
2622 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2623 {
2624 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2625         bool eligible;
2626
2627         eligible = !vcpu->spin_loop.in_spin_loop ||
2628                     vcpu->spin_loop.dy_eligible;
2629
2630         if (vcpu->spin_loop.in_spin_loop)
2631                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2632
2633         return eligible;
2634 #else
2635         return true;
2636 #endif
2637 }
2638
2639 /*
2640  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2641  * a vcpu_load/vcpu_put pair.  However, for most architectures
2642  * kvm_arch_vcpu_runnable does not require vcpu_load.
2643  */
2644 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2645 {
2646         return kvm_arch_vcpu_runnable(vcpu);
2647 }
2648
2649 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2650 {
2651         if (kvm_arch_dy_runnable(vcpu))
2652                 return true;
2653
2654 #ifdef CONFIG_KVM_ASYNC_PF
2655         if (!list_empty_careful(&vcpu->async_pf.done))
2656                 return true;
2657 #endif
2658
2659         return false;
2660 }
2661
2662 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2663 {
2664         struct kvm *kvm = me->kvm;
2665         struct kvm_vcpu *vcpu;
2666         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2667         int yielded = 0;
2668         int try = 3;
2669         int pass;
2670         int i;
2671
2672         kvm_vcpu_set_in_spin_loop(me, true);
2673         /*
2674          * We boost the priority of a VCPU that is runnable but not
2675          * currently running, because it got preempted by something
2676          * else and called schedule in __vcpu_run.  Hopefully that
2677          * VCPU is holding the lock that we need and will release it.
2678          * We approximate round-robin by starting at the last boosted VCPU.
2679          */
2680         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2681                 kvm_for_each_vcpu(i, vcpu, kvm) {
2682                         if (!pass && i <= last_boosted_vcpu) {
2683                                 i = last_boosted_vcpu;
2684                                 continue;
2685                         } else if (pass && i > last_boosted_vcpu)
2686                                 break;
2687                         if (!READ_ONCE(vcpu->ready))
2688                                 continue;
2689                         if (vcpu == me)
2690                                 continue;
2691                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2692                                 continue;
2693                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2694                                 !kvm_arch_vcpu_in_kernel(vcpu))
2695                                 continue;
2696                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2697                                 continue;
2698
2699                         yielded = kvm_vcpu_yield_to(vcpu);
2700                         if (yielded > 0) {
2701                                 kvm->last_boosted_vcpu = i;
2702                                 break;
2703                         } else if (yielded < 0) {
2704                                 try--;
2705                                 if (!try)
2706                                         break;
2707                         }
2708                 }
2709         }
2710         kvm_vcpu_set_in_spin_loop(me, false);
2711
2712         /* Ensure vcpu is not eligible during next spinloop */
2713         kvm_vcpu_set_dy_eligible(me, false);
2714 }
2715 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2716
2717 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2718 {
2719         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2720         struct page *page;
2721
2722         if (vmf->pgoff == 0)
2723                 page = virt_to_page(vcpu->run);
2724 #ifdef CONFIG_X86
2725         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2726                 page = virt_to_page(vcpu->arch.pio_data);
2727 #endif
2728 #ifdef CONFIG_KVM_MMIO
2729         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2730                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2731 #endif
2732         else
2733                 return kvm_arch_vcpu_fault(vcpu, vmf);
2734         get_page(page);
2735         vmf->page = page;
2736         return 0;
2737 }
2738
2739 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2740         .fault = kvm_vcpu_fault,
2741 };
2742
2743 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2744 {
2745         vma->vm_ops = &kvm_vcpu_vm_ops;
2746         return 0;
2747 }
2748
2749 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2750 {
2751         struct kvm_vcpu *vcpu = filp->private_data;
2752
2753         debugfs_remove_recursive(vcpu->debugfs_dentry);
2754         kvm_put_kvm(vcpu->kvm);
2755         return 0;
2756 }
2757
2758 static struct file_operations kvm_vcpu_fops = {
2759         .release        = kvm_vcpu_release,
2760         .unlocked_ioctl = kvm_vcpu_ioctl,
2761         .mmap           = kvm_vcpu_mmap,
2762         .llseek         = noop_llseek,
2763         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2764 };
2765
2766 /*
2767  * Allocates an inode for the vcpu.
2768  */
2769 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2770 {
2771         char name[8 + 1 + ITOA_MAX_LEN + 1];
2772
2773         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2774         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2775 }
2776
2777 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2778 {
2779 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2780         char dir_name[ITOA_MAX_LEN * 2];
2781
2782         if (!debugfs_initialized())
2783                 return;
2784
2785         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2786         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2787                                                   vcpu->kvm->debugfs_dentry);
2788
2789         kvm_arch_create_vcpu_debugfs(vcpu);
2790 #endif
2791 }
2792
2793 /*
2794  * Creates some virtual cpus.  Good luck creating more than one.
2795  */
2796 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2797 {
2798         int r;
2799         struct kvm_vcpu *vcpu;
2800
2801         if (id >= KVM_MAX_VCPU_ID)
2802                 return -EINVAL;
2803
2804         mutex_lock(&kvm->lock);
2805         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2806                 mutex_unlock(&kvm->lock);
2807                 return -EINVAL;
2808         }
2809
2810         kvm->created_vcpus++;
2811         mutex_unlock(&kvm->lock);
2812
2813         vcpu = kvm_arch_vcpu_create(kvm, id);
2814         if (IS_ERR(vcpu)) {
2815                 r = PTR_ERR(vcpu);
2816                 goto vcpu_decrement;
2817         }
2818
2819         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2820
2821         r = kvm_arch_vcpu_setup(vcpu);
2822         if (r)
2823                 goto vcpu_destroy;
2824
2825         kvm_create_vcpu_debugfs(vcpu);
2826
2827         mutex_lock(&kvm->lock);
2828         if (kvm_get_vcpu_by_id(kvm, id)) {
2829                 r = -EEXIST;
2830                 goto unlock_vcpu_destroy;
2831         }
2832
2833         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2834         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2835
2836         /* Now it's all set up, let userspace reach it */
2837         kvm_get_kvm(kvm);
2838         r = create_vcpu_fd(vcpu);
2839         if (r < 0) {
2840                 kvm_put_kvm_no_destroy(kvm);
2841                 goto unlock_vcpu_destroy;
2842         }
2843
2844         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2845
2846         /*
2847          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2848          * before kvm->online_vcpu's incremented value.
2849          */
2850         smp_wmb();
2851         atomic_inc(&kvm->online_vcpus);
2852
2853         mutex_unlock(&kvm->lock);
2854         kvm_arch_vcpu_postcreate(vcpu);
2855         return r;
2856
2857 unlock_vcpu_destroy:
2858         mutex_unlock(&kvm->lock);
2859         debugfs_remove_recursive(vcpu->debugfs_dentry);
2860 vcpu_destroy:
2861         kvm_arch_vcpu_destroy(vcpu);
2862 vcpu_decrement:
2863         mutex_lock(&kvm->lock);
2864         kvm->created_vcpus--;
2865         mutex_unlock(&kvm->lock);
2866         return r;
2867 }
2868
2869 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2870 {
2871         if (sigset) {
2872                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2873                 vcpu->sigset_active = 1;
2874                 vcpu->sigset = *sigset;
2875         } else
2876                 vcpu->sigset_active = 0;
2877         return 0;
2878 }
2879
2880 static long kvm_vcpu_ioctl(struct file *filp,
2881                            unsigned int ioctl, unsigned long arg)
2882 {
2883         struct kvm_vcpu *vcpu = filp->private_data;
2884         void __user *argp = (void __user *)arg;
2885         int r;
2886         struct kvm_fpu *fpu = NULL;
2887         struct kvm_sregs *kvm_sregs = NULL;
2888
2889         if (vcpu->kvm->mm != current->mm)
2890                 return -EIO;
2891
2892         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2893                 return -EINVAL;
2894
2895         /*
2896          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2897          * execution; mutex_lock() would break them.
2898          */
2899         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2900         if (r != -ENOIOCTLCMD)
2901                 return r;
2902
2903         if (mutex_lock_killable(&vcpu->mutex))
2904                 return -EINTR;
2905         switch (ioctl) {
2906         case KVM_RUN: {
2907                 struct pid *oldpid;
2908                 r = -EINVAL;
2909                 if (arg)
2910                         goto out;
2911                 oldpid = rcu_access_pointer(vcpu->pid);
2912                 if (unlikely(oldpid != task_pid(current))) {
2913                         /* The thread running this VCPU changed. */
2914                         struct pid *newpid;
2915
2916                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2917                         if (r)
2918                                 break;
2919
2920                         newpid = get_task_pid(current, PIDTYPE_PID);
2921                         rcu_assign_pointer(vcpu->pid, newpid);
2922                         if (oldpid)
2923                                 synchronize_rcu();
2924                         put_pid(oldpid);
2925                 }
2926                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2927                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2928                 break;
2929         }
2930         case KVM_GET_REGS: {
2931                 struct kvm_regs *kvm_regs;
2932
2933                 r = -ENOMEM;
2934                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2935                 if (!kvm_regs)
2936                         goto out;
2937                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2938                 if (r)
2939                         goto out_free1;
2940                 r = -EFAULT;
2941                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2942                         goto out_free1;
2943                 r = 0;
2944 out_free1:
2945                 kfree(kvm_regs);
2946                 break;
2947         }
2948         case KVM_SET_REGS: {
2949                 struct kvm_regs *kvm_regs;
2950
2951                 r = -ENOMEM;
2952                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2953                 if (IS_ERR(kvm_regs)) {
2954                         r = PTR_ERR(kvm_regs);
2955                         goto out;
2956                 }
2957                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2958                 kfree(kvm_regs);
2959                 break;
2960         }
2961         case KVM_GET_SREGS: {
2962                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2963                                     GFP_KERNEL_ACCOUNT);
2964                 r = -ENOMEM;
2965                 if (!kvm_sregs)
2966                         goto out;
2967                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2968                 if (r)
2969                         goto out;
2970                 r = -EFAULT;
2971                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2972                         goto out;
2973                 r = 0;
2974                 break;
2975         }
2976         case KVM_SET_SREGS: {
2977                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2978                 if (IS_ERR(kvm_sregs)) {
2979                         r = PTR_ERR(kvm_sregs);
2980                         kvm_sregs = NULL;
2981                         goto out;
2982                 }
2983                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2984                 break;
2985         }
2986         case KVM_GET_MP_STATE: {
2987                 struct kvm_mp_state mp_state;
2988
2989                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2990                 if (r)
2991                         goto out;
2992                 r = -EFAULT;
2993                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2994                         goto out;
2995                 r = 0;
2996                 break;
2997         }
2998         case KVM_SET_MP_STATE: {
2999                 struct kvm_mp_state mp_state;
3000
3001                 r = -EFAULT;
3002                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
3003                         goto out;
3004                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
3005                 break;
3006         }
3007         case KVM_TRANSLATE: {
3008                 struct kvm_translation tr;
3009
3010                 r = -EFAULT;
3011                 if (copy_from_user(&tr, argp, sizeof(tr)))
3012                         goto out;
3013                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
3014                 if (r)
3015                         goto out;
3016                 r = -EFAULT;
3017                 if (copy_to_user(argp, &tr, sizeof(tr)))
3018                         goto out;
3019                 r = 0;
3020                 break;
3021         }
3022         case KVM_SET_GUEST_DEBUG: {
3023                 struct kvm_guest_debug dbg;
3024
3025                 r = -EFAULT;
3026                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
3027                         goto out;
3028                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
3029                 break;
3030         }
3031         case KVM_SET_SIGNAL_MASK: {
3032                 struct kvm_signal_mask __user *sigmask_arg = argp;
3033                 struct kvm_signal_mask kvm_sigmask;
3034                 sigset_t sigset, *p;
3035
3036                 p = NULL;
3037                 if (argp) {
3038                         r = -EFAULT;
3039                         if (copy_from_user(&kvm_sigmask, argp,
3040                                            sizeof(kvm_sigmask)))
3041                                 goto out;
3042                         r = -EINVAL;
3043                         if (kvm_sigmask.len != sizeof(sigset))
3044                                 goto out;
3045                         r = -EFAULT;
3046                         if (copy_from_user(&sigset, sigmask_arg->sigset,
3047                                            sizeof(sigset)))
3048                                 goto out;
3049                         p = &sigset;
3050                 }
3051                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
3052                 break;
3053         }
3054         case KVM_GET_FPU: {
3055                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
3056                 r = -ENOMEM;
3057                 if (!fpu)
3058                         goto out;
3059                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
3060                 if (r)
3061                         goto out;
3062                 r = -EFAULT;
3063                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
3064                         goto out;
3065                 r = 0;
3066                 break;
3067         }
3068         case KVM_SET_FPU: {
3069                 fpu = memdup_user(argp, sizeof(*fpu));
3070                 if (IS_ERR(fpu)) {
3071                         r = PTR_ERR(fpu);
3072                         fpu = NULL;
3073                         goto out;
3074                 }
3075                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
3076                 break;
3077         }
3078         default:
3079                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
3080         }
3081 out:
3082         mutex_unlock(&vcpu->mutex);
3083         kfree(fpu);
3084         kfree(kvm_sregs);
3085         return r;
3086 }
3087
3088 #ifdef CONFIG_KVM_COMPAT
3089 static long kvm_vcpu_compat_ioctl(struct file *filp,
3090                                   unsigned int ioctl, unsigned long arg)
3091 {
3092         struct kvm_vcpu *vcpu = filp->private_data;
3093         void __user *argp = compat_ptr(arg);
3094         int r;
3095
3096         if (vcpu->kvm->mm != current->mm)
3097                 return -EIO;
3098
3099         switch (ioctl) {
3100         case KVM_SET_SIGNAL_MASK: {
3101                 struct kvm_signal_mask __user *sigmask_arg = argp;
3102                 struct kvm_signal_mask kvm_sigmask;
3103                 sigset_t sigset;
3104
3105                 if (argp) {
3106                         r = -EFAULT;
3107                         if (copy_from_user(&kvm_sigmask, argp,
3108                                            sizeof(kvm_sigmask)))
3109                                 goto out;
3110                         r = -EINVAL;
3111                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3112                                 goto out;
3113                         r = -EFAULT;
3114                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3115                                 goto out;
3116                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3117                 } else
3118                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3119                 break;
3120         }
3121         default:
3122                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3123         }
3124
3125 out:
3126         return r;
3127 }
3128 #endif
3129
3130 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3131 {
3132         struct kvm_device *dev = filp->private_data;
3133
3134         if (dev->ops->mmap)
3135                 return dev->ops->mmap(dev, vma);
3136
3137         return -ENODEV;
3138 }
3139
3140 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3141                                  int (*accessor)(struct kvm_device *dev,
3142                                                  struct kvm_device_attr *attr),
3143                                  unsigned long arg)
3144 {
3145         struct kvm_device_attr attr;
3146
3147         if (!accessor)
3148                 return -EPERM;
3149
3150         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3151                 return -EFAULT;
3152
3153         return accessor(dev, &attr);
3154 }
3155
3156 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3157                              unsigned long arg)
3158 {
3159         struct kvm_device *dev = filp->private_data;
3160
3161         if (dev->kvm->mm != current->mm)
3162                 return -EIO;
3163
3164         switch (ioctl) {
3165         case KVM_SET_DEVICE_ATTR:
3166                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3167         case KVM_GET_DEVICE_ATTR:
3168                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3169         case KVM_HAS_DEVICE_ATTR:
3170                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3171         default:
3172                 if (dev->ops->ioctl)
3173                         return dev->ops->ioctl(dev, ioctl, arg);
3174
3175                 return -ENOTTY;
3176         }
3177 }
3178
3179 static int kvm_device_release(struct inode *inode, struct file *filp)
3180 {
3181         struct kvm_device *dev = filp->private_data;
3182         struct kvm *kvm = dev->kvm;
3183
3184         if (dev->ops->release) {
3185                 mutex_lock(&kvm->lock);
3186                 list_del(&dev->vm_node);
3187                 dev->ops->release(dev);
3188                 mutex_unlock(&kvm->lock);
3189         }
3190
3191         kvm_put_kvm(kvm);
3192         return 0;
3193 }
3194
3195 static const struct file_operations kvm_device_fops = {
3196         .unlocked_ioctl = kvm_device_ioctl,
3197         .release = kvm_device_release,
3198         KVM_COMPAT(kvm_device_ioctl),
3199         .mmap = kvm_device_mmap,
3200 };
3201
3202 struct kvm_device *kvm_device_from_filp(struct file *filp)
3203 {
3204         if (filp->f_op != &kvm_device_fops)
3205                 return NULL;
3206
3207         return filp->private_data;
3208 }
3209
3210 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3211 #ifdef CONFIG_KVM_MPIC
3212         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3213         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3214 #endif
3215 };
3216
3217 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3218 {
3219         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3220                 return -ENOSPC;
3221
3222         if (kvm_device_ops_table[type] != NULL)
3223                 return -EEXIST;
3224
3225         kvm_device_ops_table[type] = ops;
3226         return 0;
3227 }
3228
3229 void kvm_unregister_device_ops(u32 type)
3230 {
3231         if (kvm_device_ops_table[type] != NULL)
3232                 kvm_device_ops_table[type] = NULL;
3233 }
3234
3235 static int kvm_ioctl_create_device(struct kvm *kvm,
3236                                    struct kvm_create_device *cd)
3237 {
3238         const struct kvm_device_ops *ops = NULL;
3239         struct kvm_device *dev;
3240         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3241         int type;
3242         int ret;
3243
3244         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3245                 return -ENODEV;
3246
3247         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3248         ops = kvm_device_ops_table[type];
3249         if (ops == NULL)
3250                 return -ENODEV;
3251
3252         if (test)
3253                 return 0;
3254
3255         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3256         if (!dev)
3257                 return -ENOMEM;
3258
3259         dev->ops = ops;
3260         dev->kvm = kvm;
3261
3262         mutex_lock(&kvm->lock);
3263         ret = ops->create(dev, type);
3264         if (ret < 0) {
3265                 mutex_unlock(&kvm->lock);
3266                 kfree(dev);
3267                 return ret;
3268         }
3269         list_add(&dev->vm_node, &kvm->devices);
3270         mutex_unlock(&kvm->lock);
3271
3272         if (ops->init)
3273                 ops->init(dev);
3274
3275         kvm_get_kvm(kvm);
3276         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3277         if (ret < 0) {
3278                 kvm_put_kvm_no_destroy(kvm);
3279                 mutex_lock(&kvm->lock);
3280                 list_del(&dev->vm_node);
3281                 mutex_unlock(&kvm->lock);
3282                 ops->destroy(dev);
3283                 return ret;
3284         }
3285
3286         cd->fd = ret;
3287         return 0;
3288 }
3289
3290 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3291 {
3292         switch (arg) {
3293         case KVM_CAP_USER_MEMORY:
3294         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3295         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3296         case KVM_CAP_INTERNAL_ERROR_DATA:
3297 #ifdef CONFIG_HAVE_KVM_MSI
3298         case KVM_CAP_SIGNAL_MSI:
3299 #endif
3300 #ifdef CONFIG_HAVE_KVM_IRQFD
3301         case KVM_CAP_IRQFD:
3302         case KVM_CAP_IRQFD_RESAMPLE:
3303 #endif
3304         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3305         case KVM_CAP_CHECK_EXTENSION_VM:
3306         case KVM_CAP_ENABLE_CAP_VM:
3307 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3308         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3309 #endif
3310                 return 1;
3311 #ifdef CONFIG_KVM_MMIO
3312         case KVM_CAP_COALESCED_MMIO:
3313                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3314         case KVM_CAP_COALESCED_PIO:
3315                 return 1;
3316 #endif
3317 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3318         case KVM_CAP_IRQ_ROUTING:
3319                 return KVM_MAX_IRQ_ROUTES;
3320 #endif
3321 #if KVM_ADDRESS_SPACE_NUM > 1
3322         case KVM_CAP_MULTI_ADDRESS_SPACE:
3323                 return KVM_ADDRESS_SPACE_NUM;
3324 #endif
3325         case KVM_CAP_NR_MEMSLOTS:
3326                 return KVM_USER_MEM_SLOTS;
3327         default:
3328                 break;
3329         }
3330         return kvm_vm_ioctl_check_extension(kvm, arg);
3331 }
3332
3333 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3334                                                   struct kvm_enable_cap *cap)
3335 {
3336         return -EINVAL;
3337 }
3338
3339 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3340                                            struct kvm_enable_cap *cap)
3341 {
3342         switch (cap->cap) {
3343 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3344         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3345                 if (cap->flags || (cap->args[0] & ~1))
3346                         return -EINVAL;
3347                 kvm->manual_dirty_log_protect = cap->args[0];
3348                 return 0;
3349 #endif
3350         default:
3351                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3352         }
3353 }
3354
3355 static long kvm_vm_ioctl(struct file *filp,
3356                            unsigned int ioctl, unsigned long arg)
3357 {
3358         struct kvm *kvm = filp->private_data;
3359         void __user *argp = (void __user *)arg;
3360         int r;
3361
3362         if (kvm->mm != current->mm)
3363                 return -EIO;
3364         switch (ioctl) {
3365         case KVM_CREATE_VCPU:
3366                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3367                 break;
3368         case KVM_ENABLE_CAP: {
3369                 struct kvm_enable_cap cap;
3370
3371                 r = -EFAULT;
3372                 if (copy_from_user(&cap, argp, sizeof(cap)))
3373                         goto out;
3374                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3375                 break;
3376         }
3377         case KVM_SET_USER_MEMORY_REGION: {
3378                 struct kvm_userspace_memory_region kvm_userspace_mem;
3379
3380                 r = -EFAULT;
3381                 if (copy_from_user(&kvm_userspace_mem, argp,
3382                                                 sizeof(kvm_userspace_mem)))
3383                         goto out;
3384
3385                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3386                 break;
3387         }
3388         case KVM_GET_DIRTY_LOG: {
3389                 struct kvm_dirty_log log;
3390
3391                 r = -EFAULT;
3392                 if (copy_from_user(&log, argp, sizeof(log)))
3393                         goto out;
3394                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3395                 break;
3396         }
3397 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3398         case KVM_CLEAR_DIRTY_LOG: {
3399                 struct kvm_clear_dirty_log log;
3400
3401                 r = -EFAULT;
3402                 if (copy_from_user(&log, argp, sizeof(log)))
3403                         goto out;
3404                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3405                 break;
3406         }
3407 #endif
3408 #ifdef CONFIG_KVM_MMIO
3409         case KVM_REGISTER_COALESCED_MMIO: {
3410                 struct kvm_coalesced_mmio_zone zone;
3411
3412                 r = -EFAULT;
3413                 if (copy_from_user(&zone, argp, sizeof(zone)))
3414                         goto out;
3415                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3416                 break;
3417         }
3418         case KVM_UNREGISTER_COALESCED_MMIO: {
3419                 struct kvm_coalesced_mmio_zone zone;
3420
3421                 r = -EFAULT;
3422                 if (copy_from_user(&zone, argp, sizeof(zone)))
3423                         goto out;
3424                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3425                 break;
3426         }
3427 #endif
3428         case KVM_IRQFD: {
3429                 struct kvm_irqfd data;
3430
3431                 r = -EFAULT;
3432                 if (copy_from_user(&data, argp, sizeof(data)))
3433                         goto out;
3434                 r = kvm_irqfd(kvm, &data);
3435                 break;
3436         }
3437         case KVM_IOEVENTFD: {
3438                 struct kvm_ioeventfd data;
3439
3440                 r = -EFAULT;
3441                 if (copy_from_user(&data, argp, sizeof(data)))
3442                         goto out;
3443                 r = kvm_ioeventfd(kvm, &data);
3444                 break;
3445         }
3446 #ifdef CONFIG_HAVE_KVM_MSI
3447         case KVM_SIGNAL_MSI: {
3448                 struct kvm_msi msi;
3449
3450                 r = -EFAULT;
3451                 if (copy_from_user(&msi, argp, sizeof(msi)))
3452                         goto out;
3453                 r = kvm_send_userspace_msi(kvm, &msi);
3454                 break;
3455         }
3456 #endif
3457 #ifdef __KVM_HAVE_IRQ_LINE
3458         case KVM_IRQ_LINE_STATUS:
3459         case KVM_IRQ_LINE: {
3460                 struct kvm_irq_level irq_event;
3461
3462                 r = -EFAULT;
3463                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3464                         goto out;
3465
3466                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3467                                         ioctl == KVM_IRQ_LINE_STATUS);
3468                 if (r)
3469                         goto out;
3470
3471                 r = -EFAULT;
3472                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3473                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3474                                 goto out;
3475                 }
3476
3477                 r = 0;
3478                 break;
3479         }
3480 #endif
3481 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3482         case KVM_SET_GSI_ROUTING: {
3483                 struct kvm_irq_routing routing;
3484                 struct kvm_irq_routing __user *urouting;
3485                 struct kvm_irq_routing_entry *entries = NULL;
3486
3487                 r = -EFAULT;
3488                 if (copy_from_user(&routing, argp, sizeof(routing)))
3489                         goto out;
3490                 r = -EINVAL;
3491                 if (!kvm_arch_can_set_irq_routing(kvm))
3492                         goto out;
3493                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3494                         goto out;
3495                 if (routing.flags)
3496                         goto out;
3497                 if (routing.nr) {
3498                         r = -ENOMEM;
3499                         entries = vmalloc(array_size(sizeof(*entries),
3500                                                      routing.nr));
3501                         if (!entries)
3502                                 goto out;
3503                         r = -EFAULT;
3504                         urouting = argp;
3505                         if (copy_from_user(entries, urouting->entries,
3506                                            routing.nr * sizeof(*entries)))
3507                                 goto out_free_irq_routing;
3508                 }
3509                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3510                                         routing.flags);
3511 out_free_irq_routing:
3512                 vfree(entries);
3513                 break;
3514         }
3515 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3516         case KVM_CREATE_DEVICE: {
3517                 struct kvm_create_device cd;
3518
3519                 r = -EFAULT;
3520                 if (copy_from_user(&cd, argp, sizeof(cd)))
3521                         goto out;
3522
3523                 r = kvm_ioctl_create_device(kvm, &cd);
3524                 if (r)
3525                         goto out;
3526
3527                 r = -EFAULT;
3528                 if (copy_to_user(argp, &cd, sizeof(cd)))
3529                         goto out;
3530
3531                 r = 0;
3532                 break;
3533         }
3534         case KVM_CHECK_EXTENSION:
3535                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3536                 break;
3537         default:
3538                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3539         }
3540 out:
3541         return r;
3542 }
3543
3544 #ifdef CONFIG_KVM_COMPAT
3545 struct compat_kvm_dirty_log {
3546         __u32 slot;
3547         __u32 padding1;
3548         union {
3549                 compat_uptr_t dirty_bitmap; /* one bit per page */
3550                 __u64 padding2;
3551         };
3552 };
3553
3554 static long kvm_vm_compat_ioctl(struct file *filp,
3555                            unsigned int ioctl, unsigned long arg)
3556 {
3557         struct kvm *kvm = filp->private_data;
3558         int r;
3559
3560         if (kvm->mm != current->mm)
3561                 return -EIO;
3562         switch (ioctl) {
3563         case KVM_GET_DIRTY_LOG: {
3564                 struct compat_kvm_dirty_log compat_log;
3565                 struct kvm_dirty_log log;
3566
3567                 if (copy_from_user(&compat_log, (void __user *)arg,
3568                                    sizeof(compat_log)))
3569                         return -EFAULT;
3570                 log.slot         = compat_log.slot;
3571                 log.padding1     = compat_log.padding1;
3572                 log.padding2     = compat_log.padding2;
3573                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3574
3575                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3576                 break;
3577         }
3578         default:
3579                 r = kvm_vm_ioctl(filp, ioctl, arg);
3580         }
3581         return r;
3582 }
3583 #endif
3584
3585 static struct file_operations kvm_vm_fops = {
3586         .release        = kvm_vm_release,
3587         .unlocked_ioctl = kvm_vm_ioctl,
3588         .llseek         = noop_llseek,
3589         KVM_COMPAT(kvm_vm_compat_ioctl),
3590 };
3591
3592 static int kvm_dev_ioctl_create_vm(unsigned long type)
3593 {
3594         int r;
3595         struct kvm *kvm;
3596         struct file *file;
3597
3598         kvm = kvm_create_vm(type);
3599         if (IS_ERR(kvm))
3600                 return PTR_ERR(kvm);
3601 #ifdef CONFIG_KVM_MMIO
3602         r = kvm_coalesced_mmio_init(kvm);
3603         if (r < 0)
3604                 goto put_kvm;
3605 #endif
3606         r = get_unused_fd_flags(O_CLOEXEC);
3607         if (r < 0)
3608                 goto put_kvm;
3609
3610         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3611         if (IS_ERR(file)) {
3612                 put_unused_fd(r);
3613                 r = PTR_ERR(file);
3614                 goto put_kvm;
3615         }
3616
3617         /*
3618          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3619          * already set, with ->release() being kvm_vm_release().  In error
3620          * cases it will be called by the final fput(file) and will take
3621          * care of doing kvm_put_kvm(kvm).
3622          */
3623         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3624                 put_unused_fd(r);
3625                 fput(file);
3626                 return -ENOMEM;
3627         }
3628         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3629
3630         fd_install(r, file);
3631         return r;
3632
3633 put_kvm:
3634         kvm_put_kvm(kvm);
3635         return r;
3636 }
3637
3638 static long kvm_dev_ioctl(struct file *filp,
3639                           unsigned int ioctl, unsigned long arg)
3640 {
3641         long r = -EINVAL;
3642
3643         switch (ioctl) {
3644         case KVM_GET_API_VERSION:
3645                 if (arg)
3646                         goto out;
3647                 r = KVM_API_VERSION;
3648                 break;
3649         case KVM_CREATE_VM:
3650                 r = kvm_dev_ioctl_create_vm(arg);
3651                 break;
3652         case KVM_CHECK_EXTENSION:
3653                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3654                 break;
3655         case KVM_GET_VCPU_MMAP_SIZE:
3656                 if (arg)
3657                         goto out;
3658                 r = PAGE_SIZE;     /* struct kvm_run */
3659 #ifdef CONFIG_X86
3660                 r += PAGE_SIZE;    /* pio data page */
3661 #endif
3662 #ifdef CONFIG_KVM_MMIO
3663                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3664 #endif
3665                 break;
3666         case KVM_TRACE_ENABLE:
3667         case KVM_TRACE_PAUSE:
3668         case KVM_TRACE_DISABLE:
3669                 r = -EOPNOTSUPP;
3670                 break;
3671         default:
3672                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3673         }
3674 out:
3675         return r;
3676 }
3677
3678 static struct file_operations kvm_chardev_ops = {
3679         .unlocked_ioctl = kvm_dev_ioctl,
3680         .llseek         = noop_llseek,
3681         KVM_COMPAT(kvm_dev_ioctl),
3682 };
3683
3684 static struct miscdevice kvm_dev = {
3685         KVM_MINOR,
3686         "kvm",
3687         &kvm_chardev_ops,
3688 };
3689
3690 static void hardware_enable_nolock(void *junk)
3691 {
3692         int cpu = raw_smp_processor_id();
3693         int r;
3694
3695         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3696                 return;
3697
3698         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3699
3700         r = kvm_arch_hardware_enable();
3701
3702         if (r) {
3703                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3704                 atomic_inc(&hardware_enable_failed);
3705                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3706         }
3707 }
3708
3709 static int kvm_starting_cpu(unsigned int cpu)
3710 {
3711         raw_spin_lock(&kvm_count_lock);
3712         if (kvm_usage_count)
3713                 hardware_enable_nolock(NULL);
3714         raw_spin_unlock(&kvm_count_lock);
3715         return 0;
3716 }
3717
3718 static void hardware_disable_nolock(void *junk)
3719 {
3720         int cpu = raw_smp_processor_id();
3721
3722         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3723                 return;
3724         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3725         kvm_arch_hardware_disable();
3726 }
3727
3728 static int kvm_dying_cpu(unsigned int cpu)
3729 {
3730         raw_spin_lock(&kvm_count_lock);
3731         if (kvm_usage_count)
3732                 hardware_disable_nolock(NULL);
3733         raw_spin_unlock(&kvm_count_lock);
3734         return 0;
3735 }
3736
3737 static void hardware_disable_all_nolock(void)
3738 {
3739         BUG_ON(!kvm_usage_count);
3740
3741         kvm_usage_count--;
3742         if (!kvm_usage_count)
3743                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3744 }
3745
3746 static void hardware_disable_all(void)
3747 {
3748         raw_spin_lock(&kvm_count_lock);
3749         hardware_disable_all_nolock();
3750         raw_spin_unlock(&kvm_count_lock);
3751 }
3752
3753 static int hardware_enable_all(void)
3754 {
3755         int r = 0;
3756
3757         raw_spin_lock(&kvm_count_lock);
3758
3759         kvm_usage_count++;
3760         if (kvm_usage_count == 1) {
3761                 atomic_set(&hardware_enable_failed, 0);
3762                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3763
3764                 if (atomic_read(&hardware_enable_failed)) {
3765                         hardware_disable_all_nolock();
3766                         r = -EBUSY;
3767                 }
3768         }
3769
3770         raw_spin_unlock(&kvm_count_lock);
3771
3772         return r;
3773 }
3774
3775 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3776                       void *v)
3777 {
3778         /*
3779          * Some (well, at least mine) BIOSes hang on reboot if
3780          * in vmx root mode.
3781          *
3782          * And Intel TXT required VMX off for all cpu when system shutdown.
3783          */
3784         pr_info("kvm: exiting hardware virtualization\n");
3785         kvm_rebooting = true;
3786         on_each_cpu(hardware_disable_nolock, NULL, 1);
3787         return NOTIFY_OK;
3788 }
3789
3790 static struct notifier_block kvm_reboot_notifier = {
3791         .notifier_call = kvm_reboot,
3792         .priority = 0,
3793 };
3794
3795 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3796 {
3797         int i;
3798
3799         for (i = 0; i < bus->dev_count; i++) {
3800                 struct kvm_io_device *pos = bus->range[i].dev;
3801
3802                 kvm_iodevice_destructor(pos);
3803         }
3804         kfree(bus);
3805 }
3806
3807 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3808                                  const struct kvm_io_range *r2)
3809 {
3810         gpa_t addr1 = r1->addr;
3811         gpa_t addr2 = r2->addr;
3812
3813         if (addr1 < addr2)
3814                 return -1;
3815
3816         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3817          * accept any overlapping write.  Any order is acceptable for
3818          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3819          * we process all of them.
3820          */
3821         if (r2->len) {
3822                 addr1 += r1->len;
3823                 addr2 += r2->len;
3824         }
3825
3826         if (addr1 > addr2)
3827                 return 1;
3828
3829         return 0;
3830 }
3831
3832 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3833 {
3834         return kvm_io_bus_cmp(p1, p2);
3835 }
3836
3837 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3838                              gpa_t addr, int len)
3839 {
3840         struct kvm_io_range *range, key;
3841         int off;
3842
3843         key = (struct kvm_io_range) {
3844                 .addr = addr,
3845                 .len = len,
3846         };
3847
3848         range = bsearch(&key, bus->range, bus->dev_count,
3849                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3850         if (range == NULL)
3851                 return -ENOENT;
3852
3853         off = range - bus->range;
3854
3855         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3856                 off--;
3857
3858         return off;
3859 }
3860
3861 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3862                               struct kvm_io_range *range, const void *val)
3863 {
3864         int idx;
3865
3866         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3867         if (idx < 0)
3868                 return -EOPNOTSUPP;
3869
3870         while (idx < bus->dev_count &&
3871                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3872                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3873                                         range->len, val))
3874                         return idx;
3875                 idx++;
3876         }
3877
3878         return -EOPNOTSUPP;
3879 }
3880
3881 /* kvm_io_bus_write - called under kvm->slots_lock */
3882 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3883                      int len, const void *val)
3884 {
3885         struct kvm_io_bus *bus;
3886         struct kvm_io_range range;
3887         int r;
3888
3889         range = (struct kvm_io_range) {
3890                 .addr = addr,
3891                 .len = len,
3892         };
3893
3894         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3895         if (!bus)
3896                 return -ENOMEM;
3897         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3898         return r < 0 ? r : 0;
3899 }
3900 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3901
3902 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3903 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3904                             gpa_t addr, int len, const void *val, long cookie)
3905 {
3906         struct kvm_io_bus *bus;
3907         struct kvm_io_range range;
3908
3909         range = (struct kvm_io_range) {
3910                 .addr = addr,
3911                 .len = len,
3912         };
3913
3914         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3915         if (!bus)
3916                 return -ENOMEM;
3917
3918         /* First try the device referenced by cookie. */
3919         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3920             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3921                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3922                                         val))
3923                         return cookie;
3924
3925         /*
3926          * cookie contained garbage; fall back to search and return the
3927          * correct cookie value.
3928          */
3929         return __kvm_io_bus_write(vcpu, bus, &range, val);
3930 }
3931
3932 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3933                              struct kvm_io_range *range, void *val)
3934 {
3935         int idx;
3936
3937         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3938         if (idx < 0)
3939                 return -EOPNOTSUPP;
3940
3941         while (idx < bus->dev_count &&
3942                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3943                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3944                                        range->len, val))
3945                         return idx;
3946                 idx++;
3947         }
3948
3949         return -EOPNOTSUPP;
3950 }
3951
3952 /* kvm_io_bus_read - called under kvm->slots_lock */
3953 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3954                     int len, void *val)
3955 {
3956         struct kvm_io_bus *bus;
3957         struct kvm_io_range range;
3958         int r;
3959
3960         range = (struct kvm_io_range) {
3961                 .addr = addr,
3962                 .len = len,
3963         };
3964
3965         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3966         if (!bus)
3967                 return -ENOMEM;
3968         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3969         return r < 0 ? r : 0;
3970 }
3971
3972 /* Caller must hold slots_lock. */
3973 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3974                             int len, struct kvm_io_device *dev)
3975 {
3976         int i;
3977         struct kvm_io_bus *new_bus, *bus;
3978         struct kvm_io_range range;
3979
3980         bus = kvm_get_bus(kvm, bus_idx);
3981         if (!bus)
3982                 return -ENOMEM;
3983
3984         /* exclude ioeventfd which is limited by maximum fd */
3985         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3986                 return -ENOSPC;
3987
3988         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3989                           GFP_KERNEL_ACCOUNT);
3990         if (!new_bus)
3991                 return -ENOMEM;
3992
3993         range = (struct kvm_io_range) {
3994                 .addr = addr,
3995                 .len = len,
3996                 .dev = dev,
3997         };
3998
3999         for (i = 0; i < bus->dev_count; i++)
4000                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
4001                         break;
4002
4003         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4004         new_bus->dev_count++;
4005         new_bus->range[i] = range;
4006         memcpy(new_bus->range + i + 1, bus->range + i,
4007                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
4008         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4009         synchronize_srcu_expedited(&kvm->srcu);
4010         kfree(bus);
4011
4012         return 0;
4013 }
4014
4015 /* Caller must hold slots_lock. */
4016 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4017                                struct kvm_io_device *dev)
4018 {
4019         int i;
4020         struct kvm_io_bus *new_bus, *bus;
4021
4022         bus = kvm_get_bus(kvm, bus_idx);
4023         if (!bus)
4024                 return;
4025
4026         for (i = 0; i < bus->dev_count; i++)
4027                 if (bus->range[i].dev == dev) {
4028                         break;
4029                 }
4030
4031         if (i == bus->dev_count)
4032                 return;
4033
4034         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
4035                           GFP_KERNEL_ACCOUNT);
4036         if (!new_bus)  {
4037                 pr_err("kvm: failed to shrink bus, removing it completely\n");
4038                 goto broken;
4039         }
4040
4041         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
4042         new_bus->dev_count--;
4043         memcpy(new_bus->range + i, bus->range + i + 1,
4044                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
4045
4046 broken:
4047         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
4048         synchronize_srcu_expedited(&kvm->srcu);
4049         kfree(bus);
4050         return;
4051 }
4052
4053 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
4054                                          gpa_t addr)
4055 {
4056         struct kvm_io_bus *bus;
4057         int dev_idx, srcu_idx;
4058         struct kvm_io_device *iodev = NULL;
4059
4060         srcu_idx = srcu_read_lock(&kvm->srcu);
4061
4062         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
4063         if (!bus)
4064                 goto out_unlock;
4065
4066         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
4067         if (dev_idx < 0)
4068                 goto out_unlock;
4069
4070         iodev = bus->range[dev_idx].dev;
4071
4072 out_unlock:
4073         srcu_read_unlock(&kvm->srcu, srcu_idx);
4074
4075         return iodev;
4076 }
4077 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
4078
4079 static int kvm_debugfs_open(struct inode *inode, struct file *file,
4080                            int (*get)(void *, u64 *), int (*set)(void *, u64),
4081                            const char *fmt)
4082 {
4083         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4084                                           inode->i_private;
4085
4086         /* The debugfs files are a reference to the kvm struct which
4087          * is still valid when kvm_destroy_vm is called.
4088          * To avoid the race between open and the removal of the debugfs
4089          * directory we test against the users count.
4090          */
4091         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
4092                 return -ENOENT;
4093
4094         if (simple_attr_open(inode, file, get,
4095                              stat_data->mode & S_IWUGO ? set : NULL,
4096                              fmt)) {
4097                 kvm_put_kvm(stat_data->kvm);
4098                 return -ENOMEM;
4099         }
4100
4101         return 0;
4102 }
4103
4104 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4105 {
4106         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4107                                           inode->i_private;
4108
4109         simple_attr_release(inode, file);
4110         kvm_put_kvm(stat_data->kvm);
4111
4112         return 0;
4113 }
4114
4115 static int vm_stat_get_per_vm(void *data, u64 *val)
4116 {
4117         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4118
4119         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
4120
4121         return 0;
4122 }
4123
4124 static int vm_stat_clear_per_vm(void *data, u64 val)
4125 {
4126         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4127
4128         if (val)
4129                 return -EINVAL;
4130
4131         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
4132
4133         return 0;
4134 }
4135
4136 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
4137 {
4138         __simple_attr_check_format("%llu\n", 0ull);
4139         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
4140                                 vm_stat_clear_per_vm, "%llu\n");
4141 }
4142
4143 static const struct file_operations vm_stat_get_per_vm_fops = {
4144         .owner   = THIS_MODULE,
4145         .open    = vm_stat_get_per_vm_open,
4146         .release = kvm_debugfs_release,
4147         .read    = simple_attr_read,
4148         .write   = simple_attr_write,
4149         .llseek  = no_llseek,
4150 };
4151
4152 static int vcpu_stat_get_per_vm(void *data, u64 *val)
4153 {
4154         int i;
4155         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4156         struct kvm_vcpu *vcpu;
4157
4158         *val = 0;
4159
4160         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4161                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
4162
4163         return 0;
4164 }
4165
4166 static int vcpu_stat_clear_per_vm(void *data, u64 val)
4167 {
4168         int i;
4169         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4170         struct kvm_vcpu *vcpu;
4171
4172         if (val)
4173                 return -EINVAL;
4174
4175         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
4176                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
4177
4178         return 0;
4179 }
4180
4181 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
4182 {
4183         __simple_attr_check_format("%llu\n", 0ull);
4184         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
4185                                  vcpu_stat_clear_per_vm, "%llu\n");
4186 }
4187
4188 static const struct file_operations vcpu_stat_get_per_vm_fops = {
4189         .owner   = THIS_MODULE,
4190         .open    = vcpu_stat_get_per_vm_open,
4191         .release = kvm_debugfs_release,
4192         .read    = simple_attr_read,
4193         .write   = simple_attr_write,
4194         .llseek  = no_llseek,
4195 };
4196
4197 static const struct file_operations *stat_fops_per_vm[] = {
4198         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
4199         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
4200 };
4201
4202 static int vm_stat_get(void *_offset, u64 *val)
4203 {
4204         unsigned offset = (long)_offset;
4205         struct kvm *kvm;
4206         struct kvm_stat_data stat_tmp = {.offset = offset};
4207         u64 tmp_val;
4208
4209         *val = 0;
4210         mutex_lock(&kvm_lock);
4211         list_for_each_entry(kvm, &vm_list, vm_list) {
4212                 stat_tmp.kvm = kvm;
4213                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4214                 *val += tmp_val;
4215         }
4216         mutex_unlock(&kvm_lock);
4217         return 0;
4218 }
4219
4220 static int vm_stat_clear(void *_offset, u64 val)
4221 {
4222         unsigned offset = (long)_offset;
4223         struct kvm *kvm;
4224         struct kvm_stat_data stat_tmp = {.offset = offset};
4225
4226         if (val)
4227                 return -EINVAL;
4228
4229         mutex_lock(&kvm_lock);
4230         list_for_each_entry(kvm, &vm_list, vm_list) {
4231                 stat_tmp.kvm = kvm;
4232                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
4233         }
4234         mutex_unlock(&kvm_lock);
4235
4236         return 0;
4237 }
4238
4239 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4240
4241 static int vcpu_stat_get(void *_offset, u64 *val)
4242 {
4243         unsigned offset = (long)_offset;
4244         struct kvm *kvm;
4245         struct kvm_stat_data stat_tmp = {.offset = offset};
4246         u64 tmp_val;
4247
4248         *val = 0;
4249         mutex_lock(&kvm_lock);
4250         list_for_each_entry(kvm, &vm_list, vm_list) {
4251                 stat_tmp.kvm = kvm;
4252                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
4253                 *val += tmp_val;
4254         }
4255         mutex_unlock(&kvm_lock);
4256         return 0;
4257 }
4258
4259 static int vcpu_stat_clear(void *_offset, u64 val)
4260 {
4261         unsigned offset = (long)_offset;
4262         struct kvm *kvm;
4263         struct kvm_stat_data stat_tmp = {.offset = offset};
4264
4265         if (val)
4266                 return -EINVAL;
4267
4268         mutex_lock(&kvm_lock);
4269         list_for_each_entry(kvm, &vm_list, vm_list) {
4270                 stat_tmp.kvm = kvm;
4271                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
4272         }
4273         mutex_unlock(&kvm_lock);
4274
4275         return 0;
4276 }
4277
4278 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4279                         "%llu\n");
4280
4281 static const struct file_operations *stat_fops[] = {
4282         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4283         [KVM_STAT_VM]   = &vm_stat_fops,
4284 };
4285
4286 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4287 {
4288         struct kobj_uevent_env *env;
4289         unsigned long long created, active;
4290
4291         if (!kvm_dev.this_device || !kvm)
4292                 return;
4293
4294         mutex_lock(&kvm_lock);
4295         if (type == KVM_EVENT_CREATE_VM) {
4296                 kvm_createvm_count++;
4297                 kvm_active_vms++;
4298         } else if (type == KVM_EVENT_DESTROY_VM) {
4299                 kvm_active_vms--;
4300         }
4301         created = kvm_createvm_count;
4302         active = kvm_active_vms;
4303         mutex_unlock(&kvm_lock);
4304
4305         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4306         if (!env)
4307                 return;
4308
4309         add_uevent_var(env, "CREATED=%llu", created);
4310         add_uevent_var(env, "COUNT=%llu", active);
4311
4312         if (type == KVM_EVENT_CREATE_VM) {
4313                 add_uevent_var(env, "EVENT=create");
4314                 kvm->userspace_pid = task_pid_nr(current);
4315         } else if (type == KVM_EVENT_DESTROY_VM) {
4316                 add_uevent_var(env, "EVENT=destroy");
4317         }
4318         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4319
4320         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4321                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4322
4323                 if (p) {
4324                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4325                         if (!IS_ERR(tmp))
4326                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4327                         kfree(p);
4328                 }
4329         }
4330         /* no need for checks, since we are adding at most only 5 keys */
4331         env->envp[env->envp_idx++] = NULL;
4332         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4333         kfree(env);
4334 }
4335
4336 static void kvm_init_debug(void)
4337 {
4338         struct kvm_stats_debugfs_item *p;
4339
4340         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4341
4342         kvm_debugfs_num_entries = 0;
4343         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4344                 int mode = p->mode ? p->mode : 0644;
4345                 debugfs_create_file(p->name, mode, kvm_debugfs_dir,
4346                                     (void *)(long)p->offset,
4347                                     stat_fops[p->kind]);
4348         }
4349 }
4350
4351 static int kvm_suspend(void)
4352 {
4353         if (kvm_usage_count)
4354                 hardware_disable_nolock(NULL);
4355         return 0;
4356 }
4357
4358 static void kvm_resume(void)
4359 {
4360         if (kvm_usage_count) {
4361 #ifdef CONFIG_LOCKDEP
4362                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4363 #endif
4364                 hardware_enable_nolock(NULL);
4365         }
4366 }
4367
4368 static struct syscore_ops kvm_syscore_ops = {
4369         .suspend = kvm_suspend,
4370         .resume = kvm_resume,
4371 };
4372
4373 static inline
4374 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4375 {
4376         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4377 }
4378
4379 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4380 {
4381         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4382
4383         WRITE_ONCE(vcpu->preempted, false);
4384         WRITE_ONCE(vcpu->ready, false);
4385
4386         kvm_arch_sched_in(vcpu, cpu);
4387
4388         kvm_arch_vcpu_load(vcpu, cpu);
4389 }
4390
4391 static void kvm_sched_out(struct preempt_notifier *pn,
4392                           struct task_struct *next)
4393 {
4394         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4395
4396         if (current->state == TASK_RUNNING) {
4397                 WRITE_ONCE(vcpu->preempted, true);
4398                 WRITE_ONCE(vcpu->ready, true);
4399         }
4400         kvm_arch_vcpu_put(vcpu);
4401 }
4402
4403 static void check_processor_compat(void *rtn)
4404 {
4405         *(int *)rtn = kvm_arch_check_processor_compat();
4406 }
4407
4408 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4409                   struct module *module)
4410 {
4411         int r;
4412         int cpu;
4413
4414         r = kvm_arch_init(opaque);
4415         if (r)
4416                 goto out_fail;
4417
4418         /*
4419          * kvm_arch_init makes sure there's at most one caller
4420          * for architectures that support multiple implementations,
4421          * like intel and amd on x86.
4422          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4423          * conflicts in case kvm is already setup for another implementation.
4424          */
4425         r = kvm_irqfd_init();
4426         if (r)
4427                 goto out_irqfd;
4428
4429         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4430                 r = -ENOMEM;
4431                 goto out_free_0;
4432         }
4433
4434         r = kvm_arch_hardware_setup();
4435         if (r < 0)
4436                 goto out_free_1;
4437
4438         for_each_online_cpu(cpu) {
4439                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4440                 if (r < 0)
4441                         goto out_free_2;
4442         }
4443
4444         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4445                                       kvm_starting_cpu, kvm_dying_cpu);
4446         if (r)
4447                 goto out_free_2;
4448         register_reboot_notifier(&kvm_reboot_notifier);
4449
4450         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4451         if (!vcpu_align)
4452                 vcpu_align = __alignof__(struct kvm_vcpu);
4453         kvm_vcpu_cache =
4454                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4455                                            SLAB_ACCOUNT,
4456                                            offsetof(struct kvm_vcpu, arch),
4457                                            sizeof_field(struct kvm_vcpu, arch),
4458                                            NULL);
4459         if (!kvm_vcpu_cache) {
4460                 r = -ENOMEM;
4461                 goto out_free_3;
4462         }
4463
4464         r = kvm_async_pf_init();
4465         if (r)
4466                 goto out_free;
4467
4468         kvm_chardev_ops.owner = module;
4469         kvm_vm_fops.owner = module;
4470         kvm_vcpu_fops.owner = module;
4471
4472         r = misc_register(&kvm_dev);
4473         if (r) {
4474                 pr_err("kvm: misc device register failed\n");
4475                 goto out_unreg;
4476         }
4477
4478         register_syscore_ops(&kvm_syscore_ops);
4479
4480         kvm_preempt_ops.sched_in = kvm_sched_in;
4481         kvm_preempt_ops.sched_out = kvm_sched_out;
4482
4483         kvm_init_debug();
4484
4485         r = kvm_vfio_ops_init();
4486         WARN_ON(r);
4487
4488         return 0;
4489
4490 out_unreg:
4491         kvm_async_pf_deinit();
4492 out_free:
4493         kmem_cache_destroy(kvm_vcpu_cache);
4494 out_free_3:
4495         unregister_reboot_notifier(&kvm_reboot_notifier);
4496         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4497 out_free_2:
4498         kvm_arch_hardware_unsetup();
4499 out_free_1:
4500         free_cpumask_var(cpus_hardware_enabled);
4501 out_free_0:
4502         kvm_irqfd_exit();
4503 out_irqfd:
4504         kvm_arch_exit();
4505 out_fail:
4506         return r;
4507 }
4508 EXPORT_SYMBOL_GPL(kvm_init);
4509
4510 void kvm_exit(void)
4511 {
4512         debugfs_remove_recursive(kvm_debugfs_dir);
4513         misc_deregister(&kvm_dev);
4514         kmem_cache_destroy(kvm_vcpu_cache);
4515         kvm_async_pf_deinit();
4516         unregister_syscore_ops(&kvm_syscore_ops);
4517         unregister_reboot_notifier(&kvm_reboot_notifier);
4518         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4519         on_each_cpu(hardware_disable_nolock, NULL, 1);
4520         kvm_arch_hardware_unsetup();
4521         kvm_arch_exit();
4522         kvm_irqfd_exit();
4523         free_cpumask_var(cpus_hardware_enabled);
4524         kvm_vfio_ops_exit();
4525 }
4526 EXPORT_SYMBOL_GPL(kvm_exit);
4527
4528 struct kvm_vm_worker_thread_context {
4529         struct kvm *kvm;
4530         struct task_struct *parent;
4531         struct completion init_done;
4532         kvm_vm_thread_fn_t thread_fn;
4533         uintptr_t data;
4534         int err;
4535 };
4536
4537 static int kvm_vm_worker_thread(void *context)
4538 {
4539         /*
4540          * The init_context is allocated on the stack of the parent thread, so
4541          * we have to locally copy anything that is needed beyond initialization
4542          */
4543         struct kvm_vm_worker_thread_context *init_context = context;
4544         struct kvm *kvm = init_context->kvm;
4545         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4546         uintptr_t data = init_context->data;
4547         int err;
4548
4549         err = kthread_park(current);
4550         /* kthread_park(current) is never supposed to return an error */
4551         WARN_ON(err != 0);
4552         if (err)
4553                 goto init_complete;
4554
4555         err = cgroup_attach_task_all(init_context->parent, current);
4556         if (err) {
4557                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4558                         __func__, err);
4559                 goto init_complete;
4560         }
4561
4562         set_user_nice(current, task_nice(init_context->parent));
4563
4564 init_complete:
4565         init_context->err = err;
4566         complete(&init_context->init_done);
4567         init_context = NULL;
4568
4569         if (err)
4570                 return err;
4571
4572         /* Wait to be woken up by the spawner before proceeding. */
4573         kthread_parkme();
4574
4575         if (!kthread_should_stop())
4576                 err = thread_fn(kvm, data);
4577
4578         return err;
4579 }
4580
4581 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4582                                 uintptr_t data, const char *name,
4583                                 struct task_struct **thread_ptr)
4584 {
4585         struct kvm_vm_worker_thread_context init_context = {};
4586         struct task_struct *thread;
4587
4588         *thread_ptr = NULL;
4589         init_context.kvm = kvm;
4590         init_context.parent = current;
4591         init_context.thread_fn = thread_fn;
4592         init_context.data = data;
4593         init_completion(&init_context.init_done);
4594
4595         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4596                              "%s-%d", name, task_pid_nr(current));
4597         if (IS_ERR(thread))
4598                 return PTR_ERR(thread);
4599
4600         /* kthread_run is never supposed to return NULL */
4601         WARN_ON(thread == NULL);
4602
4603         wait_for_completion(&init_context.init_done);
4604
4605         if (!init_context.err)
4606                 *thread_ptr = thread;
4607
4608         return init_context.err;
4609 }