]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/kvm_main.c
KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_set_sregs
[linux.git] / virt / kvm / kvm_main.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * Copyright (C) 2006 Qumranet, Inc.
8  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9  *
10  * Authors:
11  *   Avi Kivity   <avi@qumranet.com>
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.  See
15  * the COPYING file in the top-level directory.
16  *
17  */
18
19 #include <kvm/iodev.h>
20
21 #include <linux/kvm_host.h>
22 #include <linux/kvm.h>
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/percpu.h>
26 #include <linux/mm.h>
27 #include <linux/miscdevice.h>
28 #include <linux/vmalloc.h>
29 #include <linux/reboot.h>
30 #include <linux/debugfs.h>
31 #include <linux/highmem.h>
32 #include <linux/file.h>
33 #include <linux/syscore_ops.h>
34 #include <linux/cpu.h>
35 #include <linux/sched/signal.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/stat.h>
38 #include <linux/cpumask.h>
39 #include <linux/smp.h>
40 #include <linux/anon_inodes.h>
41 #include <linux/profile.h>
42 #include <linux/kvm_para.h>
43 #include <linux/pagemap.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/bitops.h>
47 #include <linux/spinlock.h>
48 #include <linux/compat.h>
49 #include <linux/srcu.h>
50 #include <linux/hugetlb.h>
51 #include <linux/slab.h>
52 #include <linux/sort.h>
53 #include <linux/bsearch.h>
54
55 #include <asm/processor.h>
56 #include <asm/io.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59 #include <asm/pgtable.h>
60
61 #include "coalesced_mmio.h"
62 #include "async_pf.h"
63 #include "vfio.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/kvm.h>
67
68 /* Worst case buffer size needed for holding an integer. */
69 #define ITOA_MAX_LEN 12
70
71 MODULE_AUTHOR("Qumranet");
72 MODULE_LICENSE("GPL");
73
74 /* Architectures should define their poll value according to the halt latency */
75 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
76 module_param(halt_poll_ns, uint, 0644);
77 EXPORT_SYMBOL_GPL(halt_poll_ns);
78
79 /* Default doubles per-vcpu halt_poll_ns. */
80 unsigned int halt_poll_ns_grow = 2;
81 module_param(halt_poll_ns_grow, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
83
84 /* Default resets per-vcpu halt_poll_ns . */
85 unsigned int halt_poll_ns_shrink;
86 module_param(halt_poll_ns_shrink, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
88
89 /*
90  * Ordering of locks:
91  *
92  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
93  */
94
95 DEFINE_SPINLOCK(kvm_lock);
96 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
97 LIST_HEAD(vm_list);
98
99 static cpumask_var_t cpus_hardware_enabled;
100 static int kvm_usage_count;
101 static atomic_t hardware_enable_failed;
102
103 struct kmem_cache *kvm_vcpu_cache;
104 EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
105
106 static __read_mostly struct preempt_ops kvm_preempt_ops;
107
108 struct dentry *kvm_debugfs_dir;
109 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
110
111 static int kvm_debugfs_num_entries;
112 static const struct file_operations *stat_fops_per_vm[];
113
114 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
115                            unsigned long arg);
116 #ifdef CONFIG_KVM_COMPAT
117 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
118                                   unsigned long arg);
119 #endif
120 static int hardware_enable_all(void);
121 static void hardware_disable_all(void);
122
123 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
124
125 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
126
127 __visible bool kvm_rebooting;
128 EXPORT_SYMBOL_GPL(kvm_rebooting);
129
130 static bool largepages_enabled = true;
131
132 #define KVM_EVENT_CREATE_VM 0
133 #define KVM_EVENT_DESTROY_VM 1
134 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
135 static unsigned long long kvm_createvm_count;
136 static unsigned long long kvm_active_vms;
137
138 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
139                 unsigned long start, unsigned long end)
140 {
141 }
142
143 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
144 {
145         if (pfn_valid(pfn))
146                 return PageReserved(pfn_to_page(pfn));
147
148         return true;
149 }
150
151 /*
152  * Switches to specified vcpu, until a matching vcpu_put()
153  */
154 void vcpu_load(struct kvm_vcpu *vcpu)
155 {
156         int cpu = get_cpu();
157         preempt_notifier_register(&vcpu->preempt_notifier);
158         kvm_arch_vcpu_load(vcpu, cpu);
159         put_cpu();
160 }
161 EXPORT_SYMBOL_GPL(vcpu_load);
162
163 void vcpu_put(struct kvm_vcpu *vcpu)
164 {
165         preempt_disable();
166         kvm_arch_vcpu_put(vcpu);
167         preempt_notifier_unregister(&vcpu->preempt_notifier);
168         preempt_enable();
169 }
170 EXPORT_SYMBOL_GPL(vcpu_put);
171
172 /* TODO: merge with kvm_arch_vcpu_should_kick */
173 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
174 {
175         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
176
177         /*
178          * We need to wait for the VCPU to reenable interrupts and get out of
179          * READING_SHADOW_PAGE_TABLES mode.
180          */
181         if (req & KVM_REQUEST_WAIT)
182                 return mode != OUTSIDE_GUEST_MODE;
183
184         /*
185          * Need to kick a running VCPU, but otherwise there is nothing to do.
186          */
187         return mode == IN_GUEST_MODE;
188 }
189
190 static void ack_flush(void *_completed)
191 {
192 }
193
194 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
195 {
196         if (unlikely(!cpus))
197                 cpus = cpu_online_mask;
198
199         if (cpumask_empty(cpus))
200                 return false;
201
202         smp_call_function_many(cpus, ack_flush, NULL, wait);
203         return true;
204 }
205
206 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
207 {
208         int i, cpu, me;
209         cpumask_var_t cpus;
210         bool called;
211         struct kvm_vcpu *vcpu;
212
213         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
214
215         me = get_cpu();
216         kvm_for_each_vcpu(i, vcpu, kvm) {
217                 kvm_make_request(req, vcpu);
218                 cpu = vcpu->cpu;
219
220                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
221                         continue;
222
223                 if (cpus != NULL && cpu != -1 && cpu != me &&
224                     kvm_request_needs_ipi(vcpu, req))
225                         __cpumask_set_cpu(cpu, cpus);
226         }
227         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
228         put_cpu();
229         free_cpumask_var(cpus);
230         return called;
231 }
232
233 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
234 void kvm_flush_remote_tlbs(struct kvm *kvm)
235 {
236         /*
237          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
238          * kvm_make_all_cpus_request.
239          */
240         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
241
242         /*
243          * We want to publish modifications to the page tables before reading
244          * mode. Pairs with a memory barrier in arch-specific code.
245          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
246          * and smp_mb in walk_shadow_page_lockless_begin/end.
247          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
248          *
249          * There is already an smp_mb__after_atomic() before
250          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
251          * barrier here.
252          */
253         if (kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
254                 ++kvm->stat.remote_tlb_flush;
255         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
256 }
257 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
258 #endif
259
260 void kvm_reload_remote_mmus(struct kvm *kvm)
261 {
262         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
263 }
264
265 int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
266 {
267         struct page *page;
268         int r;
269
270         mutex_init(&vcpu->mutex);
271         vcpu->cpu = -1;
272         vcpu->kvm = kvm;
273         vcpu->vcpu_id = id;
274         vcpu->pid = NULL;
275         init_swait_queue_head(&vcpu->wq);
276         kvm_async_pf_vcpu_init(vcpu);
277
278         vcpu->pre_pcpu = -1;
279         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
280
281         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
282         if (!page) {
283                 r = -ENOMEM;
284                 goto fail;
285         }
286         vcpu->run = page_address(page);
287
288         kvm_vcpu_set_in_spin_loop(vcpu, false);
289         kvm_vcpu_set_dy_eligible(vcpu, false);
290         vcpu->preempted = false;
291
292         r = kvm_arch_vcpu_init(vcpu);
293         if (r < 0)
294                 goto fail_free_run;
295         return 0;
296
297 fail_free_run:
298         free_page((unsigned long)vcpu->run);
299 fail:
300         return r;
301 }
302 EXPORT_SYMBOL_GPL(kvm_vcpu_init);
303
304 void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
305 {
306         /*
307          * no need for rcu_read_lock as VCPU_RUN is the only place that
308          * will change the vcpu->pid pointer and on uninit all file
309          * descriptors are already gone.
310          */
311         put_pid(rcu_dereference_protected(vcpu->pid, 1));
312         kvm_arch_vcpu_uninit(vcpu);
313         free_page((unsigned long)vcpu->run);
314 }
315 EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
316
317 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
318 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
319 {
320         return container_of(mn, struct kvm, mmu_notifier);
321 }
322
323 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
324                                         struct mm_struct *mm,
325                                         unsigned long address,
326                                         pte_t pte)
327 {
328         struct kvm *kvm = mmu_notifier_to_kvm(mn);
329         int idx;
330
331         idx = srcu_read_lock(&kvm->srcu);
332         spin_lock(&kvm->mmu_lock);
333         kvm->mmu_notifier_seq++;
334         kvm_set_spte_hva(kvm, address, pte);
335         spin_unlock(&kvm->mmu_lock);
336         srcu_read_unlock(&kvm->srcu, idx);
337 }
338
339 static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
340                                                     struct mm_struct *mm,
341                                                     unsigned long start,
342                                                     unsigned long end)
343 {
344         struct kvm *kvm = mmu_notifier_to_kvm(mn);
345         int need_tlb_flush = 0, idx;
346
347         idx = srcu_read_lock(&kvm->srcu);
348         spin_lock(&kvm->mmu_lock);
349         /*
350          * The count increase must become visible at unlock time as no
351          * spte can be established without taking the mmu_lock and
352          * count is also read inside the mmu_lock critical section.
353          */
354         kvm->mmu_notifier_count++;
355         need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
356         need_tlb_flush |= kvm->tlbs_dirty;
357         /* we've to flush the tlb before the pages can be freed */
358         if (need_tlb_flush)
359                 kvm_flush_remote_tlbs(kvm);
360
361         spin_unlock(&kvm->mmu_lock);
362
363         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
364
365         srcu_read_unlock(&kvm->srcu, idx);
366 }
367
368 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
369                                                   struct mm_struct *mm,
370                                                   unsigned long start,
371                                                   unsigned long end)
372 {
373         struct kvm *kvm = mmu_notifier_to_kvm(mn);
374
375         spin_lock(&kvm->mmu_lock);
376         /*
377          * This sequence increase will notify the kvm page fault that
378          * the page that is going to be mapped in the spte could have
379          * been freed.
380          */
381         kvm->mmu_notifier_seq++;
382         smp_wmb();
383         /*
384          * The above sequence increase must be visible before the
385          * below count decrease, which is ensured by the smp_wmb above
386          * in conjunction with the smp_rmb in mmu_notifier_retry().
387          */
388         kvm->mmu_notifier_count--;
389         spin_unlock(&kvm->mmu_lock);
390
391         BUG_ON(kvm->mmu_notifier_count < 0);
392 }
393
394 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
395                                               struct mm_struct *mm,
396                                               unsigned long start,
397                                               unsigned long end)
398 {
399         struct kvm *kvm = mmu_notifier_to_kvm(mn);
400         int young, idx;
401
402         idx = srcu_read_lock(&kvm->srcu);
403         spin_lock(&kvm->mmu_lock);
404
405         young = kvm_age_hva(kvm, start, end);
406         if (young)
407                 kvm_flush_remote_tlbs(kvm);
408
409         spin_unlock(&kvm->mmu_lock);
410         srcu_read_unlock(&kvm->srcu, idx);
411
412         return young;
413 }
414
415 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
416                                         struct mm_struct *mm,
417                                         unsigned long start,
418                                         unsigned long end)
419 {
420         struct kvm *kvm = mmu_notifier_to_kvm(mn);
421         int young, idx;
422
423         idx = srcu_read_lock(&kvm->srcu);
424         spin_lock(&kvm->mmu_lock);
425         /*
426          * Even though we do not flush TLB, this will still adversely
427          * affect performance on pre-Haswell Intel EPT, where there is
428          * no EPT Access Bit to clear so that we have to tear down EPT
429          * tables instead. If we find this unacceptable, we can always
430          * add a parameter to kvm_age_hva so that it effectively doesn't
431          * do anything on clear_young.
432          *
433          * Also note that currently we never issue secondary TLB flushes
434          * from clear_young, leaving this job up to the regular system
435          * cadence. If we find this inaccurate, we might come up with a
436          * more sophisticated heuristic later.
437          */
438         young = kvm_age_hva(kvm, start, end);
439         spin_unlock(&kvm->mmu_lock);
440         srcu_read_unlock(&kvm->srcu, idx);
441
442         return young;
443 }
444
445 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
446                                        struct mm_struct *mm,
447                                        unsigned long address)
448 {
449         struct kvm *kvm = mmu_notifier_to_kvm(mn);
450         int young, idx;
451
452         idx = srcu_read_lock(&kvm->srcu);
453         spin_lock(&kvm->mmu_lock);
454         young = kvm_test_age_hva(kvm, address);
455         spin_unlock(&kvm->mmu_lock);
456         srcu_read_unlock(&kvm->srcu, idx);
457
458         return young;
459 }
460
461 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
462                                      struct mm_struct *mm)
463 {
464         struct kvm *kvm = mmu_notifier_to_kvm(mn);
465         int idx;
466
467         idx = srcu_read_lock(&kvm->srcu);
468         kvm_arch_flush_shadow_all(kvm);
469         srcu_read_unlock(&kvm->srcu, idx);
470 }
471
472 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
473         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
474         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
475         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
476         .clear_young            = kvm_mmu_notifier_clear_young,
477         .test_young             = kvm_mmu_notifier_test_young,
478         .change_pte             = kvm_mmu_notifier_change_pte,
479         .release                = kvm_mmu_notifier_release,
480 };
481
482 static int kvm_init_mmu_notifier(struct kvm *kvm)
483 {
484         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
485         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
486 }
487
488 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
489
490 static int kvm_init_mmu_notifier(struct kvm *kvm)
491 {
492         return 0;
493 }
494
495 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
496
497 static struct kvm_memslots *kvm_alloc_memslots(void)
498 {
499         int i;
500         struct kvm_memslots *slots;
501
502         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
503         if (!slots)
504                 return NULL;
505
506         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
507                 slots->id_to_index[i] = slots->memslots[i].id = i;
508
509         return slots;
510 }
511
512 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
513 {
514         if (!memslot->dirty_bitmap)
515                 return;
516
517         kvfree(memslot->dirty_bitmap);
518         memslot->dirty_bitmap = NULL;
519 }
520
521 /*
522  * Free any memory in @free but not in @dont.
523  */
524 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
525                               struct kvm_memory_slot *dont)
526 {
527         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
528                 kvm_destroy_dirty_bitmap(free);
529
530         kvm_arch_free_memslot(kvm, free, dont);
531
532         free->npages = 0;
533 }
534
535 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
536 {
537         struct kvm_memory_slot *memslot;
538
539         if (!slots)
540                 return;
541
542         kvm_for_each_memslot(memslot, slots)
543                 kvm_free_memslot(kvm, memslot, NULL);
544
545         kvfree(slots);
546 }
547
548 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
549 {
550         int i;
551
552         if (!kvm->debugfs_dentry)
553                 return;
554
555         debugfs_remove_recursive(kvm->debugfs_dentry);
556
557         if (kvm->debugfs_stat_data) {
558                 for (i = 0; i < kvm_debugfs_num_entries; i++)
559                         kfree(kvm->debugfs_stat_data[i]);
560                 kfree(kvm->debugfs_stat_data);
561         }
562 }
563
564 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
565 {
566         char dir_name[ITOA_MAX_LEN * 2];
567         struct kvm_stat_data *stat_data;
568         struct kvm_stats_debugfs_item *p;
569
570         if (!debugfs_initialized())
571                 return 0;
572
573         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
574         kvm->debugfs_dentry = debugfs_create_dir(dir_name,
575                                                  kvm_debugfs_dir);
576         if (!kvm->debugfs_dentry)
577                 return -ENOMEM;
578
579         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
580                                          sizeof(*kvm->debugfs_stat_data),
581                                          GFP_KERNEL);
582         if (!kvm->debugfs_stat_data)
583                 return -ENOMEM;
584
585         for (p = debugfs_entries; p->name; p++) {
586                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
587                 if (!stat_data)
588                         return -ENOMEM;
589
590                 stat_data->kvm = kvm;
591                 stat_data->offset = p->offset;
592                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
593                 if (!debugfs_create_file(p->name, 0644,
594                                          kvm->debugfs_dentry,
595                                          stat_data,
596                                          stat_fops_per_vm[p->kind]))
597                         return -ENOMEM;
598         }
599         return 0;
600 }
601
602 static struct kvm *kvm_create_vm(unsigned long type)
603 {
604         int r, i;
605         struct kvm *kvm = kvm_arch_alloc_vm();
606
607         if (!kvm)
608                 return ERR_PTR(-ENOMEM);
609
610         spin_lock_init(&kvm->mmu_lock);
611         mmgrab(current->mm);
612         kvm->mm = current->mm;
613         kvm_eventfd_init(kvm);
614         mutex_init(&kvm->lock);
615         mutex_init(&kvm->irq_lock);
616         mutex_init(&kvm->slots_lock);
617         refcount_set(&kvm->users_count, 1);
618         INIT_LIST_HEAD(&kvm->devices);
619
620         r = kvm_arch_init_vm(kvm, type);
621         if (r)
622                 goto out_err_no_disable;
623
624         r = hardware_enable_all();
625         if (r)
626                 goto out_err_no_disable;
627
628 #ifdef CONFIG_HAVE_KVM_IRQFD
629         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
630 #endif
631
632         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
633
634         r = -ENOMEM;
635         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
636                 struct kvm_memslots *slots = kvm_alloc_memslots();
637                 if (!slots)
638                         goto out_err_no_srcu;
639                 /*
640                  * Generations must be different for each address space.
641                  * Init kvm generation close to the maximum to easily test the
642                  * code of handling generation number wrap-around.
643                  */
644                 slots->generation = i * 2 - 150;
645                 rcu_assign_pointer(kvm->memslots[i], slots);
646         }
647
648         if (init_srcu_struct(&kvm->srcu))
649                 goto out_err_no_srcu;
650         if (init_srcu_struct(&kvm->irq_srcu))
651                 goto out_err_no_irq_srcu;
652         for (i = 0; i < KVM_NR_BUSES; i++) {
653                 rcu_assign_pointer(kvm->buses[i],
654                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
655                 if (!kvm->buses[i])
656                         goto out_err;
657         }
658
659         r = kvm_init_mmu_notifier(kvm);
660         if (r)
661                 goto out_err;
662
663         spin_lock(&kvm_lock);
664         list_add(&kvm->vm_list, &vm_list);
665         spin_unlock(&kvm_lock);
666
667         preempt_notifier_inc();
668
669         return kvm;
670
671 out_err:
672         cleanup_srcu_struct(&kvm->irq_srcu);
673 out_err_no_irq_srcu:
674         cleanup_srcu_struct(&kvm->srcu);
675 out_err_no_srcu:
676         hardware_disable_all();
677 out_err_no_disable:
678         refcount_set(&kvm->users_count, 0);
679         for (i = 0; i < KVM_NR_BUSES; i++)
680                 kfree(kvm_get_bus(kvm, i));
681         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
682                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
683         kvm_arch_free_vm(kvm);
684         mmdrop(current->mm);
685         return ERR_PTR(r);
686 }
687
688 static void kvm_destroy_devices(struct kvm *kvm)
689 {
690         struct kvm_device *dev, *tmp;
691
692         /*
693          * We do not need to take the kvm->lock here, because nobody else
694          * has a reference to the struct kvm at this point and therefore
695          * cannot access the devices list anyhow.
696          */
697         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
698                 list_del(&dev->vm_node);
699                 dev->ops->destroy(dev);
700         }
701 }
702
703 static void kvm_destroy_vm(struct kvm *kvm)
704 {
705         int i;
706         struct mm_struct *mm = kvm->mm;
707
708         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
709         kvm_destroy_vm_debugfs(kvm);
710         kvm_arch_sync_events(kvm);
711         spin_lock(&kvm_lock);
712         list_del(&kvm->vm_list);
713         spin_unlock(&kvm_lock);
714         kvm_free_irq_routing(kvm);
715         for (i = 0; i < KVM_NR_BUSES; i++) {
716                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
717
718                 if (bus)
719                         kvm_io_bus_destroy(bus);
720                 kvm->buses[i] = NULL;
721         }
722         kvm_coalesced_mmio_free(kvm);
723 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
724         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
725 #else
726         kvm_arch_flush_shadow_all(kvm);
727 #endif
728         kvm_arch_destroy_vm(kvm);
729         kvm_destroy_devices(kvm);
730         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
731                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
732         cleanup_srcu_struct(&kvm->irq_srcu);
733         cleanup_srcu_struct(&kvm->srcu);
734         kvm_arch_free_vm(kvm);
735         preempt_notifier_dec();
736         hardware_disable_all();
737         mmdrop(mm);
738 }
739
740 void kvm_get_kvm(struct kvm *kvm)
741 {
742         refcount_inc(&kvm->users_count);
743 }
744 EXPORT_SYMBOL_GPL(kvm_get_kvm);
745
746 void kvm_put_kvm(struct kvm *kvm)
747 {
748         if (refcount_dec_and_test(&kvm->users_count))
749                 kvm_destroy_vm(kvm);
750 }
751 EXPORT_SYMBOL_GPL(kvm_put_kvm);
752
753
754 static int kvm_vm_release(struct inode *inode, struct file *filp)
755 {
756         struct kvm *kvm = filp->private_data;
757
758         kvm_irqfd_release(kvm);
759
760         kvm_put_kvm(kvm);
761         return 0;
762 }
763
764 /*
765  * Allocation size is twice as large as the actual dirty bitmap size.
766  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
767  */
768 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
769 {
770         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
771
772         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
773         if (!memslot->dirty_bitmap)
774                 return -ENOMEM;
775
776         return 0;
777 }
778
779 /*
780  * Insert memslot and re-sort memslots based on their GFN,
781  * so binary search could be used to lookup GFN.
782  * Sorting algorithm takes advantage of having initially
783  * sorted array and known changed memslot position.
784  */
785 static void update_memslots(struct kvm_memslots *slots,
786                             struct kvm_memory_slot *new)
787 {
788         int id = new->id;
789         int i = slots->id_to_index[id];
790         struct kvm_memory_slot *mslots = slots->memslots;
791
792         WARN_ON(mslots[i].id != id);
793         if (!new->npages) {
794                 WARN_ON(!mslots[i].npages);
795                 if (mslots[i].npages)
796                         slots->used_slots--;
797         } else {
798                 if (!mslots[i].npages)
799                         slots->used_slots++;
800         }
801
802         while (i < KVM_MEM_SLOTS_NUM - 1 &&
803                new->base_gfn <= mslots[i + 1].base_gfn) {
804                 if (!mslots[i + 1].npages)
805                         break;
806                 mslots[i] = mslots[i + 1];
807                 slots->id_to_index[mslots[i].id] = i;
808                 i++;
809         }
810
811         /*
812          * The ">=" is needed when creating a slot with base_gfn == 0,
813          * so that it moves before all those with base_gfn == npages == 0.
814          *
815          * On the other hand, if new->npages is zero, the above loop has
816          * already left i pointing to the beginning of the empty part of
817          * mslots, and the ">=" would move the hole backwards in this
818          * case---which is wrong.  So skip the loop when deleting a slot.
819          */
820         if (new->npages) {
821                 while (i > 0 &&
822                        new->base_gfn >= mslots[i - 1].base_gfn) {
823                         mslots[i] = mslots[i - 1];
824                         slots->id_to_index[mslots[i].id] = i;
825                         i--;
826                 }
827         } else
828                 WARN_ON_ONCE(i != slots->used_slots);
829
830         mslots[i] = *new;
831         slots->id_to_index[mslots[i].id] = i;
832 }
833
834 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
835 {
836         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
837
838 #ifdef __KVM_HAVE_READONLY_MEM
839         valid_flags |= KVM_MEM_READONLY;
840 #endif
841
842         if (mem->flags & ~valid_flags)
843                 return -EINVAL;
844
845         return 0;
846 }
847
848 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
849                 int as_id, struct kvm_memslots *slots)
850 {
851         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
852
853         /*
854          * Set the low bit in the generation, which disables SPTE caching
855          * until the end of synchronize_srcu_expedited.
856          */
857         WARN_ON(old_memslots->generation & 1);
858         slots->generation = old_memslots->generation + 1;
859
860         rcu_assign_pointer(kvm->memslots[as_id], slots);
861         synchronize_srcu_expedited(&kvm->srcu);
862
863         /*
864          * Increment the new memslot generation a second time. This prevents
865          * vm exits that race with memslot updates from caching a memslot
866          * generation that will (potentially) be valid forever.
867          *
868          * Generations must be unique even across address spaces.  We do not need
869          * a global counter for that, instead the generation space is evenly split
870          * across address spaces.  For example, with two address spaces, address
871          * space 0 will use generations 0, 4, 8, ... while * address space 1 will
872          * use generations 2, 6, 10, 14, ...
873          */
874         slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
875
876         kvm_arch_memslots_updated(kvm, slots);
877
878         return old_memslots;
879 }
880
881 /*
882  * Allocate some memory and give it an address in the guest physical address
883  * space.
884  *
885  * Discontiguous memory is allowed, mostly for framebuffers.
886  *
887  * Must be called holding kvm->slots_lock for write.
888  */
889 int __kvm_set_memory_region(struct kvm *kvm,
890                             const struct kvm_userspace_memory_region *mem)
891 {
892         int r;
893         gfn_t base_gfn;
894         unsigned long npages;
895         struct kvm_memory_slot *slot;
896         struct kvm_memory_slot old, new;
897         struct kvm_memslots *slots = NULL, *old_memslots;
898         int as_id, id;
899         enum kvm_mr_change change;
900
901         r = check_memory_region_flags(mem);
902         if (r)
903                 goto out;
904
905         r = -EINVAL;
906         as_id = mem->slot >> 16;
907         id = (u16)mem->slot;
908
909         /* General sanity checks */
910         if (mem->memory_size & (PAGE_SIZE - 1))
911                 goto out;
912         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
913                 goto out;
914         /* We can read the guest memory with __xxx_user() later on. */
915         if ((id < KVM_USER_MEM_SLOTS) &&
916             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
917              !access_ok(VERIFY_WRITE,
918                         (void __user *)(unsigned long)mem->userspace_addr,
919                         mem->memory_size)))
920                 goto out;
921         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
922                 goto out;
923         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
924                 goto out;
925
926         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
927         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
928         npages = mem->memory_size >> PAGE_SHIFT;
929
930         if (npages > KVM_MEM_MAX_NR_PAGES)
931                 goto out;
932
933         new = old = *slot;
934
935         new.id = id;
936         new.base_gfn = base_gfn;
937         new.npages = npages;
938         new.flags = mem->flags;
939
940         if (npages) {
941                 if (!old.npages)
942                         change = KVM_MR_CREATE;
943                 else { /* Modify an existing slot. */
944                         if ((mem->userspace_addr != old.userspace_addr) ||
945                             (npages != old.npages) ||
946                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
947                                 goto out;
948
949                         if (base_gfn != old.base_gfn)
950                                 change = KVM_MR_MOVE;
951                         else if (new.flags != old.flags)
952                                 change = KVM_MR_FLAGS_ONLY;
953                         else { /* Nothing to change. */
954                                 r = 0;
955                                 goto out;
956                         }
957                 }
958         } else {
959                 if (!old.npages)
960                         goto out;
961
962                 change = KVM_MR_DELETE;
963                 new.base_gfn = 0;
964                 new.flags = 0;
965         }
966
967         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
968                 /* Check for overlaps */
969                 r = -EEXIST;
970                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
971                         if ((slot->id >= KVM_USER_MEM_SLOTS) ||
972                             (slot->id == id))
973                                 continue;
974                         if (!((base_gfn + npages <= slot->base_gfn) ||
975                               (base_gfn >= slot->base_gfn + slot->npages)))
976                                 goto out;
977                 }
978         }
979
980         /* Free page dirty bitmap if unneeded */
981         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
982                 new.dirty_bitmap = NULL;
983
984         r = -ENOMEM;
985         if (change == KVM_MR_CREATE) {
986                 new.userspace_addr = mem->userspace_addr;
987
988                 if (kvm_arch_create_memslot(kvm, &new, npages))
989                         goto out_free;
990         }
991
992         /* Allocate page dirty bitmap if needed */
993         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
994                 if (kvm_create_dirty_bitmap(&new) < 0)
995                         goto out_free;
996         }
997
998         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
999         if (!slots)
1000                 goto out_free;
1001         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1002
1003         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1004                 slot = id_to_memslot(slots, id);
1005                 slot->flags |= KVM_MEMSLOT_INVALID;
1006
1007                 old_memslots = install_new_memslots(kvm, as_id, slots);
1008
1009                 /* From this point no new shadow pages pointing to a deleted,
1010                  * or moved, memslot will be created.
1011                  *
1012                  * validation of sp->gfn happens in:
1013                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1014                  *      - kvm_is_visible_gfn (mmu_check_roots)
1015                  */
1016                 kvm_arch_flush_shadow_memslot(kvm, slot);
1017
1018                 /*
1019                  * We can re-use the old_memslots from above, the only difference
1020                  * from the currently installed memslots is the invalid flag.  This
1021                  * will get overwritten by update_memslots anyway.
1022                  */
1023                 slots = old_memslots;
1024         }
1025
1026         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1027         if (r)
1028                 goto out_slots;
1029
1030         /* actual memory is freed via old in kvm_free_memslot below */
1031         if (change == KVM_MR_DELETE) {
1032                 new.dirty_bitmap = NULL;
1033                 memset(&new.arch, 0, sizeof(new.arch));
1034         }
1035
1036         update_memslots(slots, &new);
1037         old_memslots = install_new_memslots(kvm, as_id, slots);
1038
1039         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1040
1041         kvm_free_memslot(kvm, &old, &new);
1042         kvfree(old_memslots);
1043         return 0;
1044
1045 out_slots:
1046         kvfree(slots);
1047 out_free:
1048         kvm_free_memslot(kvm, &new, &old);
1049 out:
1050         return r;
1051 }
1052 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1053
1054 int kvm_set_memory_region(struct kvm *kvm,
1055                           const struct kvm_userspace_memory_region *mem)
1056 {
1057         int r;
1058
1059         mutex_lock(&kvm->slots_lock);
1060         r = __kvm_set_memory_region(kvm, mem);
1061         mutex_unlock(&kvm->slots_lock);
1062         return r;
1063 }
1064 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1065
1066 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1067                                           struct kvm_userspace_memory_region *mem)
1068 {
1069         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1070                 return -EINVAL;
1071
1072         return kvm_set_memory_region(kvm, mem);
1073 }
1074
1075 int kvm_get_dirty_log(struct kvm *kvm,
1076                         struct kvm_dirty_log *log, int *is_dirty)
1077 {
1078         struct kvm_memslots *slots;
1079         struct kvm_memory_slot *memslot;
1080         int i, as_id, id;
1081         unsigned long n;
1082         unsigned long any = 0;
1083
1084         as_id = log->slot >> 16;
1085         id = (u16)log->slot;
1086         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1087                 return -EINVAL;
1088
1089         slots = __kvm_memslots(kvm, as_id);
1090         memslot = id_to_memslot(slots, id);
1091         if (!memslot->dirty_bitmap)
1092                 return -ENOENT;
1093
1094         n = kvm_dirty_bitmap_bytes(memslot);
1095
1096         for (i = 0; !any && i < n/sizeof(long); ++i)
1097                 any = memslot->dirty_bitmap[i];
1098
1099         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1100                 return -EFAULT;
1101
1102         if (any)
1103                 *is_dirty = 1;
1104         return 0;
1105 }
1106 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1107
1108 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1109 /**
1110  * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1111  *      are dirty write protect them for next write.
1112  * @kvm:        pointer to kvm instance
1113  * @log:        slot id and address to which we copy the log
1114  * @is_dirty:   flag set if any page is dirty
1115  *
1116  * We need to keep it in mind that VCPU threads can write to the bitmap
1117  * concurrently. So, to avoid losing track of dirty pages we keep the
1118  * following order:
1119  *
1120  *    1. Take a snapshot of the bit and clear it if needed.
1121  *    2. Write protect the corresponding page.
1122  *    3. Copy the snapshot to the userspace.
1123  *    4. Upon return caller flushes TLB's if needed.
1124  *
1125  * Between 2 and 4, the guest may write to the page using the remaining TLB
1126  * entry.  This is not a problem because the page is reported dirty using
1127  * the snapshot taken before and step 4 ensures that writes done after
1128  * exiting to userspace will be logged for the next call.
1129  *
1130  */
1131 int kvm_get_dirty_log_protect(struct kvm *kvm,
1132                         struct kvm_dirty_log *log, bool *is_dirty)
1133 {
1134         struct kvm_memslots *slots;
1135         struct kvm_memory_slot *memslot;
1136         int i, as_id, id;
1137         unsigned long n;
1138         unsigned long *dirty_bitmap;
1139         unsigned long *dirty_bitmap_buffer;
1140
1141         as_id = log->slot >> 16;
1142         id = (u16)log->slot;
1143         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1144                 return -EINVAL;
1145
1146         slots = __kvm_memslots(kvm, as_id);
1147         memslot = id_to_memslot(slots, id);
1148
1149         dirty_bitmap = memslot->dirty_bitmap;
1150         if (!dirty_bitmap)
1151                 return -ENOENT;
1152
1153         n = kvm_dirty_bitmap_bytes(memslot);
1154
1155         dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long);
1156         memset(dirty_bitmap_buffer, 0, n);
1157
1158         spin_lock(&kvm->mmu_lock);
1159         *is_dirty = false;
1160         for (i = 0; i < n / sizeof(long); i++) {
1161                 unsigned long mask;
1162                 gfn_t offset;
1163
1164                 if (!dirty_bitmap[i])
1165                         continue;
1166
1167                 *is_dirty = true;
1168
1169                 mask = xchg(&dirty_bitmap[i], 0);
1170                 dirty_bitmap_buffer[i] = mask;
1171
1172                 if (mask) {
1173                         offset = i * BITS_PER_LONG;
1174                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1175                                                                 offset, mask);
1176                 }
1177         }
1178
1179         spin_unlock(&kvm->mmu_lock);
1180         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1181                 return -EFAULT;
1182         return 0;
1183 }
1184 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1185 #endif
1186
1187 bool kvm_largepages_enabled(void)
1188 {
1189         return largepages_enabled;
1190 }
1191
1192 void kvm_disable_largepages(void)
1193 {
1194         largepages_enabled = false;
1195 }
1196 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1197
1198 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1199 {
1200         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1201 }
1202 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1203
1204 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1205 {
1206         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1207 }
1208
1209 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1210 {
1211         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1212
1213         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1214               memslot->flags & KVM_MEMSLOT_INVALID)
1215                 return false;
1216
1217         return true;
1218 }
1219 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1220
1221 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1222 {
1223         struct vm_area_struct *vma;
1224         unsigned long addr, size;
1225
1226         size = PAGE_SIZE;
1227
1228         addr = gfn_to_hva(kvm, gfn);
1229         if (kvm_is_error_hva(addr))
1230                 return PAGE_SIZE;
1231
1232         down_read(&current->mm->mmap_sem);
1233         vma = find_vma(current->mm, addr);
1234         if (!vma)
1235                 goto out;
1236
1237         size = vma_kernel_pagesize(vma);
1238
1239 out:
1240         up_read(&current->mm->mmap_sem);
1241
1242         return size;
1243 }
1244
1245 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1246 {
1247         return slot->flags & KVM_MEM_READONLY;
1248 }
1249
1250 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1251                                        gfn_t *nr_pages, bool write)
1252 {
1253         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1254                 return KVM_HVA_ERR_BAD;
1255
1256         if (memslot_is_readonly(slot) && write)
1257                 return KVM_HVA_ERR_RO_BAD;
1258
1259         if (nr_pages)
1260                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1261
1262         return __gfn_to_hva_memslot(slot, gfn);
1263 }
1264
1265 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1266                                      gfn_t *nr_pages)
1267 {
1268         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1269 }
1270
1271 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1272                                         gfn_t gfn)
1273 {
1274         return gfn_to_hva_many(slot, gfn, NULL);
1275 }
1276 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1277
1278 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1279 {
1280         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1281 }
1282 EXPORT_SYMBOL_GPL(gfn_to_hva);
1283
1284 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1285 {
1286         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1287 }
1288 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1289
1290 /*
1291  * If writable is set to false, the hva returned by this function is only
1292  * allowed to be read.
1293  */
1294 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1295                                       gfn_t gfn, bool *writable)
1296 {
1297         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1298
1299         if (!kvm_is_error_hva(hva) && writable)
1300                 *writable = !memslot_is_readonly(slot);
1301
1302         return hva;
1303 }
1304
1305 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1306 {
1307         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1308
1309         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1310 }
1311
1312 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1313 {
1314         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1315
1316         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1317 }
1318
1319 static int get_user_page_nowait(unsigned long start, int write,
1320                 struct page **page)
1321 {
1322         int flags = FOLL_NOWAIT | FOLL_HWPOISON;
1323
1324         if (write)
1325                 flags |= FOLL_WRITE;
1326
1327         return get_user_pages(start, 1, flags, page, NULL);
1328 }
1329
1330 static inline int check_user_page_hwpoison(unsigned long addr)
1331 {
1332         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1333
1334         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1335         return rc == -EHWPOISON;
1336 }
1337
1338 /*
1339  * The atomic path to get the writable pfn which will be stored in @pfn,
1340  * true indicates success, otherwise false is returned.
1341  */
1342 static bool hva_to_pfn_fast(unsigned long addr, bool atomic, bool *async,
1343                             bool write_fault, bool *writable, kvm_pfn_t *pfn)
1344 {
1345         struct page *page[1];
1346         int npages;
1347
1348         if (!(async || atomic))
1349                 return false;
1350
1351         /*
1352          * Fast pin a writable pfn only if it is a write fault request
1353          * or the caller allows to map a writable pfn for a read fault
1354          * request.
1355          */
1356         if (!(write_fault || writable))
1357                 return false;
1358
1359         npages = __get_user_pages_fast(addr, 1, 1, page);
1360         if (npages == 1) {
1361                 *pfn = page_to_pfn(page[0]);
1362
1363                 if (writable)
1364                         *writable = true;
1365                 return true;
1366         }
1367
1368         return false;
1369 }
1370
1371 /*
1372  * The slow path to get the pfn of the specified host virtual address,
1373  * 1 indicates success, -errno is returned if error is detected.
1374  */
1375 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1376                            bool *writable, kvm_pfn_t *pfn)
1377 {
1378         struct page *page[1];
1379         int npages = 0;
1380
1381         might_sleep();
1382
1383         if (writable)
1384                 *writable = write_fault;
1385
1386         if (async) {
1387                 down_read(&current->mm->mmap_sem);
1388                 npages = get_user_page_nowait(addr, write_fault, page);
1389                 up_read(&current->mm->mmap_sem);
1390         } else {
1391                 unsigned int flags = FOLL_HWPOISON;
1392
1393                 if (write_fault)
1394                         flags |= FOLL_WRITE;
1395
1396                 npages = get_user_pages_unlocked(addr, 1, page, flags);
1397         }
1398         if (npages != 1)
1399                 return npages;
1400
1401         /* map read fault as writable if possible */
1402         if (unlikely(!write_fault) && writable) {
1403                 struct page *wpage[1];
1404
1405                 npages = __get_user_pages_fast(addr, 1, 1, wpage);
1406                 if (npages == 1) {
1407                         *writable = true;
1408                         put_page(page[0]);
1409                         page[0] = wpage[0];
1410                 }
1411
1412                 npages = 1;
1413         }
1414         *pfn = page_to_pfn(page[0]);
1415         return npages;
1416 }
1417
1418 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1419 {
1420         if (unlikely(!(vma->vm_flags & VM_READ)))
1421                 return false;
1422
1423         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1424                 return false;
1425
1426         return true;
1427 }
1428
1429 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1430                                unsigned long addr, bool *async,
1431                                bool write_fault, kvm_pfn_t *p_pfn)
1432 {
1433         unsigned long pfn;
1434         int r;
1435
1436         r = follow_pfn(vma, addr, &pfn);
1437         if (r) {
1438                 /*
1439                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1440                  * not call the fault handler, so do it here.
1441                  */
1442                 bool unlocked = false;
1443                 r = fixup_user_fault(current, current->mm, addr,
1444                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1445                                      &unlocked);
1446                 if (unlocked)
1447                         return -EAGAIN;
1448                 if (r)
1449                         return r;
1450
1451                 r = follow_pfn(vma, addr, &pfn);
1452                 if (r)
1453                         return r;
1454
1455         }
1456
1457
1458         /*
1459          * Get a reference here because callers of *hva_to_pfn* and
1460          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1461          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1462          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1463          * simply do nothing for reserved pfns.
1464          *
1465          * Whoever called remap_pfn_range is also going to call e.g.
1466          * unmap_mapping_range before the underlying pages are freed,
1467          * causing a call to our MMU notifier.
1468          */ 
1469         kvm_get_pfn(pfn);
1470
1471         *p_pfn = pfn;
1472         return 0;
1473 }
1474
1475 /*
1476  * Pin guest page in memory and return its pfn.
1477  * @addr: host virtual address which maps memory to the guest
1478  * @atomic: whether this function can sleep
1479  * @async: whether this function need to wait IO complete if the
1480  *         host page is not in the memory
1481  * @write_fault: whether we should get a writable host page
1482  * @writable: whether it allows to map a writable host page for !@write_fault
1483  *
1484  * The function will map a writable host page for these two cases:
1485  * 1): @write_fault = true
1486  * 2): @write_fault = false && @writable, @writable will tell the caller
1487  *     whether the mapping is writable.
1488  */
1489 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1490                         bool write_fault, bool *writable)
1491 {
1492         struct vm_area_struct *vma;
1493         kvm_pfn_t pfn = 0;
1494         int npages, r;
1495
1496         /* we can do it either atomically or asynchronously, not both */
1497         BUG_ON(atomic && async);
1498
1499         if (hva_to_pfn_fast(addr, atomic, async, write_fault, writable, &pfn))
1500                 return pfn;
1501
1502         if (atomic)
1503                 return KVM_PFN_ERR_FAULT;
1504
1505         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1506         if (npages == 1)
1507                 return pfn;
1508
1509         down_read(&current->mm->mmap_sem);
1510         if (npages == -EHWPOISON ||
1511               (!async && check_user_page_hwpoison(addr))) {
1512                 pfn = KVM_PFN_ERR_HWPOISON;
1513                 goto exit;
1514         }
1515
1516 retry:
1517         vma = find_vma_intersection(current->mm, addr, addr + 1);
1518
1519         if (vma == NULL)
1520                 pfn = KVM_PFN_ERR_FAULT;
1521         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1522                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, &pfn);
1523                 if (r == -EAGAIN)
1524                         goto retry;
1525                 if (r < 0)
1526                         pfn = KVM_PFN_ERR_FAULT;
1527         } else {
1528                 if (async && vma_is_valid(vma, write_fault))
1529                         *async = true;
1530                 pfn = KVM_PFN_ERR_FAULT;
1531         }
1532 exit:
1533         up_read(&current->mm->mmap_sem);
1534         return pfn;
1535 }
1536
1537 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1538                                bool atomic, bool *async, bool write_fault,
1539                                bool *writable)
1540 {
1541         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1542
1543         if (addr == KVM_HVA_ERR_RO_BAD) {
1544                 if (writable)
1545                         *writable = false;
1546                 return KVM_PFN_ERR_RO_FAULT;
1547         }
1548
1549         if (kvm_is_error_hva(addr)) {
1550                 if (writable)
1551                         *writable = false;
1552                 return KVM_PFN_NOSLOT;
1553         }
1554
1555         /* Do not map writable pfn in the readonly memslot. */
1556         if (writable && memslot_is_readonly(slot)) {
1557                 *writable = false;
1558                 writable = NULL;
1559         }
1560
1561         return hva_to_pfn(addr, atomic, async, write_fault,
1562                           writable);
1563 }
1564 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1565
1566 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1567                       bool *writable)
1568 {
1569         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1570                                     write_fault, writable);
1571 }
1572 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1573
1574 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1575 {
1576         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1577 }
1578 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1579
1580 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1581 {
1582         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1583 }
1584 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1585
1586 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1587 {
1588         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1589 }
1590 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1591
1592 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1593 {
1594         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1595 }
1596 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1597
1598 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1599 {
1600         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1601 }
1602 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1603
1604 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1605 {
1606         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1607 }
1608 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1609
1610 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1611                             struct page **pages, int nr_pages)
1612 {
1613         unsigned long addr;
1614         gfn_t entry = 0;
1615
1616         addr = gfn_to_hva_many(slot, gfn, &entry);
1617         if (kvm_is_error_hva(addr))
1618                 return -1;
1619
1620         if (entry < nr_pages)
1621                 return 0;
1622
1623         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1624 }
1625 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1626
1627 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1628 {
1629         if (is_error_noslot_pfn(pfn))
1630                 return KVM_ERR_PTR_BAD_PAGE;
1631
1632         if (kvm_is_reserved_pfn(pfn)) {
1633                 WARN_ON(1);
1634                 return KVM_ERR_PTR_BAD_PAGE;
1635         }
1636
1637         return pfn_to_page(pfn);
1638 }
1639
1640 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1641 {
1642         kvm_pfn_t pfn;
1643
1644         pfn = gfn_to_pfn(kvm, gfn);
1645
1646         return kvm_pfn_to_page(pfn);
1647 }
1648 EXPORT_SYMBOL_GPL(gfn_to_page);
1649
1650 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1651 {
1652         kvm_pfn_t pfn;
1653
1654         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1655
1656         return kvm_pfn_to_page(pfn);
1657 }
1658 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1659
1660 void kvm_release_page_clean(struct page *page)
1661 {
1662         WARN_ON(is_error_page(page));
1663
1664         kvm_release_pfn_clean(page_to_pfn(page));
1665 }
1666 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1667
1668 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1669 {
1670         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1671                 put_page(pfn_to_page(pfn));
1672 }
1673 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1674
1675 void kvm_release_page_dirty(struct page *page)
1676 {
1677         WARN_ON(is_error_page(page));
1678
1679         kvm_release_pfn_dirty(page_to_pfn(page));
1680 }
1681 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1682
1683 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1684 {
1685         kvm_set_pfn_dirty(pfn);
1686         kvm_release_pfn_clean(pfn);
1687 }
1688 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1689
1690 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1691 {
1692         if (!kvm_is_reserved_pfn(pfn)) {
1693                 struct page *page = pfn_to_page(pfn);
1694
1695                 if (!PageReserved(page))
1696                         SetPageDirty(page);
1697         }
1698 }
1699 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1700
1701 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1702 {
1703         if (!kvm_is_reserved_pfn(pfn))
1704                 mark_page_accessed(pfn_to_page(pfn));
1705 }
1706 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1707
1708 void kvm_get_pfn(kvm_pfn_t pfn)
1709 {
1710         if (!kvm_is_reserved_pfn(pfn))
1711                 get_page(pfn_to_page(pfn));
1712 }
1713 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1714
1715 static int next_segment(unsigned long len, int offset)
1716 {
1717         if (len > PAGE_SIZE - offset)
1718                 return PAGE_SIZE - offset;
1719         else
1720                 return len;
1721 }
1722
1723 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1724                                  void *data, int offset, int len)
1725 {
1726         int r;
1727         unsigned long addr;
1728
1729         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1730         if (kvm_is_error_hva(addr))
1731                 return -EFAULT;
1732         r = __copy_from_user(data, (void __user *)addr + offset, len);
1733         if (r)
1734                 return -EFAULT;
1735         return 0;
1736 }
1737
1738 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1739                         int len)
1740 {
1741         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1742
1743         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1744 }
1745 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1746
1747 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1748                              int offset, int len)
1749 {
1750         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1751
1752         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1753 }
1754 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1755
1756 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1757 {
1758         gfn_t gfn = gpa >> PAGE_SHIFT;
1759         int seg;
1760         int offset = offset_in_page(gpa);
1761         int ret;
1762
1763         while ((seg = next_segment(len, offset)) != 0) {
1764                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1765                 if (ret < 0)
1766                         return ret;
1767                 offset = 0;
1768                 len -= seg;
1769                 data += seg;
1770                 ++gfn;
1771         }
1772         return 0;
1773 }
1774 EXPORT_SYMBOL_GPL(kvm_read_guest);
1775
1776 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1777 {
1778         gfn_t gfn = gpa >> PAGE_SHIFT;
1779         int seg;
1780         int offset = offset_in_page(gpa);
1781         int ret;
1782
1783         while ((seg = next_segment(len, offset)) != 0) {
1784                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1785                 if (ret < 0)
1786                         return ret;
1787                 offset = 0;
1788                 len -= seg;
1789                 data += seg;
1790                 ++gfn;
1791         }
1792         return 0;
1793 }
1794 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1795
1796 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1797                                    void *data, int offset, unsigned long len)
1798 {
1799         int r;
1800         unsigned long addr;
1801
1802         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1803         if (kvm_is_error_hva(addr))
1804                 return -EFAULT;
1805         pagefault_disable();
1806         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1807         pagefault_enable();
1808         if (r)
1809                 return -EFAULT;
1810         return 0;
1811 }
1812
1813 int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1814                           unsigned long len)
1815 {
1816         gfn_t gfn = gpa >> PAGE_SHIFT;
1817         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1818         int offset = offset_in_page(gpa);
1819
1820         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1821 }
1822 EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1823
1824 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1825                                void *data, unsigned long len)
1826 {
1827         gfn_t gfn = gpa >> PAGE_SHIFT;
1828         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1829         int offset = offset_in_page(gpa);
1830
1831         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1832 }
1833 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1834
1835 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1836                                   const void *data, int offset, int len)
1837 {
1838         int r;
1839         unsigned long addr;
1840
1841         addr = gfn_to_hva_memslot(memslot, gfn);
1842         if (kvm_is_error_hva(addr))
1843                 return -EFAULT;
1844         r = __copy_to_user((void __user *)addr + offset, data, len);
1845         if (r)
1846                 return -EFAULT;
1847         mark_page_dirty_in_slot(memslot, gfn);
1848         return 0;
1849 }
1850
1851 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1852                          const void *data, int offset, int len)
1853 {
1854         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1855
1856         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1857 }
1858 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1859
1860 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1861                               const void *data, int offset, int len)
1862 {
1863         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1864
1865         return __kvm_write_guest_page(slot, gfn, data, offset, len);
1866 }
1867 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1868
1869 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1870                     unsigned long len)
1871 {
1872         gfn_t gfn = gpa >> PAGE_SHIFT;
1873         int seg;
1874         int offset = offset_in_page(gpa);
1875         int ret;
1876
1877         while ((seg = next_segment(len, offset)) != 0) {
1878                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1879                 if (ret < 0)
1880                         return ret;
1881                 offset = 0;
1882                 len -= seg;
1883                 data += seg;
1884                 ++gfn;
1885         }
1886         return 0;
1887 }
1888 EXPORT_SYMBOL_GPL(kvm_write_guest);
1889
1890 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1891                          unsigned long len)
1892 {
1893         gfn_t gfn = gpa >> PAGE_SHIFT;
1894         int seg;
1895         int offset = offset_in_page(gpa);
1896         int ret;
1897
1898         while ((seg = next_segment(len, offset)) != 0) {
1899                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1900                 if (ret < 0)
1901                         return ret;
1902                 offset = 0;
1903                 len -= seg;
1904                 data += seg;
1905                 ++gfn;
1906         }
1907         return 0;
1908 }
1909 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1910
1911 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1912                                        struct gfn_to_hva_cache *ghc,
1913                                        gpa_t gpa, unsigned long len)
1914 {
1915         int offset = offset_in_page(gpa);
1916         gfn_t start_gfn = gpa >> PAGE_SHIFT;
1917         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1918         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1919         gfn_t nr_pages_avail;
1920
1921         ghc->gpa = gpa;
1922         ghc->generation = slots->generation;
1923         ghc->len = len;
1924         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1925         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1926         if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1927                 ghc->hva += offset;
1928         } else {
1929                 /*
1930                  * If the requested region crosses two memslots, we still
1931                  * verify that the entire region is valid here.
1932                  */
1933                 while (start_gfn <= end_gfn) {
1934                         nr_pages_avail = 0;
1935                         ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1936                         ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1937                                                    &nr_pages_avail);
1938                         if (kvm_is_error_hva(ghc->hva))
1939                                 return -EFAULT;
1940                         start_gfn += nr_pages_avail;
1941                 }
1942                 /* Use the slow path for cross page reads and writes. */
1943                 ghc->memslot = NULL;
1944         }
1945         return 0;
1946 }
1947
1948 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1949                               gpa_t gpa, unsigned long len)
1950 {
1951         struct kvm_memslots *slots = kvm_memslots(kvm);
1952         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1953 }
1954 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1955
1956 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1957                            void *data, int offset, unsigned long len)
1958 {
1959         struct kvm_memslots *slots = kvm_memslots(kvm);
1960         int r;
1961         gpa_t gpa = ghc->gpa + offset;
1962
1963         BUG_ON(len + offset > ghc->len);
1964
1965         if (slots->generation != ghc->generation)
1966                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1967
1968         if (unlikely(!ghc->memslot))
1969                 return kvm_write_guest(kvm, gpa, data, len);
1970
1971         if (kvm_is_error_hva(ghc->hva))
1972                 return -EFAULT;
1973
1974         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1975         if (r)
1976                 return -EFAULT;
1977         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1978
1979         return 0;
1980 }
1981 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1982
1983 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1984                            void *data, unsigned long len)
1985 {
1986         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1987 }
1988 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1989
1990 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1991                            void *data, unsigned long len)
1992 {
1993         struct kvm_memslots *slots = kvm_memslots(kvm);
1994         int r;
1995
1996         BUG_ON(len > ghc->len);
1997
1998         if (slots->generation != ghc->generation)
1999                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2000
2001         if (unlikely(!ghc->memslot))
2002                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2003
2004         if (kvm_is_error_hva(ghc->hva))
2005                 return -EFAULT;
2006
2007         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2008         if (r)
2009                 return -EFAULT;
2010
2011         return 0;
2012 }
2013 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2014
2015 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2016 {
2017         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2018
2019         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2020 }
2021 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2022
2023 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2024 {
2025         gfn_t gfn = gpa >> PAGE_SHIFT;
2026         int seg;
2027         int offset = offset_in_page(gpa);
2028         int ret;
2029
2030         while ((seg = next_segment(len, offset)) != 0) {
2031                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2032                 if (ret < 0)
2033                         return ret;
2034                 offset = 0;
2035                 len -= seg;
2036                 ++gfn;
2037         }
2038         return 0;
2039 }
2040 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2041
2042 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2043                                     gfn_t gfn)
2044 {
2045         if (memslot && memslot->dirty_bitmap) {
2046                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2047
2048                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2049         }
2050 }
2051
2052 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2053 {
2054         struct kvm_memory_slot *memslot;
2055
2056         memslot = gfn_to_memslot(kvm, gfn);
2057         mark_page_dirty_in_slot(memslot, gfn);
2058 }
2059 EXPORT_SYMBOL_GPL(mark_page_dirty);
2060
2061 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2062 {
2063         struct kvm_memory_slot *memslot;
2064
2065         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2066         mark_page_dirty_in_slot(memslot, gfn);
2067 }
2068 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2069
2070 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2071 {
2072         if (!vcpu->sigset_active)
2073                 return;
2074
2075         /*
2076          * This does a lockless modification of ->real_blocked, which is fine
2077          * because, only current can change ->real_blocked and all readers of
2078          * ->real_blocked don't care as long ->real_blocked is always a subset
2079          * of ->blocked.
2080          */
2081         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2082 }
2083
2084 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2085 {
2086         if (!vcpu->sigset_active)
2087                 return;
2088
2089         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2090         sigemptyset(&current->real_blocked);
2091 }
2092
2093 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2094 {
2095         unsigned int old, val, grow;
2096
2097         old = val = vcpu->halt_poll_ns;
2098         grow = READ_ONCE(halt_poll_ns_grow);
2099         /* 10us base */
2100         if (val == 0 && grow)
2101                 val = 10000;
2102         else
2103                 val *= grow;
2104
2105         if (val > halt_poll_ns)
2106                 val = halt_poll_ns;
2107
2108         vcpu->halt_poll_ns = val;
2109         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2110 }
2111
2112 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2113 {
2114         unsigned int old, val, shrink;
2115
2116         old = val = vcpu->halt_poll_ns;
2117         shrink = READ_ONCE(halt_poll_ns_shrink);
2118         if (shrink == 0)
2119                 val = 0;
2120         else
2121                 val /= shrink;
2122
2123         vcpu->halt_poll_ns = val;
2124         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2125 }
2126
2127 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2128 {
2129         if (kvm_arch_vcpu_runnable(vcpu)) {
2130                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2131                 return -EINTR;
2132         }
2133         if (kvm_cpu_has_pending_timer(vcpu))
2134                 return -EINTR;
2135         if (signal_pending(current))
2136                 return -EINTR;
2137
2138         return 0;
2139 }
2140
2141 /*
2142  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2143  */
2144 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2145 {
2146         ktime_t start, cur;
2147         DECLARE_SWAITQUEUE(wait);
2148         bool waited = false;
2149         u64 block_ns;
2150
2151         start = cur = ktime_get();
2152         if (vcpu->halt_poll_ns) {
2153                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2154
2155                 ++vcpu->stat.halt_attempted_poll;
2156                 do {
2157                         /*
2158                          * This sets KVM_REQ_UNHALT if an interrupt
2159                          * arrives.
2160                          */
2161                         if (kvm_vcpu_check_block(vcpu) < 0) {
2162                                 ++vcpu->stat.halt_successful_poll;
2163                                 if (!vcpu_valid_wakeup(vcpu))
2164                                         ++vcpu->stat.halt_poll_invalid;
2165                                 goto out;
2166                         }
2167                         cur = ktime_get();
2168                 } while (single_task_running() && ktime_before(cur, stop));
2169         }
2170
2171         kvm_arch_vcpu_blocking(vcpu);
2172
2173         for (;;) {
2174                 prepare_to_swait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2175
2176                 if (kvm_vcpu_check_block(vcpu) < 0)
2177                         break;
2178
2179                 waited = true;
2180                 schedule();
2181         }
2182
2183         finish_swait(&vcpu->wq, &wait);
2184         cur = ktime_get();
2185
2186         kvm_arch_vcpu_unblocking(vcpu);
2187 out:
2188         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2189
2190         if (!vcpu_valid_wakeup(vcpu))
2191                 shrink_halt_poll_ns(vcpu);
2192         else if (halt_poll_ns) {
2193                 if (block_ns <= vcpu->halt_poll_ns)
2194                         ;
2195                 /* we had a long block, shrink polling */
2196                 else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2197                         shrink_halt_poll_ns(vcpu);
2198                 /* we had a short halt and our poll time is too small */
2199                 else if (vcpu->halt_poll_ns < halt_poll_ns &&
2200                         block_ns < halt_poll_ns)
2201                         grow_halt_poll_ns(vcpu);
2202         } else
2203                 vcpu->halt_poll_ns = 0;
2204
2205         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2206         kvm_arch_vcpu_block_finish(vcpu);
2207 }
2208 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2209
2210 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2211 {
2212         struct swait_queue_head *wqp;
2213
2214         wqp = kvm_arch_vcpu_wq(vcpu);
2215         if (swq_has_sleeper(wqp)) {
2216                 swake_up(wqp);
2217                 ++vcpu->stat.halt_wakeup;
2218                 return true;
2219         }
2220
2221         return false;
2222 }
2223 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2224
2225 #ifndef CONFIG_S390
2226 /*
2227  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2228  */
2229 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2230 {
2231         int me;
2232         int cpu = vcpu->cpu;
2233
2234         if (kvm_vcpu_wake_up(vcpu))
2235                 return;
2236
2237         me = get_cpu();
2238         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2239                 if (kvm_arch_vcpu_should_kick(vcpu))
2240                         smp_send_reschedule(cpu);
2241         put_cpu();
2242 }
2243 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2244 #endif /* !CONFIG_S390 */
2245
2246 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2247 {
2248         struct pid *pid;
2249         struct task_struct *task = NULL;
2250         int ret = 0;
2251
2252         rcu_read_lock();
2253         pid = rcu_dereference(target->pid);
2254         if (pid)
2255                 task = get_pid_task(pid, PIDTYPE_PID);
2256         rcu_read_unlock();
2257         if (!task)
2258                 return ret;
2259         ret = yield_to(task, 1);
2260         put_task_struct(task);
2261
2262         return ret;
2263 }
2264 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2265
2266 /*
2267  * Helper that checks whether a VCPU is eligible for directed yield.
2268  * Most eligible candidate to yield is decided by following heuristics:
2269  *
2270  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2271  *  (preempted lock holder), indicated by @in_spin_loop.
2272  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2273  *
2274  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2275  *  chance last time (mostly it has become eligible now since we have probably
2276  *  yielded to lockholder in last iteration. This is done by toggling
2277  *  @dy_eligible each time a VCPU checked for eligibility.)
2278  *
2279  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2280  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2281  *  burning. Giving priority for a potential lock-holder increases lock
2282  *  progress.
2283  *
2284  *  Since algorithm is based on heuristics, accessing another VCPU data without
2285  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2286  *  and continue with next VCPU and so on.
2287  */
2288 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2289 {
2290 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2291         bool eligible;
2292
2293         eligible = !vcpu->spin_loop.in_spin_loop ||
2294                     vcpu->spin_loop.dy_eligible;
2295
2296         if (vcpu->spin_loop.in_spin_loop)
2297                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2298
2299         return eligible;
2300 #else
2301         return true;
2302 #endif
2303 }
2304
2305 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2306 {
2307         struct kvm *kvm = me->kvm;
2308         struct kvm_vcpu *vcpu;
2309         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2310         int yielded = 0;
2311         int try = 3;
2312         int pass;
2313         int i;
2314
2315         kvm_vcpu_set_in_spin_loop(me, true);
2316         /*
2317          * We boost the priority of a VCPU that is runnable but not
2318          * currently running, because it got preempted by something
2319          * else and called schedule in __vcpu_run.  Hopefully that
2320          * VCPU is holding the lock that we need and will release it.
2321          * We approximate round-robin by starting at the last boosted VCPU.
2322          */
2323         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2324                 kvm_for_each_vcpu(i, vcpu, kvm) {
2325                         if (!pass && i <= last_boosted_vcpu) {
2326                                 i = last_boosted_vcpu;
2327                                 continue;
2328                         } else if (pass && i > last_boosted_vcpu)
2329                                 break;
2330                         if (!READ_ONCE(vcpu->preempted))
2331                                 continue;
2332                         if (vcpu == me)
2333                                 continue;
2334                         if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2335                                 continue;
2336                         if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2337                                 continue;
2338                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2339                                 continue;
2340
2341                         yielded = kvm_vcpu_yield_to(vcpu);
2342                         if (yielded > 0) {
2343                                 kvm->last_boosted_vcpu = i;
2344                                 break;
2345                         } else if (yielded < 0) {
2346                                 try--;
2347                                 if (!try)
2348                                         break;
2349                         }
2350                 }
2351         }
2352         kvm_vcpu_set_in_spin_loop(me, false);
2353
2354         /* Ensure vcpu is not eligible during next spinloop */
2355         kvm_vcpu_set_dy_eligible(me, false);
2356 }
2357 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2358
2359 static int kvm_vcpu_fault(struct vm_fault *vmf)
2360 {
2361         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2362         struct page *page;
2363
2364         if (vmf->pgoff == 0)
2365                 page = virt_to_page(vcpu->run);
2366 #ifdef CONFIG_X86
2367         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2368                 page = virt_to_page(vcpu->arch.pio_data);
2369 #endif
2370 #ifdef CONFIG_KVM_MMIO
2371         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2372                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2373 #endif
2374         else
2375                 return kvm_arch_vcpu_fault(vcpu, vmf);
2376         get_page(page);
2377         vmf->page = page;
2378         return 0;
2379 }
2380
2381 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2382         .fault = kvm_vcpu_fault,
2383 };
2384
2385 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2386 {
2387         vma->vm_ops = &kvm_vcpu_vm_ops;
2388         return 0;
2389 }
2390
2391 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2392 {
2393         struct kvm_vcpu *vcpu = filp->private_data;
2394
2395         debugfs_remove_recursive(vcpu->debugfs_dentry);
2396         kvm_put_kvm(vcpu->kvm);
2397         return 0;
2398 }
2399
2400 static struct file_operations kvm_vcpu_fops = {
2401         .release        = kvm_vcpu_release,
2402         .unlocked_ioctl = kvm_vcpu_ioctl,
2403 #ifdef CONFIG_KVM_COMPAT
2404         .compat_ioctl   = kvm_vcpu_compat_ioctl,
2405 #endif
2406         .mmap           = kvm_vcpu_mmap,
2407         .llseek         = noop_llseek,
2408 };
2409
2410 /*
2411  * Allocates an inode for the vcpu.
2412  */
2413 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2414 {
2415         return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2416 }
2417
2418 static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2419 {
2420         char dir_name[ITOA_MAX_LEN * 2];
2421         int ret;
2422
2423         if (!kvm_arch_has_vcpu_debugfs())
2424                 return 0;
2425
2426         if (!debugfs_initialized())
2427                 return 0;
2428
2429         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2430         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2431                                                                 vcpu->kvm->debugfs_dentry);
2432         if (!vcpu->debugfs_dentry)
2433                 return -ENOMEM;
2434
2435         ret = kvm_arch_create_vcpu_debugfs(vcpu);
2436         if (ret < 0) {
2437                 debugfs_remove_recursive(vcpu->debugfs_dentry);
2438                 return ret;
2439         }
2440
2441         return 0;
2442 }
2443
2444 /*
2445  * Creates some virtual cpus.  Good luck creating more than one.
2446  */
2447 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2448 {
2449         int r;
2450         struct kvm_vcpu *vcpu;
2451
2452         if (id >= KVM_MAX_VCPU_ID)
2453                 return -EINVAL;
2454
2455         mutex_lock(&kvm->lock);
2456         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2457                 mutex_unlock(&kvm->lock);
2458                 return -EINVAL;
2459         }
2460
2461         kvm->created_vcpus++;
2462         mutex_unlock(&kvm->lock);
2463
2464         vcpu = kvm_arch_vcpu_create(kvm, id);
2465         if (IS_ERR(vcpu)) {
2466                 r = PTR_ERR(vcpu);
2467                 goto vcpu_decrement;
2468         }
2469
2470         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2471
2472         r = kvm_arch_vcpu_setup(vcpu);
2473         if (r)
2474                 goto vcpu_destroy;
2475
2476         r = kvm_create_vcpu_debugfs(vcpu);
2477         if (r)
2478                 goto vcpu_destroy;
2479
2480         mutex_lock(&kvm->lock);
2481         if (kvm_get_vcpu_by_id(kvm, id)) {
2482                 r = -EEXIST;
2483                 goto unlock_vcpu_destroy;
2484         }
2485
2486         BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2487
2488         /* Now it's all set up, let userspace reach it */
2489         kvm_get_kvm(kvm);
2490         r = create_vcpu_fd(vcpu);
2491         if (r < 0) {
2492                 kvm_put_kvm(kvm);
2493                 goto unlock_vcpu_destroy;
2494         }
2495
2496         kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2497
2498         /*
2499          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2500          * before kvm->online_vcpu's incremented value.
2501          */
2502         smp_wmb();
2503         atomic_inc(&kvm->online_vcpus);
2504
2505         mutex_unlock(&kvm->lock);
2506         kvm_arch_vcpu_postcreate(vcpu);
2507         return r;
2508
2509 unlock_vcpu_destroy:
2510         mutex_unlock(&kvm->lock);
2511         debugfs_remove_recursive(vcpu->debugfs_dentry);
2512 vcpu_destroy:
2513         kvm_arch_vcpu_destroy(vcpu);
2514 vcpu_decrement:
2515         mutex_lock(&kvm->lock);
2516         kvm->created_vcpus--;
2517         mutex_unlock(&kvm->lock);
2518         return r;
2519 }
2520
2521 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2522 {
2523         if (sigset) {
2524                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2525                 vcpu->sigset_active = 1;
2526                 vcpu->sigset = *sigset;
2527         } else
2528                 vcpu->sigset_active = 0;
2529         return 0;
2530 }
2531
2532 static long kvm_vcpu_ioctl(struct file *filp,
2533                            unsigned int ioctl, unsigned long arg)
2534 {
2535         struct kvm_vcpu *vcpu = filp->private_data;
2536         void __user *argp = (void __user *)arg;
2537         int r;
2538         struct kvm_fpu *fpu = NULL;
2539         struct kvm_sregs *kvm_sregs = NULL;
2540
2541         if (vcpu->kvm->mm != current->mm)
2542                 return -EIO;
2543
2544         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2545                 return -EINVAL;
2546
2547 #if defined(CONFIG_S390) || defined(CONFIG_PPC) || defined(CONFIG_MIPS)
2548         /*
2549          * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
2550          * so vcpu_load() would break it.
2551          */
2552         if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_S390_IRQ || ioctl == KVM_INTERRUPT)
2553                 return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2554 #endif
2555
2556
2557         if (mutex_lock_killable(&vcpu->mutex))
2558                 return -EINTR;
2559         switch (ioctl) {
2560         case KVM_RUN: {
2561                 struct pid *oldpid;
2562                 r = -EINVAL;
2563                 if (arg)
2564                         goto out;
2565                 oldpid = rcu_access_pointer(vcpu->pid);
2566                 if (unlikely(oldpid != current->pids[PIDTYPE_PID].pid)) {
2567                         /* The thread running this VCPU changed. */
2568                         struct pid *newpid = get_task_pid(current, PIDTYPE_PID);
2569
2570                         rcu_assign_pointer(vcpu->pid, newpid);
2571                         if (oldpid)
2572                                 synchronize_rcu();
2573                         put_pid(oldpid);
2574                 }
2575                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2576                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2577                 break;
2578         }
2579         case KVM_GET_REGS: {
2580                 struct kvm_regs *kvm_regs;
2581
2582                 r = -ENOMEM;
2583                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2584                 if (!kvm_regs)
2585                         goto out;
2586                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2587                 if (r)
2588                         goto out_free1;
2589                 r = -EFAULT;
2590                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2591                         goto out_free1;
2592                 r = 0;
2593 out_free1:
2594                 kfree(kvm_regs);
2595                 break;
2596         }
2597         case KVM_SET_REGS: {
2598                 struct kvm_regs *kvm_regs;
2599
2600                 r = -ENOMEM;
2601                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2602                 if (IS_ERR(kvm_regs)) {
2603                         r = PTR_ERR(kvm_regs);
2604                         goto out;
2605                 }
2606                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2607                 kfree(kvm_regs);
2608                 break;
2609         }
2610         case KVM_GET_SREGS: {
2611                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2612                 r = -ENOMEM;
2613                 if (!kvm_sregs)
2614                         goto out;
2615                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2616                 if (r)
2617                         goto out;
2618                 r = -EFAULT;
2619                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2620                         goto out;
2621                 r = 0;
2622                 break;
2623         }
2624         case KVM_SET_SREGS: {
2625                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2626                 if (IS_ERR(kvm_sregs)) {
2627                         r = PTR_ERR(kvm_sregs);
2628                         kvm_sregs = NULL;
2629                         goto out;
2630                 }
2631                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2632                 break;
2633         }
2634         case KVM_GET_MP_STATE: {
2635                 struct kvm_mp_state mp_state;
2636
2637                 vcpu_load(vcpu);
2638                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2639                 vcpu_put(vcpu);
2640                 if (r)
2641                         goto out;
2642                 r = -EFAULT;
2643                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2644                         goto out;
2645                 r = 0;
2646                 break;
2647         }
2648         case KVM_SET_MP_STATE: {
2649                 struct kvm_mp_state mp_state;
2650
2651                 r = -EFAULT;
2652                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2653                         goto out;
2654                 vcpu_load(vcpu);
2655                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2656                 vcpu_put(vcpu);
2657                 break;
2658         }
2659         case KVM_TRANSLATE: {
2660                 struct kvm_translation tr;
2661
2662                 r = -EFAULT;
2663                 if (copy_from_user(&tr, argp, sizeof(tr)))
2664                         goto out;
2665                 vcpu_load(vcpu);
2666                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2667                 vcpu_put(vcpu);
2668                 if (r)
2669                         goto out;
2670                 r = -EFAULT;
2671                 if (copy_to_user(argp, &tr, sizeof(tr)))
2672                         goto out;
2673                 r = 0;
2674                 break;
2675         }
2676         case KVM_SET_GUEST_DEBUG: {
2677                 struct kvm_guest_debug dbg;
2678
2679                 r = -EFAULT;
2680                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2681                         goto out;
2682                 vcpu_load(vcpu);
2683                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2684                 vcpu_put(vcpu);
2685                 break;
2686         }
2687         case KVM_SET_SIGNAL_MASK: {
2688                 struct kvm_signal_mask __user *sigmask_arg = argp;
2689                 struct kvm_signal_mask kvm_sigmask;
2690                 sigset_t sigset, *p;
2691
2692                 p = NULL;
2693                 if (argp) {
2694                         r = -EFAULT;
2695                         if (copy_from_user(&kvm_sigmask, argp,
2696                                            sizeof(kvm_sigmask)))
2697                                 goto out;
2698                         r = -EINVAL;
2699                         if (kvm_sigmask.len != sizeof(sigset))
2700                                 goto out;
2701                         r = -EFAULT;
2702                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2703                                            sizeof(sigset)))
2704                                 goto out;
2705                         p = &sigset;
2706                 }
2707                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2708                 break;
2709         }
2710         case KVM_GET_FPU: {
2711                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2712                 r = -ENOMEM;
2713                 if (!fpu)
2714                         goto out;
2715                 vcpu_load(vcpu);
2716                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2717                 vcpu_put(vcpu);
2718                 if (r)
2719                         goto out;
2720                 r = -EFAULT;
2721                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2722                         goto out;
2723                 r = 0;
2724                 break;
2725         }
2726         case KVM_SET_FPU: {
2727                 fpu = memdup_user(argp, sizeof(*fpu));
2728                 if (IS_ERR(fpu)) {
2729                         r = PTR_ERR(fpu);
2730                         fpu = NULL;
2731                         goto out;
2732                 }
2733                 vcpu_load(vcpu);
2734                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2735                 vcpu_put(vcpu);
2736                 break;
2737         }
2738         default:
2739                 vcpu_load(vcpu);
2740                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2741                 vcpu_put(vcpu);
2742         }
2743 out:
2744         mutex_unlock(&vcpu->mutex);
2745         kfree(fpu);
2746         kfree(kvm_sregs);
2747         return r;
2748 }
2749
2750 #ifdef CONFIG_KVM_COMPAT
2751 static long kvm_vcpu_compat_ioctl(struct file *filp,
2752                                   unsigned int ioctl, unsigned long arg)
2753 {
2754         struct kvm_vcpu *vcpu = filp->private_data;
2755         void __user *argp = compat_ptr(arg);
2756         int r;
2757
2758         if (vcpu->kvm->mm != current->mm)
2759                 return -EIO;
2760
2761         switch (ioctl) {
2762         case KVM_SET_SIGNAL_MASK: {
2763                 struct kvm_signal_mask __user *sigmask_arg = argp;
2764                 struct kvm_signal_mask kvm_sigmask;
2765                 sigset_t sigset;
2766
2767                 if (argp) {
2768                         r = -EFAULT;
2769                         if (copy_from_user(&kvm_sigmask, argp,
2770                                            sizeof(kvm_sigmask)))
2771                                 goto out;
2772                         r = -EINVAL;
2773                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
2774                                 goto out;
2775                         r = -EFAULT;
2776                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2777                                 goto out;
2778                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2779                 } else
2780                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2781                 break;
2782         }
2783         default:
2784                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
2785         }
2786
2787 out:
2788         return r;
2789 }
2790 #endif
2791
2792 static int kvm_device_ioctl_attr(struct kvm_device *dev,
2793                                  int (*accessor)(struct kvm_device *dev,
2794                                                  struct kvm_device_attr *attr),
2795                                  unsigned long arg)
2796 {
2797         struct kvm_device_attr attr;
2798
2799         if (!accessor)
2800                 return -EPERM;
2801
2802         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2803                 return -EFAULT;
2804
2805         return accessor(dev, &attr);
2806 }
2807
2808 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2809                              unsigned long arg)
2810 {
2811         struct kvm_device *dev = filp->private_data;
2812
2813         switch (ioctl) {
2814         case KVM_SET_DEVICE_ATTR:
2815                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2816         case KVM_GET_DEVICE_ATTR:
2817                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2818         case KVM_HAS_DEVICE_ATTR:
2819                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2820         default:
2821                 if (dev->ops->ioctl)
2822                         return dev->ops->ioctl(dev, ioctl, arg);
2823
2824                 return -ENOTTY;
2825         }
2826 }
2827
2828 static int kvm_device_release(struct inode *inode, struct file *filp)
2829 {
2830         struct kvm_device *dev = filp->private_data;
2831         struct kvm *kvm = dev->kvm;
2832
2833         kvm_put_kvm(kvm);
2834         return 0;
2835 }
2836
2837 static const struct file_operations kvm_device_fops = {
2838         .unlocked_ioctl = kvm_device_ioctl,
2839 #ifdef CONFIG_KVM_COMPAT
2840         .compat_ioctl = kvm_device_ioctl,
2841 #endif
2842         .release = kvm_device_release,
2843 };
2844
2845 struct kvm_device *kvm_device_from_filp(struct file *filp)
2846 {
2847         if (filp->f_op != &kvm_device_fops)
2848                 return NULL;
2849
2850         return filp->private_data;
2851 }
2852
2853 static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2854 #ifdef CONFIG_KVM_MPIC
2855         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2856         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2857 #endif
2858 };
2859
2860 int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2861 {
2862         if (type >= ARRAY_SIZE(kvm_device_ops_table))
2863                 return -ENOSPC;
2864
2865         if (kvm_device_ops_table[type] != NULL)
2866                 return -EEXIST;
2867
2868         kvm_device_ops_table[type] = ops;
2869         return 0;
2870 }
2871
2872 void kvm_unregister_device_ops(u32 type)
2873 {
2874         if (kvm_device_ops_table[type] != NULL)
2875                 kvm_device_ops_table[type] = NULL;
2876 }
2877
2878 static int kvm_ioctl_create_device(struct kvm *kvm,
2879                                    struct kvm_create_device *cd)
2880 {
2881         struct kvm_device_ops *ops = NULL;
2882         struct kvm_device *dev;
2883         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2884         int ret;
2885
2886         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2887                 return -ENODEV;
2888
2889         ops = kvm_device_ops_table[cd->type];
2890         if (ops == NULL)
2891                 return -ENODEV;
2892
2893         if (test)
2894                 return 0;
2895
2896         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2897         if (!dev)
2898                 return -ENOMEM;
2899
2900         dev->ops = ops;
2901         dev->kvm = kvm;
2902
2903         mutex_lock(&kvm->lock);
2904         ret = ops->create(dev, cd->type);
2905         if (ret < 0) {
2906                 mutex_unlock(&kvm->lock);
2907                 kfree(dev);
2908                 return ret;
2909         }
2910         list_add(&dev->vm_node, &kvm->devices);
2911         mutex_unlock(&kvm->lock);
2912
2913         if (ops->init)
2914                 ops->init(dev);
2915
2916         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2917         if (ret < 0) {
2918                 mutex_lock(&kvm->lock);
2919                 list_del(&dev->vm_node);
2920                 mutex_unlock(&kvm->lock);
2921                 ops->destroy(dev);
2922                 return ret;
2923         }
2924
2925         kvm_get_kvm(kvm);
2926         cd->fd = ret;
2927         return 0;
2928 }
2929
2930 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2931 {
2932         switch (arg) {
2933         case KVM_CAP_USER_MEMORY:
2934         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2935         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2936         case KVM_CAP_INTERNAL_ERROR_DATA:
2937 #ifdef CONFIG_HAVE_KVM_MSI
2938         case KVM_CAP_SIGNAL_MSI:
2939 #endif
2940 #ifdef CONFIG_HAVE_KVM_IRQFD
2941         case KVM_CAP_IRQFD:
2942         case KVM_CAP_IRQFD_RESAMPLE:
2943 #endif
2944         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2945         case KVM_CAP_CHECK_EXTENSION_VM:
2946                 return 1;
2947 #ifdef CONFIG_KVM_MMIO
2948         case KVM_CAP_COALESCED_MMIO:
2949                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
2950 #endif
2951 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2952         case KVM_CAP_IRQ_ROUTING:
2953                 return KVM_MAX_IRQ_ROUTES;
2954 #endif
2955 #if KVM_ADDRESS_SPACE_NUM > 1
2956         case KVM_CAP_MULTI_ADDRESS_SPACE:
2957                 return KVM_ADDRESS_SPACE_NUM;
2958 #endif
2959         case KVM_CAP_MAX_VCPU_ID:
2960                 return KVM_MAX_VCPU_ID;
2961         default:
2962                 break;
2963         }
2964         return kvm_vm_ioctl_check_extension(kvm, arg);
2965 }
2966
2967 static long kvm_vm_ioctl(struct file *filp,
2968                            unsigned int ioctl, unsigned long arg)
2969 {
2970         struct kvm *kvm = filp->private_data;
2971         void __user *argp = (void __user *)arg;
2972         int r;
2973
2974         if (kvm->mm != current->mm)
2975                 return -EIO;
2976         switch (ioctl) {
2977         case KVM_CREATE_VCPU:
2978                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2979                 break;
2980         case KVM_SET_USER_MEMORY_REGION: {
2981                 struct kvm_userspace_memory_region kvm_userspace_mem;
2982
2983                 r = -EFAULT;
2984                 if (copy_from_user(&kvm_userspace_mem, argp,
2985                                                 sizeof(kvm_userspace_mem)))
2986                         goto out;
2987
2988                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2989                 break;
2990         }
2991         case KVM_GET_DIRTY_LOG: {
2992                 struct kvm_dirty_log log;
2993
2994                 r = -EFAULT;
2995                 if (copy_from_user(&log, argp, sizeof(log)))
2996                         goto out;
2997                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2998                 break;
2999         }
3000 #ifdef CONFIG_KVM_MMIO
3001         case KVM_REGISTER_COALESCED_MMIO: {
3002                 struct kvm_coalesced_mmio_zone zone;
3003
3004                 r = -EFAULT;
3005                 if (copy_from_user(&zone, argp, sizeof(zone)))
3006                         goto out;
3007                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3008                 break;
3009         }
3010         case KVM_UNREGISTER_COALESCED_MMIO: {
3011                 struct kvm_coalesced_mmio_zone zone;
3012
3013                 r = -EFAULT;
3014                 if (copy_from_user(&zone, argp, sizeof(zone)))
3015                         goto out;
3016                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3017                 break;
3018         }
3019 #endif
3020         case KVM_IRQFD: {
3021                 struct kvm_irqfd data;
3022
3023                 r = -EFAULT;
3024                 if (copy_from_user(&data, argp, sizeof(data)))
3025                         goto out;
3026                 r = kvm_irqfd(kvm, &data);
3027                 break;
3028         }
3029         case KVM_IOEVENTFD: {
3030                 struct kvm_ioeventfd data;
3031
3032                 r = -EFAULT;
3033                 if (copy_from_user(&data, argp, sizeof(data)))
3034                         goto out;
3035                 r = kvm_ioeventfd(kvm, &data);
3036                 break;
3037         }
3038 #ifdef CONFIG_HAVE_KVM_MSI
3039         case KVM_SIGNAL_MSI: {
3040                 struct kvm_msi msi;
3041
3042                 r = -EFAULT;
3043                 if (copy_from_user(&msi, argp, sizeof(msi)))
3044                         goto out;
3045                 r = kvm_send_userspace_msi(kvm, &msi);
3046                 break;
3047         }
3048 #endif
3049 #ifdef __KVM_HAVE_IRQ_LINE
3050         case KVM_IRQ_LINE_STATUS:
3051         case KVM_IRQ_LINE: {
3052                 struct kvm_irq_level irq_event;
3053
3054                 r = -EFAULT;
3055                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3056                         goto out;
3057
3058                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3059                                         ioctl == KVM_IRQ_LINE_STATUS);
3060                 if (r)
3061                         goto out;
3062
3063                 r = -EFAULT;
3064                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3065                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3066                                 goto out;
3067                 }
3068
3069                 r = 0;
3070                 break;
3071         }
3072 #endif
3073 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3074         case KVM_SET_GSI_ROUTING: {
3075                 struct kvm_irq_routing routing;
3076                 struct kvm_irq_routing __user *urouting;
3077                 struct kvm_irq_routing_entry *entries = NULL;
3078
3079                 r = -EFAULT;
3080                 if (copy_from_user(&routing, argp, sizeof(routing)))
3081                         goto out;
3082                 r = -EINVAL;
3083                 if (!kvm_arch_can_set_irq_routing(kvm))
3084                         goto out;
3085                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3086                         goto out;
3087                 if (routing.flags)
3088                         goto out;
3089                 if (routing.nr) {
3090                         r = -ENOMEM;
3091                         entries = vmalloc(routing.nr * sizeof(*entries));
3092                         if (!entries)
3093                                 goto out;
3094                         r = -EFAULT;
3095                         urouting = argp;
3096                         if (copy_from_user(entries, urouting->entries,
3097                                            routing.nr * sizeof(*entries)))
3098                                 goto out_free_irq_routing;
3099                 }
3100                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3101                                         routing.flags);
3102 out_free_irq_routing:
3103                 vfree(entries);
3104                 break;
3105         }
3106 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3107         case KVM_CREATE_DEVICE: {
3108                 struct kvm_create_device cd;
3109
3110                 r = -EFAULT;
3111                 if (copy_from_user(&cd, argp, sizeof(cd)))
3112                         goto out;
3113
3114                 r = kvm_ioctl_create_device(kvm, &cd);
3115                 if (r)
3116                         goto out;
3117
3118                 r = -EFAULT;
3119                 if (copy_to_user(argp, &cd, sizeof(cd)))
3120                         goto out;
3121
3122                 r = 0;
3123                 break;
3124         }
3125         case KVM_CHECK_EXTENSION:
3126                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3127                 break;
3128         default:
3129                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3130         }
3131 out:
3132         return r;
3133 }
3134
3135 #ifdef CONFIG_KVM_COMPAT
3136 struct compat_kvm_dirty_log {
3137         __u32 slot;
3138         __u32 padding1;
3139         union {
3140                 compat_uptr_t dirty_bitmap; /* one bit per page */
3141                 __u64 padding2;
3142         };
3143 };
3144
3145 static long kvm_vm_compat_ioctl(struct file *filp,
3146                            unsigned int ioctl, unsigned long arg)
3147 {
3148         struct kvm *kvm = filp->private_data;
3149         int r;
3150
3151         if (kvm->mm != current->mm)
3152                 return -EIO;
3153         switch (ioctl) {
3154         case KVM_GET_DIRTY_LOG: {
3155                 struct compat_kvm_dirty_log compat_log;
3156                 struct kvm_dirty_log log;
3157
3158                 if (copy_from_user(&compat_log, (void __user *)arg,
3159                                    sizeof(compat_log)))
3160                         return -EFAULT;
3161                 log.slot         = compat_log.slot;
3162                 log.padding1     = compat_log.padding1;
3163                 log.padding2     = compat_log.padding2;
3164                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3165
3166                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3167                 break;
3168         }
3169         default:
3170                 r = kvm_vm_ioctl(filp, ioctl, arg);
3171         }
3172         return r;
3173 }
3174 #endif
3175
3176 static struct file_operations kvm_vm_fops = {
3177         .release        = kvm_vm_release,
3178         .unlocked_ioctl = kvm_vm_ioctl,
3179 #ifdef CONFIG_KVM_COMPAT
3180         .compat_ioctl   = kvm_vm_compat_ioctl,
3181 #endif
3182         .llseek         = noop_llseek,
3183 };
3184
3185 static int kvm_dev_ioctl_create_vm(unsigned long type)
3186 {
3187         int r;
3188         struct kvm *kvm;
3189         struct file *file;
3190
3191         kvm = kvm_create_vm(type);
3192         if (IS_ERR(kvm))
3193                 return PTR_ERR(kvm);
3194 #ifdef CONFIG_KVM_MMIO
3195         r = kvm_coalesced_mmio_init(kvm);
3196         if (r < 0)
3197                 goto put_kvm;
3198 #endif
3199         r = get_unused_fd_flags(O_CLOEXEC);
3200         if (r < 0)
3201                 goto put_kvm;
3202
3203         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3204         if (IS_ERR(file)) {
3205                 put_unused_fd(r);
3206                 r = PTR_ERR(file);
3207                 goto put_kvm;
3208         }
3209
3210         /*
3211          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3212          * already set, with ->release() being kvm_vm_release().  In error
3213          * cases it will be called by the final fput(file) and will take
3214          * care of doing kvm_put_kvm(kvm).
3215          */
3216         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3217                 put_unused_fd(r);
3218                 fput(file);
3219                 return -ENOMEM;
3220         }
3221         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3222
3223         fd_install(r, file);
3224         return r;
3225
3226 put_kvm:
3227         kvm_put_kvm(kvm);
3228         return r;
3229 }
3230
3231 static long kvm_dev_ioctl(struct file *filp,
3232                           unsigned int ioctl, unsigned long arg)
3233 {
3234         long r = -EINVAL;
3235
3236         switch (ioctl) {
3237         case KVM_GET_API_VERSION:
3238                 if (arg)
3239                         goto out;
3240                 r = KVM_API_VERSION;
3241                 break;
3242         case KVM_CREATE_VM:
3243                 r = kvm_dev_ioctl_create_vm(arg);
3244                 break;
3245         case KVM_CHECK_EXTENSION:
3246                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3247                 break;
3248         case KVM_GET_VCPU_MMAP_SIZE:
3249                 if (arg)
3250                         goto out;
3251                 r = PAGE_SIZE;     /* struct kvm_run */
3252 #ifdef CONFIG_X86
3253                 r += PAGE_SIZE;    /* pio data page */
3254 #endif
3255 #ifdef CONFIG_KVM_MMIO
3256                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3257 #endif
3258                 break;
3259         case KVM_TRACE_ENABLE:
3260         case KVM_TRACE_PAUSE:
3261         case KVM_TRACE_DISABLE:
3262                 r = -EOPNOTSUPP;
3263                 break;
3264         default:
3265                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3266         }
3267 out:
3268         return r;
3269 }
3270
3271 static struct file_operations kvm_chardev_ops = {
3272         .unlocked_ioctl = kvm_dev_ioctl,
3273         .compat_ioctl   = kvm_dev_ioctl,
3274         .llseek         = noop_llseek,
3275 };
3276
3277 static struct miscdevice kvm_dev = {
3278         KVM_MINOR,
3279         "kvm",
3280         &kvm_chardev_ops,
3281 };
3282
3283 static void hardware_enable_nolock(void *junk)
3284 {
3285         int cpu = raw_smp_processor_id();
3286         int r;
3287
3288         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3289                 return;
3290
3291         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3292
3293         r = kvm_arch_hardware_enable();
3294
3295         if (r) {
3296                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3297                 atomic_inc(&hardware_enable_failed);
3298                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3299         }
3300 }
3301
3302 static int kvm_starting_cpu(unsigned int cpu)
3303 {
3304         raw_spin_lock(&kvm_count_lock);
3305         if (kvm_usage_count)
3306                 hardware_enable_nolock(NULL);
3307         raw_spin_unlock(&kvm_count_lock);
3308         return 0;
3309 }
3310
3311 static void hardware_disable_nolock(void *junk)
3312 {
3313         int cpu = raw_smp_processor_id();
3314
3315         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3316                 return;
3317         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3318         kvm_arch_hardware_disable();
3319 }
3320
3321 static int kvm_dying_cpu(unsigned int cpu)
3322 {
3323         raw_spin_lock(&kvm_count_lock);
3324         if (kvm_usage_count)
3325                 hardware_disable_nolock(NULL);
3326         raw_spin_unlock(&kvm_count_lock);
3327         return 0;
3328 }
3329
3330 static void hardware_disable_all_nolock(void)
3331 {
3332         BUG_ON(!kvm_usage_count);
3333
3334         kvm_usage_count--;
3335         if (!kvm_usage_count)
3336                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3337 }
3338
3339 static void hardware_disable_all(void)
3340 {
3341         raw_spin_lock(&kvm_count_lock);
3342         hardware_disable_all_nolock();
3343         raw_spin_unlock(&kvm_count_lock);
3344 }
3345
3346 static int hardware_enable_all(void)
3347 {
3348         int r = 0;
3349
3350         raw_spin_lock(&kvm_count_lock);
3351
3352         kvm_usage_count++;
3353         if (kvm_usage_count == 1) {
3354                 atomic_set(&hardware_enable_failed, 0);
3355                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3356
3357                 if (atomic_read(&hardware_enable_failed)) {
3358                         hardware_disable_all_nolock();
3359                         r = -EBUSY;
3360                 }
3361         }
3362
3363         raw_spin_unlock(&kvm_count_lock);
3364
3365         return r;
3366 }
3367
3368 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3369                       void *v)
3370 {
3371         /*
3372          * Some (well, at least mine) BIOSes hang on reboot if
3373          * in vmx root mode.
3374          *
3375          * And Intel TXT required VMX off for all cpu when system shutdown.
3376          */
3377         pr_info("kvm: exiting hardware virtualization\n");
3378         kvm_rebooting = true;
3379         on_each_cpu(hardware_disable_nolock, NULL, 1);
3380         return NOTIFY_OK;
3381 }
3382
3383 static struct notifier_block kvm_reboot_notifier = {
3384         .notifier_call = kvm_reboot,
3385         .priority = 0,
3386 };
3387
3388 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3389 {
3390         int i;
3391
3392         for (i = 0; i < bus->dev_count; i++) {
3393                 struct kvm_io_device *pos = bus->range[i].dev;
3394
3395                 kvm_iodevice_destructor(pos);
3396         }
3397         kfree(bus);
3398 }
3399
3400 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3401                                  const struct kvm_io_range *r2)
3402 {
3403         gpa_t addr1 = r1->addr;
3404         gpa_t addr2 = r2->addr;
3405
3406         if (addr1 < addr2)
3407                 return -1;
3408
3409         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3410          * accept any overlapping write.  Any order is acceptable for
3411          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3412          * we process all of them.
3413          */
3414         if (r2->len) {
3415                 addr1 += r1->len;
3416                 addr2 += r2->len;
3417         }
3418
3419         if (addr1 > addr2)
3420                 return 1;
3421
3422         return 0;
3423 }
3424
3425 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3426 {
3427         return kvm_io_bus_cmp(p1, p2);
3428 }
3429
3430 static int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev,
3431                           gpa_t addr, int len)
3432 {
3433         bus->range[bus->dev_count++] = (struct kvm_io_range) {
3434                 .addr = addr,
3435                 .len = len,
3436                 .dev = dev,
3437         };
3438
3439         sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range),
3440                 kvm_io_bus_sort_cmp, NULL);
3441
3442         return 0;
3443 }
3444
3445 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3446                              gpa_t addr, int len)
3447 {
3448         struct kvm_io_range *range, key;
3449         int off;
3450
3451         key = (struct kvm_io_range) {
3452                 .addr = addr,
3453                 .len = len,
3454         };
3455
3456         range = bsearch(&key, bus->range, bus->dev_count,
3457                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3458         if (range == NULL)
3459                 return -ENOENT;
3460
3461         off = range - bus->range;
3462
3463         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3464                 off--;
3465
3466         return off;
3467 }
3468
3469 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3470                               struct kvm_io_range *range, const void *val)
3471 {
3472         int idx;
3473
3474         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3475         if (idx < 0)
3476                 return -EOPNOTSUPP;
3477
3478         while (idx < bus->dev_count &&
3479                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3480                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3481                                         range->len, val))
3482                         return idx;
3483                 idx++;
3484         }
3485
3486         return -EOPNOTSUPP;
3487 }
3488
3489 /* kvm_io_bus_write - called under kvm->slots_lock */
3490 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3491                      int len, const void *val)
3492 {
3493         struct kvm_io_bus *bus;
3494         struct kvm_io_range range;
3495         int r;
3496
3497         range = (struct kvm_io_range) {
3498                 .addr = addr,
3499                 .len = len,
3500         };
3501
3502         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3503         if (!bus)
3504                 return -ENOMEM;
3505         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3506         return r < 0 ? r : 0;
3507 }
3508
3509 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3510 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3511                             gpa_t addr, int len, const void *val, long cookie)
3512 {
3513         struct kvm_io_bus *bus;
3514         struct kvm_io_range range;
3515
3516         range = (struct kvm_io_range) {
3517                 .addr = addr,
3518                 .len = len,
3519         };
3520
3521         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3522         if (!bus)
3523                 return -ENOMEM;
3524
3525         /* First try the device referenced by cookie. */
3526         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3527             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3528                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3529                                         val))
3530                         return cookie;
3531
3532         /*
3533          * cookie contained garbage; fall back to search and return the
3534          * correct cookie value.
3535          */
3536         return __kvm_io_bus_write(vcpu, bus, &range, val);
3537 }
3538
3539 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3540                              struct kvm_io_range *range, void *val)
3541 {
3542         int idx;
3543
3544         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3545         if (idx < 0)
3546                 return -EOPNOTSUPP;
3547
3548         while (idx < bus->dev_count &&
3549                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3550                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3551                                        range->len, val))
3552                         return idx;
3553                 idx++;
3554         }
3555
3556         return -EOPNOTSUPP;
3557 }
3558 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3559
3560 /* kvm_io_bus_read - called under kvm->slots_lock */
3561 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3562                     int len, void *val)
3563 {
3564         struct kvm_io_bus *bus;
3565         struct kvm_io_range range;
3566         int r;
3567
3568         range = (struct kvm_io_range) {
3569                 .addr = addr,
3570                 .len = len,
3571         };
3572
3573         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3574         if (!bus)
3575                 return -ENOMEM;
3576         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3577         return r < 0 ? r : 0;
3578 }
3579
3580
3581 /* Caller must hold slots_lock. */
3582 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3583                             int len, struct kvm_io_device *dev)
3584 {
3585         struct kvm_io_bus *new_bus, *bus;
3586
3587         bus = kvm_get_bus(kvm, bus_idx);
3588         if (!bus)
3589                 return -ENOMEM;
3590
3591         /* exclude ioeventfd which is limited by maximum fd */
3592         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3593                 return -ENOSPC;
3594
3595         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3596                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3597         if (!new_bus)
3598                 return -ENOMEM;
3599         memcpy(new_bus, bus, sizeof(*bus) + (bus->dev_count *
3600                sizeof(struct kvm_io_range)));
3601         kvm_io_bus_insert_dev(new_bus, dev, addr, len);
3602         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3603         synchronize_srcu_expedited(&kvm->srcu);
3604         kfree(bus);
3605
3606         return 0;
3607 }
3608
3609 /* Caller must hold slots_lock. */
3610 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3611                                struct kvm_io_device *dev)
3612 {
3613         int i;
3614         struct kvm_io_bus *new_bus, *bus;
3615
3616         bus = kvm_get_bus(kvm, bus_idx);
3617         if (!bus)
3618                 return;
3619
3620         for (i = 0; i < bus->dev_count; i++)
3621                 if (bus->range[i].dev == dev) {
3622                         break;
3623                 }
3624
3625         if (i == bus->dev_count)
3626                 return;
3627
3628         new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3629                           sizeof(struct kvm_io_range)), GFP_KERNEL);
3630         if (!new_bus)  {
3631                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3632                 goto broken;
3633         }
3634
3635         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3636         new_bus->dev_count--;
3637         memcpy(new_bus->range + i, bus->range + i + 1,
3638                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3639
3640 broken:
3641         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3642         synchronize_srcu_expedited(&kvm->srcu);
3643         kfree(bus);
3644         return;
3645 }
3646
3647 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3648                                          gpa_t addr)
3649 {
3650         struct kvm_io_bus *bus;
3651         int dev_idx, srcu_idx;
3652         struct kvm_io_device *iodev = NULL;
3653
3654         srcu_idx = srcu_read_lock(&kvm->srcu);
3655
3656         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3657         if (!bus)
3658                 goto out_unlock;
3659
3660         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3661         if (dev_idx < 0)
3662                 goto out_unlock;
3663
3664         iodev = bus->range[dev_idx].dev;
3665
3666 out_unlock:
3667         srcu_read_unlock(&kvm->srcu, srcu_idx);
3668
3669         return iodev;
3670 }
3671 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3672
3673 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3674                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3675                            const char *fmt)
3676 {
3677         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3678                                           inode->i_private;
3679
3680         /* The debugfs files are a reference to the kvm struct which
3681          * is still valid when kvm_destroy_vm is called.
3682          * To avoid the race between open and the removal of the debugfs
3683          * directory we test against the users count.
3684          */
3685         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3686                 return -ENOENT;
3687
3688         if (simple_attr_open(inode, file, get, set, fmt)) {
3689                 kvm_put_kvm(stat_data->kvm);
3690                 return -ENOMEM;
3691         }
3692
3693         return 0;
3694 }
3695
3696 static int kvm_debugfs_release(struct inode *inode, struct file *file)
3697 {
3698         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3699                                           inode->i_private;
3700
3701         simple_attr_release(inode, file);
3702         kvm_put_kvm(stat_data->kvm);
3703
3704         return 0;
3705 }
3706
3707 static int vm_stat_get_per_vm(void *data, u64 *val)
3708 {
3709         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3710
3711         *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3712
3713         return 0;
3714 }
3715
3716 static int vm_stat_clear_per_vm(void *data, u64 val)
3717 {
3718         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3719
3720         if (val)
3721                 return -EINVAL;
3722
3723         *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3724
3725         return 0;
3726 }
3727
3728 static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3729 {
3730         __simple_attr_check_format("%llu\n", 0ull);
3731         return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3732                                 vm_stat_clear_per_vm, "%llu\n");
3733 }
3734
3735 static const struct file_operations vm_stat_get_per_vm_fops = {
3736         .owner   = THIS_MODULE,
3737         .open    = vm_stat_get_per_vm_open,
3738         .release = kvm_debugfs_release,
3739         .read    = simple_attr_read,
3740         .write   = simple_attr_write,
3741         .llseek  = no_llseek,
3742 };
3743
3744 static int vcpu_stat_get_per_vm(void *data, u64 *val)
3745 {
3746         int i;
3747         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3748         struct kvm_vcpu *vcpu;
3749
3750         *val = 0;
3751
3752         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3753                 *val += *(u64 *)((void *)vcpu + stat_data->offset);
3754
3755         return 0;
3756 }
3757
3758 static int vcpu_stat_clear_per_vm(void *data, u64 val)
3759 {
3760         int i;
3761         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3762         struct kvm_vcpu *vcpu;
3763
3764         if (val)
3765                 return -EINVAL;
3766
3767         kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3768                 *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3769
3770         return 0;
3771 }
3772
3773 static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3774 {
3775         __simple_attr_check_format("%llu\n", 0ull);
3776         return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3777                                  vcpu_stat_clear_per_vm, "%llu\n");
3778 }
3779
3780 static const struct file_operations vcpu_stat_get_per_vm_fops = {
3781         .owner   = THIS_MODULE,
3782         .open    = vcpu_stat_get_per_vm_open,
3783         .release = kvm_debugfs_release,
3784         .read    = simple_attr_read,
3785         .write   = simple_attr_write,
3786         .llseek  = no_llseek,
3787 };
3788
3789 static const struct file_operations *stat_fops_per_vm[] = {
3790         [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3791         [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3792 };
3793
3794 static int vm_stat_get(void *_offset, u64 *val)
3795 {
3796         unsigned offset = (long)_offset;
3797         struct kvm *kvm;
3798         struct kvm_stat_data stat_tmp = {.offset = offset};
3799         u64 tmp_val;
3800
3801         *val = 0;
3802         spin_lock(&kvm_lock);
3803         list_for_each_entry(kvm, &vm_list, vm_list) {
3804                 stat_tmp.kvm = kvm;
3805                 vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3806                 *val += tmp_val;
3807         }
3808         spin_unlock(&kvm_lock);
3809         return 0;
3810 }
3811
3812 static int vm_stat_clear(void *_offset, u64 val)
3813 {
3814         unsigned offset = (long)_offset;
3815         struct kvm *kvm;
3816         struct kvm_stat_data stat_tmp = {.offset = offset};
3817
3818         if (val)
3819                 return -EINVAL;
3820
3821         spin_lock(&kvm_lock);
3822         list_for_each_entry(kvm, &vm_list, vm_list) {
3823                 stat_tmp.kvm = kvm;
3824                 vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3825         }
3826         spin_unlock(&kvm_lock);
3827
3828         return 0;
3829 }
3830
3831 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3832
3833 static int vcpu_stat_get(void *_offset, u64 *val)
3834 {
3835         unsigned offset = (long)_offset;
3836         struct kvm *kvm;
3837         struct kvm_stat_data stat_tmp = {.offset = offset};
3838         u64 tmp_val;
3839
3840         *val = 0;
3841         spin_lock(&kvm_lock);
3842         list_for_each_entry(kvm, &vm_list, vm_list) {
3843                 stat_tmp.kvm = kvm;
3844                 vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3845                 *val += tmp_val;
3846         }
3847         spin_unlock(&kvm_lock);
3848         return 0;
3849 }
3850
3851 static int vcpu_stat_clear(void *_offset, u64 val)
3852 {
3853         unsigned offset = (long)_offset;
3854         struct kvm *kvm;
3855         struct kvm_stat_data stat_tmp = {.offset = offset};
3856
3857         if (val)
3858                 return -EINVAL;
3859
3860         spin_lock(&kvm_lock);
3861         list_for_each_entry(kvm, &vm_list, vm_list) {
3862                 stat_tmp.kvm = kvm;
3863                 vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3864         }
3865         spin_unlock(&kvm_lock);
3866
3867         return 0;
3868 }
3869
3870 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3871                         "%llu\n");
3872
3873 static const struct file_operations *stat_fops[] = {
3874         [KVM_STAT_VCPU] = &vcpu_stat_fops,
3875         [KVM_STAT_VM]   = &vm_stat_fops,
3876 };
3877
3878 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3879 {
3880         struct kobj_uevent_env *env;
3881         unsigned long long created, active;
3882
3883         if (!kvm_dev.this_device || !kvm)
3884                 return;
3885
3886         spin_lock(&kvm_lock);
3887         if (type == KVM_EVENT_CREATE_VM) {
3888                 kvm_createvm_count++;
3889                 kvm_active_vms++;
3890         } else if (type == KVM_EVENT_DESTROY_VM) {
3891                 kvm_active_vms--;
3892         }
3893         created = kvm_createvm_count;
3894         active = kvm_active_vms;
3895         spin_unlock(&kvm_lock);
3896
3897         env = kzalloc(sizeof(*env), GFP_KERNEL);
3898         if (!env)
3899                 return;
3900
3901         add_uevent_var(env, "CREATED=%llu", created);
3902         add_uevent_var(env, "COUNT=%llu", active);
3903
3904         if (type == KVM_EVENT_CREATE_VM) {
3905                 add_uevent_var(env, "EVENT=create");
3906                 kvm->userspace_pid = task_pid_nr(current);
3907         } else if (type == KVM_EVENT_DESTROY_VM) {
3908                 add_uevent_var(env, "EVENT=destroy");
3909         }
3910         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3911
3912         if (kvm->debugfs_dentry) {
3913                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3914
3915                 if (p) {
3916                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3917                         if (!IS_ERR(tmp))
3918                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
3919                         kfree(p);
3920                 }
3921         }
3922         /* no need for checks, since we are adding at most only 5 keys */
3923         env->envp[env->envp_idx++] = NULL;
3924         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3925         kfree(env);
3926 }
3927
3928 static int kvm_init_debug(void)
3929 {
3930         int r = -EEXIST;
3931         struct kvm_stats_debugfs_item *p;
3932
3933         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3934         if (kvm_debugfs_dir == NULL)
3935                 goto out;
3936
3937         kvm_debugfs_num_entries = 0;
3938         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3939                 if (!debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3940                                          (void *)(long)p->offset,
3941                                          stat_fops[p->kind]))
3942                         goto out_dir;
3943         }
3944
3945         return 0;
3946
3947 out_dir:
3948         debugfs_remove_recursive(kvm_debugfs_dir);
3949 out:
3950         return r;
3951 }
3952
3953 static int kvm_suspend(void)
3954 {
3955         if (kvm_usage_count)
3956                 hardware_disable_nolock(NULL);
3957         return 0;
3958 }
3959
3960 static void kvm_resume(void)
3961 {
3962         if (kvm_usage_count) {
3963                 WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3964                 hardware_enable_nolock(NULL);
3965         }
3966 }
3967
3968 static struct syscore_ops kvm_syscore_ops = {
3969         .suspend = kvm_suspend,
3970         .resume = kvm_resume,
3971 };
3972
3973 static inline
3974 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3975 {
3976         return container_of(pn, struct kvm_vcpu, preempt_notifier);
3977 }
3978
3979 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3980 {
3981         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3982
3983         if (vcpu->preempted)
3984                 vcpu->preempted = false;
3985
3986         kvm_arch_sched_in(vcpu, cpu);
3987
3988         kvm_arch_vcpu_load(vcpu, cpu);
3989 }
3990
3991 static void kvm_sched_out(struct preempt_notifier *pn,
3992                           struct task_struct *next)
3993 {
3994         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3995
3996         if (current->state == TASK_RUNNING)
3997                 vcpu->preempted = true;
3998         kvm_arch_vcpu_put(vcpu);
3999 }
4000
4001 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4002                   struct module *module)
4003 {
4004         int r;
4005         int cpu;
4006
4007         r = kvm_arch_init(opaque);
4008         if (r)
4009                 goto out_fail;
4010
4011         /*
4012          * kvm_arch_init makes sure there's at most one caller
4013          * for architectures that support multiple implementations,
4014          * like intel and amd on x86.
4015          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4016          * conflicts in case kvm is already setup for another implementation.
4017          */
4018         r = kvm_irqfd_init();
4019         if (r)
4020                 goto out_irqfd;
4021
4022         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4023                 r = -ENOMEM;
4024                 goto out_free_0;
4025         }
4026
4027         r = kvm_arch_hardware_setup();
4028         if (r < 0)
4029                 goto out_free_0a;
4030
4031         for_each_online_cpu(cpu) {
4032                 smp_call_function_single(cpu,
4033                                 kvm_arch_check_processor_compat,
4034                                 &r, 1);
4035                 if (r < 0)
4036                         goto out_free_1;
4037         }
4038
4039         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4040                                       kvm_starting_cpu, kvm_dying_cpu);
4041         if (r)
4042                 goto out_free_2;
4043         register_reboot_notifier(&kvm_reboot_notifier);
4044
4045         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4046         if (!vcpu_align)
4047                 vcpu_align = __alignof__(struct kvm_vcpu);
4048         kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
4049                                            SLAB_ACCOUNT, NULL);
4050         if (!kvm_vcpu_cache) {
4051                 r = -ENOMEM;
4052                 goto out_free_3;
4053         }
4054
4055         r = kvm_async_pf_init();
4056         if (r)
4057                 goto out_free;
4058
4059         kvm_chardev_ops.owner = module;
4060         kvm_vm_fops.owner = module;
4061         kvm_vcpu_fops.owner = module;
4062
4063         r = misc_register(&kvm_dev);
4064         if (r) {
4065                 pr_err("kvm: misc device register failed\n");
4066                 goto out_unreg;
4067         }
4068
4069         register_syscore_ops(&kvm_syscore_ops);
4070
4071         kvm_preempt_ops.sched_in = kvm_sched_in;
4072         kvm_preempt_ops.sched_out = kvm_sched_out;
4073
4074         r = kvm_init_debug();
4075         if (r) {
4076                 pr_err("kvm: create debugfs files failed\n");
4077                 goto out_undebugfs;
4078         }
4079
4080         r = kvm_vfio_ops_init();
4081         WARN_ON(r);
4082
4083         return 0;
4084
4085 out_undebugfs:
4086         unregister_syscore_ops(&kvm_syscore_ops);
4087         misc_deregister(&kvm_dev);
4088 out_unreg:
4089         kvm_async_pf_deinit();
4090 out_free:
4091         kmem_cache_destroy(kvm_vcpu_cache);
4092 out_free_3:
4093         unregister_reboot_notifier(&kvm_reboot_notifier);
4094         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4095 out_free_2:
4096 out_free_1:
4097         kvm_arch_hardware_unsetup();
4098 out_free_0a:
4099         free_cpumask_var(cpus_hardware_enabled);
4100 out_free_0:
4101         kvm_irqfd_exit();
4102 out_irqfd:
4103         kvm_arch_exit();
4104 out_fail:
4105         return r;
4106 }
4107 EXPORT_SYMBOL_GPL(kvm_init);
4108
4109 void kvm_exit(void)
4110 {
4111         debugfs_remove_recursive(kvm_debugfs_dir);
4112         misc_deregister(&kvm_dev);
4113         kmem_cache_destroy(kvm_vcpu_cache);
4114         kvm_async_pf_deinit();
4115         unregister_syscore_ops(&kvm_syscore_ops);
4116         unregister_reboot_notifier(&kvm_reboot_notifier);
4117         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4118         on_each_cpu(hardware_disable_nolock, NULL, 1);
4119         kvm_arch_hardware_unsetup();
4120         kvm_arch_exit();
4121         kvm_irqfd_exit();
4122         free_cpumask_var(cpus_hardware_enabled);
4123         kvm_vfio_ops_exit();
4124 }
4125 EXPORT_SYMBOL_GPL(kvm_exit);