]> asedeno.scripts.mit.edu Git - linux.git/blob - virt/kvm/kvm_main.c
KVM: Remove kvm_read_guest_atomic()
[linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54
55 #include <asm/processor.h>
56 #include <asm/ioctl.h>
57 #include <linux/uaccess.h>
58 #include <asm/pgtable.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "vfio.h"
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
66
67 /* Worst case buffer size needed for holding an integer. */
68 #define ITOA_MAX_LEN 12
69
70 MODULE_AUTHOR("Qumranet");
71 MODULE_LICENSE("GPL");
72
73 /* Architectures should define their poll value according to the halt latency */
74 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
75 module_param(halt_poll_ns, uint, 0644);
76 EXPORT_SYMBOL_GPL(halt_poll_ns);
77
78 /* Default doubles per-vcpu halt_poll_ns. */
79 unsigned int halt_poll_ns_grow = 2;
80 module_param(halt_poll_ns_grow, uint, 0644);
81 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
82
83 /* The start value to grow halt_poll_ns from */
84 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
85 module_param(halt_poll_ns_grow_start, uint, 0644);
86 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
87
88 /* Default resets per-vcpu halt_poll_ns . */
89 unsigned int halt_poll_ns_shrink;
90 module_param(halt_poll_ns_shrink, uint, 0644);
91 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
92
93 /*
94  * Ordering of locks:
95  *
96  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
97  */
98
99 DEFINE_MUTEX(kvm_lock);
100 static DEFINE_RAW_SPINLOCK(kvm_count_lock);
101 LIST_HEAD(vm_list);
102
103 static cpumask_var_t cpus_hardware_enabled;
104 static int kvm_usage_count;
105 static atomic_t hardware_enable_failed;
106
107 static struct kmem_cache *kvm_vcpu_cache;
108
109 static __read_mostly struct preempt_ops kvm_preempt_ops;
110
111 struct dentry *kvm_debugfs_dir;
112 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
113
114 static int kvm_debugfs_num_entries;
115 static const struct file_operations stat_fops_per_vm;
116
117 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
118                            unsigned long arg);
119 #ifdef CONFIG_KVM_COMPAT
120 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
121                                   unsigned long arg);
122 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
123 #else
124 /*
125  * For architectures that don't implement a compat infrastructure,
126  * adopt a double line of defense:
127  * - Prevent a compat task from opening /dev/kvm
128  * - If the open has been done by a 64bit task, and the KVM fd
129  *   passed to a compat task, let the ioctls fail.
130  */
131 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
132                                 unsigned long arg) { return -EINVAL; }
133
134 static int kvm_no_compat_open(struct inode *inode, struct file *file)
135 {
136         return is_compat_task() ? -ENODEV : 0;
137 }
138 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
139                         .open           = kvm_no_compat_open
140 #endif
141 static int hardware_enable_all(void);
142 static void hardware_disable_all(void);
143
144 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
145
146 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
147
148 __visible bool kvm_rebooting;
149 EXPORT_SYMBOL_GPL(kvm_rebooting);
150
151 static bool largepages_enabled = true;
152
153 #define KVM_EVENT_CREATE_VM 0
154 #define KVM_EVENT_DESTROY_VM 1
155 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
156 static unsigned long long kvm_createvm_count;
157 static unsigned long long kvm_active_vms;
158
159 __weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
160                 unsigned long start, unsigned long end, bool blockable)
161 {
162         return 0;
163 }
164
165 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn)
166 {
167         /*
168          * The metadata used by is_zone_device_page() to determine whether or
169          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
170          * the device has been pinned, e.g. by get_user_pages().  WARN if the
171          * page_count() is zero to help detect bad usage of this helper.
172          */
173         if (!pfn_valid(pfn) || WARN_ON_ONCE(!page_count(pfn_to_page(pfn))))
174                 return false;
175
176         return is_zone_device_page(pfn_to_page(pfn));
177 }
178
179 bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
180 {
181         /*
182          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
183          * perspective they are "normal" pages, albeit with slightly different
184          * usage rules.
185          */
186         if (pfn_valid(pfn))
187                 return PageReserved(pfn_to_page(pfn)) &&
188                        !kvm_is_zone_device_pfn(pfn);
189
190         return true;
191 }
192
193 /*
194  * Switches to specified vcpu, until a matching vcpu_put()
195  */
196 void vcpu_load(struct kvm_vcpu *vcpu)
197 {
198         int cpu = get_cpu();
199         preempt_notifier_register(&vcpu->preempt_notifier);
200         kvm_arch_vcpu_load(vcpu, cpu);
201         put_cpu();
202 }
203 EXPORT_SYMBOL_GPL(vcpu_load);
204
205 void vcpu_put(struct kvm_vcpu *vcpu)
206 {
207         preempt_disable();
208         kvm_arch_vcpu_put(vcpu);
209         preempt_notifier_unregister(&vcpu->preempt_notifier);
210         preempt_enable();
211 }
212 EXPORT_SYMBOL_GPL(vcpu_put);
213
214 /* TODO: merge with kvm_arch_vcpu_should_kick */
215 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
216 {
217         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
218
219         /*
220          * We need to wait for the VCPU to reenable interrupts and get out of
221          * READING_SHADOW_PAGE_TABLES mode.
222          */
223         if (req & KVM_REQUEST_WAIT)
224                 return mode != OUTSIDE_GUEST_MODE;
225
226         /*
227          * Need to kick a running VCPU, but otherwise there is nothing to do.
228          */
229         return mode == IN_GUEST_MODE;
230 }
231
232 static void ack_flush(void *_completed)
233 {
234 }
235
236 static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
237 {
238         if (unlikely(!cpus))
239                 cpus = cpu_online_mask;
240
241         if (cpumask_empty(cpus))
242                 return false;
243
244         smp_call_function_many(cpus, ack_flush, NULL, wait);
245         return true;
246 }
247
248 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
249                                  unsigned long *vcpu_bitmap, cpumask_var_t tmp)
250 {
251         int i, cpu, me;
252         struct kvm_vcpu *vcpu;
253         bool called;
254
255         me = get_cpu();
256
257         kvm_for_each_vcpu(i, vcpu, kvm) {
258                 if (vcpu_bitmap && !test_bit(i, vcpu_bitmap))
259                         continue;
260
261                 kvm_make_request(req, vcpu);
262                 cpu = vcpu->cpu;
263
264                 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
265                         continue;
266
267                 if (tmp != NULL && cpu != -1 && cpu != me &&
268                     kvm_request_needs_ipi(vcpu, req))
269                         __cpumask_set_cpu(cpu, tmp);
270         }
271
272         called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
273         put_cpu();
274
275         return called;
276 }
277
278 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
279 {
280         cpumask_var_t cpus;
281         bool called;
282
283         zalloc_cpumask_var(&cpus, GFP_ATOMIC);
284
285         called = kvm_make_vcpus_request_mask(kvm, req, NULL, cpus);
286
287         free_cpumask_var(cpus);
288         return called;
289 }
290
291 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
292 void kvm_flush_remote_tlbs(struct kvm *kvm)
293 {
294         /*
295          * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
296          * kvm_make_all_cpus_request.
297          */
298         long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
299
300         /*
301          * We want to publish modifications to the page tables before reading
302          * mode. Pairs with a memory barrier in arch-specific code.
303          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
304          * and smp_mb in walk_shadow_page_lockless_begin/end.
305          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
306          *
307          * There is already an smp_mb__after_atomic() before
308          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
309          * barrier here.
310          */
311         if (!kvm_arch_flush_remote_tlb(kvm)
312             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
313                 ++kvm->stat.remote_tlb_flush;
314         cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
315 }
316 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
317 #endif
318
319 void kvm_reload_remote_mmus(struct kvm *kvm)
320 {
321         kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
322 }
323
324 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
325 {
326         mutex_init(&vcpu->mutex);
327         vcpu->cpu = -1;
328         vcpu->kvm = kvm;
329         vcpu->vcpu_id = id;
330         vcpu->pid = NULL;
331         init_swait_queue_head(&vcpu->wq);
332         kvm_async_pf_vcpu_init(vcpu);
333
334         vcpu->pre_pcpu = -1;
335         INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
336
337         kvm_vcpu_set_in_spin_loop(vcpu, false);
338         kvm_vcpu_set_dy_eligible(vcpu, false);
339         vcpu->preempted = false;
340         vcpu->ready = false;
341         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
342 }
343
344 void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
345 {
346         kvm_arch_vcpu_destroy(vcpu);
347
348         /*
349          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
350          * the vcpu->pid pointer, and at destruction time all file descriptors
351          * are already gone.
352          */
353         put_pid(rcu_dereference_protected(vcpu->pid, 1));
354
355         free_page((unsigned long)vcpu->run);
356         kmem_cache_free(kvm_vcpu_cache, vcpu);
357 }
358 EXPORT_SYMBOL_GPL(kvm_vcpu_destroy);
359
360 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
361 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
362 {
363         return container_of(mn, struct kvm, mmu_notifier);
364 }
365
366 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
367                                         struct mm_struct *mm,
368                                         unsigned long address,
369                                         pte_t pte)
370 {
371         struct kvm *kvm = mmu_notifier_to_kvm(mn);
372         int idx;
373
374         idx = srcu_read_lock(&kvm->srcu);
375         spin_lock(&kvm->mmu_lock);
376         kvm->mmu_notifier_seq++;
377
378         if (kvm_set_spte_hva(kvm, address, pte))
379                 kvm_flush_remote_tlbs(kvm);
380
381         spin_unlock(&kvm->mmu_lock);
382         srcu_read_unlock(&kvm->srcu, idx);
383 }
384
385 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
386                                         const struct mmu_notifier_range *range)
387 {
388         struct kvm *kvm = mmu_notifier_to_kvm(mn);
389         int need_tlb_flush = 0, idx;
390         int ret;
391
392         idx = srcu_read_lock(&kvm->srcu);
393         spin_lock(&kvm->mmu_lock);
394         /*
395          * The count increase must become visible at unlock time as no
396          * spte can be established without taking the mmu_lock and
397          * count is also read inside the mmu_lock critical section.
398          */
399         kvm->mmu_notifier_count++;
400         need_tlb_flush = kvm_unmap_hva_range(kvm, range->start, range->end);
401         need_tlb_flush |= kvm->tlbs_dirty;
402         /* we've to flush the tlb before the pages can be freed */
403         if (need_tlb_flush)
404                 kvm_flush_remote_tlbs(kvm);
405
406         spin_unlock(&kvm->mmu_lock);
407
408         ret = kvm_arch_mmu_notifier_invalidate_range(kvm, range->start,
409                                         range->end,
410                                         mmu_notifier_range_blockable(range));
411
412         srcu_read_unlock(&kvm->srcu, idx);
413
414         return ret;
415 }
416
417 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
418                                         const struct mmu_notifier_range *range)
419 {
420         struct kvm *kvm = mmu_notifier_to_kvm(mn);
421
422         spin_lock(&kvm->mmu_lock);
423         /*
424          * This sequence increase will notify the kvm page fault that
425          * the page that is going to be mapped in the spte could have
426          * been freed.
427          */
428         kvm->mmu_notifier_seq++;
429         smp_wmb();
430         /*
431          * The above sequence increase must be visible before the
432          * below count decrease, which is ensured by the smp_wmb above
433          * in conjunction with the smp_rmb in mmu_notifier_retry().
434          */
435         kvm->mmu_notifier_count--;
436         spin_unlock(&kvm->mmu_lock);
437
438         BUG_ON(kvm->mmu_notifier_count < 0);
439 }
440
441 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
442                                               struct mm_struct *mm,
443                                               unsigned long start,
444                                               unsigned long end)
445 {
446         struct kvm *kvm = mmu_notifier_to_kvm(mn);
447         int young, idx;
448
449         idx = srcu_read_lock(&kvm->srcu);
450         spin_lock(&kvm->mmu_lock);
451
452         young = kvm_age_hva(kvm, start, end);
453         if (young)
454                 kvm_flush_remote_tlbs(kvm);
455
456         spin_unlock(&kvm->mmu_lock);
457         srcu_read_unlock(&kvm->srcu, idx);
458
459         return young;
460 }
461
462 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
463                                         struct mm_struct *mm,
464                                         unsigned long start,
465                                         unsigned long end)
466 {
467         struct kvm *kvm = mmu_notifier_to_kvm(mn);
468         int young, idx;
469
470         idx = srcu_read_lock(&kvm->srcu);
471         spin_lock(&kvm->mmu_lock);
472         /*
473          * Even though we do not flush TLB, this will still adversely
474          * affect performance on pre-Haswell Intel EPT, where there is
475          * no EPT Access Bit to clear so that we have to tear down EPT
476          * tables instead. If we find this unacceptable, we can always
477          * add a parameter to kvm_age_hva so that it effectively doesn't
478          * do anything on clear_young.
479          *
480          * Also note that currently we never issue secondary TLB flushes
481          * from clear_young, leaving this job up to the regular system
482          * cadence. If we find this inaccurate, we might come up with a
483          * more sophisticated heuristic later.
484          */
485         young = kvm_age_hva(kvm, start, end);
486         spin_unlock(&kvm->mmu_lock);
487         srcu_read_unlock(&kvm->srcu, idx);
488
489         return young;
490 }
491
492 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
493                                        struct mm_struct *mm,
494                                        unsigned long address)
495 {
496         struct kvm *kvm = mmu_notifier_to_kvm(mn);
497         int young, idx;
498
499         idx = srcu_read_lock(&kvm->srcu);
500         spin_lock(&kvm->mmu_lock);
501         young = kvm_test_age_hva(kvm, address);
502         spin_unlock(&kvm->mmu_lock);
503         srcu_read_unlock(&kvm->srcu, idx);
504
505         return young;
506 }
507
508 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
509                                      struct mm_struct *mm)
510 {
511         struct kvm *kvm = mmu_notifier_to_kvm(mn);
512         int idx;
513
514         idx = srcu_read_lock(&kvm->srcu);
515         kvm_arch_flush_shadow_all(kvm);
516         srcu_read_unlock(&kvm->srcu, idx);
517 }
518
519 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
520         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
521         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
522         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
523         .clear_young            = kvm_mmu_notifier_clear_young,
524         .test_young             = kvm_mmu_notifier_test_young,
525         .change_pte             = kvm_mmu_notifier_change_pte,
526         .release                = kvm_mmu_notifier_release,
527 };
528
529 static int kvm_init_mmu_notifier(struct kvm *kvm)
530 {
531         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
532         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
533 }
534
535 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
536
537 static int kvm_init_mmu_notifier(struct kvm *kvm)
538 {
539         return 0;
540 }
541
542 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
543
544 static struct kvm_memslots *kvm_alloc_memslots(void)
545 {
546         int i;
547         struct kvm_memslots *slots;
548
549         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
550         if (!slots)
551                 return NULL;
552
553         for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
554                 slots->id_to_index[i] = slots->memslots[i].id = i;
555
556         return slots;
557 }
558
559 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
560 {
561         if (!memslot->dirty_bitmap)
562                 return;
563
564         kvfree(memslot->dirty_bitmap);
565         memslot->dirty_bitmap = NULL;
566 }
567
568 /*
569  * Free any memory in @free but not in @dont.
570  */
571 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
572                               struct kvm_memory_slot *dont)
573 {
574         if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
575                 kvm_destroy_dirty_bitmap(free);
576
577         kvm_arch_free_memslot(kvm, free, dont);
578
579         free->npages = 0;
580 }
581
582 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
583 {
584         struct kvm_memory_slot *memslot;
585
586         if (!slots)
587                 return;
588
589         kvm_for_each_memslot(memslot, slots)
590                 kvm_free_memslot(kvm, memslot, NULL);
591
592         kvfree(slots);
593 }
594
595 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
596 {
597         int i;
598
599         if (!kvm->debugfs_dentry)
600                 return;
601
602         debugfs_remove_recursive(kvm->debugfs_dentry);
603
604         if (kvm->debugfs_stat_data) {
605                 for (i = 0; i < kvm_debugfs_num_entries; i++)
606                         kfree(kvm->debugfs_stat_data[i]);
607                 kfree(kvm->debugfs_stat_data);
608         }
609 }
610
611 static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
612 {
613         char dir_name[ITOA_MAX_LEN * 2];
614         struct kvm_stat_data *stat_data;
615         struct kvm_stats_debugfs_item *p;
616
617         if (!debugfs_initialized())
618                 return 0;
619
620         snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
621         kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
622
623         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
624                                          sizeof(*kvm->debugfs_stat_data),
625                                          GFP_KERNEL_ACCOUNT);
626         if (!kvm->debugfs_stat_data)
627                 return -ENOMEM;
628
629         for (p = debugfs_entries; p->name; p++) {
630                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
631                 if (!stat_data)
632                         return -ENOMEM;
633
634                 stat_data->kvm = kvm;
635                 stat_data->dbgfs_item = p;
636                 kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
637                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
638                                     kvm->debugfs_dentry, stat_data,
639                                     &stat_fops_per_vm);
640         }
641         return 0;
642 }
643
644 /*
645  * Called after the VM is otherwise initialized, but just before adding it to
646  * the vm_list.
647  */
648 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
649 {
650         return 0;
651 }
652
653 /*
654  * Called just after removing the VM from the vm_list, but before doing any
655  * other destruction.
656  */
657 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
658 {
659 }
660
661 static struct kvm *kvm_create_vm(unsigned long type)
662 {
663         struct kvm *kvm = kvm_arch_alloc_vm();
664         int r = -ENOMEM;
665         int i;
666
667         if (!kvm)
668                 return ERR_PTR(-ENOMEM);
669
670         spin_lock_init(&kvm->mmu_lock);
671         mmgrab(current->mm);
672         kvm->mm = current->mm;
673         kvm_eventfd_init(kvm);
674         mutex_init(&kvm->lock);
675         mutex_init(&kvm->irq_lock);
676         mutex_init(&kvm->slots_lock);
677         INIT_LIST_HEAD(&kvm->devices);
678
679         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
680
681         if (init_srcu_struct(&kvm->srcu))
682                 goto out_err_no_srcu;
683         if (init_srcu_struct(&kvm->irq_srcu))
684                 goto out_err_no_irq_srcu;
685
686         refcount_set(&kvm->users_count, 1);
687         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
688                 struct kvm_memslots *slots = kvm_alloc_memslots();
689
690                 if (!slots)
691                         goto out_err_no_arch_destroy_vm;
692                 /* Generations must be different for each address space. */
693                 slots->generation = i;
694                 rcu_assign_pointer(kvm->memslots[i], slots);
695         }
696
697         for (i = 0; i < KVM_NR_BUSES; i++) {
698                 rcu_assign_pointer(kvm->buses[i],
699                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
700                 if (!kvm->buses[i])
701                         goto out_err_no_arch_destroy_vm;
702         }
703
704         r = kvm_arch_init_vm(kvm, type);
705         if (r)
706                 goto out_err_no_arch_destroy_vm;
707
708         r = hardware_enable_all();
709         if (r)
710                 goto out_err_no_disable;
711
712 #ifdef CONFIG_HAVE_KVM_IRQFD
713         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
714 #endif
715
716         r = kvm_init_mmu_notifier(kvm);
717         if (r)
718                 goto out_err_no_mmu_notifier;
719
720         r = kvm_arch_post_init_vm(kvm);
721         if (r)
722                 goto out_err;
723
724         mutex_lock(&kvm_lock);
725         list_add(&kvm->vm_list, &vm_list);
726         mutex_unlock(&kvm_lock);
727
728         preempt_notifier_inc();
729
730         return kvm;
731
732 out_err:
733 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
734         if (kvm->mmu_notifier.ops)
735                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
736 #endif
737 out_err_no_mmu_notifier:
738         hardware_disable_all();
739 out_err_no_disable:
740         kvm_arch_destroy_vm(kvm);
741 out_err_no_arch_destroy_vm:
742         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
743         for (i = 0; i < KVM_NR_BUSES; i++)
744                 kfree(kvm_get_bus(kvm, i));
745         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
746                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
747         cleanup_srcu_struct(&kvm->irq_srcu);
748 out_err_no_irq_srcu:
749         cleanup_srcu_struct(&kvm->srcu);
750 out_err_no_srcu:
751         kvm_arch_free_vm(kvm);
752         mmdrop(current->mm);
753         return ERR_PTR(r);
754 }
755
756 static void kvm_destroy_devices(struct kvm *kvm)
757 {
758         struct kvm_device *dev, *tmp;
759
760         /*
761          * We do not need to take the kvm->lock here, because nobody else
762          * has a reference to the struct kvm at this point and therefore
763          * cannot access the devices list anyhow.
764          */
765         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
766                 list_del(&dev->vm_node);
767                 dev->ops->destroy(dev);
768         }
769 }
770
771 static void kvm_destroy_vm(struct kvm *kvm)
772 {
773         int i;
774         struct mm_struct *mm = kvm->mm;
775
776         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
777         kvm_destroy_vm_debugfs(kvm);
778         kvm_arch_sync_events(kvm);
779         mutex_lock(&kvm_lock);
780         list_del(&kvm->vm_list);
781         mutex_unlock(&kvm_lock);
782         kvm_arch_pre_destroy_vm(kvm);
783
784         kvm_free_irq_routing(kvm);
785         for (i = 0; i < KVM_NR_BUSES; i++) {
786                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
787
788                 if (bus)
789                         kvm_io_bus_destroy(bus);
790                 kvm->buses[i] = NULL;
791         }
792         kvm_coalesced_mmio_free(kvm);
793 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
794         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
795 #else
796         kvm_arch_flush_shadow_all(kvm);
797 #endif
798         kvm_arch_destroy_vm(kvm);
799         kvm_destroy_devices(kvm);
800         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
801                 kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
802         cleanup_srcu_struct(&kvm->irq_srcu);
803         cleanup_srcu_struct(&kvm->srcu);
804         kvm_arch_free_vm(kvm);
805         preempt_notifier_dec();
806         hardware_disable_all();
807         mmdrop(mm);
808 }
809
810 void kvm_get_kvm(struct kvm *kvm)
811 {
812         refcount_inc(&kvm->users_count);
813 }
814 EXPORT_SYMBOL_GPL(kvm_get_kvm);
815
816 void kvm_put_kvm(struct kvm *kvm)
817 {
818         if (refcount_dec_and_test(&kvm->users_count))
819                 kvm_destroy_vm(kvm);
820 }
821 EXPORT_SYMBOL_GPL(kvm_put_kvm);
822
823 /*
824  * Used to put a reference that was taken on behalf of an object associated
825  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
826  * of the new file descriptor fails and the reference cannot be transferred to
827  * its final owner.  In such cases, the caller is still actively using @kvm and
828  * will fail miserably if the refcount unexpectedly hits zero.
829  */
830 void kvm_put_kvm_no_destroy(struct kvm *kvm)
831 {
832         WARN_ON(refcount_dec_and_test(&kvm->users_count));
833 }
834 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
835
836 static int kvm_vm_release(struct inode *inode, struct file *filp)
837 {
838         struct kvm *kvm = filp->private_data;
839
840         kvm_irqfd_release(kvm);
841
842         kvm_put_kvm(kvm);
843         return 0;
844 }
845
846 /*
847  * Allocation size is twice as large as the actual dirty bitmap size.
848  * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
849  */
850 static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
851 {
852         unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
853
854         memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL_ACCOUNT);
855         if (!memslot->dirty_bitmap)
856                 return -ENOMEM;
857
858         return 0;
859 }
860
861 /*
862  * Insert memslot and re-sort memslots based on their GFN,
863  * so binary search could be used to lookup GFN.
864  * Sorting algorithm takes advantage of having initially
865  * sorted array and known changed memslot position.
866  */
867 static void update_memslots(struct kvm_memslots *slots,
868                             struct kvm_memory_slot *new,
869                             enum kvm_mr_change change)
870 {
871         int id = new->id;
872         int i = slots->id_to_index[id];
873         struct kvm_memory_slot *mslots = slots->memslots;
874
875         WARN_ON(mslots[i].id != id);
876         switch (change) {
877         case KVM_MR_CREATE:
878                 slots->used_slots++;
879                 WARN_ON(mslots[i].npages || !new->npages);
880                 break;
881         case KVM_MR_DELETE:
882                 slots->used_slots--;
883                 WARN_ON(new->npages || !mslots[i].npages);
884                 break;
885         default:
886                 break;
887         }
888
889         while (i < KVM_MEM_SLOTS_NUM - 1 &&
890                new->base_gfn <= mslots[i + 1].base_gfn) {
891                 if (!mslots[i + 1].npages)
892                         break;
893                 mslots[i] = mslots[i + 1];
894                 slots->id_to_index[mslots[i].id] = i;
895                 i++;
896         }
897
898         /*
899          * The ">=" is needed when creating a slot with base_gfn == 0,
900          * so that it moves before all those with base_gfn == npages == 0.
901          *
902          * On the other hand, if new->npages is zero, the above loop has
903          * already left i pointing to the beginning of the empty part of
904          * mslots, and the ">=" would move the hole backwards in this
905          * case---which is wrong.  So skip the loop when deleting a slot.
906          */
907         if (new->npages) {
908                 while (i > 0 &&
909                        new->base_gfn >= mslots[i - 1].base_gfn) {
910                         mslots[i] = mslots[i - 1];
911                         slots->id_to_index[mslots[i].id] = i;
912                         i--;
913                 }
914         } else
915                 WARN_ON_ONCE(i != slots->used_slots);
916
917         mslots[i] = *new;
918         slots->id_to_index[mslots[i].id] = i;
919 }
920
921 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
922 {
923         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
924
925 #ifdef __KVM_HAVE_READONLY_MEM
926         valid_flags |= KVM_MEM_READONLY;
927 #endif
928
929         if (mem->flags & ~valid_flags)
930                 return -EINVAL;
931
932         return 0;
933 }
934
935 static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
936                 int as_id, struct kvm_memslots *slots)
937 {
938         struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
939         u64 gen = old_memslots->generation;
940
941         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
942         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
943
944         rcu_assign_pointer(kvm->memslots[as_id], slots);
945         synchronize_srcu_expedited(&kvm->srcu);
946
947         /*
948          * Increment the new memslot generation a second time, dropping the
949          * update in-progress flag and incrementing the generation based on
950          * the number of address spaces.  This provides a unique and easily
951          * identifiable generation number while the memslots are in flux.
952          */
953         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
954
955         /*
956          * Generations must be unique even across address spaces.  We do not need
957          * a global counter for that, instead the generation space is evenly split
958          * across address spaces.  For example, with two address spaces, address
959          * space 0 will use generations 0, 2, 4, ... while address space 1 will
960          * use generations 1, 3, 5, ...
961          */
962         gen += KVM_ADDRESS_SPACE_NUM;
963
964         kvm_arch_memslots_updated(kvm, gen);
965
966         slots->generation = gen;
967
968         return old_memslots;
969 }
970
971 /*
972  * Allocate some memory and give it an address in the guest physical address
973  * space.
974  *
975  * Discontiguous memory is allowed, mostly for framebuffers.
976  *
977  * Must be called holding kvm->slots_lock for write.
978  */
979 int __kvm_set_memory_region(struct kvm *kvm,
980                             const struct kvm_userspace_memory_region *mem)
981 {
982         int r;
983         gfn_t base_gfn;
984         unsigned long npages;
985         struct kvm_memory_slot *slot;
986         struct kvm_memory_slot old, new;
987         struct kvm_memslots *slots = NULL, *old_memslots;
988         int as_id, id;
989         enum kvm_mr_change change;
990
991         r = check_memory_region_flags(mem);
992         if (r)
993                 goto out;
994
995         r = -EINVAL;
996         as_id = mem->slot >> 16;
997         id = (u16)mem->slot;
998
999         /* General sanity checks */
1000         if (mem->memory_size & (PAGE_SIZE - 1))
1001                 goto out;
1002         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1003                 goto out;
1004         /* We can read the guest memory with __xxx_user() later on. */
1005         if ((id < KVM_USER_MEM_SLOTS) &&
1006             ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1007              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1008                         mem->memory_size)))
1009                 goto out;
1010         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1011                 goto out;
1012         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1013                 goto out;
1014
1015         slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
1016         base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
1017         npages = mem->memory_size >> PAGE_SHIFT;
1018
1019         if (npages > KVM_MEM_MAX_NR_PAGES)
1020                 goto out;
1021
1022         new = old = *slot;
1023
1024         new.id = id;
1025         new.base_gfn = base_gfn;
1026         new.npages = npages;
1027         new.flags = mem->flags;
1028
1029         if (npages) {
1030                 if (!old.npages)
1031                         change = KVM_MR_CREATE;
1032                 else { /* Modify an existing slot. */
1033                         if ((mem->userspace_addr != old.userspace_addr) ||
1034                             (npages != old.npages) ||
1035                             ((new.flags ^ old.flags) & KVM_MEM_READONLY))
1036                                 goto out;
1037
1038                         if (base_gfn != old.base_gfn)
1039                                 change = KVM_MR_MOVE;
1040                         else if (new.flags != old.flags)
1041                                 change = KVM_MR_FLAGS_ONLY;
1042                         else { /* Nothing to change. */
1043                                 r = 0;
1044                                 goto out;
1045                         }
1046                 }
1047         } else {
1048                 if (!old.npages)
1049                         goto out;
1050
1051                 change = KVM_MR_DELETE;
1052                 new.base_gfn = 0;
1053                 new.flags = 0;
1054         }
1055
1056         if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
1057                 /* Check for overlaps */
1058                 r = -EEXIST;
1059                 kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
1060                         if (slot->id == id)
1061                                 continue;
1062                         if (!((base_gfn + npages <= slot->base_gfn) ||
1063                               (base_gfn >= slot->base_gfn + slot->npages)))
1064                                 goto out;
1065                 }
1066         }
1067
1068         /* Free page dirty bitmap if unneeded */
1069         if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1070                 new.dirty_bitmap = NULL;
1071
1072         r = -ENOMEM;
1073         if (change == KVM_MR_CREATE) {
1074                 new.userspace_addr = mem->userspace_addr;
1075
1076                 if (kvm_arch_create_memslot(kvm, &new, npages))
1077                         goto out_free;
1078         }
1079
1080         /* Allocate page dirty bitmap if needed */
1081         if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1082                 if (kvm_create_dirty_bitmap(&new) < 0)
1083                         goto out_free;
1084         }
1085
1086         slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL_ACCOUNT);
1087         if (!slots)
1088                 goto out_free;
1089         memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1090
1091         if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1092                 slot = id_to_memslot(slots, id);
1093                 slot->flags |= KVM_MEMSLOT_INVALID;
1094
1095                 old_memslots = install_new_memslots(kvm, as_id, slots);
1096
1097                 /* From this point no new shadow pages pointing to a deleted,
1098                  * or moved, memslot will be created.
1099                  *
1100                  * validation of sp->gfn happens in:
1101                  *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1102                  *      - kvm_is_visible_gfn (mmu_check_root)
1103                  */
1104                 kvm_arch_flush_shadow_memslot(kvm, slot);
1105
1106                 /*
1107                  * We can re-use the old_memslots from above, the only difference
1108                  * from the currently installed memslots is the invalid flag.  This
1109                  * will get overwritten by update_memslots anyway.
1110                  */
1111                 slots = old_memslots;
1112         }
1113
1114         r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1115         if (r)
1116                 goto out_slots;
1117
1118         /* actual memory is freed via old in kvm_free_memslot below */
1119         if (change == KVM_MR_DELETE) {
1120                 new.dirty_bitmap = NULL;
1121                 memset(&new.arch, 0, sizeof(new.arch));
1122         }
1123
1124         update_memslots(slots, &new, change);
1125         old_memslots = install_new_memslots(kvm, as_id, slots);
1126
1127         kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1128
1129         kvm_free_memslot(kvm, &old, &new);
1130         kvfree(old_memslots);
1131         return 0;
1132
1133 out_slots:
1134         kvfree(slots);
1135 out_free:
1136         kvm_free_memslot(kvm, &new, &old);
1137 out:
1138         return r;
1139 }
1140 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1141
1142 int kvm_set_memory_region(struct kvm *kvm,
1143                           const struct kvm_userspace_memory_region *mem)
1144 {
1145         int r;
1146
1147         mutex_lock(&kvm->slots_lock);
1148         r = __kvm_set_memory_region(kvm, mem);
1149         mutex_unlock(&kvm->slots_lock);
1150         return r;
1151 }
1152 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1153
1154 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1155                                           struct kvm_userspace_memory_region *mem)
1156 {
1157         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1158                 return -EINVAL;
1159
1160         return kvm_set_memory_region(kvm, mem);
1161 }
1162
1163 int kvm_get_dirty_log(struct kvm *kvm,
1164                         struct kvm_dirty_log *log, int *is_dirty)
1165 {
1166         struct kvm_memslots *slots;
1167         struct kvm_memory_slot *memslot;
1168         int i, as_id, id;
1169         unsigned long n;
1170         unsigned long any = 0;
1171
1172         as_id = log->slot >> 16;
1173         id = (u16)log->slot;
1174         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1175                 return -EINVAL;
1176
1177         slots = __kvm_memslots(kvm, as_id);
1178         memslot = id_to_memslot(slots, id);
1179         if (!memslot->dirty_bitmap)
1180                 return -ENOENT;
1181
1182         n = kvm_dirty_bitmap_bytes(memslot);
1183
1184         for (i = 0; !any && i < n/sizeof(long); ++i)
1185                 any = memslot->dirty_bitmap[i];
1186
1187         if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1188                 return -EFAULT;
1189
1190         if (any)
1191                 *is_dirty = 1;
1192         return 0;
1193 }
1194 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1195
1196 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1197 /**
1198  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
1199  *      and reenable dirty page tracking for the corresponding pages.
1200  * @kvm:        pointer to kvm instance
1201  * @log:        slot id and address to which we copy the log
1202  * @flush:      true if TLB flush is needed by caller
1203  *
1204  * We need to keep it in mind that VCPU threads can write to the bitmap
1205  * concurrently. So, to avoid losing track of dirty pages we keep the
1206  * following order:
1207  *
1208  *    1. Take a snapshot of the bit and clear it if needed.
1209  *    2. Write protect the corresponding page.
1210  *    3. Copy the snapshot to the userspace.
1211  *    4. Upon return caller flushes TLB's if needed.
1212  *
1213  * Between 2 and 4, the guest may write to the page using the remaining TLB
1214  * entry.  This is not a problem because the page is reported dirty using
1215  * the snapshot taken before and step 4 ensures that writes done after
1216  * exiting to userspace will be logged for the next call.
1217  *
1218  */
1219 int kvm_get_dirty_log_protect(struct kvm *kvm,
1220                         struct kvm_dirty_log *log, bool *flush)
1221 {
1222         struct kvm_memslots *slots;
1223         struct kvm_memory_slot *memslot;
1224         int i, as_id, id;
1225         unsigned long n;
1226         unsigned long *dirty_bitmap;
1227         unsigned long *dirty_bitmap_buffer;
1228
1229         as_id = log->slot >> 16;
1230         id = (u16)log->slot;
1231         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1232                 return -EINVAL;
1233
1234         slots = __kvm_memslots(kvm, as_id);
1235         memslot = id_to_memslot(slots, id);
1236
1237         dirty_bitmap = memslot->dirty_bitmap;
1238         if (!dirty_bitmap)
1239                 return -ENOENT;
1240
1241         n = kvm_dirty_bitmap_bytes(memslot);
1242         *flush = false;
1243         if (kvm->manual_dirty_log_protect) {
1244                 /*
1245                  * Unlike kvm_get_dirty_log, we always return false in *flush,
1246                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
1247                  * is some code duplication between this function and
1248                  * kvm_get_dirty_log, but hopefully all architecture
1249                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
1250                  * can be eliminated.
1251                  */
1252                 dirty_bitmap_buffer = dirty_bitmap;
1253         } else {
1254                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1255                 memset(dirty_bitmap_buffer, 0, n);
1256
1257                 spin_lock(&kvm->mmu_lock);
1258                 for (i = 0; i < n / sizeof(long); i++) {
1259                         unsigned long mask;
1260                         gfn_t offset;
1261
1262                         if (!dirty_bitmap[i])
1263                                 continue;
1264
1265                         *flush = true;
1266                         mask = xchg(&dirty_bitmap[i], 0);
1267                         dirty_bitmap_buffer[i] = mask;
1268
1269                         offset = i * BITS_PER_LONG;
1270                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1271                                                                 offset, mask);
1272                 }
1273                 spin_unlock(&kvm->mmu_lock);
1274         }
1275
1276         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1277                 return -EFAULT;
1278         return 0;
1279 }
1280 EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1281
1282 /**
1283  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
1284  *      and reenable dirty page tracking for the corresponding pages.
1285  * @kvm:        pointer to kvm instance
1286  * @log:        slot id and address from which to fetch the bitmap of dirty pages
1287  * @flush:      true if TLB flush is needed by caller
1288  */
1289 int kvm_clear_dirty_log_protect(struct kvm *kvm,
1290                                 struct kvm_clear_dirty_log *log, bool *flush)
1291 {
1292         struct kvm_memslots *slots;
1293         struct kvm_memory_slot *memslot;
1294         int as_id, id;
1295         gfn_t offset;
1296         unsigned long i, n;
1297         unsigned long *dirty_bitmap;
1298         unsigned long *dirty_bitmap_buffer;
1299
1300         as_id = log->slot >> 16;
1301         id = (u16)log->slot;
1302         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1303                 return -EINVAL;
1304
1305         if (log->first_page & 63)
1306                 return -EINVAL;
1307
1308         slots = __kvm_memslots(kvm, as_id);
1309         memslot = id_to_memslot(slots, id);
1310
1311         dirty_bitmap = memslot->dirty_bitmap;
1312         if (!dirty_bitmap)
1313                 return -ENOENT;
1314
1315         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
1316
1317         if (log->first_page > memslot->npages ||
1318             log->num_pages > memslot->npages - log->first_page ||
1319             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
1320             return -EINVAL;
1321
1322         *flush = false;
1323         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1324         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
1325                 return -EFAULT;
1326
1327         spin_lock(&kvm->mmu_lock);
1328         for (offset = log->first_page, i = offset / BITS_PER_LONG,
1329                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
1330              i++, offset += BITS_PER_LONG) {
1331                 unsigned long mask = *dirty_bitmap_buffer++;
1332                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
1333                 if (!mask)
1334                         continue;
1335
1336                 mask &= atomic_long_fetch_andnot(mask, p);
1337
1338                 /*
1339                  * mask contains the bits that really have been cleared.  This
1340                  * never includes any bits beyond the length of the memslot (if
1341                  * the length is not aligned to 64 pages), therefore it is not
1342                  * a problem if userspace sets them in log->dirty_bitmap.
1343                 */
1344                 if (mask) {
1345                         *flush = true;
1346                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1347                                                                 offset, mask);
1348                 }
1349         }
1350         spin_unlock(&kvm->mmu_lock);
1351
1352         return 0;
1353 }
1354 EXPORT_SYMBOL_GPL(kvm_clear_dirty_log_protect);
1355 #endif
1356
1357 bool kvm_largepages_enabled(void)
1358 {
1359         return largepages_enabled;
1360 }
1361
1362 void kvm_disable_largepages(void)
1363 {
1364         largepages_enabled = false;
1365 }
1366 EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1367
1368 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1369 {
1370         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1371 }
1372 EXPORT_SYMBOL_GPL(gfn_to_memslot);
1373
1374 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1375 {
1376         return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1377 }
1378
1379 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1380 {
1381         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1382
1383         if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1384               memslot->flags & KVM_MEMSLOT_INVALID)
1385                 return false;
1386
1387         return true;
1388 }
1389 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1390
1391 unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1392 {
1393         struct vm_area_struct *vma;
1394         unsigned long addr, size;
1395
1396         size = PAGE_SIZE;
1397
1398         addr = gfn_to_hva(kvm, gfn);
1399         if (kvm_is_error_hva(addr))
1400                 return PAGE_SIZE;
1401
1402         down_read(&current->mm->mmap_sem);
1403         vma = find_vma(current->mm, addr);
1404         if (!vma)
1405                 goto out;
1406
1407         size = vma_kernel_pagesize(vma);
1408
1409 out:
1410         up_read(&current->mm->mmap_sem);
1411
1412         return size;
1413 }
1414
1415 static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1416 {
1417         return slot->flags & KVM_MEM_READONLY;
1418 }
1419
1420 static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1421                                        gfn_t *nr_pages, bool write)
1422 {
1423         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1424                 return KVM_HVA_ERR_BAD;
1425
1426         if (memslot_is_readonly(slot) && write)
1427                 return KVM_HVA_ERR_RO_BAD;
1428
1429         if (nr_pages)
1430                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
1431
1432         return __gfn_to_hva_memslot(slot, gfn);
1433 }
1434
1435 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1436                                      gfn_t *nr_pages)
1437 {
1438         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1439 }
1440
1441 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1442                                         gfn_t gfn)
1443 {
1444         return gfn_to_hva_many(slot, gfn, NULL);
1445 }
1446 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1447
1448 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1449 {
1450         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1451 }
1452 EXPORT_SYMBOL_GPL(gfn_to_hva);
1453
1454 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1455 {
1456         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1457 }
1458 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1459
1460 /*
1461  * Return the hva of a @gfn and the R/W attribute if possible.
1462  *
1463  * @slot: the kvm_memory_slot which contains @gfn
1464  * @gfn: the gfn to be translated
1465  * @writable: used to return the read/write attribute of the @slot if the hva
1466  * is valid and @writable is not NULL
1467  */
1468 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1469                                       gfn_t gfn, bool *writable)
1470 {
1471         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1472
1473         if (!kvm_is_error_hva(hva) && writable)
1474                 *writable = !memslot_is_readonly(slot);
1475
1476         return hva;
1477 }
1478
1479 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1480 {
1481         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1482
1483         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1484 }
1485
1486 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1487 {
1488         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1489
1490         return gfn_to_hva_memslot_prot(slot, gfn, writable);
1491 }
1492
1493 static inline int check_user_page_hwpoison(unsigned long addr)
1494 {
1495         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1496
1497         rc = get_user_pages(addr, 1, flags, NULL, NULL);
1498         return rc == -EHWPOISON;
1499 }
1500
1501 /*
1502  * The fast path to get the writable pfn which will be stored in @pfn,
1503  * true indicates success, otherwise false is returned.  It's also the
1504  * only part that runs if we can in atomic context.
1505  */
1506 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1507                             bool *writable, kvm_pfn_t *pfn)
1508 {
1509         struct page *page[1];
1510         int npages;
1511
1512         /*
1513          * Fast pin a writable pfn only if it is a write fault request
1514          * or the caller allows to map a writable pfn for a read fault
1515          * request.
1516          */
1517         if (!(write_fault || writable))
1518                 return false;
1519
1520         npages = __get_user_pages_fast(addr, 1, 1, page);
1521         if (npages == 1) {
1522                 *pfn = page_to_pfn(page[0]);
1523
1524                 if (writable)
1525                         *writable = true;
1526                 return true;
1527         }
1528
1529         return false;
1530 }
1531
1532 /*
1533  * The slow path to get the pfn of the specified host virtual address,
1534  * 1 indicates success, -errno is returned if error is detected.
1535  */
1536 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1537                            bool *writable, kvm_pfn_t *pfn)
1538 {
1539         unsigned int flags = FOLL_HWPOISON;
1540         struct page *page;
1541         int npages = 0;
1542
1543         might_sleep();
1544
1545         if (writable)
1546                 *writable = write_fault;
1547
1548         if (write_fault)
1549                 flags |= FOLL_WRITE;
1550         if (async)
1551                 flags |= FOLL_NOWAIT;
1552
1553         npages = get_user_pages_unlocked(addr, 1, &page, flags);
1554         if (npages != 1)
1555                 return npages;
1556
1557         /* map read fault as writable if possible */
1558         if (unlikely(!write_fault) && writable) {
1559                 struct page *wpage;
1560
1561                 if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1562                         *writable = true;
1563                         put_page(page);
1564                         page = wpage;
1565                 }
1566         }
1567         *pfn = page_to_pfn(page);
1568         return npages;
1569 }
1570
1571 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1572 {
1573         if (unlikely(!(vma->vm_flags & VM_READ)))
1574                 return false;
1575
1576         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1577                 return false;
1578
1579         return true;
1580 }
1581
1582 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1583                                unsigned long addr, bool *async,
1584                                bool write_fault, bool *writable,
1585                                kvm_pfn_t *p_pfn)
1586 {
1587         unsigned long pfn;
1588         int r;
1589
1590         r = follow_pfn(vma, addr, &pfn);
1591         if (r) {
1592                 /*
1593                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1594                  * not call the fault handler, so do it here.
1595                  */
1596                 bool unlocked = false;
1597                 r = fixup_user_fault(current, current->mm, addr,
1598                                      (write_fault ? FAULT_FLAG_WRITE : 0),
1599                                      &unlocked);
1600                 if (unlocked)
1601                         return -EAGAIN;
1602                 if (r)
1603                         return r;
1604
1605                 r = follow_pfn(vma, addr, &pfn);
1606                 if (r)
1607                         return r;
1608
1609         }
1610
1611         if (writable)
1612                 *writable = true;
1613
1614         /*
1615          * Get a reference here because callers of *hva_to_pfn* and
1616          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1617          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1618          * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1619          * simply do nothing for reserved pfns.
1620          *
1621          * Whoever called remap_pfn_range is also going to call e.g.
1622          * unmap_mapping_range before the underlying pages are freed,
1623          * causing a call to our MMU notifier.
1624          */ 
1625         kvm_get_pfn(pfn);
1626
1627         *p_pfn = pfn;
1628         return 0;
1629 }
1630
1631 /*
1632  * Pin guest page in memory and return its pfn.
1633  * @addr: host virtual address which maps memory to the guest
1634  * @atomic: whether this function can sleep
1635  * @async: whether this function need to wait IO complete if the
1636  *         host page is not in the memory
1637  * @write_fault: whether we should get a writable host page
1638  * @writable: whether it allows to map a writable host page for !@write_fault
1639  *
1640  * The function will map a writable host page for these two cases:
1641  * 1): @write_fault = true
1642  * 2): @write_fault = false && @writable, @writable will tell the caller
1643  *     whether the mapping is writable.
1644  */
1645 static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1646                         bool write_fault, bool *writable)
1647 {
1648         struct vm_area_struct *vma;
1649         kvm_pfn_t pfn = 0;
1650         int npages, r;
1651
1652         /* we can do it either atomically or asynchronously, not both */
1653         BUG_ON(atomic && async);
1654
1655         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1656                 return pfn;
1657
1658         if (atomic)
1659                 return KVM_PFN_ERR_FAULT;
1660
1661         npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1662         if (npages == 1)
1663                 return pfn;
1664
1665         down_read(&current->mm->mmap_sem);
1666         if (npages == -EHWPOISON ||
1667               (!async && check_user_page_hwpoison(addr))) {
1668                 pfn = KVM_PFN_ERR_HWPOISON;
1669                 goto exit;
1670         }
1671
1672 retry:
1673         vma = find_vma_intersection(current->mm, addr, addr + 1);
1674
1675         if (vma == NULL)
1676                 pfn = KVM_PFN_ERR_FAULT;
1677         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1678                 r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1679                 if (r == -EAGAIN)
1680                         goto retry;
1681                 if (r < 0)
1682                         pfn = KVM_PFN_ERR_FAULT;
1683         } else {
1684                 if (async && vma_is_valid(vma, write_fault))
1685                         *async = true;
1686                 pfn = KVM_PFN_ERR_FAULT;
1687         }
1688 exit:
1689         up_read(&current->mm->mmap_sem);
1690         return pfn;
1691 }
1692
1693 kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1694                                bool atomic, bool *async, bool write_fault,
1695                                bool *writable)
1696 {
1697         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1698
1699         if (addr == KVM_HVA_ERR_RO_BAD) {
1700                 if (writable)
1701                         *writable = false;
1702                 return KVM_PFN_ERR_RO_FAULT;
1703         }
1704
1705         if (kvm_is_error_hva(addr)) {
1706                 if (writable)
1707                         *writable = false;
1708                 return KVM_PFN_NOSLOT;
1709         }
1710
1711         /* Do not map writable pfn in the readonly memslot. */
1712         if (writable && memslot_is_readonly(slot)) {
1713                 *writable = false;
1714                 writable = NULL;
1715         }
1716
1717         return hva_to_pfn(addr, atomic, async, write_fault,
1718                           writable);
1719 }
1720 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1721
1722 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1723                       bool *writable)
1724 {
1725         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1726                                     write_fault, writable);
1727 }
1728 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1729
1730 kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1731 {
1732         return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1733 }
1734 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1735
1736 kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1737 {
1738         return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1739 }
1740 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1741
1742 kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1743 {
1744         return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1745 }
1746 EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1747
1748 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1749 {
1750         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1751 }
1752 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1753
1754 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1755 {
1756         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1757 }
1758 EXPORT_SYMBOL_GPL(gfn_to_pfn);
1759
1760 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1761 {
1762         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1763 }
1764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1765
1766 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1767                             struct page **pages, int nr_pages)
1768 {
1769         unsigned long addr;
1770         gfn_t entry = 0;
1771
1772         addr = gfn_to_hva_many(slot, gfn, &entry);
1773         if (kvm_is_error_hva(addr))
1774                 return -1;
1775
1776         if (entry < nr_pages)
1777                 return 0;
1778
1779         return __get_user_pages_fast(addr, nr_pages, 1, pages);
1780 }
1781 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1782
1783 static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1784 {
1785         if (is_error_noslot_pfn(pfn))
1786                 return KVM_ERR_PTR_BAD_PAGE;
1787
1788         if (kvm_is_reserved_pfn(pfn)) {
1789                 WARN_ON(1);
1790                 return KVM_ERR_PTR_BAD_PAGE;
1791         }
1792
1793         return pfn_to_page(pfn);
1794 }
1795
1796 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1797 {
1798         kvm_pfn_t pfn;
1799
1800         pfn = gfn_to_pfn(kvm, gfn);
1801
1802         return kvm_pfn_to_page(pfn);
1803 }
1804 EXPORT_SYMBOL_GPL(gfn_to_page);
1805
1806 static int __kvm_map_gfn(struct kvm_memory_slot *slot, gfn_t gfn,
1807                          struct kvm_host_map *map)
1808 {
1809         kvm_pfn_t pfn;
1810         void *hva = NULL;
1811         struct page *page = KVM_UNMAPPED_PAGE;
1812
1813         if (!map)
1814                 return -EINVAL;
1815
1816         pfn = gfn_to_pfn_memslot(slot, gfn);
1817         if (is_error_noslot_pfn(pfn))
1818                 return -EINVAL;
1819
1820         if (pfn_valid(pfn)) {
1821                 page = pfn_to_page(pfn);
1822                 hva = kmap(page);
1823 #ifdef CONFIG_HAS_IOMEM
1824         } else {
1825                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
1826 #endif
1827         }
1828
1829         if (!hva)
1830                 return -EFAULT;
1831
1832         map->page = page;
1833         map->hva = hva;
1834         map->pfn = pfn;
1835         map->gfn = gfn;
1836
1837         return 0;
1838 }
1839
1840 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
1841 {
1842         return __kvm_map_gfn(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, map);
1843 }
1844 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
1845
1846 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map,
1847                     bool dirty)
1848 {
1849         if (!map)
1850                 return;
1851
1852         if (!map->hva)
1853                 return;
1854
1855         if (map->page != KVM_UNMAPPED_PAGE)
1856                 kunmap(map->page);
1857 #ifdef CONFIG_HAS_IOMEM
1858         else
1859                 memunmap(map->hva);
1860 #endif
1861
1862         if (dirty) {
1863                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
1864                 kvm_release_pfn_dirty(map->pfn);
1865         } else {
1866                 kvm_release_pfn_clean(map->pfn);
1867         }
1868
1869         map->hva = NULL;
1870         map->page = NULL;
1871 }
1872 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
1873
1874 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1875 {
1876         kvm_pfn_t pfn;
1877
1878         pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1879
1880         return kvm_pfn_to_page(pfn);
1881 }
1882 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1883
1884 void kvm_release_page_clean(struct page *page)
1885 {
1886         WARN_ON(is_error_page(page));
1887
1888         kvm_release_pfn_clean(page_to_pfn(page));
1889 }
1890 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1891
1892 void kvm_release_pfn_clean(kvm_pfn_t pfn)
1893 {
1894         if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1895                 put_page(pfn_to_page(pfn));
1896 }
1897 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1898
1899 void kvm_release_page_dirty(struct page *page)
1900 {
1901         WARN_ON(is_error_page(page));
1902
1903         kvm_release_pfn_dirty(page_to_pfn(page));
1904 }
1905 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1906
1907 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1908 {
1909         kvm_set_pfn_dirty(pfn);
1910         kvm_release_pfn_clean(pfn);
1911 }
1912 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1913
1914 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1915 {
1916         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1917                 SetPageDirty(pfn_to_page(pfn));
1918 }
1919 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1920
1921 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1922 {
1923         if (!kvm_is_reserved_pfn(pfn) && !kvm_is_zone_device_pfn(pfn))
1924                 mark_page_accessed(pfn_to_page(pfn));
1925 }
1926 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1927
1928 void kvm_get_pfn(kvm_pfn_t pfn)
1929 {
1930         if (!kvm_is_reserved_pfn(pfn))
1931                 get_page(pfn_to_page(pfn));
1932 }
1933 EXPORT_SYMBOL_GPL(kvm_get_pfn);
1934
1935 static int next_segment(unsigned long len, int offset)
1936 {
1937         if (len > PAGE_SIZE - offset)
1938                 return PAGE_SIZE - offset;
1939         else
1940                 return len;
1941 }
1942
1943 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1944                                  void *data, int offset, int len)
1945 {
1946         int r;
1947         unsigned long addr;
1948
1949         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1950         if (kvm_is_error_hva(addr))
1951                 return -EFAULT;
1952         r = __copy_from_user(data, (void __user *)addr + offset, len);
1953         if (r)
1954                 return -EFAULT;
1955         return 0;
1956 }
1957
1958 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1959                         int len)
1960 {
1961         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1962
1963         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1964 }
1965 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1966
1967 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1968                              int offset, int len)
1969 {
1970         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1971
1972         return __kvm_read_guest_page(slot, gfn, data, offset, len);
1973 }
1974 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1975
1976 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1977 {
1978         gfn_t gfn = gpa >> PAGE_SHIFT;
1979         int seg;
1980         int offset = offset_in_page(gpa);
1981         int ret;
1982
1983         while ((seg = next_segment(len, offset)) != 0) {
1984                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1985                 if (ret < 0)
1986                         return ret;
1987                 offset = 0;
1988                 len -= seg;
1989                 data += seg;
1990                 ++gfn;
1991         }
1992         return 0;
1993 }
1994 EXPORT_SYMBOL_GPL(kvm_read_guest);
1995
1996 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1997 {
1998         gfn_t gfn = gpa >> PAGE_SHIFT;
1999         int seg;
2000         int offset = offset_in_page(gpa);
2001         int ret;
2002
2003         while ((seg = next_segment(len, offset)) != 0) {
2004                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
2005                 if (ret < 0)
2006                         return ret;
2007                 offset = 0;
2008                 len -= seg;
2009                 data += seg;
2010                 ++gfn;
2011         }
2012         return 0;
2013 }
2014 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
2015
2016 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2017                                    void *data, int offset, unsigned long len)
2018 {
2019         int r;
2020         unsigned long addr;
2021
2022         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2023         if (kvm_is_error_hva(addr))
2024                 return -EFAULT;
2025         pagefault_disable();
2026         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
2027         pagefault_enable();
2028         if (r)
2029                 return -EFAULT;
2030         return 0;
2031 }
2032
2033 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
2034                                void *data, unsigned long len)
2035 {
2036         gfn_t gfn = gpa >> PAGE_SHIFT;
2037         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2038         int offset = offset_in_page(gpa);
2039
2040         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
2041 }
2042 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
2043
2044 static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
2045                                   const void *data, int offset, int len)
2046 {
2047         int r;
2048         unsigned long addr;
2049
2050         addr = gfn_to_hva_memslot(memslot, gfn);
2051         if (kvm_is_error_hva(addr))
2052                 return -EFAULT;
2053         r = __copy_to_user((void __user *)addr + offset, data, len);
2054         if (r)
2055                 return -EFAULT;
2056         mark_page_dirty_in_slot(memslot, gfn);
2057         return 0;
2058 }
2059
2060 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
2061                          const void *data, int offset, int len)
2062 {
2063         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2064
2065         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2066 }
2067 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
2068
2069 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
2070                               const void *data, int offset, int len)
2071 {
2072         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2073
2074         return __kvm_write_guest_page(slot, gfn, data, offset, len);
2075 }
2076 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
2077
2078 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
2079                     unsigned long len)
2080 {
2081         gfn_t gfn = gpa >> PAGE_SHIFT;
2082         int seg;
2083         int offset = offset_in_page(gpa);
2084         int ret;
2085
2086         while ((seg = next_segment(len, offset)) != 0) {
2087                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
2088                 if (ret < 0)
2089                         return ret;
2090                 offset = 0;
2091                 len -= seg;
2092                 data += seg;
2093                 ++gfn;
2094         }
2095         return 0;
2096 }
2097 EXPORT_SYMBOL_GPL(kvm_write_guest);
2098
2099 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
2100                          unsigned long len)
2101 {
2102         gfn_t gfn = gpa >> PAGE_SHIFT;
2103         int seg;
2104         int offset = offset_in_page(gpa);
2105         int ret;
2106
2107         while ((seg = next_segment(len, offset)) != 0) {
2108                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
2109                 if (ret < 0)
2110                         return ret;
2111                 offset = 0;
2112                 len -= seg;
2113                 data += seg;
2114                 ++gfn;
2115         }
2116         return 0;
2117 }
2118 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
2119
2120 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
2121                                        struct gfn_to_hva_cache *ghc,
2122                                        gpa_t gpa, unsigned long len)
2123 {
2124         int offset = offset_in_page(gpa);
2125         gfn_t start_gfn = gpa >> PAGE_SHIFT;
2126         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
2127         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
2128         gfn_t nr_pages_avail;
2129         int r = start_gfn <= end_gfn ? 0 : -EINVAL;
2130
2131         ghc->gpa = gpa;
2132         ghc->generation = slots->generation;
2133         ghc->len = len;
2134         ghc->hva = KVM_HVA_ERR_BAD;
2135
2136         /*
2137          * If the requested region crosses two memslots, we still
2138          * verify that the entire region is valid here.
2139          */
2140         while (!r && start_gfn <= end_gfn) {
2141                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
2142                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
2143                                            &nr_pages_avail);
2144                 if (kvm_is_error_hva(ghc->hva))
2145                         r = -EFAULT;
2146                 start_gfn += nr_pages_avail;
2147         }
2148
2149         /* Use the slow path for cross page reads and writes. */
2150         if (!r && nr_pages_needed == 1)
2151                 ghc->hva += offset;
2152         else
2153                 ghc->memslot = NULL;
2154
2155         return r;
2156 }
2157
2158 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2159                               gpa_t gpa, unsigned long len)
2160 {
2161         struct kvm_memslots *slots = kvm_memslots(kvm);
2162         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
2163 }
2164 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
2165
2166 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2167                                   void *data, unsigned int offset,
2168                                   unsigned long len)
2169 {
2170         struct kvm_memslots *slots = kvm_memslots(kvm);
2171         int r;
2172         gpa_t gpa = ghc->gpa + offset;
2173
2174         BUG_ON(len + offset > ghc->len);
2175
2176         if (slots->generation != ghc->generation)
2177                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2178
2179         if (unlikely(!ghc->memslot))
2180                 return kvm_write_guest(kvm, gpa, data, len);
2181
2182         if (kvm_is_error_hva(ghc->hva))
2183                 return -EFAULT;
2184
2185         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
2186         if (r)
2187                 return -EFAULT;
2188         mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
2189
2190         return 0;
2191 }
2192 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
2193
2194 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2195                            void *data, unsigned long len)
2196 {
2197         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
2198 }
2199 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
2200
2201 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
2202                            void *data, unsigned long len)
2203 {
2204         struct kvm_memslots *slots = kvm_memslots(kvm);
2205         int r;
2206
2207         BUG_ON(len > ghc->len);
2208
2209         if (slots->generation != ghc->generation)
2210                 __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2211
2212         if (unlikely(!ghc->memslot))
2213                 return kvm_read_guest(kvm, ghc->gpa, data, len);
2214
2215         if (kvm_is_error_hva(ghc->hva))
2216                 return -EFAULT;
2217
2218         r = __copy_from_user(data, (void __user *)ghc->hva, len);
2219         if (r)
2220                 return -EFAULT;
2221
2222         return 0;
2223 }
2224 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2225
2226 int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2227 {
2228         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2229
2230         return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2231 }
2232 EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2233
2234 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2235 {
2236         gfn_t gfn = gpa >> PAGE_SHIFT;
2237         int seg;
2238         int offset = offset_in_page(gpa);
2239         int ret;
2240
2241         while ((seg = next_segment(len, offset)) != 0) {
2242                 ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2243                 if (ret < 0)
2244                         return ret;
2245                 offset = 0;
2246                 len -= seg;
2247                 ++gfn;
2248         }
2249         return 0;
2250 }
2251 EXPORT_SYMBOL_GPL(kvm_clear_guest);
2252
2253 static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2254                                     gfn_t gfn)
2255 {
2256         if (memslot && memslot->dirty_bitmap) {
2257                 unsigned long rel_gfn = gfn - memslot->base_gfn;
2258
2259                 set_bit_le(rel_gfn, memslot->dirty_bitmap);
2260         }
2261 }
2262
2263 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2264 {
2265         struct kvm_memory_slot *memslot;
2266
2267         memslot = gfn_to_memslot(kvm, gfn);
2268         mark_page_dirty_in_slot(memslot, gfn);
2269 }
2270 EXPORT_SYMBOL_GPL(mark_page_dirty);
2271
2272 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2273 {
2274         struct kvm_memory_slot *memslot;
2275
2276         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2277         mark_page_dirty_in_slot(memslot, gfn);
2278 }
2279 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2280
2281 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2282 {
2283         if (!vcpu->sigset_active)
2284                 return;
2285
2286         /*
2287          * This does a lockless modification of ->real_blocked, which is fine
2288          * because, only current can change ->real_blocked and all readers of
2289          * ->real_blocked don't care as long ->real_blocked is always a subset
2290          * of ->blocked.
2291          */
2292         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2293 }
2294
2295 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2296 {
2297         if (!vcpu->sigset_active)
2298                 return;
2299
2300         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2301         sigemptyset(&current->real_blocked);
2302 }
2303
2304 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2305 {
2306         unsigned int old, val, grow, grow_start;
2307
2308         old = val = vcpu->halt_poll_ns;
2309         grow_start = READ_ONCE(halt_poll_ns_grow_start);
2310         grow = READ_ONCE(halt_poll_ns_grow);
2311         if (!grow)
2312                 goto out;
2313
2314         val *= grow;
2315         if (val < grow_start)
2316                 val = grow_start;
2317
2318         if (val > halt_poll_ns)
2319                 val = halt_poll_ns;
2320
2321         vcpu->halt_poll_ns = val;
2322 out:
2323         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2324 }
2325
2326 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2327 {
2328         unsigned int old, val, shrink;
2329
2330         old = val = vcpu->halt_poll_ns;
2331         shrink = READ_ONCE(halt_poll_ns_shrink);
2332         if (shrink == 0)
2333                 val = 0;
2334         else
2335                 val /= shrink;
2336
2337         vcpu->halt_poll_ns = val;
2338         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2339 }
2340
2341 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2342 {
2343         int ret = -EINTR;
2344         int idx = srcu_read_lock(&vcpu->kvm->srcu);
2345
2346         if (kvm_arch_vcpu_runnable(vcpu)) {
2347                 kvm_make_request(KVM_REQ_UNHALT, vcpu);
2348                 goto out;
2349         }
2350         if (kvm_cpu_has_pending_timer(vcpu))
2351                 goto out;
2352         if (signal_pending(current))
2353                 goto out;
2354
2355         ret = 0;
2356 out:
2357         srcu_read_unlock(&vcpu->kvm->srcu, idx);
2358         return ret;
2359 }
2360
2361 /*
2362  * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2363  */
2364 void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2365 {
2366         ktime_t start, cur;
2367         DECLARE_SWAITQUEUE(wait);
2368         bool waited = false;
2369         u64 block_ns;
2370
2371         kvm_arch_vcpu_blocking(vcpu);
2372
2373         start = cur = ktime_get();
2374         if (vcpu->halt_poll_ns && !kvm_arch_no_poll(vcpu)) {
2375                 ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2376
2377                 ++vcpu->stat.halt_attempted_poll;
2378                 do {
2379                         /*
2380                          * This sets KVM_REQ_UNHALT if an interrupt
2381                          * arrives.
2382                          */
2383                         if (kvm_vcpu_check_block(vcpu) < 0) {
2384                                 ++vcpu->stat.halt_successful_poll;
2385                                 if (!vcpu_valid_wakeup(vcpu))
2386                                         ++vcpu->stat.halt_poll_invalid;
2387                                 goto out;
2388                         }
2389                         cur = ktime_get();
2390                 } while (single_task_running() && ktime_before(cur, stop));
2391         }
2392
2393         for (;;) {
2394                 prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2395
2396                 if (kvm_vcpu_check_block(vcpu) < 0)
2397                         break;
2398
2399                 waited = true;
2400                 schedule();
2401         }
2402
2403         finish_swait(&vcpu->wq, &wait);
2404         cur = ktime_get();
2405 out:
2406         kvm_arch_vcpu_unblocking(vcpu);
2407         block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2408
2409         if (!kvm_arch_no_poll(vcpu)) {
2410                 if (!vcpu_valid_wakeup(vcpu)) {
2411                         shrink_halt_poll_ns(vcpu);
2412                 } else if (halt_poll_ns) {
2413                         if (block_ns <= vcpu->halt_poll_ns)
2414                                 ;
2415                         /* we had a long block, shrink polling */
2416                         else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2417                                 shrink_halt_poll_ns(vcpu);
2418                         /* we had a short halt and our poll time is too small */
2419                         else if (vcpu->halt_poll_ns < halt_poll_ns &&
2420                                 block_ns < halt_poll_ns)
2421                                 grow_halt_poll_ns(vcpu);
2422                 } else {
2423                         vcpu->halt_poll_ns = 0;
2424                 }
2425         }
2426
2427         trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2428         kvm_arch_vcpu_block_finish(vcpu);
2429 }
2430 EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2431
2432 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2433 {
2434         struct swait_queue_head *wqp;
2435
2436         wqp = kvm_arch_vcpu_wq(vcpu);
2437         if (swq_has_sleeper(wqp)) {
2438                 swake_up_one(wqp);
2439                 WRITE_ONCE(vcpu->ready, true);
2440                 ++vcpu->stat.halt_wakeup;
2441                 return true;
2442         }
2443
2444         return false;
2445 }
2446 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2447
2448 #ifndef CONFIG_S390
2449 /*
2450  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2451  */
2452 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2453 {
2454         int me;
2455         int cpu = vcpu->cpu;
2456
2457         if (kvm_vcpu_wake_up(vcpu))
2458                 return;
2459
2460         me = get_cpu();
2461         if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2462                 if (kvm_arch_vcpu_should_kick(vcpu))
2463                         smp_send_reschedule(cpu);
2464         put_cpu();
2465 }
2466 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2467 #endif /* !CONFIG_S390 */
2468
2469 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2470 {
2471         struct pid *pid;
2472         struct task_struct *task = NULL;
2473         int ret = 0;
2474
2475         rcu_read_lock();
2476         pid = rcu_dereference(target->pid);
2477         if (pid)
2478                 task = get_pid_task(pid, PIDTYPE_PID);
2479         rcu_read_unlock();
2480         if (!task)
2481                 return ret;
2482         ret = yield_to(task, 1);
2483         put_task_struct(task);
2484
2485         return ret;
2486 }
2487 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2488
2489 /*
2490  * Helper that checks whether a VCPU is eligible for directed yield.
2491  * Most eligible candidate to yield is decided by following heuristics:
2492  *
2493  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2494  *  (preempted lock holder), indicated by @in_spin_loop.
2495  *  Set at the beiginning and cleared at the end of interception/PLE handler.
2496  *
2497  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2498  *  chance last time (mostly it has become eligible now since we have probably
2499  *  yielded to lockholder in last iteration. This is done by toggling
2500  *  @dy_eligible each time a VCPU checked for eligibility.)
2501  *
2502  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2503  *  to preempted lock-holder could result in wrong VCPU selection and CPU
2504  *  burning. Giving priority for a potential lock-holder increases lock
2505  *  progress.
2506  *
2507  *  Since algorithm is based on heuristics, accessing another VCPU data without
2508  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2509  *  and continue with next VCPU and so on.
2510  */
2511 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2512 {
2513 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2514         bool eligible;
2515
2516         eligible = !vcpu->spin_loop.in_spin_loop ||
2517                     vcpu->spin_loop.dy_eligible;
2518
2519         if (vcpu->spin_loop.in_spin_loop)
2520                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2521
2522         return eligible;
2523 #else
2524         return true;
2525 #endif
2526 }
2527
2528 /*
2529  * Unlike kvm_arch_vcpu_runnable, this function is called outside
2530  * a vcpu_load/vcpu_put pair.  However, for most architectures
2531  * kvm_arch_vcpu_runnable does not require vcpu_load.
2532  */
2533 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
2534 {
2535         return kvm_arch_vcpu_runnable(vcpu);
2536 }
2537
2538 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
2539 {
2540         if (kvm_arch_dy_runnable(vcpu))
2541                 return true;
2542
2543 #ifdef CONFIG_KVM_ASYNC_PF
2544         if (!list_empty_careful(&vcpu->async_pf.done))
2545                 return true;
2546 #endif
2547
2548         return false;
2549 }
2550
2551 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2552 {
2553         struct kvm *kvm = me->kvm;
2554         struct kvm_vcpu *vcpu;
2555         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2556         int yielded = 0;
2557         int try = 3;
2558         int pass;
2559         int i;
2560
2561         kvm_vcpu_set_in_spin_loop(me, true);
2562         /*
2563          * We boost the priority of a VCPU that is runnable but not
2564          * currently running, because it got preempted by something
2565          * else and called schedule in __vcpu_run.  Hopefully that
2566          * VCPU is holding the lock that we need and will release it.
2567          * We approximate round-robin by starting at the last boosted VCPU.
2568          */
2569         for (pass = 0; pass < 2 && !yielded && try; pass++) {
2570                 kvm_for_each_vcpu(i, vcpu, kvm) {
2571                         if (!pass && i <= last_boosted_vcpu) {
2572                                 i = last_boosted_vcpu;
2573                                 continue;
2574                         } else if (pass && i > last_boosted_vcpu)
2575                                 break;
2576                         if (!READ_ONCE(vcpu->ready))
2577                                 continue;
2578                         if (vcpu == me)
2579                                 continue;
2580                         if (swait_active(&vcpu->wq) && !vcpu_dy_runnable(vcpu))
2581                                 continue;
2582                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
2583                                 !kvm_arch_vcpu_in_kernel(vcpu))
2584                                 continue;
2585                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2586                                 continue;
2587
2588                         yielded = kvm_vcpu_yield_to(vcpu);
2589                         if (yielded > 0) {
2590                                 kvm->last_boosted_vcpu = i;
2591                                 break;
2592                         } else if (yielded < 0) {
2593                                 try--;
2594                                 if (!try)
2595                                         break;
2596                         }
2597                 }
2598         }
2599         kvm_vcpu_set_in_spin_loop(me, false);
2600
2601         /* Ensure vcpu is not eligible during next spinloop */
2602         kvm_vcpu_set_dy_eligible(me, false);
2603 }
2604 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2605
2606 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2607 {
2608         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2609         struct page *page;
2610
2611         if (vmf->pgoff == 0)
2612                 page = virt_to_page(vcpu->run);
2613 #ifdef CONFIG_X86
2614         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2615                 page = virt_to_page(vcpu->arch.pio_data);
2616 #endif
2617 #ifdef CONFIG_KVM_MMIO
2618         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2619                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2620 #endif
2621         else
2622                 return kvm_arch_vcpu_fault(vcpu, vmf);
2623         get_page(page);
2624         vmf->page = page;
2625         return 0;
2626 }
2627
2628 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2629         .fault = kvm_vcpu_fault,
2630 };
2631
2632 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2633 {
2634         vma->vm_ops = &kvm_vcpu_vm_ops;
2635         return 0;
2636 }
2637
2638 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2639 {
2640         struct kvm_vcpu *vcpu = filp->private_data;
2641
2642         debugfs_remove_recursive(vcpu->debugfs_dentry);
2643         kvm_put_kvm(vcpu->kvm);
2644         return 0;
2645 }
2646
2647 static struct file_operations kvm_vcpu_fops = {
2648         .release        = kvm_vcpu_release,
2649         .unlocked_ioctl = kvm_vcpu_ioctl,
2650         .mmap           = kvm_vcpu_mmap,
2651         .llseek         = noop_llseek,
2652         KVM_COMPAT(kvm_vcpu_compat_ioctl),
2653 };
2654
2655 /*
2656  * Allocates an inode for the vcpu.
2657  */
2658 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2659 {
2660         char name[8 + 1 + ITOA_MAX_LEN + 1];
2661
2662         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2663         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2664 }
2665
2666 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2667 {
2668 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
2669         char dir_name[ITOA_MAX_LEN * 2];
2670
2671         if (!debugfs_initialized())
2672                 return;
2673
2674         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2675         vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2676                                                   vcpu->kvm->debugfs_dentry);
2677
2678         kvm_arch_create_vcpu_debugfs(vcpu);
2679 #endif
2680 }
2681
2682 /*
2683  * Creates some virtual cpus.  Good luck creating more than one.
2684  */
2685 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2686 {
2687         int r;
2688         struct kvm_vcpu *vcpu;
2689         struct page *page;
2690
2691         if (id >= KVM_MAX_VCPU_ID)
2692                 return -EINVAL;
2693
2694         mutex_lock(&kvm->lock);
2695         if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2696                 mutex_unlock(&kvm->lock);
2697                 return -EINVAL;
2698         }
2699
2700         kvm->created_vcpus++;
2701         mutex_unlock(&kvm->lock);
2702
2703         r = kvm_arch_vcpu_precreate(kvm, id);
2704         if (r)
2705                 goto vcpu_decrement;
2706
2707         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2708         if (!vcpu) {
2709                 r = -ENOMEM;
2710                 goto vcpu_decrement;
2711         }
2712
2713         page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2714         if (!page) {
2715                 r = -ENOMEM;
2716                 goto vcpu_free;
2717         }
2718         vcpu->run = page_address(page);
2719
2720         kvm_vcpu_init(vcpu, kvm, id);
2721
2722         r = kvm_arch_vcpu_create(vcpu);
2723         if (r)
2724                 goto vcpu_free_run_page;
2725
2726         kvm_create_vcpu_debugfs(vcpu);
2727
2728         mutex_lock(&kvm->lock);
2729         if (kvm_get_vcpu_by_id(kvm, id)) {
2730                 r = -EEXIST;
2731                 goto unlock_vcpu_destroy;
2732         }
2733
2734         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
2735         BUG_ON(kvm->vcpus[vcpu->vcpu_idx]);
2736
2737         /* Now it's all set up, let userspace reach it */
2738         kvm_get_kvm(kvm);
2739         r = create_vcpu_fd(vcpu);
2740         if (r < 0) {
2741                 kvm_put_kvm_no_destroy(kvm);
2742                 goto unlock_vcpu_destroy;
2743         }
2744
2745         kvm->vcpus[vcpu->vcpu_idx] = vcpu;
2746
2747         /*
2748          * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2749          * before kvm->online_vcpu's incremented value.
2750          */
2751         smp_wmb();
2752         atomic_inc(&kvm->online_vcpus);
2753
2754         mutex_unlock(&kvm->lock);
2755         kvm_arch_vcpu_postcreate(vcpu);
2756         return r;
2757
2758 unlock_vcpu_destroy:
2759         mutex_unlock(&kvm->lock);
2760         debugfs_remove_recursive(vcpu->debugfs_dentry);
2761         kvm_arch_vcpu_destroy(vcpu);
2762 vcpu_free_run_page:
2763         free_page((unsigned long)vcpu->run);
2764 vcpu_free:
2765         kmem_cache_free(kvm_vcpu_cache, vcpu);
2766 vcpu_decrement:
2767         mutex_lock(&kvm->lock);
2768         kvm->created_vcpus--;
2769         mutex_unlock(&kvm->lock);
2770         return r;
2771 }
2772
2773 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2774 {
2775         if (sigset) {
2776                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2777                 vcpu->sigset_active = 1;
2778                 vcpu->sigset = *sigset;
2779         } else
2780                 vcpu->sigset_active = 0;
2781         return 0;
2782 }
2783
2784 static long kvm_vcpu_ioctl(struct file *filp,
2785                            unsigned int ioctl, unsigned long arg)
2786 {
2787         struct kvm_vcpu *vcpu = filp->private_data;
2788         void __user *argp = (void __user *)arg;
2789         int r;
2790         struct kvm_fpu *fpu = NULL;
2791         struct kvm_sregs *kvm_sregs = NULL;
2792
2793         if (vcpu->kvm->mm != current->mm)
2794                 return -EIO;
2795
2796         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2797                 return -EINVAL;
2798
2799         /*
2800          * Some architectures have vcpu ioctls that are asynchronous to vcpu
2801          * execution; mutex_lock() would break them.
2802          */
2803         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2804         if (r != -ENOIOCTLCMD)
2805                 return r;
2806
2807         if (mutex_lock_killable(&vcpu->mutex))
2808                 return -EINTR;
2809         switch (ioctl) {
2810         case KVM_RUN: {
2811                 struct pid *oldpid;
2812                 r = -EINVAL;
2813                 if (arg)
2814                         goto out;
2815                 oldpid = rcu_access_pointer(vcpu->pid);
2816                 if (unlikely(oldpid != task_pid(current))) {
2817                         /* The thread running this VCPU changed. */
2818                         struct pid *newpid;
2819
2820                         r = kvm_arch_vcpu_run_pid_change(vcpu);
2821                         if (r)
2822                                 break;
2823
2824                         newpid = get_task_pid(current, PIDTYPE_PID);
2825                         rcu_assign_pointer(vcpu->pid, newpid);
2826                         if (oldpid)
2827                                 synchronize_rcu();
2828                         put_pid(oldpid);
2829                 }
2830                 r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2831                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2832                 break;
2833         }
2834         case KVM_GET_REGS: {
2835                 struct kvm_regs *kvm_regs;
2836
2837                 r = -ENOMEM;
2838                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
2839                 if (!kvm_regs)
2840                         goto out;
2841                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2842                 if (r)
2843                         goto out_free1;
2844                 r = -EFAULT;
2845                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2846                         goto out_free1;
2847                 r = 0;
2848 out_free1:
2849                 kfree(kvm_regs);
2850                 break;
2851         }
2852         case KVM_SET_REGS: {
2853                 struct kvm_regs *kvm_regs;
2854
2855                 r = -ENOMEM;
2856                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2857                 if (IS_ERR(kvm_regs)) {
2858                         r = PTR_ERR(kvm_regs);
2859                         goto out;
2860                 }
2861                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2862                 kfree(kvm_regs);
2863                 break;
2864         }
2865         case KVM_GET_SREGS: {
2866                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
2867                                     GFP_KERNEL_ACCOUNT);
2868                 r = -ENOMEM;
2869                 if (!kvm_sregs)
2870                         goto out;
2871                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2872                 if (r)
2873                         goto out;
2874                 r = -EFAULT;
2875                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2876                         goto out;
2877                 r = 0;
2878                 break;
2879         }
2880         case KVM_SET_SREGS: {
2881                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2882                 if (IS_ERR(kvm_sregs)) {
2883                         r = PTR_ERR(kvm_sregs);
2884                         kvm_sregs = NULL;
2885                         goto out;
2886                 }
2887                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2888                 break;
2889         }
2890         case KVM_GET_MP_STATE: {
2891                 struct kvm_mp_state mp_state;
2892
2893                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2894                 if (r)
2895                         goto out;
2896                 r = -EFAULT;
2897                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2898                         goto out;
2899                 r = 0;
2900                 break;
2901         }
2902         case KVM_SET_MP_STATE: {
2903                 struct kvm_mp_state mp_state;
2904
2905                 r = -EFAULT;
2906                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2907                         goto out;
2908                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2909                 break;
2910         }
2911         case KVM_TRANSLATE: {
2912                 struct kvm_translation tr;
2913
2914                 r = -EFAULT;
2915                 if (copy_from_user(&tr, argp, sizeof(tr)))
2916                         goto out;
2917                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2918                 if (r)
2919                         goto out;
2920                 r = -EFAULT;
2921                 if (copy_to_user(argp, &tr, sizeof(tr)))
2922                         goto out;
2923                 r = 0;
2924                 break;
2925         }
2926         case KVM_SET_GUEST_DEBUG: {
2927                 struct kvm_guest_debug dbg;
2928
2929                 r = -EFAULT;
2930                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
2931                         goto out;
2932                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2933                 break;
2934         }
2935         case KVM_SET_SIGNAL_MASK: {
2936                 struct kvm_signal_mask __user *sigmask_arg = argp;
2937                 struct kvm_signal_mask kvm_sigmask;
2938                 sigset_t sigset, *p;
2939
2940                 p = NULL;
2941                 if (argp) {
2942                         r = -EFAULT;
2943                         if (copy_from_user(&kvm_sigmask, argp,
2944                                            sizeof(kvm_sigmask)))
2945                                 goto out;
2946                         r = -EINVAL;
2947                         if (kvm_sigmask.len != sizeof(sigset))
2948                                 goto out;
2949                         r = -EFAULT;
2950                         if (copy_from_user(&sigset, sigmask_arg->sigset,
2951                                            sizeof(sigset)))
2952                                 goto out;
2953                         p = &sigset;
2954                 }
2955                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2956                 break;
2957         }
2958         case KVM_GET_FPU: {
2959                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
2960                 r = -ENOMEM;
2961                 if (!fpu)
2962                         goto out;
2963                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2964                 if (r)
2965                         goto out;
2966                 r = -EFAULT;
2967                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2968                         goto out;
2969                 r = 0;
2970                 break;
2971         }
2972         case KVM_SET_FPU: {
2973                 fpu = memdup_user(argp, sizeof(*fpu));
2974                 if (IS_ERR(fpu)) {
2975                         r = PTR_ERR(fpu);
2976                         fpu = NULL;
2977                         goto out;
2978                 }
2979                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2980                 break;
2981         }
2982         default:
2983                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2984         }
2985 out:
2986         mutex_unlock(&vcpu->mutex);
2987         kfree(fpu);
2988         kfree(kvm_sregs);
2989         return r;
2990 }
2991
2992 #ifdef CONFIG_KVM_COMPAT
2993 static long kvm_vcpu_compat_ioctl(struct file *filp,
2994                                   unsigned int ioctl, unsigned long arg)
2995 {
2996         struct kvm_vcpu *vcpu = filp->private_data;
2997         void __user *argp = compat_ptr(arg);
2998         int r;
2999
3000         if (vcpu->kvm->mm != current->mm)
3001                 return -EIO;
3002
3003         switch (ioctl) {
3004         case KVM_SET_SIGNAL_MASK: {
3005                 struct kvm_signal_mask __user *sigmask_arg = argp;
3006                 struct kvm_signal_mask kvm_sigmask;
3007                 sigset_t sigset;
3008
3009                 if (argp) {
3010                         r = -EFAULT;
3011                         if (copy_from_user(&kvm_sigmask, argp,
3012                                            sizeof(kvm_sigmask)))
3013                                 goto out;
3014                         r = -EINVAL;
3015                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
3016                                 goto out;
3017                         r = -EFAULT;
3018                         if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
3019                                 goto out;
3020                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
3021                 } else
3022                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
3023                 break;
3024         }
3025         default:
3026                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
3027         }
3028
3029 out:
3030         return r;
3031 }
3032 #endif
3033
3034 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
3035 {
3036         struct kvm_device *dev = filp->private_data;
3037
3038         if (dev->ops->mmap)
3039                 return dev->ops->mmap(dev, vma);
3040
3041         return -ENODEV;
3042 }
3043
3044 static int kvm_device_ioctl_attr(struct kvm_device *dev,
3045                                  int (*accessor)(struct kvm_device *dev,
3046                                                  struct kvm_device_attr *attr),
3047                                  unsigned long arg)
3048 {
3049         struct kvm_device_attr attr;
3050
3051         if (!accessor)
3052                 return -EPERM;
3053
3054         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
3055                 return -EFAULT;
3056
3057         return accessor(dev, &attr);
3058 }
3059
3060 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
3061                              unsigned long arg)
3062 {
3063         struct kvm_device *dev = filp->private_data;
3064
3065         if (dev->kvm->mm != current->mm)
3066                 return -EIO;
3067
3068         switch (ioctl) {
3069         case KVM_SET_DEVICE_ATTR:
3070                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
3071         case KVM_GET_DEVICE_ATTR:
3072                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
3073         case KVM_HAS_DEVICE_ATTR:
3074                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
3075         default:
3076                 if (dev->ops->ioctl)
3077                         return dev->ops->ioctl(dev, ioctl, arg);
3078
3079                 return -ENOTTY;
3080         }
3081 }
3082
3083 static int kvm_device_release(struct inode *inode, struct file *filp)
3084 {
3085         struct kvm_device *dev = filp->private_data;
3086         struct kvm *kvm = dev->kvm;
3087
3088         if (dev->ops->release) {
3089                 mutex_lock(&kvm->lock);
3090                 list_del(&dev->vm_node);
3091                 dev->ops->release(dev);
3092                 mutex_unlock(&kvm->lock);
3093         }
3094
3095         kvm_put_kvm(kvm);
3096         return 0;
3097 }
3098
3099 static const struct file_operations kvm_device_fops = {
3100         .unlocked_ioctl = kvm_device_ioctl,
3101         .release = kvm_device_release,
3102         KVM_COMPAT(kvm_device_ioctl),
3103         .mmap = kvm_device_mmap,
3104 };
3105
3106 struct kvm_device *kvm_device_from_filp(struct file *filp)
3107 {
3108         if (filp->f_op != &kvm_device_fops)
3109                 return NULL;
3110
3111         return filp->private_data;
3112 }
3113
3114 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
3115 #ifdef CONFIG_KVM_MPIC
3116         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
3117         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
3118 #endif
3119 };
3120
3121 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
3122 {
3123         if (type >= ARRAY_SIZE(kvm_device_ops_table))
3124                 return -ENOSPC;
3125
3126         if (kvm_device_ops_table[type] != NULL)
3127                 return -EEXIST;
3128
3129         kvm_device_ops_table[type] = ops;
3130         return 0;
3131 }
3132
3133 void kvm_unregister_device_ops(u32 type)
3134 {
3135         if (kvm_device_ops_table[type] != NULL)
3136                 kvm_device_ops_table[type] = NULL;
3137 }
3138
3139 static int kvm_ioctl_create_device(struct kvm *kvm,
3140                                    struct kvm_create_device *cd)
3141 {
3142         const struct kvm_device_ops *ops = NULL;
3143         struct kvm_device *dev;
3144         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
3145         int type;
3146         int ret;
3147
3148         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
3149                 return -ENODEV;
3150
3151         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
3152         ops = kvm_device_ops_table[type];
3153         if (ops == NULL)
3154                 return -ENODEV;
3155
3156         if (test)
3157                 return 0;
3158
3159         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
3160         if (!dev)
3161                 return -ENOMEM;
3162
3163         dev->ops = ops;
3164         dev->kvm = kvm;
3165
3166         mutex_lock(&kvm->lock);
3167         ret = ops->create(dev, type);
3168         if (ret < 0) {
3169                 mutex_unlock(&kvm->lock);
3170                 kfree(dev);
3171                 return ret;
3172         }
3173         list_add(&dev->vm_node, &kvm->devices);
3174         mutex_unlock(&kvm->lock);
3175
3176         if (ops->init)
3177                 ops->init(dev);
3178
3179         kvm_get_kvm(kvm);
3180         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
3181         if (ret < 0) {
3182                 kvm_put_kvm_no_destroy(kvm);
3183                 mutex_lock(&kvm->lock);
3184                 list_del(&dev->vm_node);
3185                 mutex_unlock(&kvm->lock);
3186                 ops->destroy(dev);
3187                 return ret;
3188         }
3189
3190         cd->fd = ret;
3191         return 0;
3192 }
3193
3194 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
3195 {
3196         switch (arg) {
3197         case KVM_CAP_USER_MEMORY:
3198         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
3199         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
3200         case KVM_CAP_INTERNAL_ERROR_DATA:
3201 #ifdef CONFIG_HAVE_KVM_MSI
3202         case KVM_CAP_SIGNAL_MSI:
3203 #endif
3204 #ifdef CONFIG_HAVE_KVM_IRQFD
3205         case KVM_CAP_IRQFD:
3206         case KVM_CAP_IRQFD_RESAMPLE:
3207 #endif
3208         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
3209         case KVM_CAP_CHECK_EXTENSION_VM:
3210         case KVM_CAP_ENABLE_CAP_VM:
3211 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3212         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3213 #endif
3214                 return 1;
3215 #ifdef CONFIG_KVM_MMIO
3216         case KVM_CAP_COALESCED_MMIO:
3217                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
3218         case KVM_CAP_COALESCED_PIO:
3219                 return 1;
3220 #endif
3221 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3222         case KVM_CAP_IRQ_ROUTING:
3223                 return KVM_MAX_IRQ_ROUTES;
3224 #endif
3225 #if KVM_ADDRESS_SPACE_NUM > 1
3226         case KVM_CAP_MULTI_ADDRESS_SPACE:
3227                 return KVM_ADDRESS_SPACE_NUM;
3228 #endif
3229         case KVM_CAP_NR_MEMSLOTS:
3230                 return KVM_USER_MEM_SLOTS;
3231         default:
3232                 break;
3233         }
3234         return kvm_vm_ioctl_check_extension(kvm, arg);
3235 }
3236
3237 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
3238                                                   struct kvm_enable_cap *cap)
3239 {
3240         return -EINVAL;
3241 }
3242
3243 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
3244                                            struct kvm_enable_cap *cap)
3245 {
3246         switch (cap->cap) {
3247 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3248         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
3249                 if (cap->flags || (cap->args[0] & ~1))
3250                         return -EINVAL;
3251                 kvm->manual_dirty_log_protect = cap->args[0];
3252                 return 0;
3253 #endif
3254         default:
3255                 return kvm_vm_ioctl_enable_cap(kvm, cap);
3256         }
3257 }
3258
3259 static long kvm_vm_ioctl(struct file *filp,
3260                            unsigned int ioctl, unsigned long arg)
3261 {
3262         struct kvm *kvm = filp->private_data;
3263         void __user *argp = (void __user *)arg;
3264         int r;
3265
3266         if (kvm->mm != current->mm)
3267                 return -EIO;
3268         switch (ioctl) {
3269         case KVM_CREATE_VCPU:
3270                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
3271                 break;
3272         case KVM_ENABLE_CAP: {
3273                 struct kvm_enable_cap cap;
3274
3275                 r = -EFAULT;
3276                 if (copy_from_user(&cap, argp, sizeof(cap)))
3277                         goto out;
3278                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
3279                 break;
3280         }
3281         case KVM_SET_USER_MEMORY_REGION: {
3282                 struct kvm_userspace_memory_region kvm_userspace_mem;
3283
3284                 r = -EFAULT;
3285                 if (copy_from_user(&kvm_userspace_mem, argp,
3286                                                 sizeof(kvm_userspace_mem)))
3287                         goto out;
3288
3289                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
3290                 break;
3291         }
3292         case KVM_GET_DIRTY_LOG: {
3293                 struct kvm_dirty_log log;
3294
3295                 r = -EFAULT;
3296                 if (copy_from_user(&log, argp, sizeof(log)))
3297                         goto out;
3298                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3299                 break;
3300         }
3301 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
3302         case KVM_CLEAR_DIRTY_LOG: {
3303                 struct kvm_clear_dirty_log log;
3304
3305                 r = -EFAULT;
3306                 if (copy_from_user(&log, argp, sizeof(log)))
3307                         goto out;
3308                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
3309                 break;
3310         }
3311 #endif
3312 #ifdef CONFIG_KVM_MMIO
3313         case KVM_REGISTER_COALESCED_MMIO: {
3314                 struct kvm_coalesced_mmio_zone zone;
3315
3316                 r = -EFAULT;
3317                 if (copy_from_user(&zone, argp, sizeof(zone)))
3318                         goto out;
3319                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3320                 break;
3321         }
3322         case KVM_UNREGISTER_COALESCED_MMIO: {
3323                 struct kvm_coalesced_mmio_zone zone;
3324
3325                 r = -EFAULT;
3326                 if (copy_from_user(&zone, argp, sizeof(zone)))
3327                         goto out;
3328                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3329                 break;
3330         }
3331 #endif
3332         case KVM_IRQFD: {
3333                 struct kvm_irqfd data;
3334
3335                 r = -EFAULT;
3336                 if (copy_from_user(&data, argp, sizeof(data)))
3337                         goto out;
3338                 r = kvm_irqfd(kvm, &data);
3339                 break;
3340         }
3341         case KVM_IOEVENTFD: {
3342                 struct kvm_ioeventfd data;
3343
3344                 r = -EFAULT;
3345                 if (copy_from_user(&data, argp, sizeof(data)))
3346                         goto out;
3347                 r = kvm_ioeventfd(kvm, &data);
3348                 break;
3349         }
3350 #ifdef CONFIG_HAVE_KVM_MSI
3351         case KVM_SIGNAL_MSI: {
3352                 struct kvm_msi msi;
3353
3354                 r = -EFAULT;
3355                 if (copy_from_user(&msi, argp, sizeof(msi)))
3356                         goto out;
3357                 r = kvm_send_userspace_msi(kvm, &msi);
3358                 break;
3359         }
3360 #endif
3361 #ifdef __KVM_HAVE_IRQ_LINE
3362         case KVM_IRQ_LINE_STATUS:
3363         case KVM_IRQ_LINE: {
3364                 struct kvm_irq_level irq_event;
3365
3366                 r = -EFAULT;
3367                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3368                         goto out;
3369
3370                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3371                                         ioctl == KVM_IRQ_LINE_STATUS);
3372                 if (r)
3373                         goto out;
3374
3375                 r = -EFAULT;
3376                 if (ioctl == KVM_IRQ_LINE_STATUS) {
3377                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3378                                 goto out;
3379                 }
3380
3381                 r = 0;
3382                 break;
3383         }
3384 #endif
3385 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3386         case KVM_SET_GSI_ROUTING: {
3387                 struct kvm_irq_routing routing;
3388                 struct kvm_irq_routing __user *urouting;
3389                 struct kvm_irq_routing_entry *entries = NULL;
3390
3391                 r = -EFAULT;
3392                 if (copy_from_user(&routing, argp, sizeof(routing)))
3393                         goto out;
3394                 r = -EINVAL;
3395                 if (!kvm_arch_can_set_irq_routing(kvm))
3396                         goto out;
3397                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
3398                         goto out;
3399                 if (routing.flags)
3400                         goto out;
3401                 if (routing.nr) {
3402                         r = -ENOMEM;
3403                         entries = vmalloc(array_size(sizeof(*entries),
3404                                                      routing.nr));
3405                         if (!entries)
3406                                 goto out;
3407                         r = -EFAULT;
3408                         urouting = argp;
3409                         if (copy_from_user(entries, urouting->entries,
3410                                            routing.nr * sizeof(*entries)))
3411                                 goto out_free_irq_routing;
3412                 }
3413                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
3414                                         routing.flags);
3415 out_free_irq_routing:
3416                 vfree(entries);
3417                 break;
3418         }
3419 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3420         case KVM_CREATE_DEVICE: {
3421                 struct kvm_create_device cd;
3422
3423                 r = -EFAULT;
3424                 if (copy_from_user(&cd, argp, sizeof(cd)))
3425                         goto out;
3426
3427                 r = kvm_ioctl_create_device(kvm, &cd);
3428                 if (r)
3429                         goto out;
3430
3431                 r = -EFAULT;
3432                 if (copy_to_user(argp, &cd, sizeof(cd)))
3433                         goto out;
3434
3435                 r = 0;
3436                 break;
3437         }
3438         case KVM_CHECK_EXTENSION:
3439                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3440                 break;
3441         default:
3442                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3443         }
3444 out:
3445         return r;
3446 }
3447
3448 #ifdef CONFIG_KVM_COMPAT
3449 struct compat_kvm_dirty_log {
3450         __u32 slot;
3451         __u32 padding1;
3452         union {
3453                 compat_uptr_t dirty_bitmap; /* one bit per page */
3454                 __u64 padding2;
3455         };
3456 };
3457
3458 static long kvm_vm_compat_ioctl(struct file *filp,
3459                            unsigned int ioctl, unsigned long arg)
3460 {
3461         struct kvm *kvm = filp->private_data;
3462         int r;
3463
3464         if (kvm->mm != current->mm)
3465                 return -EIO;
3466         switch (ioctl) {
3467         case KVM_GET_DIRTY_LOG: {
3468                 struct compat_kvm_dirty_log compat_log;
3469                 struct kvm_dirty_log log;
3470
3471                 if (copy_from_user(&compat_log, (void __user *)arg,
3472                                    sizeof(compat_log)))
3473                         return -EFAULT;
3474                 log.slot         = compat_log.slot;
3475                 log.padding1     = compat_log.padding1;
3476                 log.padding2     = compat_log.padding2;
3477                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3478
3479                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3480                 break;
3481         }
3482         default:
3483                 r = kvm_vm_ioctl(filp, ioctl, arg);
3484         }
3485         return r;
3486 }
3487 #endif
3488
3489 static struct file_operations kvm_vm_fops = {
3490         .release        = kvm_vm_release,
3491         .unlocked_ioctl = kvm_vm_ioctl,
3492         .llseek         = noop_llseek,
3493         KVM_COMPAT(kvm_vm_compat_ioctl),
3494 };
3495
3496 static int kvm_dev_ioctl_create_vm(unsigned long type)
3497 {
3498         int r;
3499         struct kvm *kvm;
3500         struct file *file;
3501
3502         kvm = kvm_create_vm(type);
3503         if (IS_ERR(kvm))
3504                 return PTR_ERR(kvm);
3505 #ifdef CONFIG_KVM_MMIO
3506         r = kvm_coalesced_mmio_init(kvm);
3507         if (r < 0)
3508                 goto put_kvm;
3509 #endif
3510         r = get_unused_fd_flags(O_CLOEXEC);
3511         if (r < 0)
3512                 goto put_kvm;
3513
3514         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3515         if (IS_ERR(file)) {
3516                 put_unused_fd(r);
3517                 r = PTR_ERR(file);
3518                 goto put_kvm;
3519         }
3520
3521         /*
3522          * Don't call kvm_put_kvm anymore at this point; file->f_op is
3523          * already set, with ->release() being kvm_vm_release().  In error
3524          * cases it will be called by the final fput(file) and will take
3525          * care of doing kvm_put_kvm(kvm).
3526          */
3527         if (kvm_create_vm_debugfs(kvm, r) < 0) {
3528                 put_unused_fd(r);
3529                 fput(file);
3530                 return -ENOMEM;
3531         }
3532         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3533
3534         fd_install(r, file);
3535         return r;
3536
3537 put_kvm:
3538         kvm_put_kvm(kvm);
3539         return r;
3540 }
3541
3542 static long kvm_dev_ioctl(struct file *filp,
3543                           unsigned int ioctl, unsigned long arg)
3544 {
3545         long r = -EINVAL;
3546
3547         switch (ioctl) {
3548         case KVM_GET_API_VERSION:
3549                 if (arg)
3550                         goto out;
3551                 r = KVM_API_VERSION;
3552                 break;
3553         case KVM_CREATE_VM:
3554                 r = kvm_dev_ioctl_create_vm(arg);
3555                 break;
3556         case KVM_CHECK_EXTENSION:
3557                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3558                 break;
3559         case KVM_GET_VCPU_MMAP_SIZE:
3560                 if (arg)
3561                         goto out;
3562                 r = PAGE_SIZE;     /* struct kvm_run */
3563 #ifdef CONFIG_X86
3564                 r += PAGE_SIZE;    /* pio data page */
3565 #endif
3566 #ifdef CONFIG_KVM_MMIO
3567                 r += PAGE_SIZE;    /* coalesced mmio ring page */
3568 #endif
3569                 break;
3570         case KVM_TRACE_ENABLE:
3571         case KVM_TRACE_PAUSE:
3572         case KVM_TRACE_DISABLE:
3573                 r = -EOPNOTSUPP;
3574                 break;
3575         default:
3576                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
3577         }
3578 out:
3579         return r;
3580 }
3581
3582 static struct file_operations kvm_chardev_ops = {
3583         .unlocked_ioctl = kvm_dev_ioctl,
3584         .llseek         = noop_llseek,
3585         KVM_COMPAT(kvm_dev_ioctl),
3586 };
3587
3588 static struct miscdevice kvm_dev = {
3589         KVM_MINOR,
3590         "kvm",
3591         &kvm_chardev_ops,
3592 };
3593
3594 static void hardware_enable_nolock(void *junk)
3595 {
3596         int cpu = raw_smp_processor_id();
3597         int r;
3598
3599         if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3600                 return;
3601
3602         cpumask_set_cpu(cpu, cpus_hardware_enabled);
3603
3604         r = kvm_arch_hardware_enable();
3605
3606         if (r) {
3607                 cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3608                 atomic_inc(&hardware_enable_failed);
3609                 pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3610         }
3611 }
3612
3613 static int kvm_starting_cpu(unsigned int cpu)
3614 {
3615         raw_spin_lock(&kvm_count_lock);
3616         if (kvm_usage_count)
3617                 hardware_enable_nolock(NULL);
3618         raw_spin_unlock(&kvm_count_lock);
3619         return 0;
3620 }
3621
3622 static void hardware_disable_nolock(void *junk)
3623 {
3624         int cpu = raw_smp_processor_id();
3625
3626         if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3627                 return;
3628         cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3629         kvm_arch_hardware_disable();
3630 }
3631
3632 static int kvm_dying_cpu(unsigned int cpu)
3633 {
3634         raw_spin_lock(&kvm_count_lock);
3635         if (kvm_usage_count)
3636                 hardware_disable_nolock(NULL);
3637         raw_spin_unlock(&kvm_count_lock);
3638         return 0;
3639 }
3640
3641 static void hardware_disable_all_nolock(void)
3642 {
3643         BUG_ON(!kvm_usage_count);
3644
3645         kvm_usage_count--;
3646         if (!kvm_usage_count)
3647                 on_each_cpu(hardware_disable_nolock, NULL, 1);
3648 }
3649
3650 static void hardware_disable_all(void)
3651 {
3652         raw_spin_lock(&kvm_count_lock);
3653         hardware_disable_all_nolock();
3654         raw_spin_unlock(&kvm_count_lock);
3655 }
3656
3657 static int hardware_enable_all(void)
3658 {
3659         int r = 0;
3660
3661         raw_spin_lock(&kvm_count_lock);
3662
3663         kvm_usage_count++;
3664         if (kvm_usage_count == 1) {
3665                 atomic_set(&hardware_enable_failed, 0);
3666                 on_each_cpu(hardware_enable_nolock, NULL, 1);
3667
3668                 if (atomic_read(&hardware_enable_failed)) {
3669                         hardware_disable_all_nolock();
3670                         r = -EBUSY;
3671                 }
3672         }
3673
3674         raw_spin_unlock(&kvm_count_lock);
3675
3676         return r;
3677 }
3678
3679 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3680                       void *v)
3681 {
3682         /*
3683          * Some (well, at least mine) BIOSes hang on reboot if
3684          * in vmx root mode.
3685          *
3686          * And Intel TXT required VMX off for all cpu when system shutdown.
3687          */
3688         pr_info("kvm: exiting hardware virtualization\n");
3689         kvm_rebooting = true;
3690         on_each_cpu(hardware_disable_nolock, NULL, 1);
3691         return NOTIFY_OK;
3692 }
3693
3694 static struct notifier_block kvm_reboot_notifier = {
3695         .notifier_call = kvm_reboot,
3696         .priority = 0,
3697 };
3698
3699 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3700 {
3701         int i;
3702
3703         for (i = 0; i < bus->dev_count; i++) {
3704                 struct kvm_io_device *pos = bus->range[i].dev;
3705
3706                 kvm_iodevice_destructor(pos);
3707         }
3708         kfree(bus);
3709 }
3710
3711 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3712                                  const struct kvm_io_range *r2)
3713 {
3714         gpa_t addr1 = r1->addr;
3715         gpa_t addr2 = r2->addr;
3716
3717         if (addr1 < addr2)
3718                 return -1;
3719
3720         /* If r2->len == 0, match the exact address.  If r2->len != 0,
3721          * accept any overlapping write.  Any order is acceptable for
3722          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3723          * we process all of them.
3724          */
3725         if (r2->len) {
3726                 addr1 += r1->len;
3727                 addr2 += r2->len;
3728         }
3729
3730         if (addr1 > addr2)
3731                 return 1;
3732
3733         return 0;
3734 }
3735
3736 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3737 {
3738         return kvm_io_bus_cmp(p1, p2);
3739 }
3740
3741 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3742                              gpa_t addr, int len)
3743 {
3744         struct kvm_io_range *range, key;
3745         int off;
3746
3747         key = (struct kvm_io_range) {
3748                 .addr = addr,
3749                 .len = len,
3750         };
3751
3752         range = bsearch(&key, bus->range, bus->dev_count,
3753                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3754         if (range == NULL)
3755                 return -ENOENT;
3756
3757         off = range - bus->range;
3758
3759         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3760                 off--;
3761
3762         return off;
3763 }
3764
3765 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3766                               struct kvm_io_range *range, const void *val)
3767 {
3768         int idx;
3769
3770         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3771         if (idx < 0)
3772                 return -EOPNOTSUPP;
3773
3774         while (idx < bus->dev_count &&
3775                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3776                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3777                                         range->len, val))
3778                         return idx;
3779                 idx++;
3780         }
3781
3782         return -EOPNOTSUPP;
3783 }
3784
3785 /* kvm_io_bus_write - called under kvm->slots_lock */
3786 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3787                      int len, const void *val)
3788 {
3789         struct kvm_io_bus *bus;
3790         struct kvm_io_range range;
3791         int r;
3792
3793         range = (struct kvm_io_range) {
3794                 .addr = addr,
3795                 .len = len,
3796         };
3797
3798         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3799         if (!bus)
3800                 return -ENOMEM;
3801         r = __kvm_io_bus_write(vcpu, bus, &range, val);
3802         return r < 0 ? r : 0;
3803 }
3804 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3805
3806 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3807 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3808                             gpa_t addr, int len, const void *val, long cookie)
3809 {
3810         struct kvm_io_bus *bus;
3811         struct kvm_io_range range;
3812
3813         range = (struct kvm_io_range) {
3814                 .addr = addr,
3815                 .len = len,
3816         };
3817
3818         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3819         if (!bus)
3820                 return -ENOMEM;
3821
3822         /* First try the device referenced by cookie. */
3823         if ((cookie >= 0) && (cookie < bus->dev_count) &&
3824             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3825                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3826                                         val))
3827                         return cookie;
3828
3829         /*
3830          * cookie contained garbage; fall back to search and return the
3831          * correct cookie value.
3832          */
3833         return __kvm_io_bus_write(vcpu, bus, &range, val);
3834 }
3835
3836 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3837                              struct kvm_io_range *range, void *val)
3838 {
3839         int idx;
3840
3841         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3842         if (idx < 0)
3843                 return -EOPNOTSUPP;
3844
3845         while (idx < bus->dev_count &&
3846                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3847                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3848                                        range->len, val))
3849                         return idx;
3850                 idx++;
3851         }
3852
3853         return -EOPNOTSUPP;
3854 }
3855
3856 /* kvm_io_bus_read - called under kvm->slots_lock */
3857 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3858                     int len, void *val)
3859 {
3860         struct kvm_io_bus *bus;
3861         struct kvm_io_range range;
3862         int r;
3863
3864         range = (struct kvm_io_range) {
3865                 .addr = addr,
3866                 .len = len,
3867         };
3868
3869         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3870         if (!bus)
3871                 return -ENOMEM;
3872         r = __kvm_io_bus_read(vcpu, bus, &range, val);
3873         return r < 0 ? r : 0;
3874 }
3875
3876 /* Caller must hold slots_lock. */
3877 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3878                             int len, struct kvm_io_device *dev)
3879 {
3880         int i;
3881         struct kvm_io_bus *new_bus, *bus;
3882         struct kvm_io_range range;
3883
3884         bus = kvm_get_bus(kvm, bus_idx);
3885         if (!bus)
3886                 return -ENOMEM;
3887
3888         /* exclude ioeventfd which is limited by maximum fd */
3889         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3890                 return -ENOSPC;
3891
3892         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
3893                           GFP_KERNEL_ACCOUNT);
3894         if (!new_bus)
3895                 return -ENOMEM;
3896
3897         range = (struct kvm_io_range) {
3898                 .addr = addr,
3899                 .len = len,
3900                 .dev = dev,
3901         };
3902
3903         for (i = 0; i < bus->dev_count; i++)
3904                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3905                         break;
3906
3907         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3908         new_bus->dev_count++;
3909         new_bus->range[i] = range;
3910         memcpy(new_bus->range + i + 1, bus->range + i,
3911                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
3912         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3913         synchronize_srcu_expedited(&kvm->srcu);
3914         kfree(bus);
3915
3916         return 0;
3917 }
3918
3919 /* Caller must hold slots_lock. */
3920 void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3921                                struct kvm_io_device *dev)
3922 {
3923         int i;
3924         struct kvm_io_bus *new_bus, *bus;
3925
3926         bus = kvm_get_bus(kvm, bus_idx);
3927         if (!bus)
3928                 return;
3929
3930         for (i = 0; i < bus->dev_count; i++)
3931                 if (bus->range[i].dev == dev) {
3932                         break;
3933                 }
3934
3935         if (i == bus->dev_count)
3936                 return;
3937
3938         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
3939                           GFP_KERNEL_ACCOUNT);
3940         if (!new_bus)  {
3941                 pr_err("kvm: failed to shrink bus, removing it completely\n");
3942                 goto broken;
3943         }
3944
3945         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3946         new_bus->dev_count--;
3947         memcpy(new_bus->range + i, bus->range + i + 1,
3948                (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3949
3950 broken:
3951         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3952         synchronize_srcu_expedited(&kvm->srcu);
3953         kfree(bus);
3954         return;
3955 }
3956
3957 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3958                                          gpa_t addr)
3959 {
3960         struct kvm_io_bus *bus;
3961         int dev_idx, srcu_idx;
3962         struct kvm_io_device *iodev = NULL;
3963
3964         srcu_idx = srcu_read_lock(&kvm->srcu);
3965
3966         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3967         if (!bus)
3968                 goto out_unlock;
3969
3970         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3971         if (dev_idx < 0)
3972                 goto out_unlock;
3973
3974         iodev = bus->range[dev_idx].dev;
3975
3976 out_unlock:
3977         srcu_read_unlock(&kvm->srcu, srcu_idx);
3978
3979         return iodev;
3980 }
3981 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3982
3983 static int kvm_debugfs_open(struct inode *inode, struct file *file,
3984                            int (*get)(void *, u64 *), int (*set)(void *, u64),
3985                            const char *fmt)
3986 {
3987         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3988                                           inode->i_private;
3989
3990         /* The debugfs files are a reference to the kvm struct which
3991          * is still valid when kvm_destroy_vm is called.
3992          * To avoid the race between open and the removal of the debugfs
3993          * directory we test against the users count.
3994          */
3995         if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3996                 return -ENOENT;
3997
3998         if (simple_attr_open(inode, file, get,
3999                     KVM_DBGFS_GET_MODE(stat_data->dbgfs_item) & 0222
4000                     ? set : NULL,
4001                     fmt)) {
4002                 kvm_put_kvm(stat_data->kvm);
4003                 return -ENOMEM;
4004         }
4005
4006         return 0;
4007 }
4008
4009 static int kvm_debugfs_release(struct inode *inode, struct file *file)
4010 {
4011         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
4012                                           inode->i_private;
4013
4014         simple_attr_release(inode, file);
4015         kvm_put_kvm(stat_data->kvm);
4016
4017         return 0;
4018 }
4019
4020 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
4021 {
4022         *val = *(ulong *)((void *)kvm + offset);
4023
4024         return 0;
4025 }
4026
4027 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
4028 {
4029         *(ulong *)((void *)kvm + offset) = 0;
4030
4031         return 0;
4032 }
4033
4034 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
4035 {
4036         int i;
4037         struct kvm_vcpu *vcpu;
4038
4039         *val = 0;
4040
4041         kvm_for_each_vcpu(i, vcpu, kvm)
4042                 *val += *(u64 *)((void *)vcpu + offset);
4043
4044         return 0;
4045 }
4046
4047 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
4048 {
4049         int i;
4050         struct kvm_vcpu *vcpu;
4051
4052         kvm_for_each_vcpu(i, vcpu, kvm)
4053                 *(u64 *)((void *)vcpu + offset) = 0;
4054
4055         return 0;
4056 }
4057
4058 static int kvm_stat_data_get(void *data, u64 *val)
4059 {
4060         int r = -EFAULT;
4061         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4062
4063         switch (stat_data->dbgfs_item->kind) {
4064         case KVM_STAT_VM:
4065                 r = kvm_get_stat_per_vm(stat_data->kvm,
4066                                         stat_data->dbgfs_item->offset, val);
4067                 break;
4068         case KVM_STAT_VCPU:
4069                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
4070                                           stat_data->dbgfs_item->offset, val);
4071                 break;
4072         }
4073
4074         return r;
4075 }
4076
4077 static int kvm_stat_data_clear(void *data, u64 val)
4078 {
4079         int r = -EFAULT;
4080         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
4081
4082         if (val)
4083                 return -EINVAL;
4084
4085         switch (stat_data->dbgfs_item->kind) {
4086         case KVM_STAT_VM:
4087                 r = kvm_clear_stat_per_vm(stat_data->kvm,
4088                                           stat_data->dbgfs_item->offset);
4089                 break;
4090         case KVM_STAT_VCPU:
4091                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
4092                                             stat_data->dbgfs_item->offset);
4093                 break;
4094         }
4095
4096         return r;
4097 }
4098
4099 static int kvm_stat_data_open(struct inode *inode, struct file *file)
4100 {
4101         __simple_attr_check_format("%llu\n", 0ull);
4102         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
4103                                 kvm_stat_data_clear, "%llu\n");
4104 }
4105
4106 static const struct file_operations stat_fops_per_vm = {
4107         .owner = THIS_MODULE,
4108         .open = kvm_stat_data_open,
4109         .release = kvm_debugfs_release,
4110         .read = simple_attr_read,
4111         .write = simple_attr_write,
4112         .llseek = no_llseek,
4113 };
4114
4115 static int vm_stat_get(void *_offset, u64 *val)
4116 {
4117         unsigned offset = (long)_offset;
4118         struct kvm *kvm;
4119         u64 tmp_val;
4120
4121         *val = 0;
4122         mutex_lock(&kvm_lock);
4123         list_for_each_entry(kvm, &vm_list, vm_list) {
4124                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
4125                 *val += tmp_val;
4126         }
4127         mutex_unlock(&kvm_lock);
4128         return 0;
4129 }
4130
4131 static int vm_stat_clear(void *_offset, u64 val)
4132 {
4133         unsigned offset = (long)_offset;
4134         struct kvm *kvm;
4135
4136         if (val)
4137                 return -EINVAL;
4138
4139         mutex_lock(&kvm_lock);
4140         list_for_each_entry(kvm, &vm_list, vm_list) {
4141                 kvm_clear_stat_per_vm(kvm, offset);
4142         }
4143         mutex_unlock(&kvm_lock);
4144
4145         return 0;
4146 }
4147
4148 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
4149
4150 static int vcpu_stat_get(void *_offset, u64 *val)
4151 {
4152         unsigned offset = (long)_offset;
4153         struct kvm *kvm;
4154         u64 tmp_val;
4155
4156         *val = 0;
4157         mutex_lock(&kvm_lock);
4158         list_for_each_entry(kvm, &vm_list, vm_list) {
4159                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
4160                 *val += tmp_val;
4161         }
4162         mutex_unlock(&kvm_lock);
4163         return 0;
4164 }
4165
4166 static int vcpu_stat_clear(void *_offset, u64 val)
4167 {
4168         unsigned offset = (long)_offset;
4169         struct kvm *kvm;
4170
4171         if (val)
4172                 return -EINVAL;
4173
4174         mutex_lock(&kvm_lock);
4175         list_for_each_entry(kvm, &vm_list, vm_list) {
4176                 kvm_clear_stat_per_vcpu(kvm, offset);
4177         }
4178         mutex_unlock(&kvm_lock);
4179
4180         return 0;
4181 }
4182
4183 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
4184                         "%llu\n");
4185
4186 static const struct file_operations *stat_fops[] = {
4187         [KVM_STAT_VCPU] = &vcpu_stat_fops,
4188         [KVM_STAT_VM]   = &vm_stat_fops,
4189 };
4190
4191 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
4192 {
4193         struct kobj_uevent_env *env;
4194         unsigned long long created, active;
4195
4196         if (!kvm_dev.this_device || !kvm)
4197                 return;
4198
4199         mutex_lock(&kvm_lock);
4200         if (type == KVM_EVENT_CREATE_VM) {
4201                 kvm_createvm_count++;
4202                 kvm_active_vms++;
4203         } else if (type == KVM_EVENT_DESTROY_VM) {
4204                 kvm_active_vms--;
4205         }
4206         created = kvm_createvm_count;
4207         active = kvm_active_vms;
4208         mutex_unlock(&kvm_lock);
4209
4210         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
4211         if (!env)
4212                 return;
4213
4214         add_uevent_var(env, "CREATED=%llu", created);
4215         add_uevent_var(env, "COUNT=%llu", active);
4216
4217         if (type == KVM_EVENT_CREATE_VM) {
4218                 add_uevent_var(env, "EVENT=create");
4219                 kvm->userspace_pid = task_pid_nr(current);
4220         } else if (type == KVM_EVENT_DESTROY_VM) {
4221                 add_uevent_var(env, "EVENT=destroy");
4222         }
4223         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
4224
4225         if (!IS_ERR_OR_NULL(kvm->debugfs_dentry)) {
4226                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
4227
4228                 if (p) {
4229                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
4230                         if (!IS_ERR(tmp))
4231                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
4232                         kfree(p);
4233                 }
4234         }
4235         /* no need for checks, since we are adding at most only 5 keys */
4236         env->envp[env->envp_idx++] = NULL;
4237         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
4238         kfree(env);
4239 }
4240
4241 static void kvm_init_debug(void)
4242 {
4243         struct kvm_stats_debugfs_item *p;
4244
4245         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
4246
4247         kvm_debugfs_num_entries = 0;
4248         for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
4249                 debugfs_create_file(p->name, KVM_DBGFS_GET_MODE(p),
4250                                     kvm_debugfs_dir, (void *)(long)p->offset,
4251                                     stat_fops[p->kind]);
4252         }
4253 }
4254
4255 static int kvm_suspend(void)
4256 {
4257         if (kvm_usage_count)
4258                 hardware_disable_nolock(NULL);
4259         return 0;
4260 }
4261
4262 static void kvm_resume(void)
4263 {
4264         if (kvm_usage_count) {
4265 #ifdef CONFIG_LOCKDEP
4266                 WARN_ON(lockdep_is_held(&kvm_count_lock));
4267 #endif
4268                 hardware_enable_nolock(NULL);
4269         }
4270 }
4271
4272 static struct syscore_ops kvm_syscore_ops = {
4273         .suspend = kvm_suspend,
4274         .resume = kvm_resume,
4275 };
4276
4277 static inline
4278 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
4279 {
4280         return container_of(pn, struct kvm_vcpu, preempt_notifier);
4281 }
4282
4283 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
4284 {
4285         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4286
4287         WRITE_ONCE(vcpu->preempted, false);
4288         WRITE_ONCE(vcpu->ready, false);
4289
4290         kvm_arch_sched_in(vcpu, cpu);
4291
4292         kvm_arch_vcpu_load(vcpu, cpu);
4293 }
4294
4295 static void kvm_sched_out(struct preempt_notifier *pn,
4296                           struct task_struct *next)
4297 {
4298         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
4299
4300         if (current->state == TASK_RUNNING) {
4301                 WRITE_ONCE(vcpu->preempted, true);
4302                 WRITE_ONCE(vcpu->ready, true);
4303         }
4304         kvm_arch_vcpu_put(vcpu);
4305 }
4306
4307 static void check_processor_compat(void *rtn)
4308 {
4309         *(int *)rtn = kvm_arch_check_processor_compat();
4310 }
4311
4312 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
4313                   struct module *module)
4314 {
4315         int r;
4316         int cpu;
4317
4318         r = kvm_arch_init(opaque);
4319         if (r)
4320                 goto out_fail;
4321
4322         /*
4323          * kvm_arch_init makes sure there's at most one caller
4324          * for architectures that support multiple implementations,
4325          * like intel and amd on x86.
4326          * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4327          * conflicts in case kvm is already setup for another implementation.
4328          */
4329         r = kvm_irqfd_init();
4330         if (r)
4331                 goto out_irqfd;
4332
4333         if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4334                 r = -ENOMEM;
4335                 goto out_free_0;
4336         }
4337
4338         r = kvm_arch_hardware_setup();
4339         if (r < 0)
4340                 goto out_free_1;
4341
4342         for_each_online_cpu(cpu) {
4343                 smp_call_function_single(cpu, check_processor_compat, &r, 1);
4344                 if (r < 0)
4345                         goto out_free_2;
4346         }
4347
4348         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4349                                       kvm_starting_cpu, kvm_dying_cpu);
4350         if (r)
4351                 goto out_free_2;
4352         register_reboot_notifier(&kvm_reboot_notifier);
4353
4354         /* A kmem cache lets us meet the alignment requirements of fx_save. */
4355         if (!vcpu_align)
4356                 vcpu_align = __alignof__(struct kvm_vcpu);
4357         kvm_vcpu_cache =
4358                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4359                                            SLAB_ACCOUNT,
4360                                            offsetof(struct kvm_vcpu, arch),
4361                                            sizeof_field(struct kvm_vcpu, arch),
4362                                            NULL);
4363         if (!kvm_vcpu_cache) {
4364                 r = -ENOMEM;
4365                 goto out_free_3;
4366         }
4367
4368         r = kvm_async_pf_init();
4369         if (r)
4370                 goto out_free;
4371
4372         kvm_chardev_ops.owner = module;
4373         kvm_vm_fops.owner = module;
4374         kvm_vcpu_fops.owner = module;
4375
4376         r = misc_register(&kvm_dev);
4377         if (r) {
4378                 pr_err("kvm: misc device register failed\n");
4379                 goto out_unreg;
4380         }
4381
4382         register_syscore_ops(&kvm_syscore_ops);
4383
4384         kvm_preempt_ops.sched_in = kvm_sched_in;
4385         kvm_preempt_ops.sched_out = kvm_sched_out;
4386
4387         kvm_init_debug();
4388
4389         r = kvm_vfio_ops_init();
4390         WARN_ON(r);
4391
4392         return 0;
4393
4394 out_unreg:
4395         kvm_async_pf_deinit();
4396 out_free:
4397         kmem_cache_destroy(kvm_vcpu_cache);
4398 out_free_3:
4399         unregister_reboot_notifier(&kvm_reboot_notifier);
4400         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4401 out_free_2:
4402         kvm_arch_hardware_unsetup();
4403 out_free_1:
4404         free_cpumask_var(cpus_hardware_enabled);
4405 out_free_0:
4406         kvm_irqfd_exit();
4407 out_irqfd:
4408         kvm_arch_exit();
4409 out_fail:
4410         return r;
4411 }
4412 EXPORT_SYMBOL_GPL(kvm_init);
4413
4414 void kvm_exit(void)
4415 {
4416         debugfs_remove_recursive(kvm_debugfs_dir);
4417         misc_deregister(&kvm_dev);
4418         kmem_cache_destroy(kvm_vcpu_cache);
4419         kvm_async_pf_deinit();
4420         unregister_syscore_ops(&kvm_syscore_ops);
4421         unregister_reboot_notifier(&kvm_reboot_notifier);
4422         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4423         on_each_cpu(hardware_disable_nolock, NULL, 1);
4424         kvm_arch_hardware_unsetup();
4425         kvm_arch_exit();
4426         kvm_irqfd_exit();
4427         free_cpumask_var(cpus_hardware_enabled);
4428         kvm_vfio_ops_exit();
4429 }
4430 EXPORT_SYMBOL_GPL(kvm_exit);
4431
4432 struct kvm_vm_worker_thread_context {
4433         struct kvm *kvm;
4434         struct task_struct *parent;
4435         struct completion init_done;
4436         kvm_vm_thread_fn_t thread_fn;
4437         uintptr_t data;
4438         int err;
4439 };
4440
4441 static int kvm_vm_worker_thread(void *context)
4442 {
4443         /*
4444          * The init_context is allocated on the stack of the parent thread, so
4445          * we have to locally copy anything that is needed beyond initialization
4446          */
4447         struct kvm_vm_worker_thread_context *init_context = context;
4448         struct kvm *kvm = init_context->kvm;
4449         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
4450         uintptr_t data = init_context->data;
4451         int err;
4452
4453         err = kthread_park(current);
4454         /* kthread_park(current) is never supposed to return an error */
4455         WARN_ON(err != 0);
4456         if (err)
4457                 goto init_complete;
4458
4459         err = cgroup_attach_task_all(init_context->parent, current);
4460         if (err) {
4461                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
4462                         __func__, err);
4463                 goto init_complete;
4464         }
4465
4466         set_user_nice(current, task_nice(init_context->parent));
4467
4468 init_complete:
4469         init_context->err = err;
4470         complete(&init_context->init_done);
4471         init_context = NULL;
4472
4473         if (err)
4474                 return err;
4475
4476         /* Wait to be woken up by the spawner before proceeding. */
4477         kthread_parkme();
4478
4479         if (!kthread_should_stop())
4480                 err = thread_fn(kvm, data);
4481
4482         return err;
4483 }
4484
4485 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
4486                                 uintptr_t data, const char *name,
4487                                 struct task_struct **thread_ptr)
4488 {
4489         struct kvm_vm_worker_thread_context init_context = {};
4490         struct task_struct *thread;
4491
4492         *thread_ptr = NULL;
4493         init_context.kvm = kvm;
4494         init_context.parent = current;
4495         init_context.thread_fn = thread_fn;
4496         init_context.data = data;
4497         init_completion(&init_context.init_done);
4498
4499         thread = kthread_run(kvm_vm_worker_thread, &init_context,
4500                              "%s-%d", name, task_pid_nr(current));
4501         if (IS_ERR(thread))
4502                 return PTR_ERR(thread);
4503
4504         /* kthread_run is never supposed to return NULL */
4505         WARN_ON(thread == NULL);
4506
4507         wait_for_completion(&init_context.init_done);
4508
4509         if (!init_context.err)
4510                 *thread_ptr = thread;
4511
4512         return init_context.err;
4513 }