/* * Generic OPP Interface * * Copyright (C) 2009-2010 Texas Instruments Incorporated. * Nishanth Menon * Romit Dasgupta * Kevin Hilman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include "opp.h" /* * The root of the list of all opp-tables. All opp_table structures branch off * from here, with each opp_table containing the list of opps it supports in * various states of availability. */ LIST_HEAD(opp_tables); /* Lock to allow exclusive modification to the device and opp lists */ DEFINE_MUTEX(opp_table_lock); #define opp_rcu_lockdep_assert() \ do { \ RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ !lockdep_is_held(&opp_table_lock), \ "Missing rcu_read_lock() or " \ "opp_table_lock protection"); \ } while (0) static struct opp_device *_find_opp_dev(const struct device *dev, struct opp_table *opp_table) { struct opp_device *opp_dev; list_for_each_entry(opp_dev, &opp_table->dev_list, node) if (opp_dev->dev == dev) return opp_dev; return NULL; } /** * _find_opp_table() - find opp_table struct using device pointer * @dev: device pointer used to lookup OPP table * * Search OPP table for one containing matching device. Does a RCU reader * operation to grab the pointer needed. * * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or * -EINVAL based on type of error. * * Locking: For readers, this function must be called under rcu_read_lock(). * opp_table is a RCU protected pointer, which means that opp_table is valid * as long as we are under RCU lock. * * For Writers, this function must be called with opp_table_lock held. */ struct opp_table *_find_opp_table(struct device *dev) { struct opp_table *opp_table; opp_rcu_lockdep_assert(); if (IS_ERR_OR_NULL(dev)) { pr_err("%s: Invalid parameters\n", __func__); return ERR_PTR(-EINVAL); } list_for_each_entry_rcu(opp_table, &opp_tables, node) if (_find_opp_dev(dev, opp_table)) return opp_table; return ERR_PTR(-ENODEV); } /** * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp * @opp: opp for which voltage has to be returned for * * Return: voltage in micro volt corresponding to the opp, else * return 0 * * This is useful only for devices with single power supply. * * Locking: This function must be called under rcu_read_lock(). opp is a rcu * protected pointer. This means that opp which could have been fetched by * opp_find_freq_{exact,ceil,floor} functions is valid as long as we are * under RCU lock. The pointer returned by the opp_find_freq family must be * used in the same section as the usage of this function with the pointer * prior to unlocking with rcu_read_unlock() to maintain the integrity of the * pointer. */ unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) { struct dev_pm_opp *tmp_opp; unsigned long v = 0; opp_rcu_lockdep_assert(); tmp_opp = rcu_dereference(opp); if (IS_ERR_OR_NULL(tmp_opp)) pr_err("%s: Invalid parameters\n", __func__); else v = tmp_opp->supplies[0].u_volt; return v; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); /** * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp * @opp: opp for which frequency has to be returned for * * Return: frequency in hertz corresponding to the opp, else * return 0 * * Locking: This function must be called under rcu_read_lock(). opp is a rcu * protected pointer. This means that opp which could have been fetched by * opp_find_freq_{exact,ceil,floor} functions is valid as long as we are * under RCU lock. The pointer returned by the opp_find_freq family must be * used in the same section as the usage of this function with the pointer * prior to unlocking with rcu_read_unlock() to maintain the integrity of the * pointer. */ unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) { struct dev_pm_opp *tmp_opp; unsigned long f = 0; opp_rcu_lockdep_assert(); tmp_opp = rcu_dereference(opp); if (IS_ERR_OR_NULL(tmp_opp) || !tmp_opp->available) pr_err("%s: Invalid parameters\n", __func__); else f = tmp_opp->rate; return f; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); /** * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not * @opp: opp for which turbo mode is being verified * * Turbo OPPs are not for normal use, and can be enabled (under certain * conditions) for short duration of times to finish high throughput work * quickly. Running on them for longer times may overheat the chip. * * Return: true if opp is turbo opp, else false. * * Locking: This function must be called under rcu_read_lock(). opp is a rcu * protected pointer. This means that opp which could have been fetched by * opp_find_freq_{exact,ceil,floor} functions is valid as long as we are * under RCU lock. The pointer returned by the opp_find_freq family must be * used in the same section as the usage of this function with the pointer * prior to unlocking with rcu_read_unlock() to maintain the integrity of the * pointer. */ bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) { struct dev_pm_opp *tmp_opp; opp_rcu_lockdep_assert(); tmp_opp = rcu_dereference(opp); if (IS_ERR_OR_NULL(tmp_opp) || !tmp_opp->available) { pr_err("%s: Invalid parameters\n", __func__); return false; } return tmp_opp->turbo; } EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); /** * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds * @dev: device for which we do this operation * * Return: This function returns the max clock latency in nanoseconds. * * Locking: This function takes rcu_read_lock(). */ unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) { struct opp_table *opp_table; unsigned long clock_latency_ns; rcu_read_lock(); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) clock_latency_ns = 0; else clock_latency_ns = opp_table->clock_latency_ns_max; rcu_read_unlock(); return clock_latency_ns; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); static int _get_regulator_count(struct device *dev) { struct opp_table *opp_table; int count; rcu_read_lock(); opp_table = _find_opp_table(dev); if (!IS_ERR(opp_table)) count = opp_table->regulator_count; else count = 0; rcu_read_unlock(); return count; } /** * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds * @dev: device for which we do this operation * * Return: This function returns the max voltage latency in nanoseconds. * * Locking: This function takes rcu_read_lock(). */ unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) { struct opp_table *opp_table; struct dev_pm_opp *opp; struct regulator *reg, **regulators; unsigned long latency_ns = 0; int ret, i, count; struct { unsigned long min; unsigned long max; } *uV; count = _get_regulator_count(dev); /* Regulator may not be required for the device */ if (!count) return 0; regulators = kmalloc_array(count, sizeof(*regulators), GFP_KERNEL); if (!regulators) return 0; uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); if (!uV) goto free_regulators; rcu_read_lock(); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { rcu_read_unlock(); goto free_uV; } memcpy(regulators, opp_table->regulators, count * sizeof(*regulators)); for (i = 0; i < count; i++) { uV[i].min = ~0; uV[i].max = 0; list_for_each_entry_rcu(opp, &opp_table->opp_list, node) { if (!opp->available) continue; if (opp->supplies[i].u_volt_min < uV[i].min) uV[i].min = opp->supplies[i].u_volt_min; if (opp->supplies[i].u_volt_max > uV[i].max) uV[i].max = opp->supplies[i].u_volt_max; } } rcu_read_unlock(); /* * The caller needs to ensure that opp_table (and hence the regulator) * isn't freed, while we are executing this routine. */ for (i = 0; reg = regulators[i], i < count; i++) { ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); if (ret > 0) latency_ns += ret * 1000; } free_uV: kfree(uV); free_regulators: kfree(regulators); return latency_ns; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); /** * dev_pm_opp_get_max_transition_latency() - Get max transition latency in * nanoseconds * @dev: device for which we do this operation * * Return: This function returns the max transition latency, in nanoseconds, to * switch from one OPP to other. * * Locking: This function takes rcu_read_lock(). */ unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) { return dev_pm_opp_get_max_volt_latency(dev) + dev_pm_opp_get_max_clock_latency(dev); } EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); /** * dev_pm_opp_get_suspend_opp() - Get suspend opp * @dev: device for which we do this operation * * Return: This function returns pointer to the suspend opp if it is * defined and available, otherwise it returns NULL. * * Locking: This function must be called under rcu_read_lock(). opp is a rcu * protected pointer. The reason for the same is that the opp pointer which is * returned will remain valid for use with opp_get_{voltage, freq} only while * under the locked area. The pointer returned must be used prior to unlocking * with rcu_read_unlock() to maintain the integrity of the pointer. */ struct dev_pm_opp *dev_pm_opp_get_suspend_opp(struct device *dev) { struct opp_table *opp_table; opp_rcu_lockdep_assert(); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table) || !opp_table->suspend_opp || !opp_table->suspend_opp->available) return NULL; return opp_table->suspend_opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp); /** * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table * @dev: device for which we do this operation * * Return: This function returns the number of available opps if there are any, * else returns 0 if none or the corresponding error value. * * Locking: This function takes rcu_read_lock(). */ int dev_pm_opp_get_opp_count(struct device *dev) { struct opp_table *opp_table; struct dev_pm_opp *temp_opp; int count = 0; rcu_read_lock(); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { count = PTR_ERR(opp_table); dev_err(dev, "%s: OPP table not found (%d)\n", __func__, count); goto out_unlock; } list_for_each_entry_rcu(temp_opp, &opp_table->opp_list, node) { if (temp_opp->available) count++; } out_unlock: rcu_read_unlock(); return count; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); /** * dev_pm_opp_find_freq_exact() - search for an exact frequency * @dev: device for which we do this operation * @freq: frequency to search for * @available: true/false - match for available opp * * Return: Searches for exact match in the opp table and returns pointer to the * matching opp if found, else returns ERR_PTR in case of error and should * be handled using IS_ERR. Error return values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * Note: available is a modifier for the search. if available=true, then the * match is for exact matching frequency and is available in the stored OPP * table. if false, the match is for exact frequency which is not available. * * This provides a mechanism to enable an opp which is not available currently * or the opposite as well. * * Locking: This function must be called under rcu_read_lock(). opp is a rcu * protected pointer. The reason for the same is that the opp pointer which is * returned will remain valid for use with opp_get_{voltage, freq} only while * under the locked area. The pointer returned must be used prior to unlocking * with rcu_read_unlock() to maintain the integrity of the pointer. */ struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, unsigned long freq, bool available) { struct opp_table *opp_table; struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); opp_rcu_lockdep_assert(); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { int r = PTR_ERR(opp_table); dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); return ERR_PTR(r); } list_for_each_entry_rcu(temp_opp, &opp_table->opp_list, node) { if (temp_opp->available == available && temp_opp->rate == freq) { opp = temp_opp; break; } } return opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, unsigned long *freq) { struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); list_for_each_entry_rcu(temp_opp, &opp_table->opp_list, node) { if (temp_opp->available && temp_opp->rate >= *freq) { opp = temp_opp; *freq = opp->rate; break; } } return opp; } /** * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq * @dev: device for which we do this operation * @freq: Start frequency * * Search for the matching ceil *available* OPP from a starting freq * for a device. * * Return: matching *opp and refreshes *freq accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * Locking: This function must be called under rcu_read_lock(). opp is a rcu * protected pointer. The reason for the same is that the opp pointer which is * returned will remain valid for use with opp_get_{voltage, freq} only while * under the locked area. The pointer returned must be used prior to unlocking * with rcu_read_unlock() to maintain the integrity of the pointer. */ struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, unsigned long *freq) { struct opp_table *opp_table; opp_rcu_lockdep_assert(); if (!dev || !freq) { dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); return ERR_PTR(-EINVAL); } opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return ERR_CAST(opp_table); return _find_freq_ceil(opp_table, freq); } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); /** * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq * @dev: device for which we do this operation * @freq: Start frequency * * Search for the matching floor *available* OPP from a starting freq * for a device. * * Return: matching *opp and refreshes *freq accordingly, else returns * ERR_PTR in case of error and should be handled using IS_ERR. Error return * values can be: * EINVAL: for bad pointer * ERANGE: no match found for search * ENODEV: if device not found in list of registered devices * * Locking: This function must be called under rcu_read_lock(). opp is a rcu * protected pointer. The reason for the same is that the opp pointer which is * returned will remain valid for use with opp_get_{voltage, freq} only while * under the locked area. The pointer returned must be used prior to unlocking * with rcu_read_unlock() to maintain the integrity of the pointer. */ struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, unsigned long *freq) { struct opp_table *opp_table; struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); opp_rcu_lockdep_assert(); if (!dev || !freq) { dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); return ERR_PTR(-EINVAL); } opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return ERR_CAST(opp_table); list_for_each_entry_rcu(temp_opp, &opp_table->opp_list, node) { if (temp_opp->available) { /* go to the next node, before choosing prev */ if (temp_opp->rate > *freq) break; else opp = temp_opp; } } if (!IS_ERR(opp)) *freq = opp->rate; return opp; } EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); /* * The caller needs to ensure that opp_table (and hence the clk) isn't freed, * while clk returned here is used. */ static struct clk *_get_opp_clk(struct device *dev) { struct opp_table *opp_table; struct clk *clk; rcu_read_lock(); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "%s: device opp doesn't exist\n", __func__); clk = ERR_CAST(opp_table); goto unlock; } clk = opp_table->clk; if (IS_ERR(clk)) dev_err(dev, "%s: No clock available for the device\n", __func__); unlock: rcu_read_unlock(); return clk; } static int _set_opp_voltage(struct device *dev, struct regulator *reg, struct dev_pm_opp_supply *supply) { int ret; /* Regulator not available for device */ if (IS_ERR(reg)) { dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, PTR_ERR(reg)); return 0; } dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, supply->u_volt_min, supply->u_volt, supply->u_volt_max); ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, supply->u_volt, supply->u_volt_max); if (ret) dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", __func__, supply->u_volt_min, supply->u_volt, supply->u_volt_max, ret); return ret; } static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, unsigned long old_freq, unsigned long freq) { int ret; ret = clk_set_rate(clk, freq); if (ret) { dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, ret); } return ret; } static int _generic_set_opp(struct dev_pm_set_opp_data *data) { struct dev_pm_opp_supply *old_supply = data->old_opp.supplies; struct dev_pm_opp_supply *new_supply = data->new_opp.supplies; unsigned long old_freq = data->old_opp.rate, freq = data->new_opp.rate; struct regulator *reg = data->regulators[0]; struct device *dev= data->dev; int ret; /* This function only supports single regulator per device */ if (WARN_ON(data->regulator_count > 1)) { dev_err(dev, "multiple regulators are not supported\n"); return -EINVAL; } /* Scaling up? Scale voltage before frequency */ if (freq > old_freq) { ret = _set_opp_voltage(dev, reg, new_supply); if (ret) goto restore_voltage; } /* Change frequency */ ret = _generic_set_opp_clk_only(dev, data->clk, old_freq, freq); if (ret) goto restore_voltage; /* Scaling down? Scale voltage after frequency */ if (freq < old_freq) { ret = _set_opp_voltage(dev, reg, new_supply); if (ret) goto restore_freq; } return 0; restore_freq: if (_generic_set_opp_clk_only(dev, data->clk, freq, old_freq)) dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", __func__, old_freq); restore_voltage: /* This shouldn't harm even if the voltages weren't updated earlier */ if (old_supply->u_volt) _set_opp_voltage(dev, reg, old_supply); return ret; } /** * dev_pm_opp_set_rate() - Configure new OPP based on frequency * @dev: device for which we do this operation * @target_freq: frequency to achieve * * This configures the power-supplies and clock source to the levels specified * by the OPP corresponding to the target_freq. * * Locking: This function takes rcu_read_lock(). */ int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) { struct opp_table *opp_table; unsigned long freq, old_freq; int (*set_opp)(struct dev_pm_set_opp_data *data); struct dev_pm_opp *old_opp, *opp; struct regulator **regulators; struct dev_pm_set_opp_data *data; struct clk *clk; int ret, size; if (unlikely(!target_freq)) { dev_err(dev, "%s: Invalid target frequency %lu\n", __func__, target_freq); return -EINVAL; } clk = _get_opp_clk(dev); if (IS_ERR(clk)) return PTR_ERR(clk); freq = clk_round_rate(clk, target_freq); if ((long)freq <= 0) freq = target_freq; old_freq = clk_get_rate(clk); /* Return early if nothing to do */ if (old_freq == freq) { dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", __func__, freq); return 0; } rcu_read_lock(); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "%s: device opp doesn't exist\n", __func__); rcu_read_unlock(); return PTR_ERR(opp_table); } old_opp = _find_freq_ceil(opp_table, &old_freq); if (IS_ERR(old_opp)) { dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", __func__, old_freq, PTR_ERR(old_opp)); } opp = _find_freq_ceil(opp_table, &freq); if (IS_ERR(opp)) { ret = PTR_ERR(opp); dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", __func__, freq, ret); rcu_read_unlock(); return ret; } dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, old_freq, freq); regulators = opp_table->regulators; /* Only frequency scaling */ if (!regulators) { rcu_read_unlock(); return _generic_set_opp_clk_only(dev, clk, old_freq, freq); } if (opp_table->set_opp) set_opp = opp_table->set_opp; else set_opp = _generic_set_opp; data = opp_table->set_opp_data; data->regulators = regulators; data->regulator_count = opp_table->regulator_count; data->clk = clk; data->dev = dev; data->old_opp.rate = old_freq; size = sizeof(*opp->supplies) * opp_table->regulator_count; if (IS_ERR(old_opp)) memset(data->old_opp.supplies, 0, size); else memcpy(data->old_opp.supplies, old_opp->supplies, size); data->new_opp.rate = freq; memcpy(data->new_opp.supplies, opp->supplies, size); rcu_read_unlock(); return set_opp(data); } EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); /* OPP-dev Helpers */ static void _kfree_opp_dev_rcu(struct rcu_head *head) { struct opp_device *opp_dev; opp_dev = container_of(head, struct opp_device, rcu_head); kfree_rcu(opp_dev, rcu_head); } static void _remove_opp_dev(struct opp_device *opp_dev, struct opp_table *opp_table) { opp_debug_unregister(opp_dev, opp_table); list_del(&opp_dev->node); call_srcu(&opp_table->srcu_head.srcu, &opp_dev->rcu_head, _kfree_opp_dev_rcu); } struct opp_device *_add_opp_dev(const struct device *dev, struct opp_table *opp_table) { struct opp_device *opp_dev; int ret; opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); if (!opp_dev) return NULL; /* Initialize opp-dev */ opp_dev->dev = dev; list_add_rcu(&opp_dev->node, &opp_table->dev_list); /* Create debugfs entries for the opp_table */ ret = opp_debug_register(opp_dev, opp_table); if (ret) dev_err(dev, "%s: Failed to register opp debugfs (%d)\n", __func__, ret); return opp_dev; } /** * _add_opp_table() - Find OPP table or allocate a new one * @dev: device for which we do this operation * * It tries to find an existing table first, if it couldn't find one, it * allocates a new OPP table and returns that. * * Return: valid opp_table pointer if success, else NULL. */ static struct opp_table *_add_opp_table(struct device *dev) { struct opp_table *opp_table; struct opp_device *opp_dev; int ret; /* Check for existing table for 'dev' first */ opp_table = _find_opp_table(dev); if (!IS_ERR(opp_table)) return opp_table; /* * Allocate a new OPP table. In the infrequent case where a new * device is needed to be added, we pay this penalty. */ opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); if (!opp_table) return NULL; INIT_LIST_HEAD(&opp_table->dev_list); opp_dev = _add_opp_dev(dev, opp_table); if (!opp_dev) { kfree(opp_table); return NULL; } _of_init_opp_table(opp_table, dev); /* Find clk for the device */ opp_table->clk = clk_get(dev, NULL); if (IS_ERR(opp_table->clk)) { ret = PTR_ERR(opp_table->clk); if (ret != -EPROBE_DEFER) dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); } srcu_init_notifier_head(&opp_table->srcu_head); INIT_LIST_HEAD(&opp_table->opp_list); /* Secure the device table modification */ list_add_rcu(&opp_table->node, &opp_tables); return opp_table; } /** * _kfree_device_rcu() - Free opp_table RCU handler * @head: RCU head */ static void _kfree_device_rcu(struct rcu_head *head) { struct opp_table *opp_table = container_of(head, struct opp_table, rcu_head); kfree_rcu(opp_table, rcu_head); } /** * _remove_opp_table() - Removes a OPP table * @opp_table: OPP table to be removed. * * Removes/frees OPP table if it doesn't contain any OPPs. */ static void _remove_opp_table(struct opp_table *opp_table) { struct opp_device *opp_dev; if (!list_empty(&opp_table->opp_list)) return; if (opp_table->supported_hw) return; if (opp_table->prop_name) return; if (opp_table->regulators) return; if (opp_table->set_opp) return; /* Release clk */ if (!IS_ERR(opp_table->clk)) clk_put(opp_table->clk); opp_dev = list_first_entry(&opp_table->dev_list, struct opp_device, node); _remove_opp_dev(opp_dev, opp_table); /* dev_list must be empty now */ WARN_ON(!list_empty(&opp_table->dev_list)); list_del_rcu(&opp_table->node); call_srcu(&opp_table->srcu_head.srcu, &opp_table->rcu_head, _kfree_device_rcu); } /** * _kfree_opp_rcu() - Free OPP RCU handler * @head: RCU head */ static void _kfree_opp_rcu(struct rcu_head *head) { struct dev_pm_opp *opp = container_of(head, struct dev_pm_opp, rcu_head); kfree_rcu(opp, rcu_head); } /** * _opp_remove() - Remove an OPP from a table definition * @opp_table: points back to the opp_table struct this opp belongs to * @opp: pointer to the OPP to remove * @notify: OPP_EVENT_REMOVE notification should be sent or not * * This function removes an opp definition from the opp table. * * Locking: The internal opp_table and opp structures are RCU protected. * It is assumed that the caller holds required mutex for an RCU updater * strategy. */ void _opp_remove(struct opp_table *opp_table, struct dev_pm_opp *opp, bool notify) { /* * Notify the changes in the availability of the operable * frequency/voltage list. */ if (notify) srcu_notifier_call_chain(&opp_table->srcu_head, OPP_EVENT_REMOVE, opp); opp_debug_remove_one(opp); list_del_rcu(&opp->node); call_srcu(&opp_table->srcu_head.srcu, &opp->rcu_head, _kfree_opp_rcu); _remove_opp_table(opp_table); } /** * dev_pm_opp_remove() - Remove an OPP from OPP table * @dev: device for which we do this operation * @freq: OPP to remove with matching 'freq' * * This function removes an opp from the opp table. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ void dev_pm_opp_remove(struct device *dev, unsigned long freq) { struct dev_pm_opp *opp; struct opp_table *opp_table; bool found = false; /* Hold our table modification lock here */ mutex_lock(&opp_table_lock); opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) goto unlock; list_for_each_entry(opp, &opp_table->opp_list, node) { if (opp->rate == freq) { found = true; break; } } if (!found) { dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", __func__, freq); goto unlock; } _opp_remove(opp_table, opp, true); unlock: mutex_unlock(&opp_table_lock); } EXPORT_SYMBOL_GPL(dev_pm_opp_remove); struct dev_pm_opp *_allocate_opp(struct device *dev, struct opp_table **opp_table) { struct dev_pm_opp *opp; int count, supply_size; struct opp_table *table; table = _add_opp_table(dev); if (!table) return NULL; /* Allocate space for at least one supply */ count = table->regulator_count ? table->regulator_count : 1; supply_size = sizeof(*opp->supplies) * count; /* allocate new OPP node and supplies structures */ opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); if (!opp) { kfree(table); return NULL; } /* Put the supplies at the end of the OPP structure as an empty array */ opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); INIT_LIST_HEAD(&opp->node); *opp_table = table; return opp; } static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, struct opp_table *opp_table) { struct regulator *reg; int i; for (i = 0; i < opp_table->regulator_count; i++) { reg = opp_table->regulators[i]; if (!regulator_is_supported_voltage(reg, opp->supplies[i].u_volt_min, opp->supplies[i].u_volt_max)) { pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", __func__, opp->supplies[i].u_volt_min, opp->supplies[i].u_volt_max); return false; } } return true; } int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, struct opp_table *opp_table) { struct dev_pm_opp *opp; struct list_head *head = &opp_table->opp_list; int ret; /* * Insert new OPP in order of increasing frequency and discard if * already present. * * Need to use &opp_table->opp_list in the condition part of the 'for' * loop, don't replace it with head otherwise it will become an infinite * loop. */ list_for_each_entry_rcu(opp, &opp_table->opp_list, node) { if (new_opp->rate > opp->rate) { head = &opp->node; continue; } if (new_opp->rate < opp->rate) break; /* Duplicate OPPs */ dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", __func__, opp->rate, opp->supplies[0].u_volt, opp->available, new_opp->rate, new_opp->supplies[0].u_volt, new_opp->available); /* Should we compare voltages for all regulators here ? */ return opp->available && new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? 0 : -EEXIST; } new_opp->opp_table = opp_table; list_add_rcu(&new_opp->node, head); ret = opp_debug_create_one(new_opp, opp_table); if (ret) dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n", __func__, ret); if (!_opp_supported_by_regulators(new_opp, opp_table)) { new_opp->available = false; dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", __func__, new_opp->rate); } return 0; } /** * _opp_add_v1() - Allocate a OPP based on v1 bindings. * @dev: device for which we do this operation * @freq: Frequency in Hz for this OPP * @u_volt: Voltage in uVolts for this OPP * @dynamic: Dynamically added OPPs. * * This function adds an opp definition to the opp table and returns status. * The opp is made available by default and it can be controlled using * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. * * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table * and freed by dev_pm_opp_of_remove_table. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. * * Return: * 0 On success OR * Duplicate OPPs (both freq and volt are same) and opp->available * -EEXIST Freq are same and volt are different OR * Duplicate OPPs (both freq and volt are same) and !opp->available * -ENOMEM Memory allocation failure */ int _opp_add_v1(struct device *dev, unsigned long freq, long u_volt, bool dynamic) { struct opp_table *opp_table; struct dev_pm_opp *new_opp; unsigned long tol; int ret; /* Hold our table modification lock here */ mutex_lock(&opp_table_lock); new_opp = _allocate_opp(dev, &opp_table); if (!new_opp) { ret = -ENOMEM; goto unlock; } /* populate the opp table */ new_opp->rate = freq; tol = u_volt * opp_table->voltage_tolerance_v1 / 100; new_opp->supplies[0].u_volt = u_volt; new_opp->supplies[0].u_volt_min = u_volt - tol; new_opp->supplies[0].u_volt_max = u_volt + tol; new_opp->available = true; new_opp->dynamic = dynamic; ret = _opp_add(dev, new_opp, opp_table); if (ret) goto free_opp; mutex_unlock(&opp_table_lock); /* * Notify the changes in the availability of the operable * frequency/voltage list. */ srcu_notifier_call_chain(&opp_table->srcu_head, OPP_EVENT_ADD, new_opp); return 0; free_opp: _opp_remove(opp_table, new_opp, false); unlock: mutex_unlock(&opp_table_lock); return ret; } /** * dev_pm_opp_set_supported_hw() - Set supported platforms * @dev: Device for which supported-hw has to be set. * @versions: Array of hierarchy of versions to match. * @count: Number of elements in the array. * * This is required only for the V2 bindings, and it enables a platform to * specify the hierarchy of versions it supports. OPP layer will then enable * OPPs, which are available for those versions, based on its 'opp-supported-hw' * property. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ int dev_pm_opp_set_supported_hw(struct device *dev, const u32 *versions, unsigned int count) { struct opp_table *opp_table; int ret = 0; /* Hold our table modification lock here */ mutex_lock(&opp_table_lock); opp_table = _add_opp_table(dev); if (!opp_table) { ret = -ENOMEM; goto unlock; } /* Make sure there are no concurrent readers while updating opp_table */ WARN_ON(!list_empty(&opp_table->opp_list)); /* Do we already have a version hierarchy associated with opp_table? */ if (opp_table->supported_hw) { dev_err(dev, "%s: Already have supported hardware list\n", __func__); ret = -EBUSY; goto err; } opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), GFP_KERNEL); if (!opp_table->supported_hw) { ret = -ENOMEM; goto err; } opp_table->supported_hw_count = count; mutex_unlock(&opp_table_lock); return 0; err: _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); /** * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw * @dev: Device for which supported-hw has to be put. * * This is required only for the V2 bindings, and is called for a matching * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure * will not be freed. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ void dev_pm_opp_put_supported_hw(struct device *dev) { struct opp_table *opp_table; /* Hold our table modification lock here */ mutex_lock(&opp_table_lock); /* Check for existing table for 'dev' first */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "Failed to find opp_table: %ld\n", PTR_ERR(opp_table)); goto unlock; } /* Make sure there are no concurrent readers while updating opp_table */ WARN_ON(!list_empty(&opp_table->opp_list)); if (!opp_table->supported_hw) { dev_err(dev, "%s: Doesn't have supported hardware list\n", __func__); goto unlock; } kfree(opp_table->supported_hw); opp_table->supported_hw = NULL; opp_table->supported_hw_count = 0; /* Try freeing opp_table if this was the last blocking resource */ _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); } EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); /** * dev_pm_opp_set_prop_name() - Set prop-extn name * @dev: Device for which the prop-name has to be set. * @name: name to postfix to properties. * * This is required only for the V2 bindings, and it enables a platform to * specify the extn to be used for certain property names. The properties to * which the extension will apply are opp-microvolt and opp-microamp. OPP core * should postfix the property name with - while looking for them. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ int dev_pm_opp_set_prop_name(struct device *dev, const char *name) { struct opp_table *opp_table; int ret = 0; /* Hold our table modification lock here */ mutex_lock(&opp_table_lock); opp_table = _add_opp_table(dev); if (!opp_table) { ret = -ENOMEM; goto unlock; } /* Make sure there are no concurrent readers while updating opp_table */ WARN_ON(!list_empty(&opp_table->opp_list)); /* Do we already have a prop-name associated with opp_table? */ if (opp_table->prop_name) { dev_err(dev, "%s: Already have prop-name %s\n", __func__, opp_table->prop_name); ret = -EBUSY; goto err; } opp_table->prop_name = kstrdup(name, GFP_KERNEL); if (!opp_table->prop_name) { ret = -ENOMEM; goto err; } mutex_unlock(&opp_table_lock); return 0; err: _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); /** * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name * @dev: Device for which the prop-name has to be put. * * This is required only for the V2 bindings, and is called for a matching * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure * will not be freed. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ void dev_pm_opp_put_prop_name(struct device *dev) { struct opp_table *opp_table; /* Hold our table modification lock here */ mutex_lock(&opp_table_lock); /* Check for existing table for 'dev' first */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "Failed to find opp_table: %ld\n", PTR_ERR(opp_table)); goto unlock; } /* Make sure there are no concurrent readers while updating opp_table */ WARN_ON(!list_empty(&opp_table->opp_list)); if (!opp_table->prop_name) { dev_err(dev, "%s: Doesn't have a prop-name\n", __func__); goto unlock; } kfree(opp_table->prop_name); opp_table->prop_name = NULL; /* Try freeing opp_table if this was the last blocking resource */ _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); } EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); static int _allocate_set_opp_data(struct opp_table *opp_table) { struct dev_pm_set_opp_data *data; int len, count = opp_table->regulator_count; if (WARN_ON(!count)) return -EINVAL; /* space for set_opp_data */ len = sizeof(*data); /* space for old_opp.supplies and new_opp.supplies */ len += 2 * sizeof(struct dev_pm_opp_supply) * count; data = kzalloc(len, GFP_KERNEL); if (!data) return -ENOMEM; data->old_opp.supplies = (void *)(data + 1); data->new_opp.supplies = data->old_opp.supplies + count; opp_table->set_opp_data = data; return 0; } static void _free_set_opp_data(struct opp_table *opp_table) { kfree(opp_table->set_opp_data); opp_table->set_opp_data = NULL; } /** * dev_pm_opp_set_regulators() - Set regulator names for the device * @dev: Device for which regulator name is being set. * @names: Array of pointers to the names of the regulator. * @count: Number of regulators. * * In order to support OPP switching, OPP layer needs to know the name of the * device's regulators, as the core would be required to switch voltages as * well. * * This must be called before any OPPs are initialized for the device. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ struct opp_table *dev_pm_opp_set_regulators(struct device *dev, const char * const names[], unsigned int count) { struct opp_table *opp_table; struct regulator *reg; int ret, i; mutex_lock(&opp_table_lock); opp_table = _add_opp_table(dev); if (!opp_table) { ret = -ENOMEM; goto unlock; } /* This should be called before OPPs are initialized */ if (WARN_ON(!list_empty(&opp_table->opp_list))) { ret = -EBUSY; goto err; } /* Already have regulators set */ if (opp_table->regulators) { ret = -EBUSY; goto err; } opp_table->regulators = kmalloc_array(count, sizeof(*opp_table->regulators), GFP_KERNEL); if (!opp_table->regulators) { ret = -ENOMEM; goto err; } for (i = 0; i < count; i++) { reg = regulator_get_optional(dev, names[i]); if (IS_ERR(reg)) { ret = PTR_ERR(reg); if (ret != -EPROBE_DEFER) dev_err(dev, "%s: no regulator (%s) found: %d\n", __func__, names[i], ret); goto free_regulators; } opp_table->regulators[i] = reg; } opp_table->regulator_count = count; /* Allocate block only once to pass to set_opp() routines */ ret = _allocate_set_opp_data(opp_table); if (ret) goto free_regulators; mutex_unlock(&opp_table_lock); return opp_table; free_regulators: while (i != 0) regulator_put(opp_table->regulators[--i]); kfree(opp_table->regulators); opp_table->regulators = NULL; opp_table->regulator_count = 0; err: _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); return ERR_PTR(ret); } EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); /** * dev_pm_opp_put_regulators() - Releases resources blocked for regulator * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ void dev_pm_opp_put_regulators(struct opp_table *opp_table) { int i; mutex_lock(&opp_table_lock); if (!opp_table->regulators) { pr_err("%s: Doesn't have regulators set\n", __func__); goto unlock; } /* Make sure there are no concurrent readers while updating opp_table */ WARN_ON(!list_empty(&opp_table->opp_list)); for (i = opp_table->regulator_count - 1; i >= 0; i--) regulator_put(opp_table->regulators[i]); _free_set_opp_data(opp_table); kfree(opp_table->regulators); opp_table->regulators = NULL; opp_table->regulator_count = 0; /* Try freeing opp_table if this was the last blocking resource */ _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); } EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); /** * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper * @dev: Device for which the helper is getting registered. * @set_opp: Custom set OPP helper. * * This is useful to support complex platforms (like platforms with multiple * regulators per device), instead of the generic OPP set rate helper. * * This must be called before any OPPs are initialized for the device. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ int dev_pm_opp_register_set_opp_helper(struct device *dev, int (*set_opp)(struct dev_pm_set_opp_data *data)) { struct opp_table *opp_table; int ret; if (!set_opp) return -EINVAL; mutex_lock(&opp_table_lock); opp_table = _add_opp_table(dev); if (!opp_table) { ret = -ENOMEM; goto unlock; } /* This should be called before OPPs are initialized */ if (WARN_ON(!list_empty(&opp_table->opp_list))) { ret = -EBUSY; goto err; } /* Already have custom set_opp helper */ if (WARN_ON(opp_table->set_opp)) { ret = -EBUSY; goto err; } opp_table->set_opp = set_opp; mutex_unlock(&opp_table_lock); return 0; err: _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); return ret; } EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); /** * dev_pm_opp_register_put_opp_helper() - Releases resources blocked for * set_opp helper * @dev: Device for which custom set_opp helper has to be cleared. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ void dev_pm_opp_register_put_opp_helper(struct device *dev) { struct opp_table *opp_table; mutex_lock(&opp_table_lock); /* Check for existing table for 'dev' first */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { dev_err(dev, "Failed to find opp_table: %ld\n", PTR_ERR(opp_table)); goto unlock; } if (!opp_table->set_opp) { dev_err(dev, "%s: Doesn't have custom set_opp helper set\n", __func__); goto unlock; } /* Make sure there are no concurrent readers while updating opp_table */ WARN_ON(!list_empty(&opp_table->opp_list)); opp_table->set_opp = NULL; /* Try freeing opp_table if this was the last blocking resource */ _remove_opp_table(opp_table); unlock: mutex_unlock(&opp_table_lock); } EXPORT_SYMBOL_GPL(dev_pm_opp_register_put_opp_helper); /** * dev_pm_opp_add() - Add an OPP table from a table definitions * @dev: device for which we do this operation * @freq: Frequency in Hz for this OPP * @u_volt: Voltage in uVolts for this OPP * * This function adds an opp definition to the opp table and returns status. * The opp is made available by default and it can be controlled using * dev_pm_opp_enable/disable functions. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. * * Return: * 0 On success OR * Duplicate OPPs (both freq and volt are same) and opp->available * -EEXIST Freq are same and volt are different OR * Duplicate OPPs (both freq and volt are same) and !opp->available * -ENOMEM Memory allocation failure */ int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) { return _opp_add_v1(dev, freq, u_volt, true); } EXPORT_SYMBOL_GPL(dev_pm_opp_add); /** * _opp_set_availability() - helper to set the availability of an opp * @dev: device for which we do this operation * @freq: OPP frequency to modify availability * @availability_req: availability status requested for this opp * * Set the availability of an OPP with an RCU operation, opp_{enable,disable} * share a common logic which is isolated here. * * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the * copy operation, returns 0 if no modification was done OR modification was * successful. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function internally uses RCU updater strategy with mutex locks to * keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex locking or synchronize_rcu() blocking calls cannot be used. */ static int _opp_set_availability(struct device *dev, unsigned long freq, bool availability_req) { struct opp_table *opp_table; struct dev_pm_opp *new_opp, *tmp_opp, *opp = ERR_PTR(-ENODEV); int r = 0; /* keep the node allocated */ new_opp = kmalloc(sizeof(*new_opp), GFP_KERNEL); if (!new_opp) return -ENOMEM; mutex_lock(&opp_table_lock); /* Find the opp_table */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { r = PTR_ERR(opp_table); dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); goto unlock; } /* Do we have the frequency? */ list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { if (tmp_opp->rate == freq) { opp = tmp_opp; break; } } if (IS_ERR(opp)) { r = PTR_ERR(opp); goto unlock; } /* Is update really needed? */ if (opp->available == availability_req) goto unlock; /* copy the old data over */ *new_opp = *opp; /* plug in new node */ new_opp->available = availability_req; list_replace_rcu(&opp->node, &new_opp->node); mutex_unlock(&opp_table_lock); call_srcu(&opp_table->srcu_head.srcu, &opp->rcu_head, _kfree_opp_rcu); /* Notify the change of the OPP availability */ if (availability_req) srcu_notifier_call_chain(&opp_table->srcu_head, OPP_EVENT_ENABLE, new_opp); else srcu_notifier_call_chain(&opp_table->srcu_head, OPP_EVENT_DISABLE, new_opp); return 0; unlock: mutex_unlock(&opp_table_lock); kfree(new_opp); return r; } /** * dev_pm_opp_enable() - Enable a specific OPP * @dev: device for which we do this operation * @freq: OPP frequency to enable * * Enables a provided opp. If the operation is valid, this returns 0, else the * corresponding error value. It is meant to be used for users an OPP available * after being temporarily made unavailable with dev_pm_opp_disable. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function indirectly uses RCU and mutex locks to keep the * integrity of the internal data structures. Callers should ensure that * this function is *NOT* called under RCU protection or in contexts where * mutex locking or synchronize_rcu() blocking calls cannot be used. * * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the * copy operation, returns 0 if no modification was done OR modification was * successful. */ int dev_pm_opp_enable(struct device *dev, unsigned long freq) { return _opp_set_availability(dev, freq, true); } EXPORT_SYMBOL_GPL(dev_pm_opp_enable); /** * dev_pm_opp_disable() - Disable a specific OPP * @dev: device for which we do this operation * @freq: OPP frequency to disable * * Disables a provided opp. If the operation is valid, this returns * 0, else the corresponding error value. It is meant to be a temporary * control by users to make this OPP not available until the circumstances are * right to make it available again (with a call to dev_pm_opp_enable). * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function indirectly uses RCU and mutex locks to keep the * integrity of the internal data structures. Callers should ensure that * this function is *NOT* called under RCU protection or in contexts where * mutex locking or synchronize_rcu() blocking calls cannot be used. * * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the * copy operation, returns 0 if no modification was done OR modification was * successful. */ int dev_pm_opp_disable(struct device *dev, unsigned long freq) { return _opp_set_availability(dev, freq, false); } EXPORT_SYMBOL_GPL(dev_pm_opp_disable); /** * dev_pm_opp_get_notifier() - find notifier_head of the device with opp * @dev: device pointer used to lookup OPP table. * * Return: pointer to notifier head if found, otherwise -ENODEV or * -EINVAL based on type of error casted as pointer. value must be checked * with IS_ERR to determine valid pointer or error result. * * Locking: This function must be called under rcu_read_lock(). opp_table is a * RCU protected pointer. The reason for the same is that the opp pointer which * is returned will remain valid for use with opp_get_{voltage, freq} only while * under the locked area. The pointer returned must be used prior to unlocking * with rcu_read_unlock() to maintain the integrity of the pointer. */ struct srcu_notifier_head *dev_pm_opp_get_notifier(struct device *dev) { struct opp_table *opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) return ERR_CAST(opp_table); /* matching type */ return &opp_table->srcu_head; } EXPORT_SYMBOL_GPL(dev_pm_opp_get_notifier); /* * Free OPPs either created using static entries present in DT or even the * dynamically added entries based on remove_all param. */ void _dev_pm_opp_remove_table(struct device *dev, bool remove_all) { struct opp_table *opp_table; struct dev_pm_opp *opp, *tmp; /* Hold our table modification lock here */ mutex_lock(&opp_table_lock); /* Check for existing table for 'dev' */ opp_table = _find_opp_table(dev); if (IS_ERR(opp_table)) { int error = PTR_ERR(opp_table); if (error != -ENODEV) WARN(1, "%s: opp_table: %d\n", IS_ERR_OR_NULL(dev) ? "Invalid device" : dev_name(dev), error); goto unlock; } /* Find if opp_table manages a single device */ if (list_is_singular(&opp_table->dev_list)) { /* Free static OPPs */ list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { if (remove_all || !opp->dynamic) _opp_remove(opp_table, opp, true); } } else { _remove_opp_dev(_find_opp_dev(dev, opp_table), opp_table); } unlock: mutex_unlock(&opp_table_lock); } /** * dev_pm_opp_remove_table() - Free all OPPs associated with the device * @dev: device pointer used to lookup OPP table. * * Free both OPPs created using static entries present in DT and the * dynamically added entries. * * Locking: The internal opp_table and opp structures are RCU protected. * Hence this function indirectly uses RCU updater strategy with mutex locks * to keep the integrity of the internal data structures. Callers should ensure * that this function is *NOT* called under RCU protection or in contexts where * mutex cannot be locked. */ void dev_pm_opp_remove_table(struct device *dev) { _dev_pm_opp_remove_table(dev, true); } EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);