/* * Bignum routines for RSA and DH and stuff. */ #include #include #include #if 0 // use PuTTY main debugging for diagbn() #include #include "putty.h" #define debugprint debug #else #define debugprint(x) printf x #endif #define BIGNUM_INTERNAL typedef unsigned short *Bignum; #include "ssh.h" unsigned short bnZero[1] = { 0 }; unsigned short bnOne[2] = { 1, 1 }; /* * The Bignum format is an array of `unsigned short'. The first * element of the array counts the remaining elements. The * remaining elements express the actual number, base 2^16, _least_ * significant digit first. (So it's trivial to extract the bit * with value 2^n for any n.) * * All Bignums in this module are positive. Negative numbers must * be dealt with outside it. * * INVARIANT: the most significant word of any Bignum must be * nonzero. */ Bignum Zero = bnZero, One = bnOne; static Bignum newbn(int length) { Bignum b = smalloc((length + 1) * sizeof(unsigned short)); if (!b) abort(); /* FIXME */ memset(b, 0, (length + 1) * sizeof(*b)); b[0] = length; return b; } void bn_restore_invariant(Bignum b) { while (b[0] > 1 && b[b[0]] == 0) b[0]--; } Bignum copybn(Bignum orig) { Bignum b = smalloc((orig[0] + 1) * sizeof(unsigned short)); if (!b) abort(); /* FIXME */ memcpy(b, orig, (orig[0] + 1) * sizeof(*b)); return b; } void freebn(Bignum b) { /* * Burn the evidence, just in case. */ memset(b, 0, sizeof(b[0]) * (b[0] + 1)); sfree(b); } Bignum bn_power_2(int n) { Bignum ret = newbn(n / 16 + 1); bignum_set_bit(ret, n, 1); return ret; } /* * Compute c = a * b. * Input is in the first len words of a and b. * Result is returned in the first 2*len words of c. */ static void internal_mul(unsigned short *a, unsigned short *b, unsigned short *c, int len) { int i, j; unsigned long ai, t; for (j = 0; j < 2 * len; j++) c[j] = 0; for (i = len - 1; i >= 0; i--) { ai = a[i]; t = 0; for (j = len - 1; j >= 0; j--) { t += ai * (unsigned long) b[j]; t += (unsigned long) c[i + j + 1]; c[i + j + 1] = (unsigned short) t; t = t >> 16; } c[i] = (unsigned short) t; } } static void internal_add_shifted(unsigned short *number, unsigned n, int shift) { int word = 1 + (shift / 16); int bshift = shift % 16; unsigned long addend; addend = n << bshift; while (addend) { addend += number[word]; number[word] = (unsigned short) addend & 0xFFFF; addend >>= 16; word++; } } /* * Compute a = a % m. * Input in first alen words of a and first mlen words of m. * Output in first alen words of a * (of which first alen-mlen words will be zero). * The MSW of m MUST have its high bit set. * Quotient is accumulated in the `quotient' array, which is a Bignum * rather than the internal bigendian format. Quotient parts are shifted * left by `qshift' before adding into quot. */ static void internal_mod(unsigned short *a, int alen, unsigned short *m, int mlen, unsigned short *quot, int qshift) { unsigned short m0, m1; unsigned int h; int i, k; m0 = m[0]; if (mlen > 1) m1 = m[1]; else m1 = 0; for (i = 0; i <= alen - mlen; i++) { unsigned long t; unsigned int q, r, c, ai1; if (i == 0) { h = 0; } else { h = a[i - 1]; a[i - 1] = 0; } if (i == alen - 1) ai1 = 0; else ai1 = a[i + 1]; /* Find q = h:a[i] / m0 */ t = ((unsigned long) h << 16) + a[i]; q = t / m0; r = t % m0; /* Refine our estimate of q by looking at h:a[i]:a[i+1] / m0:m1 */ t = (long) m1 *(long) q; if (t > ((unsigned long) r << 16) + ai1) { q--; t -= m1; r = (r + m0) & 0xffff; /* overflow? */ if (r >= (unsigned long) m0 && t > ((unsigned long) r << 16) + ai1) q--; } /* Subtract q * m from a[i...] */ c = 0; for (k = mlen - 1; k >= 0; k--) { t = (long) q *(long) m[k]; t += c; c = t >> 16; if ((unsigned short) t > a[i + k]) c++; a[i + k] -= (unsigned short) t; } /* Add back m in case of borrow */ if (c != h) { t = 0; for (k = mlen - 1; k >= 0; k--) { t += m[k]; t += a[i + k]; a[i + k] = (unsigned short) t; t = t >> 16; } q--; } if (quot) internal_add_shifted(quot, q, qshift + 16 * (alen - mlen - i)); } } /* * Compute (base ^ exp) % mod. * The base MUST be smaller than the modulus. * The most significant word of mod MUST be non-zero. * We assume that the result array is the same size as the mod array. */ Bignum modpow(Bignum base, Bignum exp, Bignum mod) { unsigned short *a, *b, *n, *m; int mshift; int mlen, i, j; Bignum result; /* Allocate m of size mlen, copy mod to m */ /* We use big endian internally */ mlen = mod[0]; m = smalloc(mlen * sizeof(unsigned short)); for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j]; /* Shift m left to make msb bit set */ for (mshift = 0; mshift < 15; mshift++) if ((m[0] << mshift) & 0x8000) break; if (mshift) { for (i = 0; i < mlen - 1; i++) m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift)); m[mlen - 1] = m[mlen - 1] << mshift; } /* Allocate n of size mlen, copy base to n */ n = smalloc(mlen * sizeof(unsigned short)); i = mlen - base[0]; for (j = 0; j < i; j++) n[j] = 0; for (j = 0; j < base[0]; j++) n[i + j] = base[base[0] - j]; /* Allocate a and b of size 2*mlen. Set a = 1 */ a = smalloc(2 * mlen * sizeof(unsigned short)); b = smalloc(2 * mlen * sizeof(unsigned short)); for (i = 0; i < 2 * mlen; i++) a[i] = 0; a[2 * mlen - 1] = 1; /* Skip leading zero bits of exp. */ i = 0; j = 15; while (i < exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) { j--; if (j < 0) { i++; j = 15; } } /* Main computation */ while (i < exp[0]) { while (j >= 0) { internal_mul(a + mlen, a + mlen, b, mlen); internal_mod(b, mlen * 2, m, mlen, NULL, 0); if ((exp[exp[0] - i] & (1 << j)) != 0) { internal_mul(b + mlen, n, a, mlen); internal_mod(a, mlen * 2, m, mlen, NULL, 0); } else { unsigned short *t; t = a; a = b; b = t; } j--; } i++; j = 15; } /* Fixup result in case the modulus was shifted */ if (mshift) { for (i = mlen - 1; i < 2 * mlen - 1; i++) a[i] = (a[i] << mshift) | (a[i + 1] >> (16 - mshift)); a[2 * mlen - 1] = a[2 * mlen - 1] << mshift; internal_mod(a, mlen * 2, m, mlen, NULL, 0); for (i = 2 * mlen - 1; i >= mlen; i--) a[i] = (a[i] >> mshift) | (a[i - 1] << (16 - mshift)); } /* Copy result to buffer */ result = newbn(mod[0]); for (i = 0; i < mlen; i++) result[result[0] - i] = a[i + mlen]; while (result[0] > 1 && result[result[0]] == 0) result[0]--; /* Free temporary arrays */ for (i = 0; i < 2 * mlen; i++) a[i] = 0; sfree(a); for (i = 0; i < 2 * mlen; i++) b[i] = 0; sfree(b); for (i = 0; i < mlen; i++) m[i] = 0; sfree(m); for (i = 0; i < mlen; i++) n[i] = 0; sfree(n); return result; } /* * Compute (p * q) % mod. * The most significant word of mod MUST be non-zero. * We assume that the result array is the same size as the mod array. */ Bignum modmul(Bignum p, Bignum q, Bignum mod) { unsigned short *a, *n, *m, *o; int mshift; int pqlen, mlen, rlen, i, j; Bignum result; /* Allocate m of size mlen, copy mod to m */ /* We use big endian internally */ mlen = mod[0]; m = smalloc(mlen * sizeof(unsigned short)); for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j]; /* Shift m left to make msb bit set */ for (mshift = 0; mshift < 15; mshift++) if ((m[0] << mshift) & 0x8000) break; if (mshift) { for (i = 0; i < mlen - 1; i++) m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift)); m[mlen - 1] = m[mlen - 1] << mshift; } pqlen = (p[0] > q[0] ? p[0] : q[0]); /* Allocate n of size pqlen, copy p to n */ n = smalloc(pqlen * sizeof(unsigned short)); i = pqlen - p[0]; for (j = 0; j < i; j++) n[j] = 0; for (j = 0; j < p[0]; j++) n[i + j] = p[p[0] - j]; /* Allocate o of size pqlen, copy q to o */ o = smalloc(pqlen * sizeof(unsigned short)); i = pqlen - q[0]; for (j = 0; j < i; j++) o[j] = 0; for (j = 0; j < q[0]; j++) o[i + j] = q[q[0] - j]; /* Allocate a of size 2*pqlen for result */ a = smalloc(2 * pqlen * sizeof(unsigned short)); /* Main computation */ internal_mul(n, o, a, pqlen); internal_mod(a, pqlen * 2, m, mlen, NULL, 0); /* Fixup result in case the modulus was shifted */ if (mshift) { for (i = 2 * pqlen - mlen - 1; i < 2 * pqlen - 1; i++) a[i] = (a[i] << mshift) | (a[i + 1] >> (16 - mshift)); a[2 * pqlen - 1] = a[2 * pqlen - 1] << mshift; internal_mod(a, pqlen * 2, m, mlen, NULL, 0); for (i = 2 * pqlen - 1; i >= 2 * pqlen - mlen; i--) a[i] = (a[i] >> mshift) | (a[i - 1] << (16 - mshift)); } /* Copy result to buffer */ rlen = (mlen < pqlen * 2 ? mlen : pqlen * 2); result = newbn(rlen); for (i = 0; i < rlen; i++) result[result[0] - i] = a[i + 2 * pqlen - rlen]; while (result[0] > 1 && result[result[0]] == 0) result[0]--; /* Free temporary arrays */ for (i = 0; i < 2 * pqlen; i++) a[i] = 0; sfree(a); for (i = 0; i < mlen; i++) m[i] = 0; sfree(m); for (i = 0; i < pqlen; i++) n[i] = 0; sfree(n); for (i = 0; i < pqlen; i++) o[i] = 0; sfree(o); return result; } /* * Compute p % mod. * The most significant word of mod MUST be non-zero. * We assume that the result array is the same size as the mod array. * We optionally write out a quotient. */ void bigmod(Bignum p, Bignum mod, Bignum result, Bignum quotient) { unsigned short *n, *m; int mshift; int plen, mlen, i, j; /* Allocate m of size mlen, copy mod to m */ /* We use big endian internally */ mlen = mod[0]; m = smalloc(mlen * sizeof(unsigned short)); for (j = 0; j < mlen; j++) m[j] = mod[mod[0] - j]; /* Shift m left to make msb bit set */ for (mshift = 0; mshift < 15; mshift++) if ((m[0] << mshift) & 0x8000) break; if (mshift) { for (i = 0; i < mlen - 1; i++) m[i] = (m[i] << mshift) | (m[i + 1] >> (16 - mshift)); m[mlen - 1] = m[mlen - 1] << mshift; } plen = p[0]; /* Ensure plen > mlen */ if (plen <= mlen) plen = mlen + 1; /* Allocate n of size plen, copy p to n */ n = smalloc(plen * sizeof(unsigned short)); for (j = 0; j < plen; j++) n[j] = 0; for (j = 1; j <= p[0]; j++) n[plen - j] = p[j]; /* Main computation */ internal_mod(n, plen, m, mlen, quotient, mshift); /* Fixup result in case the modulus was shifted */ if (mshift) { for (i = plen - mlen - 1; i < plen - 1; i++) n[i] = (n[i] << mshift) | (n[i + 1] >> (16 - mshift)); n[plen - 1] = n[plen - 1] << mshift; internal_mod(n, plen, m, mlen, quotient, 0); for (i = plen - 1; i >= plen - mlen; i--) n[i] = (n[i] >> mshift) | (n[i - 1] << (16 - mshift)); } /* Copy result to buffer */ for (i = 1; i <= result[0]; i++) { int j = plen - i; result[i] = j >= 0 ? n[j] : 0; } /* Free temporary arrays */ for (i = 0; i < mlen; i++) m[i] = 0; sfree(m); for (i = 0; i < plen; i++) n[i] = 0; sfree(n); } /* * Decrement a number. */ void decbn(Bignum bn) { int i = 1; while (i < bn[0] && bn[i] == 0) bn[i++] = 0xFFFF; bn[i]--; } Bignum bignum_from_bytes(unsigned char *data, int nbytes) { Bignum result; int w, i; w = (nbytes + 1) / 2; /* bytes -> words */ result = newbn(w); for (i = 1; i <= w; i++) result[i] = 0; for (i = nbytes; i--;) { unsigned char byte = *data++; if (i & 1) result[1 + i / 2] |= byte << 8; else result[1 + i / 2] |= byte; } while (result[0] > 1 && result[result[0]] == 0) result[0]--; return result; } /* * Read an ssh1-format bignum from a data buffer. Return the number * of bytes consumed. */ int ssh1_read_bignum(unsigned char *data, Bignum * result) { unsigned char *p = data; int i; int w, b; w = 0; for (i = 0; i < 2; i++) w = (w << 8) + *p++; b = (w + 7) / 8; /* bits -> bytes */ if (!result) /* just return length */ return b + 2; *result = bignum_from_bytes(p, b); return p + b - data; } /* * Return the bit count of a bignum, for ssh1 encoding. */ int bignum_bitcount(Bignum bn) { int bitcount = bn[0] * 16 - 1; while (bitcount >= 0 && (bn[bitcount / 16 + 1] >> (bitcount % 16)) == 0) bitcount--; return bitcount + 1; } /* * Return the byte length of a bignum when ssh1 encoded. */ int ssh1_bignum_length(Bignum bn) { return 2 + (bignum_bitcount(bn) + 7) / 8; } /* * Return the byte length of a bignum when ssh2 encoded. */ int ssh2_bignum_length(Bignum bn) { return 4 + (bignum_bitcount(bn) + 8) / 8; } /* * Return a byte from a bignum; 0 is least significant, etc. */ int bignum_byte(Bignum bn, int i) { if (i >= 2 * bn[0]) return 0; /* beyond the end */ else if (i & 1) return (bn[i / 2 + 1] >> 8) & 0xFF; else return (bn[i / 2 + 1]) & 0xFF; } /* * Return a bit from a bignum; 0 is least significant, etc. */ int bignum_bit(Bignum bn, int i) { if (i >= 16 * bn[0]) return 0; /* beyond the end */ else return (bn[i / 16 + 1] >> (i % 16)) & 1; } /* * Set a bit in a bignum; 0 is least significant, etc. */ void bignum_set_bit(Bignum bn, int bitnum, int value) { if (bitnum >= 16 * bn[0]) abort(); /* beyond the end */ else { int v = bitnum / 16 + 1; int mask = 1 << (bitnum % 16); if (value) bn[v] |= mask; else bn[v] &= ~mask; } } /* * Write a ssh1-format bignum into a buffer. It is assumed the * buffer is big enough. Returns the number of bytes used. */ int ssh1_write_bignum(void *data, Bignum bn) { unsigned char *p = data; int len = ssh1_bignum_length(bn); int i; int bitc = bignum_bitcount(bn); *p++ = (bitc >> 8) & 0xFF; *p++ = (bitc) & 0xFF; for (i = len - 2; i--;) *p++ = bignum_byte(bn, i); return len; } /* * Compare two bignums. Returns like strcmp. */ int bignum_cmp(Bignum a, Bignum b) { int amax = a[0], bmax = b[0]; int i = (amax > bmax ? amax : bmax); while (i) { unsigned short aval = (i > amax ? 0 : a[i]); unsigned short bval = (i > bmax ? 0 : b[i]); if (aval < bval) return -1; if (aval > bval) return +1; i--; } return 0; } /* * Right-shift one bignum to form another. */ Bignum bignum_rshift(Bignum a, int shift) { Bignum ret; int i, shiftw, shiftb, shiftbb, bits; unsigned short ai, ai1; bits = bignum_bitcount(a) - shift; ret = newbn((bits + 15) / 16); if (ret) { shiftw = shift / 16; shiftb = shift % 16; shiftbb = 16 - shiftb; ai1 = a[shiftw + 1]; for (i = 1; i <= ret[0]; i++) { ai = ai1; ai1 = (i + shiftw + 1 <= a[0] ? a[i + shiftw + 1] : 0); ret[i] = ((ai >> shiftb) | (ai1 << shiftbb)) & 0xFFFF; } } return ret; } /* * Non-modular multiplication and addition. */ Bignum bigmuladd(Bignum a, Bignum b, Bignum addend) { int alen = a[0], blen = b[0]; int mlen = (alen > blen ? alen : blen); int rlen, i, maxspot; unsigned short *workspace; Bignum ret; /* mlen space for a, mlen space for b, 2*mlen for result */ workspace = smalloc(mlen * 4 * sizeof(unsigned short)); for (i = 0; i < mlen; i++) { workspace[0 * mlen + i] = (mlen - i <= a[0] ? a[mlen - i] : 0); workspace[1 * mlen + i] = (mlen - i <= b[0] ? b[mlen - i] : 0); } internal_mul(workspace + 0 * mlen, workspace + 1 * mlen, workspace + 2 * mlen, mlen); /* now just copy the result back */ rlen = alen + blen + 1; if (addend && rlen <= addend[0]) rlen = addend[0] + 1; ret = newbn(rlen); maxspot = 0; for (i = 1; i <= ret[0]; i++) { ret[i] = (i <= 2 * mlen ? workspace[4 * mlen - i] : 0); if (ret[i] != 0) maxspot = i; } ret[0] = maxspot; /* now add in the addend, if any */ if (addend) { unsigned long carry = 0; for (i = 1; i <= rlen; i++) { carry += (i <= ret[0] ? ret[i] : 0); carry += (i <= addend[0] ? addend[i] : 0); ret[i] = (unsigned short) carry & 0xFFFF; carry >>= 16; if (ret[i] != 0 && i > maxspot) maxspot = i; } } ret[0] = maxspot; return ret; } /* * Non-modular multiplication. */ Bignum bigmul(Bignum a, Bignum b) { return bigmuladd(a, b, NULL); } /* * Create a bignum which is the bitmask covering another one. That * is, the smallest integer which is >= N and is also one less than * a power of two. */ Bignum bignum_bitmask(Bignum n) { Bignum ret = copybn(n); int i; unsigned short j; i = ret[0]; while (n[i] == 0 && i > 0) i--; if (i <= 0) return ret; /* input was zero */ j = 1; while (j < n[i]) j = 2 * j + 1; ret[i] = j; while (--i > 0) ret[i] = 0xFFFF; return ret; } /* * Convert a (max 16-bit) short into a bignum. */ Bignum bignum_from_short(unsigned short n) { Bignum ret; ret = newbn(2); ret[1] = n & 0xFFFF; ret[2] = (n >> 16) & 0xFFFF; ret[0] = (ret[2] ? 2 : 1); return ret; } /* * Add a long to a bignum. */ Bignum bignum_add_long(Bignum number, unsigned long addend) { Bignum ret = newbn(number[0] + 1); int i, maxspot = 0; unsigned long carry = 0; for (i = 1; i <= ret[0]; i++) { carry += addend & 0xFFFF; carry += (i <= number[0] ? number[i] : 0); addend >>= 16; ret[i] = (unsigned short) carry & 0xFFFF; carry >>= 16; if (ret[i] != 0) maxspot = i; } ret[0] = maxspot; return ret; } /* * Compute the residue of a bignum, modulo a (max 16-bit) short. */ unsigned short bignum_mod_short(Bignum number, unsigned short modulus) { unsigned long mod, r; int i; r = 0; mod = modulus; for (i = number[0]; i > 0; i--) r = (r * 65536 + number[i]) % mod; return (unsigned short) r; } void diagbn(char *prefix, Bignum md) { int i, nibbles, morenibbles; static const char hex[] = "0123456789ABCDEF"; debugprint(("%s0x", prefix ? prefix : "")); nibbles = (3 + bignum_bitcount(md)) / 4; if (nibbles < 1) nibbles = 1; morenibbles = 4 * md[0] - nibbles; for (i = 0; i < morenibbles; i++) debugprint(("-")); for (i = nibbles; i--;) debugprint( ("%c", hex[(bignum_byte(md, i / 2) >> (4 * (i % 2))) & 0xF])); if (prefix) debugprint(("\n")); } /* * Greatest common divisor. */ Bignum biggcd(Bignum av, Bignum bv) { Bignum a = copybn(av); Bignum b = copybn(bv); diagbn("a = ", a); diagbn("b = ", b); while (bignum_cmp(b, Zero) != 0) { Bignum t = newbn(b[0]); bigmod(a, b, t, NULL); diagbn("t = ", t); while (t[0] > 1 && t[t[0]] == 0) t[0]--; freebn(a); a = b; b = t; } freebn(b); return a; } /* * Modular inverse, using Euclid's extended algorithm. */ Bignum modinv(Bignum number, Bignum modulus) { Bignum a = copybn(modulus); Bignum b = copybn(number); Bignum xp = copybn(Zero); Bignum x = copybn(One); int sign = +1; while (bignum_cmp(b, One) != 0) { Bignum t = newbn(b[0]); Bignum q = newbn(a[0]); bigmod(a, b, t, q); while (t[0] > 1 && t[t[0]] == 0) t[0]--; freebn(a); a = b; b = t; t = xp; xp = x; x = bigmuladd(q, xp, t); sign = -sign; freebn(t); } freebn(b); freebn(a); freebn(xp); /* now we know that sign * x == 1, and that x < modulus */ if (sign < 0) { /* set a new x to be modulus - x */ Bignum newx = newbn(modulus[0]); unsigned short carry = 0; int maxspot = 1; int i; for (i = 1; i <= newx[0]; i++) { unsigned short aword = (i <= modulus[0] ? modulus[i] : 0); unsigned short bword = (i <= x[0] ? x[i] : 0); newx[i] = aword - bword - carry; bword = ~bword; carry = carry ? (newx[i] >= bword) : (newx[i] > bword); if (newx[i] != 0) maxspot = i; } newx[0] = maxspot; freebn(x); x = newx; } /* and return. */ return x; } /* * Render a bignum into decimal. Return a malloced string holding * the decimal representation. */ char *bignum_decimal(Bignum x) { int ndigits, ndigit; int i, iszero; unsigned long carry; char *ret; unsigned short *workspace; /* * First, estimate the number of digits. Since log(10)/log(2) * is just greater than 93/28 (the joys of continued fraction * approximations...) we know that for every 93 bits, we need * at most 28 digits. This will tell us how much to malloc. * * Formally: if x has i bits, that means x is strictly less * than 2^i. Since 2 is less than 10^(28/93), this is less than * 10^(28i/93). We need an integer power of ten, so we must * round up (rounding down might make it less than x again). * Therefore if we multiply the bit count by 28/93, rounding * up, we will have enough digits. */ i = bignum_bitcount(x); ndigits = (28 * i + 92) / 93; /* multiply by 28/93 and round up */ ndigits++; /* allow for trailing \0 */ ret = smalloc(ndigits); /* * Now allocate some workspace to hold the binary form as we * repeatedly divide it by ten. Initialise this to the * big-endian form of the number. */ workspace = smalloc(sizeof(unsigned short) * x[0]); for (i = 0; i < x[0]; i++) workspace[i] = x[x[0] - i]; /* * Next, write the decimal number starting with the last digit. * We use ordinary short division, dividing 10 into the * workspace. */ ndigit = ndigits - 1; ret[ndigit] = '\0'; do { iszero = 1; carry = 0; for (i = 0; i < x[0]; i++) { carry = (carry << 16) + workspace[i]; workspace[i] = (unsigned short) (carry / 10); if (workspace[i]) iszero = 0; carry %= 10; } ret[--ndigit] = (char) (carry + '0'); } while (!iszero); /* * There's a chance we've fallen short of the start of the * string. Correct if so. */ if (ndigit > 0) memmove(ret, ret + ndigit, ndigits - ndigit); /* * Done. */ return ret; }