#include #include "ssh.h" /* des.c - implementation of DES */ /* * Description of DES * * Unlike the description in FIPS 46, I'm going to use _sensible_ indices: * bits in an n-bit word are numbered from 0 at the LSB to n-1 at the MSB. * And S-boxes are indexed by six consecutive bits, not by the outer two * followed by the middle four. * * The DES encryption routine requires a 64-bit input, and a key schedule K * containing 16 48-bit elements. * * First the input is permuted by the initial permutation IP. * Then the input is split into 32-bit words L and R. (L is the MSW.) * Next, 16 rounds. In each round: * (L, R) <- (R, L xor f(R, K[i])) * Then the pre-output words L and R are swapped. * Then L and R are glued back together into a 64-bit word. (L is the MSW, * again, but since we just swapped them, the MSW is the R that came out * of the last round.) * The 64-bit output block is permuted by the inverse of IP and returned. * * Decryption is identical except that the elements of K are used in the * opposite order. (This wouldn't work if that word swap didn't happen.) * * The function f, used in each round, accepts a 32-bit word R and a * 48-bit key block K. It produces a 32-bit output. * * First R is expanded to 48 bits using the bit-selection function E. * The resulting 48-bit block is XORed with the key block K to produce * a 48-bit block X. * This block X is split into eight groups of 6 bits. Each group of 6 * bits is then looked up in one of the eight S-boxes to convert * it to 4 bits. These eight groups of 4 bits are glued back * together to produce a 32-bit preoutput block. * The preoutput block is permuted using the permutation P and returned. * * Key setup maps a 64-bit key word into a 16x48-bit key schedule. Although * the approved input format for the key is a 64-bit word, eight of the * bits are discarded, so the actual quantity of key used is 56 bits. * * First the input key is converted to two 28-bit words C and D using * the bit-selection function PC1. * Then 16 rounds of key setup occur. In each round, C and D are each * rotated left by either 1 or 2 bits (depending on which round), and * then converted into a key schedule element using the bit-selection * function PC2. * * That's the actual algorithm. Now for the tedious details: all those * painful permutations and lookup tables. * * IP is a 64-to-64 bit permutation. Its output contains the following * bits of its input (listed in order MSB to LSB of output). * * 6 14 22 30 38 46 54 62 4 12 20 28 36 44 52 60 * 2 10 18 26 34 42 50 58 0 8 16 24 32 40 48 56 * 7 15 23 31 39 47 55 63 5 13 21 29 37 45 53 61 * 3 11 19 27 35 43 51 59 1 9 17 25 33 41 49 57 * * E is a 32-to-48 bit selection function. Its output contains the following * bits of its input (listed in order MSB to LSB of output). * * 0 31 30 29 28 27 28 27 26 25 24 23 24 23 22 21 20 19 20 19 18 17 16 15 * 16 15 14 13 12 11 12 11 10 9 8 7 8 7 6 5 4 3 4 3 2 1 0 31 * * The S-boxes are arbitrary table-lookups each mapping a 6-bit input to a * 4-bit output. In other words, each S-box is an array[64] of 4-bit numbers. * The S-boxes are listed below. The first S-box listed is applied to the * most significant six bits of the block X; the last one is applied to the * least significant. * * 14 0 4 15 13 7 1 4 2 14 15 2 11 13 8 1 * 3 10 10 6 6 12 12 11 5 9 9 5 0 3 7 8 * 4 15 1 12 14 8 8 2 13 4 6 9 2 1 11 7 * 15 5 12 11 9 3 7 14 3 10 10 0 5 6 0 13 * * 15 3 1 13 8 4 14 7 6 15 11 2 3 8 4 14 * 9 12 7 0 2 1 13 10 12 6 0 9 5 11 10 5 * 0 13 14 8 7 10 11 1 10 3 4 15 13 4 1 2 * 5 11 8 6 12 7 6 12 9 0 3 5 2 14 15 9 * * 10 13 0 7 9 0 14 9 6 3 3 4 15 6 5 10 * 1 2 13 8 12 5 7 14 11 12 4 11 2 15 8 1 * 13 1 6 10 4 13 9 0 8 6 15 9 3 8 0 7 * 11 4 1 15 2 14 12 3 5 11 10 5 14 2 7 12 * * 7 13 13 8 14 11 3 5 0 6 6 15 9 0 10 3 * 1 4 2 7 8 2 5 12 11 1 12 10 4 14 15 9 * 10 3 6 15 9 0 0 6 12 10 11 1 7 13 13 8 * 15 9 1 4 3 5 14 11 5 12 2 7 8 2 4 14 * * 2 14 12 11 4 2 1 12 7 4 10 7 11 13 6 1 * 8 5 5 0 3 15 15 10 13 3 0 9 14 8 9 6 * 4 11 2 8 1 12 11 7 10 1 13 14 7 2 8 13 * 15 6 9 15 12 0 5 9 6 10 3 4 0 5 14 3 * * 12 10 1 15 10 4 15 2 9 7 2 12 6 9 8 5 * 0 6 13 1 3 13 4 14 14 0 7 11 5 3 11 8 * 9 4 14 3 15 2 5 12 2 9 8 5 12 15 3 10 * 7 11 0 14 4 1 10 7 1 6 13 0 11 8 6 13 * * 4 13 11 0 2 11 14 7 15 4 0 9 8 1 13 10 * 3 14 12 3 9 5 7 12 5 2 10 15 6 8 1 6 * 1 6 4 11 11 13 13 8 12 1 3 4 7 10 14 7 * 10 9 15 5 6 0 8 15 0 14 5 2 9 3 2 12 * * 13 1 2 15 8 13 4 8 6 10 15 3 11 7 1 4 * 10 12 9 5 3 6 14 11 5 0 0 14 12 9 7 2 * 7 2 11 1 4 14 1 7 9 4 12 10 14 8 2 13 * 0 15 6 12 10 9 13 0 15 3 3 5 5 6 8 11 * * P is a 32-to-32 bit permutation. Its output contains the following * bits of its input (listed in order MSB to LSB of output). * * 16 25 12 11 3 20 4 15 31 17 9 6 27 14 1 22 * 30 24 8 18 0 5 29 23 13 19 2 26 10 21 28 7 * * PC1 is a 64-to-56 bit selection function. Its output is in two words, * C and D. The word C contains the following bits of its input (listed * in order MSB to LSB of output). * * 7 15 23 31 39 47 55 63 6 14 22 30 38 46 * 54 62 5 13 21 29 37 45 53 61 4 12 20 28 * * And the word D contains these bits. * * 1 9 17 25 33 41 49 57 2 10 18 26 34 42 * 50 58 3 11 19 27 35 43 51 59 36 44 52 60 * * PC2 is a 56-to-48 bit selection function. Its input is in two words, * C and D. These are treated as one 56-bit word (with C more significant, * so that bits 55 to 28 of the word are bits 27 to 0 of C, and bits 27 to * 0 of the word are bits 27 to 0 of D). The output contains the following * bits of this 56-bit input word (listed in order MSB to LSB of output). * * 42 39 45 32 55 51 53 28 41 50 35 46 33 37 44 52 30 48 40 49 29 36 43 54 * 15 4 25 19 9 1 26 16 5 11 23 8 12 7 17 0 22 3 10 14 6 20 27 24 */ typedef struct { word32 k0246[16], k1357[16]; word32 eiv0, eiv1; word32 div0, div1; } DESContext; #define rotl(x, c) ( (x << c) | (x >> (32-c)) ) #define rotl28(x, c) ( ( (x << c) | (x >> (28-c)) ) & 0x0FFFFFFF) static word32 bitsel(word32 *input, const int *bitnums, int size) { word32 ret = 0; while (size--) { int bitpos = *bitnums++; ret <<= 1; if (bitpos >= 0) ret |= 1 & (input[bitpos / 32] >> (bitpos % 32)); } return ret; } void des_key_setup(word32 key_msw, word32 key_lsw, DESContext *sched) { static const int PC1_Cbits[] = { 7, 15, 23, 31, 39, 47, 55, 63, 6, 14, 22, 30, 38, 46, 54, 62, 5, 13, 21, 29, 37, 45, 53, 61, 4, 12, 20, 28 }; static const int PC1_Dbits[] = { 1, 9, 17, 25, 33, 41, 49, 57, 2, 10, 18, 26, 34, 42, 50, 58, 3, 11, 19, 27, 35, 43, 51, 59, 36, 44, 52, 60 }; static const int PC2_0246[] = { 49, 36, 59, 55, -1, -1, 37, 41, 48, 56, 34, 52, -1, -1, 15, 4, 25, 19, 9, 1, -1, -1, 12, 7, 17, 0, 22, 3, -1, -1, 46, 43 }; static const int PC2_1357[] = { -1, -1, 57, 32, 45, 54, 39, 50, -1, -1, 44, 53, 33, 40, 47, 58, -1, -1, 26, 16, 5, 11, 23, 8, -1, -1, 10, 14, 6, 20, 27, 24 }; static const int leftshifts[] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1}; word32 C, D; word32 buf[2]; int i; buf[0] = key_lsw; buf[1] = key_msw; C = bitsel(buf, PC1_Cbits, 28); D = bitsel(buf, PC1_Dbits, 28); for (i = 0; i < 16; i++) { C = rotl28(C, leftshifts[i]); D = rotl28(D, leftshifts[i]); buf[0] = D; buf[1] = C; sched->k0246[i] = bitsel(buf, PC2_0246, 32); sched->k1357[i] = bitsel(buf, PC2_1357, 32); } sched->eiv0 = sched->eiv1 = 0; sched->div0 = sched->div1 = 0; /* for good measure */ } static const word32 SPboxes[8][64] = { {0x01010400, 0x00000000, 0x00010000, 0x01010404, 0x01010004, 0x00010404, 0x00000004, 0x00010000, 0x00000400, 0x01010400, 0x01010404, 0x00000400, 0x01000404, 0x01010004, 0x01000000, 0x00000004, 0x00000404, 0x01000400, 0x01000400, 0x00010400, 0x00010400, 0x01010000, 0x01010000, 0x01000404, 0x00010004, 0x01000004, 0x01000004, 0x00010004, 0x00000000, 0x00000404, 0x00010404, 0x01000000, 0x00010000, 0x01010404, 0x00000004, 0x01010000, 0x01010400, 0x01000000, 0x01000000, 0x00000400, 0x01010004, 0x00010000, 0x00010400, 0x01000004, 0x00000400, 0x00000004, 0x01000404, 0x00010404, 0x01010404, 0x00010004, 0x01010000, 0x01000404, 0x01000004, 0x00000404, 0x00010404, 0x01010400, 0x00000404, 0x01000400, 0x01000400, 0x00000000, 0x00010004, 0x00010400, 0x00000000, 0x01010004L}, {0x80108020, 0x80008000, 0x00008000, 0x00108020, 0x00100000, 0x00000020, 0x80100020, 0x80008020, 0x80000020, 0x80108020, 0x80108000, 0x80000000, 0x80008000, 0x00100000, 0x00000020, 0x80100020, 0x00108000, 0x00100020, 0x80008020, 0x00000000, 0x80000000, 0x00008000, 0x00108020, 0x80100000, 0x00100020, 0x80000020, 0x00000000, 0x00108000, 0x00008020, 0x80108000, 0x80100000, 0x00008020, 0x00000000, 0x00108020, 0x80100020, 0x00100000, 0x80008020, 0x80100000, 0x80108000, 0x00008000, 0x80100000, 0x80008000, 0x00000020, 0x80108020, 0x00108020, 0x00000020, 0x00008000, 0x80000000, 0x00008020, 0x80108000, 0x00100000, 0x80000020, 0x00100020, 0x80008020, 0x80000020, 0x00100020, 0x00108000, 0x00000000, 0x80008000, 0x00008020, 0x80000000, 0x80100020, 0x80108020, 0x00108000L}, {0x00000208, 0x08020200, 0x00000000, 0x08020008, 0x08000200, 0x00000000, 0x00020208, 0x08000200, 0x00020008, 0x08000008, 0x08000008, 0x00020000, 0x08020208, 0x00020008, 0x08020000, 0x00000208, 0x08000000, 0x00000008, 0x08020200, 0x00000200, 0x00020200, 0x08020000, 0x08020008, 0x00020208, 0x08000208, 0x00020200, 0x00020000, 0x08000208, 0x00000008, 0x08020208, 0x00000200, 0x08000000, 0x08020200, 0x08000000, 0x00020008, 0x00000208, 0x00020000, 0x08020200, 0x08000200, 0x00000000, 0x00000200, 0x00020008, 0x08020208, 0x08000200, 0x08000008, 0x00000200, 0x00000000, 0x08020008, 0x08000208, 0x00020000, 0x08000000, 0x08020208, 0x00000008, 0x00020208, 0x00020200, 0x08000008, 0x08020000, 0x08000208, 0x00000208, 0x08020000, 0x00020208, 0x00000008, 0x08020008, 0x00020200L}, {0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802080, 0x00800081, 0x00800001, 0x00002001, 0x00000000, 0x00802000, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00800080, 0x00800001, 0x00000001, 0x00002000, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002001, 0x00002080, 0x00800081, 0x00000001, 0x00002080, 0x00800080, 0x00002000, 0x00802080, 0x00802081, 0x00000081, 0x00800080, 0x00800001, 0x00802000, 0x00802081, 0x00000081, 0x00000000, 0x00000000, 0x00802000, 0x00002080, 0x00800080, 0x00800081, 0x00000001, 0x00802001, 0x00002081, 0x00002081, 0x00000080, 0x00802081, 0x00000081, 0x00000001, 0x00002000, 0x00800001, 0x00002001, 0x00802080, 0x00800081, 0x00002001, 0x00002080, 0x00800000, 0x00802001, 0x00000080, 0x00800000, 0x00002000, 0x00802080L}, {0x00000100, 0x02080100, 0x02080000, 0x42000100, 0x00080000, 0x00000100, 0x40000000, 0x02080000, 0x40080100, 0x00080000, 0x02000100, 0x40080100, 0x42000100, 0x42080000, 0x00080100, 0x40000000, 0x02000000, 0x40080000, 0x40080000, 0x00000000, 0x40000100, 0x42080100, 0x42080100, 0x02000100, 0x42080000, 0x40000100, 0x00000000, 0x42000000, 0x02080100, 0x02000000, 0x42000000, 0x00080100, 0x00080000, 0x42000100, 0x00000100, 0x02000000, 0x40000000, 0x02080000, 0x42000100, 0x40080100, 0x02000100, 0x40000000, 0x42080000, 0x02080100, 0x40080100, 0x00000100, 0x02000000, 0x42080000, 0x42080100, 0x00080100, 0x42000000, 0x42080100, 0x02080000, 0x00000000, 0x40080000, 0x42000000, 0x00080100, 0x02000100, 0x40000100, 0x00080000, 0x00000000, 0x40080000, 0x02080100, 0x40000100L}, {0x20000010, 0x20400000, 0x00004000, 0x20404010, 0x20400000, 0x00000010, 0x20404010, 0x00400000, 0x20004000, 0x00404010, 0x00400000, 0x20000010, 0x00400010, 0x20004000, 0x20000000, 0x00004010, 0x00000000, 0x00400010, 0x20004010, 0x00004000, 0x00404000, 0x20004010, 0x00000010, 0x20400010, 0x20400010, 0x00000000, 0x00404010, 0x20404000, 0x00004010, 0x00404000, 0x20404000, 0x20000000, 0x20004000, 0x00000010, 0x20400010, 0x00404000, 0x20404010, 0x00400000, 0x00004010, 0x20000010, 0x00400000, 0x20004000, 0x20000000, 0x00004010, 0x20000010, 0x20404010, 0x00404000, 0x20400000, 0x00404010, 0x20404000, 0x00000000, 0x20400010, 0x00000010, 0x00004000, 0x20400000, 0x00404010, 0x00004000, 0x00400010, 0x20004010, 0x00000000, 0x20404000, 0x20000000, 0x00400010, 0x20004010L}, {0x00200000, 0x04200002, 0x04000802, 0x00000000, 0x00000800, 0x04000802, 0x00200802, 0x04200800, 0x04200802, 0x00200000, 0x00000000, 0x04000002, 0x00000002, 0x04000000, 0x04200002, 0x00000802, 0x04000800, 0x00200802, 0x00200002, 0x04000800, 0x04000002, 0x04200000, 0x04200800, 0x00200002, 0x04200000, 0x00000800, 0x00000802, 0x04200802, 0x00200800, 0x00000002, 0x04000000, 0x00200800, 0x04000000, 0x00200800, 0x00200000, 0x04000802, 0x04000802, 0x04200002, 0x04200002, 0x00000002, 0x00200002, 0x04000000, 0x04000800, 0x00200000, 0x04200800, 0x00000802, 0x00200802, 0x04200800, 0x00000802, 0x04000002, 0x04200802, 0x04200000, 0x00200800, 0x00000000, 0x00000002, 0x04200802, 0x00000000, 0x00200802, 0x04200000, 0x00000800, 0x04000002, 0x04000800, 0x00000800, 0x00200002L}, {0x10001040, 0x00001000, 0x00040000, 0x10041040, 0x10000000, 0x10001040, 0x00000040, 0x10000000, 0x00040040, 0x10040000, 0x10041040, 0x00041000, 0x10041000, 0x00041040, 0x00001000, 0x00000040, 0x10040000, 0x10000040, 0x10001000, 0x00001040, 0x00041000, 0x00040040, 0x10040040, 0x10041000, 0x00001040, 0x00000000, 0x00000000, 0x10040040, 0x10000040, 0x10001000, 0x00041040, 0x00040000, 0x00041040, 0x00040000, 0x10041000, 0x00001000, 0x00000040, 0x10040040, 0x00001000, 0x00041040, 0x10001000, 0x00000040, 0x10000040, 0x10040000, 0x10040040, 0x10000000, 0x00040000, 0x10001040, 0x00000000, 0x10041040, 0x00040040, 0x10000040, 0x10040000, 0x10001000, 0x10001040, 0x00000000, 0x10041040, 0x00041000, 0x00041000, 0x00001040, 0x00001040, 0x00040040, 0x10000000, 0x10041000L} }; #define f(R, K0246, K1357) (\ s0246 = R ^ K0246, \ s1357 = R ^ K1357, \ s0246 = rotl(s0246, 28), \ SPboxes[0] [(s0246 >> 24) & 0x3F] | \ SPboxes[1] [(s1357 >> 24) & 0x3F] | \ SPboxes[2] [(s0246 >> 16) & 0x3F] | \ SPboxes[3] [(s1357 >> 16) & 0x3F] | \ SPboxes[4] [(s0246 >> 8) & 0x3F] | \ SPboxes[5] [(s1357 >> 8) & 0x3F] | \ SPboxes[6] [(s0246 ) & 0x3F] | \ SPboxes[7] [(s1357 ) & 0x3F]) #define bitswap(L, R, n, mask) (\ swap = mask & ( (R >> n) ^ L ), \ R ^= swap << n, \ L ^= swap) /* Initial permutation */ #define IP(L, R) (\ bitswap(R, L, 4, 0x0F0F0F0F), \ bitswap(R, L, 16, 0x0000FFFF), \ bitswap(L, R, 2, 0x33333333), \ bitswap(L, R, 8, 0x00FF00FF), \ bitswap(R, L, 1, 0x55555555)) /* Final permutation */ #define FP(L, R) (\ bitswap(R, L, 1, 0x55555555), \ bitswap(L, R, 8, 0x00FF00FF), \ bitswap(L, R, 2, 0x33333333), \ bitswap(R, L, 16, 0x0000FFFF), \ bitswap(R, L, 4, 0x0F0F0F0F)) void des_encipher(word32 *output, word32 L, word32 R, DESContext *sched) { word32 swap, s0246, s1357; IP(L, R); L = rotl(L, 1); R = rotl(R, 1); L ^= f(R, sched->k0246[ 0], sched->k1357[ 0]); R ^= f(L, sched->k0246[ 1], sched->k1357[ 1]); L ^= f(R, sched->k0246[ 2], sched->k1357[ 2]); R ^= f(L, sched->k0246[ 3], sched->k1357[ 3]); L ^= f(R, sched->k0246[ 4], sched->k1357[ 4]); R ^= f(L, sched->k0246[ 5], sched->k1357[ 5]); L ^= f(R, sched->k0246[ 6], sched->k1357[ 6]); R ^= f(L, sched->k0246[ 7], sched->k1357[ 7]); L ^= f(R, sched->k0246[ 8], sched->k1357[ 8]); R ^= f(L, sched->k0246[ 9], sched->k1357[ 9]); L ^= f(R, sched->k0246[10], sched->k1357[10]); R ^= f(L, sched->k0246[11], sched->k1357[11]); L ^= f(R, sched->k0246[12], sched->k1357[12]); R ^= f(L, sched->k0246[13], sched->k1357[13]); L ^= f(R, sched->k0246[14], sched->k1357[14]); R ^= f(L, sched->k0246[15], sched->k1357[15]); L = rotl(L, 31); R = rotl(R, 31); swap = L; L = R; R = swap; FP(L, R); output[0] = L; output[1] = R; } void des_decipher(word32 *output, word32 L, word32 R, DESContext *sched) { word32 swap, s0246, s1357; IP(L, R); L = rotl(L, 1); R = rotl(R, 1); L ^= f(R, sched->k0246[15], sched->k1357[15]); R ^= f(L, sched->k0246[14], sched->k1357[14]); L ^= f(R, sched->k0246[13], sched->k1357[13]); R ^= f(L, sched->k0246[12], sched->k1357[12]); L ^= f(R, sched->k0246[11], sched->k1357[11]); R ^= f(L, sched->k0246[10], sched->k1357[10]); L ^= f(R, sched->k0246[ 9], sched->k1357[ 9]); R ^= f(L, sched->k0246[ 8], sched->k1357[ 8]); L ^= f(R, sched->k0246[ 7], sched->k1357[ 7]); R ^= f(L, sched->k0246[ 6], sched->k1357[ 6]); L ^= f(R, sched->k0246[ 5], sched->k1357[ 5]); R ^= f(L, sched->k0246[ 4], sched->k1357[ 4]); L ^= f(R, sched->k0246[ 3], sched->k1357[ 3]); R ^= f(L, sched->k0246[ 2], sched->k1357[ 2]); L ^= f(R, sched->k0246[ 1], sched->k1357[ 1]); R ^= f(L, sched->k0246[ 0], sched->k1357[ 0]); L = rotl(L, 31); R = rotl(R, 31); swap = L; L = R; R = swap; FP(L, R); output[0] = L; output[1] = R; } #define GET_32BIT_MSB_FIRST(cp) \ (((unsigned long)(unsigned char)(cp)[3]) | \ ((unsigned long)(unsigned char)(cp)[2] << 8) | \ ((unsigned long)(unsigned char)(cp)[1] << 16) | \ ((unsigned long)(unsigned char)(cp)[0] << 24)) #define PUT_32BIT_MSB_FIRST(cp, value) do { \ (cp)[3] = (value); \ (cp)[2] = (value) >> 8; \ (cp)[1] = (value) >> 16; \ (cp)[0] = (value) >> 24; } while (0) static void des_cbc_encrypt(unsigned char *dest, const unsigned char *src, unsigned int len, DESContext *sched) { word32 out[2], iv0, iv1; unsigned int i; assert((len & 7) == 0); iv0 = sched->eiv0; iv1 = sched->eiv1; for (i = 0; i < len; i += 8) { iv0 ^= GET_32BIT_MSB_FIRST(src); src += 4; iv1 ^= GET_32BIT_MSB_FIRST(src); src += 4; des_encipher(out, iv0, iv1, sched); iv0 = out[0]; iv1 = out[1]; PUT_32BIT_MSB_FIRST(dest, iv0); dest += 4; PUT_32BIT_MSB_FIRST(dest, iv1); dest += 4; } sched->eiv0 = iv0; sched->eiv1 = iv1; } static void des_cbc_decrypt(unsigned char *dest, const unsigned char *src, unsigned int len, DESContext *sched) { word32 out[2], iv0, iv1, xL, xR; unsigned int i; assert((len & 7) == 0); iv0 = sched->div0; iv1 = sched->div1; for (i = 0; i < len; i += 8) { xL = GET_32BIT_MSB_FIRST(src); src += 4; xR = GET_32BIT_MSB_FIRST(src); src += 4; des_decipher(out, xL, xR, sched); iv0 ^= out[0]; iv1 ^= out[1]; PUT_32BIT_MSB_FIRST(dest, iv0); dest += 4; PUT_32BIT_MSB_FIRST(dest, iv1); dest += 4; iv0 = xL; iv1 = xR; } sched->div0 = iv0; sched->div1 = iv1; } static void des_3cbc_encrypt(unsigned char *dest, const unsigned char *src, unsigned int len, DESContext *scheds) { des_cbc_encrypt(dest, src, len, &scheds[0]); des_cbc_decrypt(dest, src, len, &scheds[1]); des_cbc_encrypt(dest, src, len, &scheds[2]); } static void des_3cbc_decrypt(unsigned char *dest, const unsigned char *src, unsigned int len, DESContext *scheds) { des_cbc_decrypt(dest, src, len, &scheds[2]); des_cbc_encrypt(dest, src, len, &scheds[1]); des_cbc_decrypt(dest, src, len, &scheds[0]); } DESContext keys[3]; static void des3_sesskey(unsigned char *key) { des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key+4), &keys[0]); des_key_setup(GET_32BIT_MSB_FIRST(key+8), GET_32BIT_MSB_FIRST(key+12), &keys[1]); des_key_setup(GET_32BIT_MSB_FIRST(key+16), GET_32BIT_MSB_FIRST(key+20), &keys[2]); logevent("Initialised triple-DES encryption"); } static void des3_encrypt_blk(unsigned char *blk, int len) { des_3cbc_encrypt(blk, blk, len, keys); } static void des3_decrypt_blk(unsigned char *blk, int len) { des_3cbc_decrypt(blk, blk, len, keys); } struct ssh_cipher ssh_3des = { des3_sesskey, des3_encrypt_blk, des3_decrypt_blk }; static void des_sesskey(unsigned char *key) { des_key_setup(GET_32BIT_MSB_FIRST(key), GET_32BIT_MSB_FIRST(key+4), &keys[0]); logevent("Initialised single-DES encryption"); } static void des_encrypt_blk(unsigned char *blk, int len) { des_cbc_encrypt(blk, blk, len, keys); } static void des_decrypt_blk(unsigned char *blk, int len) { des_cbc_decrypt(blk, blk, len, keys); } struct ssh_cipher ssh_des = { des_sesskey, des_encrypt_blk, des_decrypt_blk };