]> asedeno.scripts.mit.edu Git - linux.git/blobdiff - drivers/gpu/drm/i915/i915_gem.c
Merge branches 'pm-core', 'pm-qos', 'pm-domains' and 'pm-opp'
[linux.git] / drivers / gpu / drm / i915 / i915_gem.c
index 3dd7fc662859a90803b142a8adf7f542f29c5948..24b5b046754b37e8b8e3ab2c04a9f890b41eecf9 100644 (file)
@@ -595,47 +595,21 @@ i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
                     struct drm_i915_gem_pwrite *args,
                     struct drm_file *file)
 {
-       struct drm_device *dev = obj->base.dev;
        void *vaddr = obj->phys_handle->vaddr + args->offset;
        char __user *user_data = u64_to_user_ptr(args->data_ptr);
-       int ret;
 
        /* We manually control the domain here and pretend that it
         * remains coherent i.e. in the GTT domain, like shmem_pwrite.
         */
-       lockdep_assert_held(&obj->base.dev->struct_mutex);
-       ret = i915_gem_object_wait(obj,
-                                  I915_WAIT_INTERRUPTIBLE |
-                                  I915_WAIT_LOCKED |
-                                  I915_WAIT_ALL,
-                                  MAX_SCHEDULE_TIMEOUT,
-                                  to_rps_client(file));
-       if (ret)
-               return ret;
-
        intel_fb_obj_invalidate(obj, ORIGIN_CPU);
-       if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
-               unsigned long unwritten;
-
-               /* The physical object once assigned is fixed for the lifetime
-                * of the obj, so we can safely drop the lock and continue
-                * to access vaddr.
-                */
-               mutex_unlock(&dev->struct_mutex);
-               unwritten = copy_from_user(vaddr, user_data, args->size);
-               mutex_lock(&dev->struct_mutex);
-               if (unwritten) {
-                       ret = -EFAULT;
-                       goto out;
-               }
-       }
+       if (copy_from_user(vaddr, user_data, args->size))
+               return -EFAULT;
 
        drm_clflush_virt_range(vaddr, args->size);
-       i915_gem_chipset_flush(to_i915(dev));
+       i915_gem_chipset_flush(to_i915(obj->base.dev));
 
-out:
        intel_fb_obj_flush(obj, false, ORIGIN_CPU);
-       return ret;
+       return 0;
 }
 
 void *i915_gem_object_alloc(struct drm_device *dev)
@@ -2036,8 +2010,16 @@ void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
        for (i = 0; i < dev_priv->num_fence_regs; i++) {
                struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
 
-               if (WARN_ON(reg->pin_count))
-                       continue;
+               /* Ideally we want to assert that the fence register is not
+                * live at this point (i.e. that no piece of code will be
+                * trying to write through fence + GTT, as that both violates
+                * our tracking of activity and associated locking/barriers,
+                * but also is illegal given that the hw is powered down).
+                *
+                * Previously we used reg->pin_count as a "liveness" indicator.
+                * That is not sufficient, and we need a more fine-grained
+                * tool if we want to have a sanity check here.
+                */
 
                if (!reg->vma)
                        continue;
@@ -3504,7 +3486,7 @@ i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
        vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
 
        /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
-       if (obj->cache_dirty) {
+       if (obj->cache_dirty || obj->base.write_domain == I915_GEM_DOMAIN_CPU) {
                i915_gem_clflush_object(obj, true);
                intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
        }