X-Git-Url: https://asedeno.scripts.mit.edu/gitweb/?a=blobdiff_plain;f=sshbn.c;h=facdf3d576b17f7bea92fdf5cb281b716006311d;hb=a063e522970946bf7d5dc052079d7773c0dee76d;hp=484c423f022490b030e797afbee2cd5e9f0b0372;hpb=1fda4423e03a3e3e6c73e83f83e6eb6c020df6d1;p=PuTTY.git diff --git a/sshbn.c b/sshbn.c index 484c423f..facdf3d5 100644 --- a/sshbn.c +++ b/sshbn.c @@ -6,93 +6,11 @@ #include #include #include +#include #include "misc.h" -/* - * Usage notes: - * * Do not call the DIVMOD_WORD macro with expressions such as array - * subscripts, as some implementations object to this (see below). - * * Note that none of the division methods below will cope if the - * quotient won't fit into BIGNUM_INT_BITS. Callers should be careful - * to avoid this case. - * If this condition occurs, in the case of the x86 DIV instruction, - * an overflow exception will occur, which (according to a correspondent) - * will manifest on Windows as something like - * 0xC0000095: Integer overflow - * The C variant won't give the right answer, either. - */ - -#if defined __GNUC__ && defined __i386__ -typedef unsigned long BignumInt; -typedef unsigned long long BignumDblInt; -#define BIGNUM_INT_MASK 0xFFFFFFFFUL -#define BIGNUM_TOP_BIT 0x80000000UL -#define BIGNUM_INT_BITS 32 -#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) -#define DIVMOD_WORD(q, r, hi, lo, w) \ - __asm__("div %2" : \ - "=d" (r), "=a" (q) : \ - "r" (w), "d" (hi), "a" (lo)) -#elif defined _MSC_VER && defined _M_IX86 -typedef unsigned __int32 BignumInt; -typedef unsigned __int64 BignumDblInt; -#define BIGNUM_INT_MASK 0xFFFFFFFFUL -#define BIGNUM_TOP_BIT 0x80000000UL -#define BIGNUM_INT_BITS 32 -#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) -/* Note: MASM interprets array subscripts in the macro arguments as - * assembler syntax, which gives the wrong answer. Don't supply them. - * */ -#define DIVMOD_WORD(q, r, hi, lo, w) do { \ - __asm mov edx, hi \ - __asm mov eax, lo \ - __asm div w \ - __asm mov r, edx \ - __asm mov q, eax \ -} while(0) -#elif defined _LP64 -/* 64-bit architectures can do 32x32->64 chunks at a time */ -typedef unsigned int BignumInt; -typedef unsigned long BignumDblInt; -#define BIGNUM_INT_MASK 0xFFFFFFFFU -#define BIGNUM_TOP_BIT 0x80000000U -#define BIGNUM_INT_BITS 32 -#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) -#define DIVMOD_WORD(q, r, hi, lo, w) do { \ - BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \ - q = n / w; \ - r = n % w; \ -} while (0) -#elif defined _LLP64 -/* 64-bit architectures in which unsigned long is 32 bits, not 64 */ -typedef unsigned long BignumInt; -typedef unsigned long long BignumDblInt; -#define BIGNUM_INT_MASK 0xFFFFFFFFUL -#define BIGNUM_TOP_BIT 0x80000000UL -#define BIGNUM_INT_BITS 32 -#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) -#define DIVMOD_WORD(q, r, hi, lo, w) do { \ - BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \ - q = n / w; \ - r = n % w; \ -} while (0) -#else -/* Fallback for all other cases */ -typedef unsigned short BignumInt; -typedef unsigned long BignumDblInt; -#define BIGNUM_INT_MASK 0xFFFFU -#define BIGNUM_TOP_BIT 0x8000U -#define BIGNUM_INT_BITS 16 -#define MUL_WORD(w1, w2) ((BignumDblInt)w1 * w2) -#define DIVMOD_WORD(q, r, hi, lo, w) do { \ - BignumDblInt n = (((BignumDblInt)hi) << BIGNUM_INT_BITS) | lo; \ - q = n / w; \ - r = n % w; \ -} while (0) -#endif - -#define BIGNUM_INT_BYTES (BIGNUM_INT_BITS / 8) +#include "sshbn.h" #define BIGNUM_INTERNAL typedef BignumInt *Bignum; @@ -120,7 +38,11 @@ Bignum Zero = bnZero, One = bnOne; static Bignum newbn(int length) { - Bignum b = snewn(length + 1, BignumInt); + Bignum b; + + assert(length >= 0 && length < INT_MAX / BIGNUM_INT_BITS); + + b = snewn(length + 1, BignumInt); if (!b) abort(); /* FIXME */ memset(b, 0, (length + 1) * sizeof(*b)); @@ -148,13 +70,17 @@ void freebn(Bignum b) /* * Burn the evidence, just in case. */ - memset(b, 0, sizeof(b[0]) * (b[0] + 1)); + smemclr(b, sizeof(b[0]) * (b[0] + 1)); sfree(b); } Bignum bn_power_2(int n) { - Bignum ret = newbn(n / BIGNUM_INT_BITS + 1); + Bignum ret; + + assert(n >= 0); + + ret = newbn(n / BIGNUM_INT_BITS + 1); bignum_set_bit(ret, n, 1); return ret; } @@ -589,7 +515,7 @@ static void monty_reduce(BignumInt *x, const BignumInt *n, } static void internal_add_shifted(BignumInt *number, - unsigned n, int shift) + BignumInt n, int shift) { int word = 1 + (shift / BIGNUM_INT_BITS); int bshift = shift % BIGNUM_INT_BITS; @@ -598,6 +524,7 @@ static void internal_add_shifted(BignumInt *number, addend = (BignumDblInt)n << bshift; while (addend) { + assert(word <= number[0]); addend += number[word]; number[word] = (BignumInt) addend & BIGNUM_INT_MASK; addend >>= BIGNUM_INT_BITS; @@ -619,11 +546,11 @@ static void internal_mod(BignumInt *a, int alen, BignumInt *m, int mlen, BignumInt *quot, int qshift) { - BignumInt m0, m1; - unsigned int h; + BignumInt m0, m1, h; int i, k; m0 = m[0]; + assert(m0 >> (BIGNUM_INT_BITS-1) == 1); if (mlen > 1) m1 = m[1]; else @@ -631,7 +558,7 @@ static void internal_mod(BignumInt *a, int alen, for (i = 0; i <= alen - mlen; i++) { BignumDblInt t; - unsigned int q, r, c, ai1; + BignumInt q, r, c, ai1; if (i == 0) { h = 0; @@ -686,7 +613,7 @@ static void internal_mod(BignumInt *a, int alen, for (k = mlen - 1; k >= 0; k--) { t = MUL_WORD(q, m[k]); t += c; - c = (unsigned)(t >> BIGNUM_INT_BITS); + c = (BignumInt)(t >> BIGNUM_INT_BITS); if ((BignumInt) t > a[i + k]) c++; a[i + k] -= (BignumInt) t; @@ -769,7 +696,7 @@ Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod) /* Skip leading zero bits of exp. */ i = 0; j = BIGNUM_INT_BITS-1; - while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) { + while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) { j--; if (j < 0) { i++; @@ -782,7 +709,7 @@ Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod) while (j >= 0) { internal_mul(a + mlen, a + mlen, b, mlen, scratch); internal_mod(b, mlen * 2, m, mlen, NULL, 0); - if ((exp[exp[0] - i] & (1 << j)) != 0) { + if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) { internal_mul(b + mlen, n, a, mlen, scratch); internal_mod(a, mlen * 2, m, mlen, NULL, 0); } else { @@ -815,20 +742,15 @@ Bignum modpow_simple(Bignum base_in, Bignum exp, Bignum mod) result[0]--; /* Free temporary arrays */ - for (i = 0; i < 2 * mlen; i++) - a[i] = 0; + smemclr(a, 2 * mlen * sizeof(*a)); sfree(a); - for (i = 0; i < scratchlen; i++) - scratch[i] = 0; + smemclr(scratch, scratchlen * sizeof(*scratch)); sfree(scratch); - for (i = 0; i < 2 * mlen; i++) - b[i] = 0; + smemclr(b, 2 * mlen * sizeof(*b)); sfree(b); - for (i = 0; i < mlen; i++) - m[i] = 0; + smemclr(m, mlen * sizeof(*m)); sfree(m); - for (i = 0; i < mlen; i++) - n[i] = 0; + smemclr(n, mlen * sizeof(*n)); sfree(n); freebn(base); @@ -873,6 +795,7 @@ Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) len = mod[0]; r = bn_power_2(BIGNUM_INT_BITS * len); inv = modinv(mod, r); + assert(inv); /* cannot fail, since mod is odd and r is a power of 2 */ /* * Multiply the base by r mod n, to get it into Montgomery @@ -923,7 +846,7 @@ Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) /* Skip leading zero bits of exp. */ i = 0; j = BIGNUM_INT_BITS-1; - while (i < (int)exp[0] && (exp[exp[0] - i] & (1 << j)) == 0) { + while (i < (int)exp[0] && (exp[exp[0] - i] & ((BignumInt)1 << j)) == 0) { j--; if (j < 0) { i++; @@ -936,7 +859,7 @@ Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) while (j >= 0) { internal_mul(a + len, a + len, b, len, scratch); monty_reduce(b, n, mninv, scratch, len); - if ((exp[exp[0] - i] & (1 << j)) != 0) { + if ((exp[exp[0] - i] & ((BignumInt)1 << j)) != 0) { internal_mul(b + len, x, a, len, scratch); monty_reduce(a, n, mninv, scratch, len); } else { @@ -965,23 +888,17 @@ Bignum modpow(Bignum base_in, Bignum exp, Bignum mod) result[0]--; /* Free temporary arrays */ - for (i = 0; i < scratchlen; i++) - scratch[i] = 0; + smemclr(scratch, scratchlen * sizeof(*scratch)); sfree(scratch); - for (i = 0; i < 2 * len; i++) - a[i] = 0; + smemclr(a, 2 * len * sizeof(*a)); sfree(a); - for (i = 0; i < 2 * len; i++) - b[i] = 0; + smemclr(b, 2 * len * sizeof(*b)); sfree(b); - for (i = 0; i < len; i++) - mninv[i] = 0; + smemclr(mninv, len * sizeof(*mninv)); sfree(mninv); - for (i = 0; i < len; i++) - n[i] = 0; + smemclr(n, len * sizeof(*n)); sfree(n); - for (i = 0; i < len; i++) - x[i] = 0; + smemclr(x, len * sizeof(*x)); sfree(x); return result; @@ -999,6 +916,12 @@ Bignum modmul(Bignum p, Bignum q, Bignum mod) int pqlen, mlen, rlen, i, j; Bignum result; + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + /* Allocate m of size mlen, copy mod to m */ /* We use big endian internally */ mlen = mod[0]; @@ -1018,6 +941,13 @@ Bignum modmul(Bignum p, Bignum q, Bignum mod) pqlen = (p[0] > q[0] ? p[0] : q[0]); + /* + * Make sure that we're allowing enough space. The shifting below + * will underflow the vectors we allocate if pqlen is too small. + */ + if (2*pqlen <= mlen) + pqlen = mlen/2 + 1; + /* Allocate n of size pqlen, copy p to n */ n = snewn(pqlen, BignumInt); i = pqlen - p[0]; @@ -1064,20 +994,15 @@ Bignum modmul(Bignum p, Bignum q, Bignum mod) result[0]--; /* Free temporary arrays */ - for (i = 0; i < scratchlen; i++) - scratch[i] = 0; + smemclr(scratch, scratchlen * sizeof(*scratch)); sfree(scratch); - for (i = 0; i < 2 * pqlen; i++) - a[i] = 0; + smemclr(a, 2 * pqlen * sizeof(*a)); sfree(a); - for (i = 0; i < mlen; i++) - m[i] = 0; + smemclr(m, mlen * sizeof(*m)); sfree(m); - for (i = 0; i < pqlen; i++) - n[i] = 0; + smemclr(n, pqlen * sizeof(*n)); sfree(n); - for (i = 0; i < pqlen; i++) - o[i] = 0; + smemclr(o, pqlen * sizeof(*o)); sfree(o); return result; @@ -1096,6 +1021,12 @@ static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient) int mshift; int plen, mlen, i, j; + /* + * The most significant word of mod needs to be non-zero. It + * should already be, but let's make sure. + */ + assert(mod[mod[0]] != 0); + /* Allocate m of size mlen, copy mod to m */ /* We use big endian internally */ mlen = mod[0]; @@ -1147,11 +1078,9 @@ static void bigdivmod(Bignum p, Bignum mod, Bignum result, Bignum quotient) } /* Free temporary arrays */ - for (i = 0; i < mlen; i++) - m[i] = 0; + smemclr(m, mlen * sizeof(*m)); sfree(m); - for (i = 0; i < plen; i++) - n[i] = 0; + smemclr(n, plen * sizeof(*n)); sfree(n); } @@ -1171,6 +1100,8 @@ Bignum bignum_from_bytes(const unsigned char *data, int nbytes) Bignum result; int w, i; + assert(nbytes >= 0 && nbytes < INT_MAX/8); + w = (nbytes + BIGNUM_INT_BYTES - 1) / BIGNUM_INT_BYTES; /* bytes->words */ result = newbn(w); @@ -1178,7 +1109,8 @@ Bignum bignum_from_bytes(const unsigned char *data, int nbytes) result[i] = 0; for (i = nbytes; i--;) { unsigned char byte = *data++; - result[1 + i / BIGNUM_INT_BYTES] |= byte << (8*i % BIGNUM_INT_BITS); + result[1 + i / BIGNUM_INT_BYTES] |= + (BignumInt)byte << (8*i % BIGNUM_INT_BITS); } while (result[0] > 1 && result[result[0]] == 0) @@ -1247,7 +1179,7 @@ int ssh2_bignum_length(Bignum bn) */ int bignum_byte(Bignum bn, int i) { - if (i >= (int)(BIGNUM_INT_BYTES * bn[0])) + if (i < 0 || i >= (int)(BIGNUM_INT_BYTES * bn[0])) return 0; /* beyond the end */ else return (bn[i / BIGNUM_INT_BYTES + 1] >> @@ -1259,7 +1191,7 @@ int bignum_byte(Bignum bn, int i) */ int bignum_bit(Bignum bn, int i) { - if (i >= (int)(BIGNUM_INT_BITS * bn[0])) + if (i < 0 || i >= (int)(BIGNUM_INT_BITS * bn[0])) return 0; /* beyond the end */ else return (bn[i / BIGNUM_INT_BITS + 1] >> (i % BIGNUM_INT_BITS)) & 1; @@ -1270,11 +1202,11 @@ int bignum_bit(Bignum bn, int i) */ void bignum_set_bit(Bignum bn, int bitnum, int value) { - if (bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) + if (bitnum < 0 || bitnum >= (int)(BIGNUM_INT_BITS * bn[0])) abort(); /* beyond the end */ else { int v = bitnum / BIGNUM_INT_BITS + 1; - int mask = 1 << (bitnum % BIGNUM_INT_BITS); + BignumInt mask = (BignumInt)1 << (bitnum % BIGNUM_INT_BITS); if (value) bn[v] |= mask; else @@ -1306,7 +1238,18 @@ int ssh1_write_bignum(void *data, Bignum bn) int bignum_cmp(Bignum a, Bignum b) { int amax = a[0], bmax = b[0]; - int i = (amax > bmax ? amax : bmax); + int i; + + /* Annoyingly we have two representations of zero */ + if (amax == 1 && a[amax] == 0) + amax = 0; + if (bmax == 1 && b[bmax] == 0) + bmax = 0; + + assert(amax == 0 || a[amax] != 0); + assert(bmax == 0 || b[bmax] != 0); + + i = (amax > bmax ? amax : bmax); while (i) { BignumInt aval = (i > amax ? 0 : a[i]); BignumInt bval = (i > bmax ? 0 : b[i]); @@ -1328,6 +1271,8 @@ Bignum bignum_rshift(Bignum a, int shift) int i, shiftw, shiftb, shiftbb, bits; BignumInt ai, ai1; + assert(shift >= 0); + bits = bignum_bitcount(a) - shift; ret = newbn((bits + BIGNUM_INT_BITS - 1) / BIGNUM_INT_BITS); @@ -1398,8 +1343,7 @@ Bignum bigmuladd(Bignum a, Bignum b, Bignum addend) } ret[0] = maxspot; - for (i = 0; i < wslen; i++) - workspace[i] = 0; + smemclr(workspace, wslen * sizeof(*workspace)); sfree(workspace); return ret; } @@ -1583,6 +1527,8 @@ Bignum bigdiv(Bignum a, Bignum b) { Bignum q = newbn(a[0]); bigdivmod(a, b, NULL, q); + while (q[0] > 1 && q[q[0]] == 0) + q[0]--; return q; } @@ -1593,6 +1539,8 @@ Bignum bigmod(Bignum a, Bignum b) { Bignum r = newbn(b[0]); bigdivmod(a, b, r, NULL); + while (r[0] > 1 && r[r[0]] == 0) + r[0]--; return r; } @@ -1629,12 +1577,31 @@ Bignum modinv(Bignum number, Bignum modulus) Bignum x = copybn(One); int sign = +1; + assert(number[number[0]] != 0); + assert(modulus[modulus[0]] != 0); + while (bignum_cmp(b, One) != 0) { - Bignum t = newbn(b[0]); - Bignum q = newbn(a[0]); + Bignum t, q; + + if (bignum_cmp(b, Zero) == 0) { + /* + * Found a common factor between the inputs, so we cannot + * return a modular inverse at all. + */ + freebn(b); + freebn(a); + freebn(xp); + freebn(x); + return NULL; + } + + t = newbn(b[0]); + q = newbn(a[0]); bigdivmod(a, b, t, q); while (t[0] > 1 && t[t[0]] == 0) t[0]--; + while (q[0] > 1 && q[q[0]] == 0) + q[0]--; freebn(a); a = b; b = t; @@ -1750,6 +1717,7 @@ char *bignum_decimal(Bignum x) /* * Done. */ + smemclr(workspace, x[0] * sizeof(*workspace)); sfree(workspace); return ret; } @@ -1761,7 +1729,7 @@ char *bignum_decimal(Bignum x) #include /* - * gcc -g -O0 -DTESTBN -o testbn sshbn.c misc.c -I unix -I charset + * gcc -Wall -g -O0 -DTESTBN -o testbn sshbn.c misc.c conf.c tree234.c unix/uxmisc.c -I. -I unix -I charset * * Then feed to this program's standard input the output of * testdata/bignum.py . @@ -1778,6 +1746,12 @@ void modalfatalbox(char *p, ...) exit(1); } +int random_byte(void) +{ + modalfatalbox("random_byte called in testbn"); + return 0; +} + #define fromxdigit(c) ( (c)>'9' ? ((c)&0xDF) - 'A' + 10 : (c) - '0' ) int main(int argc, char **argv) @@ -1835,7 +1809,7 @@ int main(int argc, char **argv) Bignum a, b, c, p; if (ptrnum != 3) { - printf("%d: mul with %d parameters, expected 3\n", line); + printf("%d: mul with %d parameters, expected 3\n", line, ptrnum); exit(1); } a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]); @@ -1864,11 +1838,49 @@ int main(int argc, char **argv) freebn(b); freebn(c); freebn(p); + } else if (!strcmp(buf, "modmul")) { + Bignum a, b, m, c, p; + + if (ptrnum != 4) { + printf("%d: modmul with %d parameters, expected 4\n", + line, ptrnum); + exit(1); + } + a = bignum_from_bytes(ptrs[0], ptrs[1]-ptrs[0]); + b = bignum_from_bytes(ptrs[1], ptrs[2]-ptrs[1]); + m = bignum_from_bytes(ptrs[2], ptrs[3]-ptrs[2]); + c = bignum_from_bytes(ptrs[3], ptrs[4]-ptrs[3]); + p = modmul(a, b, m); + + if (bignum_cmp(c, p) == 0) { + passes++; + } else { + char *as = bignum_decimal(a); + char *bs = bignum_decimal(b); + char *ms = bignum_decimal(m); + char *cs = bignum_decimal(c); + char *ps = bignum_decimal(p); + + printf("%d: fail: %s * %s mod %s gave %s expected %s\n", + line, as, bs, ms, ps, cs); + fails++; + + sfree(as); + sfree(bs); + sfree(ms); + sfree(cs); + sfree(ps); + } + freebn(a); + freebn(b); + freebn(m); + freebn(c); + freebn(p); } else if (!strcmp(buf, "pow")) { Bignum base, expt, modulus, expected, answer; if (ptrnum != 4) { - printf("%d: mul with %d parameters, expected 3\n", line); + printf("%d: mul with %d parameters, expected 4\n", line, ptrnum); exit(1); }