From 7ddedebb03b7ec030c528ebacdd43e45373476e3 Mon Sep 17 00:00:00 2001 From: Takashi Iwai Date: Thu, 29 Sep 2016 18:21:46 +0200 Subject: [PATCH] ALSA: doc: ReSTize writing-an-alsa-driver document Another simple conversion from DocBook to ReST. This required a few manual fixups and reformats, but the most of contents are kept as is. Signed-off-by: Takashi Iwai --- Documentation/DocBook/Makefile | 3 +- .../DocBook/writing-an-alsa-driver.tmpl | 6206 ----------------- Documentation/sound/kernel-api/index.rst | 1 + .../kernel-api/writing-an-alsa-driver.rst | 4219 +++++++++++ 4 files changed, 4221 insertions(+), 6208 deletions(-) delete mode 100644 Documentation/DocBook/writing-an-alsa-driver.tmpl create mode 100644 Documentation/sound/kernel-api/writing-an-alsa-driver.rst diff --git a/Documentation/DocBook/Makefile b/Documentation/DocBook/Makefile index e173497959fa..72f78ae46c10 100644 --- a/Documentation/DocBook/Makefile +++ b/Documentation/DocBook/Makefile @@ -12,8 +12,7 @@ DOCBOOKS := z8530book.xml \ kernel-api.xml filesystems.xml lsm.xml usb.xml kgdb.xml \ gadget.xml libata.xml mtdnand.xml librs.xml rapidio.xml \ genericirq.xml s390-drivers.xml uio-howto.xml scsi.xml \ - debugobjects.xml sh.xml regulator.xml \ - writing-an-alsa-driver.xml \ + 80211.xml debugobjects.xml sh.xml regulator.xml \ tracepoint.xml w1.xml \ writing_musb_glue_layer.xml crypto-API.xml iio.xml diff --git a/Documentation/DocBook/writing-an-alsa-driver.tmpl b/Documentation/DocBook/writing-an-alsa-driver.tmpl deleted file mode 100644 index a27ab9f53fb6..000000000000 --- a/Documentation/DocBook/writing-an-alsa-driver.tmpl +++ /dev/null @@ -1,6206 +0,0 @@ - - - - - - - - - Writing an ALSA Driver - - Takashi - Iwai - -
- tiwai@suse.de -
-
-
- - Oct 15, 2007 - 0.3.7 - - - - This document describes how to write an ALSA (Advanced Linux - Sound Architecture) driver. - - - - - - Copyright (c) 2002-2005 Takashi Iwai tiwai@suse.de - - - - This document is free; you can redistribute it and/or modify it - under the terms of the GNU General Public License as published by - the Free Software Foundation; either version 2 of the License, or - (at your option) any later version. - - - - This document is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the - implied warranty of MERCHANTABILITY or FITNESS FOR A - PARTICULAR PURPOSE. See the GNU General Public License - for more details. - - - - You should have received a copy of the GNU General Public - License along with this program; if not, write to the Free - Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, - MA 02111-1307 USA - - - -
- - - - - - Preface - - This document describes how to write an - - ALSA (Advanced Linux Sound Architecture) - driver. The document focuses mainly on PCI soundcards. - In the case of other device types, the API might - be different, too. However, at least the ALSA kernel API is - consistent, and therefore it would be still a bit help for - writing them. - - - - This document targets people who already have enough - C language skills and have basic linux kernel programming - knowledge. This document doesn't explain the general - topic of linux kernel coding and doesn't cover low-level - driver implementation details. It only describes - the standard way to write a PCI sound driver on ALSA. - - - - If you are already familiar with the older ALSA ver.0.5.x API, you - can check the drivers such as sound/pci/es1938.c or - sound/pci/maestro3.c which have also almost the same - code-base in the ALSA 0.5.x tree, so you can compare the differences. - - - - This document is still a draft version. Any feedback and - corrections, please!! - - - - - - - - - File Tree Structure - -
- General - - The ALSA drivers are provided in two ways. - - - - One is the trees provided as a tarball or via cvs from the - ALSA's ftp site, and another is the 2.6 (or later) Linux kernel - tree. To synchronize both, the ALSA driver tree is split into - two different trees: alsa-kernel and alsa-driver. The former - contains purely the source code for the Linux 2.6 (or later) - tree. This tree is designed only for compilation on 2.6 or - later environment. The latter, alsa-driver, contains many subtle - files for compiling ALSA drivers outside of the Linux kernel tree, - wrapper functions for older 2.2 and 2.4 kernels, to adapt the latest kernel API, - and additional drivers which are still in development or in - tests. The drivers in alsa-driver tree will be moved to - alsa-kernel (and eventually to the 2.6 kernel tree) when they are - finished and confirmed to work fine. - - - - The file tree structure of ALSA driver is depicted below. Both - alsa-kernel and alsa-driver have almost the same file - structure, except for core directory. It's - named as acore in alsa-driver tree. - - - ALSA File Tree Structure - - sound - /core - /oss - /seq - /oss - /instr - /ioctl32 - /include - /drivers - /mpu401 - /opl3 - /i2c - /l3 - /synth - /emux - /pci - /(cards) - /isa - /(cards) - /arm - /ppc - /sparc - /usb - /pcmcia /(cards) - /oss - - - -
- -
- core directory - - This directory contains the middle layer which is the heart - of ALSA drivers. In this directory, the native ALSA modules are - stored. The sub-directories contain different modules and are - dependent upon the kernel config. - - -
- core/oss - - - The codes for PCM and mixer OSS emulation modules are stored - in this directory. The rawmidi OSS emulation is included in - the ALSA rawmidi code since it's quite small. The sequencer - code is stored in core/seq/oss directory (see - - below). - -
- -
- core/ioctl32 - - - This directory contains the 32bit-ioctl wrappers for 64bit - architectures such like x86-64, ppc64 and sparc64. For 32bit - and alpha architectures, these are not compiled. - -
- -
- core/seq - - This directory and its sub-directories are for the ALSA - sequencer. This directory contains the sequencer core and - primary sequencer modules such like snd-seq-midi, - snd-seq-virmidi, etc. They are compiled only when - CONFIG_SND_SEQUENCER is set in the kernel - config. - -
- -
- core/seq/oss - - This contains the OSS sequencer emulation codes. - -
- -
- core/seq/instr - - This directory contains the modules for the sequencer - instrument layer. - -
-
- -
- include directory - - This is the place for the public header files of ALSA drivers, - which are to be exported to user-space, or included by - several files at different directories. Basically, the private - header files should not be placed in this directory, but you may - still find files there, due to historical reasons :) - -
- -
- drivers directory - - This directory contains code shared among different drivers - on different architectures. They are hence supposed not to be - architecture-specific. - For example, the dummy pcm driver and the serial MIDI - driver are found in this directory. In the sub-directories, - there is code for components which are independent from - bus and cpu architectures. - - -
- drivers/mpu401 - - The MPU401 and MPU401-UART modules are stored here. - -
- -
- drivers/opl3 and opl4 - - The OPL3 and OPL4 FM-synth stuff is found here. - -
-
- -
- i2c directory - - This contains the ALSA i2c components. - - - - Although there is a standard i2c layer on Linux, ALSA has its - own i2c code for some cards, because the soundcard needs only a - simple operation and the standard i2c API is too complicated for - such a purpose. - - -
- i2c/l3 - - This is a sub-directory for ARM L3 i2c. - -
-
- -
- synth directory - - This contains the synth middle-level modules. - - - - So far, there is only Emu8000/Emu10k1 synth driver under - the synth/emux sub-directory. - -
- -
- pci directory - - This directory and its sub-directories hold the top-level card modules - for PCI soundcards and the code specific to the PCI BUS. - - - - The drivers compiled from a single file are stored directly - in the pci directory, while the drivers with several source files are - stored on their own sub-directory (e.g. emu10k1, ice1712). - -
- -
- isa directory - - This directory and its sub-directories hold the top-level card modules - for ISA soundcards. - -
- -
- arm, ppc, and sparc directories - - They are used for top-level card modules which are - specific to one of these architectures. - -
- -
- usb directory - - This directory contains the USB-audio driver. In the latest version, the - USB MIDI driver is integrated in the usb-audio driver. - -
- -
- pcmcia directory - - The PCMCIA, especially PCCard drivers will go here. CardBus - drivers will be in the pci directory, because their API is identical - to that of standard PCI cards. - -
- -
- oss directory - - The OSS/Lite source files are stored here in Linux 2.6 (or - later) tree. In the ALSA driver tarball, this directory is empty, - of course :) - -
-
- - - - - - - Basic Flow for PCI Drivers - -
- Outline - - The minimum flow for PCI soundcards is as follows: - - - define the PCI ID table (see the section - PCI Entries - ). - create probe() callback. - create remove() callback. - create a pci_driver structure - containing the three pointers above. - create an init() function just calling - the pci_register_driver() to register the pci_driver table - defined above. - create an exit() function to call - the pci_unregister_driver() function. - - -
- -
- Full Code Example - - The code example is shown below. Some parts are kept - unimplemented at this moment but will be filled in the - next sections. The numbers in the comment lines of the - snd_mychip_probe() function - refer to details explained in the following section. - - - Basic Flow for PCI Drivers - Example - - - #include - #include - #include - #include - - /* module parameters (see "Module Parameters") */ - /* SNDRV_CARDS: maximum number of cards supported by this module */ - static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; - static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; - static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; - - /* definition of the chip-specific record */ - struct mychip { - struct snd_card *card; - /* the rest of the implementation will be in section - * "PCI Resource Management" - */ - }; - - /* chip-specific destructor - * (see "PCI Resource Management") - */ - static int snd_mychip_free(struct mychip *chip) - { - .... /* will be implemented later... */ - } - - /* component-destructor - * (see "Management of Cards and Components") - */ - static int snd_mychip_dev_free(struct snd_device *device) - { - return snd_mychip_free(device->device_data); - } - - /* chip-specific constructor - * (see "Management of Cards and Components") - */ - static int snd_mychip_create(struct snd_card *card, - struct pci_dev *pci, - struct mychip **rchip) - { - struct mychip *chip; - int err; - static struct snd_device_ops ops = { - .dev_free = snd_mychip_dev_free, - }; - - *rchip = NULL; - - /* check PCI availability here - * (see "PCI Resource Management") - */ - .... - - /* allocate a chip-specific data with zero filled */ - chip = kzalloc(sizeof(*chip), GFP_KERNEL); - if (chip == NULL) - return -ENOMEM; - - chip->card = card; - - /* rest of initialization here; will be implemented - * later, see "PCI Resource Management" - */ - .... - - err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); - if (err < 0) { - snd_mychip_free(chip); - return err; - } - - *rchip = chip; - return 0; - } - - /* constructor -- see "Constructor" sub-section */ - static int snd_mychip_probe(struct pci_dev *pci, - const struct pci_device_id *pci_id) - { - static int dev; - struct snd_card *card; - struct mychip *chip; - int err; - - /* (1) */ - if (dev >= SNDRV_CARDS) - return -ENODEV; - if (!enable[dev]) { - dev++; - return -ENOENT; - } - - /* (2) */ - err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, - 0, &card); - if (err < 0) - return err; - - /* (3) */ - err = snd_mychip_create(card, pci, &chip); - if (err < 0) { - snd_card_free(card); - return err; - } - - /* (4) */ - strcpy(card->driver, "My Chip"); - strcpy(card->shortname, "My Own Chip 123"); - sprintf(card->longname, "%s at 0x%lx irq %i", - card->shortname, chip->ioport, chip->irq); - - /* (5) */ - .... /* implemented later */ - - /* (6) */ - err = snd_card_register(card); - if (err < 0) { - snd_card_free(card); - return err; - } - - /* (7) */ - pci_set_drvdata(pci, card); - dev++; - return 0; - } - - /* destructor -- see the "Destructor" sub-section */ - static void snd_mychip_remove(struct pci_dev *pci) - { - snd_card_free(pci_get_drvdata(pci)); - pci_set_drvdata(pci, NULL); - } -]]> - - - -
- -
- Constructor - - The real constructor of PCI drivers is the probe callback. - The probe callback and other component-constructors which are called - from the probe callback cannot be used with - the __init prefix - because any PCI device could be a hotplug device. - - - - In the probe callback, the following scheme is often used. - - -
- 1) Check and increment the device index. - - - -= SNDRV_CARDS) - return -ENODEV; - if (!enable[dev]) { - dev++; - return -ENOENT; - } -]]> - - - - where enable[dev] is the module option. - - - - Each time the probe callback is called, check the - availability of the device. If not available, simply increment - the device index and returns. dev will be incremented also - later (step - 7). - -
- -
- 2) Create a card instance - - - -dev, index[dev], id[dev], THIS_MODULE, - 0, &card); -]]> - - - - - - The details will be explained in the section - - Management of Cards and Components. - -
- -
- 3) Create a main component - - In this part, the PCI resources are allocated. - - - - - - - - The details will be explained in the section PCI Resource - Management. - -
- -
- 4) Set the driver ID and name strings. - - - -driver, "My Chip"); - strcpy(card->shortname, "My Own Chip 123"); - sprintf(card->longname, "%s at 0x%lx irq %i", - card->shortname, chip->ioport, chip->irq); -]]> - - - - The driver field holds the minimal ID string of the - chip. This is used by alsa-lib's configurator, so keep it - simple but unique. - Even the same driver can have different driver IDs to - distinguish the functionality of each chip type. - - - - The shortname field is a string shown as more verbose - name. The longname field contains the information - shown in /proc/asound/cards. - -
- -
- 5) Create other components, such as mixer, MIDI, etc. - - Here you define the basic components such as - PCM, - mixer (e.g. AC97), - MIDI (e.g. MPU-401), - and other interfaces. - Also, if you want a proc - file, define it here, too. - -
- -
- 6) Register the card instance. - - - - - - - - - - Will be explained in the section Management - of Cards and Components, too. - -
- -
- 7) Set the PCI driver data and return zero. - - - - - - - - In the above, the card record is stored. This pointer is - used in the remove callback and power-management - callbacks, too. - -
-
- -
- Destructor - - The destructor, remove callback, simply releases the card - instance. Then the ALSA middle layer will release all the - attached components automatically. - - - - It would be typically like the following: - - - - - - - - The above code assumes that the card pointer is set to the PCI - driver data. - -
- -
- Header Files - - For the above example, at least the following include files - are necessary. - - - - - #include - #include - #include - #include -]]> - - - - where the last one is necessary only when module options are - defined in the source file. If the code is split into several - files, the files without module options don't need them. - - - - In addition to these headers, you'll need - <linux/interrupt.h> for interrupt - handling, and <asm/io.h> for I/O - access. If you use the mdelay() or - udelay() functions, you'll need to include - <linux/delay.h> too. - - - - The ALSA interfaces like the PCM and control APIs are defined in other - <sound/xxx.h> header files. - They have to be included after - <sound/core.h>. - - -
-
- - - - - - - Management of Cards and Components - -
- Card Instance - - For each soundcard, a card record must be allocated. - - - - A card record is the headquarters of the soundcard. It manages - the whole list of devices (components) on the soundcard, such as - PCM, mixers, MIDI, synthesizer, and so on. Also, the card - record holds the ID and the name strings of the card, manages - the root of proc files, and controls the power-management states - and hotplug disconnections. The component list on the card - record is used to manage the correct release of resources at - destruction. - - - - As mentioned above, to create a card instance, call - snd_card_new(). - - - -dev, index, id, module, extra_size, &card); -]]> - - - - - - The function takes six arguments: the parent device pointer, - the card-index number, the id string, the module pointer (usually - THIS_MODULE), - the size of extra-data space, and the pointer to return the - card instance. The extra_size argument is used to - allocate card->private_data for the - chip-specific data. Note that these data - are allocated by snd_card_new(). - - - - The first argument, the pointer of struct - device, specifies the parent device. - For PCI devices, typically &pci-> is passed there. - -
- -
- Components - - After the card is created, you can attach the components - (devices) to the card instance. In an ALSA driver, a component is - represented as a struct snd_device object. - A component can be a PCM instance, a control interface, a raw - MIDI interface, etc. Each such instance has one component - entry. - - - - A component can be created via - snd_device_new() function. - - - - - - - - - - This takes the card pointer, the device-level - (SNDRV_DEV_XXX), the data pointer, and the - callback pointers (&ops). The - device-level defines the type of components and the order of - registration and de-registration. For most components, the - device-level is already defined. For a user-defined component, - you can use SNDRV_DEV_LOWLEVEL. - - - - This function itself doesn't allocate the data space. The data - must be allocated manually beforehand, and its pointer is passed - as the argument. This pointer (chip in the - above example) is used as the identifier for the instance. - - - - Each pre-defined ALSA component such as ac97 and pcm calls - snd_device_new() inside its - constructor. The destructor for each component is defined in the - callback pointers. Hence, you don't need to take care of - calling a destructor for such a component. - - - - If you wish to create your own component, you need to - set the destructor function to the dev_free callback in - the ops, so that it can be released - automatically via snd_card_free(). - The next example will show an implementation of chip-specific - data. - -
- -
- Chip-Specific Data - - Chip-specific information, e.g. the I/O port address, its - resource pointer, or the irq number, is stored in the - chip-specific record. - - - - - - - - - - In general, there are two ways of allocating the chip record. - - -
- 1. Allocating via <function>snd_card_new()</function>. - - As mentioned above, you can pass the extra-data-length - to the 5th argument of snd_card_new(), i.e. - - - -dev, index[dev], id[dev], THIS_MODULE, - sizeof(struct mychip), &card); -]]> - - - - struct mychip is the type of the chip record. - - - - In return, the allocated record can be accessed as - - - -private_data; -]]> - - - - With this method, you don't have to allocate twice. - The record is released together with the card instance. - -
- -
- 2. Allocating an extra device. - - - After allocating a card instance via - snd_card_new() (with - 0 on the 4th arg), call - kzalloc(). - - - -dev, index[dev], id[dev], THIS_MODULE, - 0, &card); - ..... - chip = kzalloc(sizeof(*chip), GFP_KERNEL); -]]> - - - - - - The chip record should have the field to hold the card - pointer at least, - - - - - - - - - - Then, set the card pointer in the returned chip instance. - - - -card = card; -]]> - - - - - - Next, initialize the fields, and register this chip - record as a low-level device with a specified - ops, - - - - - - - - snd_mychip_dev_free() is the - device-destructor function, which will call the real - destructor. - - - - - -device_data); - } -]]> - - - - where snd_mychip_free() is the real destructor. - -
-
- -
- Registration and Release - - After all components are assigned, register the card instance - by calling snd_card_register(). Access - to the device files is enabled at this point. That is, before - snd_card_register() is called, the - components are safely inaccessible from external side. If this - call fails, exit the probe function after releasing the card via - snd_card_free(). - - - - For releasing the card instance, you can call simply - snd_card_free(). As mentioned earlier, all - components are released automatically by this call. - - - - For a device which allows hotplugging, you can use - snd_card_free_when_closed. This one will - postpone the destruction until all devices are closed. - - -
- -
- - - - - - - PCI Resource Management - -
- Full Code Example - - In this section, we'll complete the chip-specific constructor, - destructor and PCI entries. Example code is shown first, - below. - - - PCI Resource Management Example - -irq >= 0) - free_irq(chip->irq, chip); - /* release the I/O ports & memory */ - pci_release_regions(chip->pci); - /* disable the PCI entry */ - pci_disable_device(chip->pci); - /* release the data */ - kfree(chip); - return 0; - } - - /* chip-specific constructor */ - static int snd_mychip_create(struct snd_card *card, - struct pci_dev *pci, - struct mychip **rchip) - { - struct mychip *chip; - int err; - static struct snd_device_ops ops = { - .dev_free = snd_mychip_dev_free, - }; - - *rchip = NULL; - - /* initialize the PCI entry */ - err = pci_enable_device(pci); - if (err < 0) - return err; - /* check PCI availability (28bit DMA) */ - if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 || - pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) { - printk(KERN_ERR "error to set 28bit mask DMA\n"); - pci_disable_device(pci); - return -ENXIO; - } - - chip = kzalloc(sizeof(*chip), GFP_KERNEL); - if (chip == NULL) { - pci_disable_device(pci); - return -ENOMEM; - } - - /* initialize the stuff */ - chip->card = card; - chip->pci = pci; - chip->irq = -1; - - /* (1) PCI resource allocation */ - err = pci_request_regions(pci, "My Chip"); - if (err < 0) { - kfree(chip); - pci_disable_device(pci); - return err; - } - chip->port = pci_resource_start(pci, 0); - if (request_irq(pci->irq, snd_mychip_interrupt, - IRQF_SHARED, KBUILD_MODNAME, chip)) { - printk(KERN_ERR "cannot grab irq %d\n", pci->irq); - snd_mychip_free(chip); - return -EBUSY; - } - chip->irq = pci->irq; - - /* (2) initialization of the chip hardware */ - .... /* (not implemented in this document) */ - - err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); - if (err < 0) { - snd_mychip_free(chip); - return err; - } - - *rchip = chip; - return 0; - } - - /* PCI IDs */ - static struct pci_device_id snd_mychip_ids[] = { - { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, - PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, - .... - { 0, } - }; - MODULE_DEVICE_TABLE(pci, snd_mychip_ids); - - /* pci_driver definition */ - static struct pci_driver driver = { - .name = KBUILD_MODNAME, - .id_table = snd_mychip_ids, - .probe = snd_mychip_probe, - .remove = snd_mychip_remove, - }; - - /* module initialization */ - static int __init alsa_card_mychip_init(void) - { - return pci_register_driver(&driver); - } - - /* module clean up */ - static void __exit alsa_card_mychip_exit(void) - { - pci_unregister_driver(&driver); - } - - module_init(alsa_card_mychip_init) - module_exit(alsa_card_mychip_exit) - - EXPORT_NO_SYMBOLS; /* for old kernels only */ -]]> - - - -
- -
- Some Hafta's - - The allocation of PCI resources is done in the - probe() function, and usually an extra - xxx_create() function is written for this - purpose. - - - - In the case of PCI devices, you first have to call - the pci_enable_device() function before - allocating resources. Also, you need to set the proper PCI DMA - mask to limit the accessed I/O range. In some cases, you might - need to call pci_set_master() function, - too. - - - - Suppose the 28bit mask, and the code to be added would be like: - - - - - - - -
- -
- Resource Allocation - - The allocation of I/O ports and irqs is done via standard kernel - functions. Unlike ALSA ver.0.5.x., there are no helpers for - that. And these resources must be released in the destructor - function (see below). Also, on ALSA 0.9.x, you don't need to - allocate (pseudo-)DMA for PCI like in ALSA 0.5.x. - - - - Now assume that the PCI device has an I/O port with 8 bytes - and an interrupt. Then struct mychip will have the - following fields: - - - - - - - - - - For an I/O port (and also a memory region), you need to have - the resource pointer for the standard resource management. For - an irq, you have to keep only the irq number (integer). But you - need to initialize this number as -1 before actual allocation, - since irq 0 is valid. The port address and its resource pointer - can be initialized as null by - kzalloc() automatically, so you - don't have to take care of resetting them. - - - - The allocation of an I/O port is done like this: - - - -port = pci_resource_start(pci, 0); -]]> - - - - - - - It will reserve the I/O port region of 8 bytes of the given - PCI device. The returned value, chip->res_port, is allocated - via kmalloc() by - request_region(). The pointer must be - released via kfree(), but there is a - problem with this. This issue will be explained later. - - - - The allocation of an interrupt source is done like this: - - - -irq, snd_mychip_interrupt, - IRQF_SHARED, KBUILD_MODNAME, chip)) { - printk(KERN_ERR "cannot grab irq %d\n", pci->irq); - snd_mychip_free(chip); - return -EBUSY; - } - chip->irq = pci->irq; -]]> - - - - where snd_mychip_interrupt() is the - interrupt handler defined later. - Note that chip->irq should be defined - only when request_irq() succeeded. - - - - On the PCI bus, interrupts can be shared. Thus, - IRQF_SHARED is used as the interrupt flag of - request_irq(). - - - - The last argument of request_irq() is the - data pointer passed to the interrupt handler. Usually, the - chip-specific record is used for that, but you can use what you - like, too. - - - - I won't give details about the interrupt handler at this - point, but at least its appearance can be explained now. The - interrupt handler looks usually like the following: - - - - - - - - - - Now let's write the corresponding destructor for the resources - above. The role of destructor is simple: disable the hardware - (if already activated) and release the resources. So far, we - have no hardware part, so the disabling code is not written here. - - - - To release the resources, the check-and-release - method is a safer way. For the interrupt, do like this: - - - -irq >= 0) - free_irq(chip->irq, chip); -]]> - - - - Since the irq number can start from 0, you should initialize - chip->irq with a negative value (e.g. -1), so that you can - check the validity of the irq number as above. - - - - When you requested I/O ports or memory regions via - pci_request_region() or - pci_request_regions() like in this example, - release the resource(s) using the corresponding function, - pci_release_region() or - pci_release_regions(). - - - -pci); -]]> - - - - - - When you requested manually via request_region() - or request_mem_region, you can release it via - release_resource(). Suppose that you keep - the resource pointer returned from request_region() - in chip->res_port, the release procedure looks like: - - - -res_port); -]]> - - - - - - Don't forget to call pci_disable_device() - before the end. - - - - And finally, release the chip-specific record. - - - - - - - - - - We didn't implement the hardware disabling part in the above. - If you need to do this, please note that the destructor may be - called even before the initialization of the chip is completed. - It would be better to have a flag to skip hardware disabling - if the hardware was not initialized yet. - - - - When the chip-data is assigned to the card using - snd_device_new() with - SNDRV_DEV_LOWLELVEL , its destructor is - called at the last. That is, it is assured that all other - components like PCMs and controls have already been released. - You don't have to stop PCMs, etc. explicitly, but just - call low-level hardware stopping. - - - - The management of a memory-mapped region is almost as same as - the management of an I/O port. You'll need three fields like - the following: - - - - - - - - and the allocation would be like below: - - - -iobase_phys = pci_resource_start(pci, 0); - chip->iobase_virt = ioremap_nocache(chip->iobase_phys, - pci_resource_len(pci, 0)); -]]> - - - - and the corresponding destructor would be: - - - -iobase_virt) - iounmap(chip->iobase_virt); - .... - pci_release_regions(chip->pci); - .... - } -]]> - - - - -
- -
- PCI Entries - - So far, so good. Let's finish the missing PCI - stuff. At first, we need a - pci_device_id table for this - chipset. It's a table of PCI vendor/device ID number, and some - masks. - - - - For example, - - - - - - - - - - The first and second fields of - the pci_device_id structure are the vendor and - device IDs. If you have no reason to filter the matching - devices, you can leave the remaining fields as above. The last - field of the pci_device_id struct contains - private data for this entry. You can specify any value here, for - example, to define specific operations for supported device IDs. - Such an example is found in the intel8x0 driver. - - - - The last entry of this list is the terminator. You must - specify this all-zero entry. - - - - Then, prepare the pci_driver record: - - - - - - - - - - The probe and - remove functions have already - been defined in the previous sections. - The name - field is the name string of this device. Note that you must not - use a slash / in this string. - - - - And at last, the module entries: - - - - - - - - - - Note that these module entries are tagged with - __init and - __exit prefixes. - - - - Oh, one thing was forgotten. If you have no exported symbols, - you need to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels). - - - - - - - - That's all! - -
-
- - - - - - - PCM Interface - -
- General - - The PCM middle layer of ALSA is quite powerful and it is only - necessary for each driver to implement the low-level functions - to access its hardware. - - - - For accessing to the PCM layer, you need to include - <sound/pcm.h> first. In addition, - <sound/pcm_params.h> might be needed - if you access to some functions related with hw_param. - - - - Each card device can have up to four pcm instances. A pcm - instance corresponds to a pcm device file. The limitation of - number of instances comes only from the available bit size of - the Linux's device numbers. Once when 64bit device number is - used, we'll have more pcm instances available. - - - - A pcm instance consists of pcm playback and capture streams, - and each pcm stream consists of one or more pcm substreams. Some - soundcards support multiple playback functions. For example, - emu10k1 has a PCM playback of 32 stereo substreams. In this case, at - each open, a free substream is (usually) automatically chosen - and opened. Meanwhile, when only one substream exists and it was - already opened, the successful open will either block - or error with EAGAIN according to the - file open mode. But you don't have to care about such details in your - driver. The PCM middle layer will take care of such work. - -
- -
- Full Code Example - - The example code below does not include any hardware access - routines but shows only the skeleton, how to build up the PCM - interfaces. - - - PCM Example Code - - - .... - - /* hardware definition */ - static struct snd_pcm_hardware snd_mychip_playback_hw = { - .info = (SNDRV_PCM_INFO_MMAP | - SNDRV_PCM_INFO_INTERLEAVED | - SNDRV_PCM_INFO_BLOCK_TRANSFER | - SNDRV_PCM_INFO_MMAP_VALID), - .formats = SNDRV_PCM_FMTBIT_S16_LE, - .rates = SNDRV_PCM_RATE_8000_48000, - .rate_min = 8000, - .rate_max = 48000, - .channels_min = 2, - .channels_max = 2, - .buffer_bytes_max = 32768, - .period_bytes_min = 4096, - .period_bytes_max = 32768, - .periods_min = 1, - .periods_max = 1024, - }; - - /* hardware definition */ - static struct snd_pcm_hardware snd_mychip_capture_hw = { - .info = (SNDRV_PCM_INFO_MMAP | - SNDRV_PCM_INFO_INTERLEAVED | - SNDRV_PCM_INFO_BLOCK_TRANSFER | - SNDRV_PCM_INFO_MMAP_VALID), - .formats = SNDRV_PCM_FMTBIT_S16_LE, - .rates = SNDRV_PCM_RATE_8000_48000, - .rate_min = 8000, - .rate_max = 48000, - .channels_min = 2, - .channels_max = 2, - .buffer_bytes_max = 32768, - .period_bytes_min = 4096, - .period_bytes_max = 32768, - .periods_min = 1, - .periods_max = 1024, - }; - - /* open callback */ - static int snd_mychip_playback_open(struct snd_pcm_substream *substream) - { - struct mychip *chip = snd_pcm_substream_chip(substream); - struct snd_pcm_runtime *runtime = substream->runtime; - - runtime->hw = snd_mychip_playback_hw; - /* more hardware-initialization will be done here */ - .... - return 0; - } - - /* close callback */ - static int snd_mychip_playback_close(struct snd_pcm_substream *substream) - { - struct mychip *chip = snd_pcm_substream_chip(substream); - /* the hardware-specific codes will be here */ - .... - return 0; - - } - - /* open callback */ - static int snd_mychip_capture_open(struct snd_pcm_substream *substream) - { - struct mychip *chip = snd_pcm_substream_chip(substream); - struct snd_pcm_runtime *runtime = substream->runtime; - - runtime->hw = snd_mychip_capture_hw; - /* more hardware-initialization will be done here */ - .... - return 0; - } - - /* close callback */ - static int snd_mychip_capture_close(struct snd_pcm_substream *substream) - { - struct mychip *chip = snd_pcm_substream_chip(substream); - /* the hardware-specific codes will be here */ - .... - return 0; - - } - - /* hw_params callback */ - static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream, - struct snd_pcm_hw_params *hw_params) - { - return snd_pcm_lib_malloc_pages(substream, - params_buffer_bytes(hw_params)); - } - - /* hw_free callback */ - static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream) - { - return snd_pcm_lib_free_pages(substream); - } - - /* prepare callback */ - static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream) - { - struct mychip *chip = snd_pcm_substream_chip(substream); - struct snd_pcm_runtime *runtime = substream->runtime; - - /* set up the hardware with the current configuration - * for example... - */ - mychip_set_sample_format(chip, runtime->format); - mychip_set_sample_rate(chip, runtime->rate); - mychip_set_channels(chip, runtime->channels); - mychip_set_dma_setup(chip, runtime->dma_addr, - chip->buffer_size, - chip->period_size); - return 0; - } - - /* trigger callback */ - static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream, - int cmd) - { - switch (cmd) { - case SNDRV_PCM_TRIGGER_START: - /* do something to start the PCM engine */ - .... - break; - case SNDRV_PCM_TRIGGER_STOP: - /* do something to stop the PCM engine */ - .... - break; - default: - return -EINVAL; - } - } - - /* pointer callback */ - static snd_pcm_uframes_t - snd_mychip_pcm_pointer(struct snd_pcm_substream *substream) - { - struct mychip *chip = snd_pcm_substream_chip(substream); - unsigned int current_ptr; - - /* get the current hardware pointer */ - current_ptr = mychip_get_hw_pointer(chip); - return current_ptr; - } - - /* operators */ - static struct snd_pcm_ops snd_mychip_playback_ops = { - .open = snd_mychip_playback_open, - .close = snd_mychip_playback_close, - .ioctl = snd_pcm_lib_ioctl, - .hw_params = snd_mychip_pcm_hw_params, - .hw_free = snd_mychip_pcm_hw_free, - .prepare = snd_mychip_pcm_prepare, - .trigger = snd_mychip_pcm_trigger, - .pointer = snd_mychip_pcm_pointer, - }; - - /* operators */ - static struct snd_pcm_ops snd_mychip_capture_ops = { - .open = snd_mychip_capture_open, - .close = snd_mychip_capture_close, - .ioctl = snd_pcm_lib_ioctl, - .hw_params = snd_mychip_pcm_hw_params, - .hw_free = snd_mychip_pcm_hw_free, - .prepare = snd_mychip_pcm_prepare, - .trigger = snd_mychip_pcm_trigger, - .pointer = snd_mychip_pcm_pointer, - }; - - /* - * definitions of capture are omitted here... - */ - - /* create a pcm device */ - static int snd_mychip_new_pcm(struct mychip *chip) - { - struct snd_pcm *pcm; - int err; - - err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); - if (err < 0) - return err; - pcm->private_data = chip; - strcpy(pcm->name, "My Chip"); - chip->pcm = pcm; - /* set operators */ - snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, - &snd_mychip_playback_ops); - snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, - &snd_mychip_capture_ops); - /* pre-allocation of buffers */ - /* NOTE: this may fail */ - snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, - snd_dma_pci_data(chip->pci), - 64*1024, 64*1024); - return 0; - } -]]> - - - -
- -
- Constructor - - A pcm instance is allocated by the snd_pcm_new() - function. It would be better to create a constructor for pcm, - namely, - - - -card, "My Chip", 0, 1, 1, &pcm); - if (err < 0) - return err; - pcm->private_data = chip; - strcpy(pcm->name, "My Chip"); - chip->pcm = pcm; - .... - return 0; - } -]]> - - - - - - The snd_pcm_new() function takes four - arguments. The first argument is the card pointer to which this - pcm is assigned, and the second is the ID string. - - - - The third argument (index, 0 in the - above) is the index of this new pcm. It begins from zero. If - you create more than one pcm instances, specify the - different numbers in this argument. For example, - index = 1 for the second PCM device. - - - - The fourth and fifth arguments are the number of substreams - for playback and capture, respectively. Here 1 is used for - both arguments. When no playback or capture substreams are available, - pass 0 to the corresponding argument. - - - - If a chip supports multiple playbacks or captures, you can - specify more numbers, but they must be handled properly in - open/close, etc. callbacks. When you need to know which - substream you are referring to, then it can be obtained from - struct snd_pcm_substream data passed to each callback - as follows: - - - -number; -]]> - - - - - - After the pcm is created, you need to set operators for each - pcm stream. - - - - - - - - - - The operators are defined typically like this: - - - - - - - - All the callbacks are described in the - - Operators subsection. - - - - After setting the operators, you probably will want to - pre-allocate the buffer. For the pre-allocation, simply call - the following: - - - -pci), - 64*1024, 64*1024); -]]> - - - - It will allocate a buffer up to 64kB as default. - Buffer management details will be described in the later section Buffer and Memory - Management. - - - - Additionally, you can set some extra information for this pcm - in pcm->info_flags. - The available values are defined as - SNDRV_PCM_INFO_XXX in - <sound/asound.h>, which is used for - the hardware definition (described later). When your soundchip - supports only half-duplex, specify like this: - - - -info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; -]]> - - - -
- -
- ... And the Destructor? - - The destructor for a pcm instance is not always - necessary. Since the pcm device will be released by the middle - layer code automatically, you don't have to call the destructor - explicitly. - - - - The destructor would be necessary if you created - special records internally and needed to release them. In such a - case, set the destructor function to - pcm->private_free: - - - PCM Instance with a Destructor - -my_private_pcm_data); - /* do what you like else */ - .... - } - - static int snd_mychip_new_pcm(struct mychip *chip) - { - struct snd_pcm *pcm; - .... - /* allocate your own data */ - chip->my_private_pcm_data = kmalloc(...); - /* set the destructor */ - pcm->private_data = chip; - pcm->private_free = mychip_pcm_free; - .... - } -]]> - - - -
- -
- Runtime Pointer - The Chest of PCM Information - - When the PCM substream is opened, a PCM runtime instance is - allocated and assigned to the substream. This pointer is - accessible via substream->runtime. - This runtime pointer holds most information you need - to control the PCM: the copy of hw_params and sw_params configurations, the buffer - pointers, mmap records, spinlocks, etc. - - - - The definition of runtime instance is found in - <sound/pcm.h>. Here are - the contents of this file: - - - - - - - - - For the operators (callbacks) of each sound driver, most of - these records are supposed to be read-only. Only the PCM - middle-layer changes / updates them. The exceptions are - the hardware description (hw) DMA buffer information and the - private data. Besides, if you use the standard buffer allocation - method via snd_pcm_lib_malloc_pages(), - you don't need to set the DMA buffer information by yourself. - - - - In the sections below, important records are explained. - - -
- Hardware Description - - The hardware descriptor (struct snd_pcm_hardware) - contains the definitions of the fundamental hardware - configuration. Above all, you'll need to define this in - - the open callback. - Note that the runtime instance holds the copy of the - descriptor, not the pointer to the existing descriptor. That - is, in the open callback, you can modify the copied descriptor - (runtime->hw) as you need. For example, if the maximum - number of channels is 1 only on some chip models, you can - still use the same hardware descriptor and change the - channels_max later: - - -runtime; - ... - runtime->hw = snd_mychip_playback_hw; /* common definition */ - if (chip->model == VERY_OLD_ONE) - runtime->hw.channels_max = 1; -]]> - - - - - - Typically, you'll have a hardware descriptor as below: - - - - - - - - - - - The info field contains the type and - capabilities of this pcm. The bit flags are defined in - <sound/asound.h> as - SNDRV_PCM_INFO_XXX. Here, at least, you - have to specify whether the mmap is supported and which - interleaved format is supported. - When the hardware supports mmap, add the - SNDRV_PCM_INFO_MMAP flag here. When the - hardware supports the interleaved or the non-interleaved - formats, SNDRV_PCM_INFO_INTERLEAVED or - SNDRV_PCM_INFO_NONINTERLEAVED flag must - be set, respectively. If both are supported, you can set both, - too. - - - - In the above example, MMAP_VALID and - BLOCK_TRANSFER are specified for the OSS mmap - mode. Usually both are set. Of course, - MMAP_VALID is set only if the mmap is - really supported. - - - - The other possible flags are - SNDRV_PCM_INFO_PAUSE and - SNDRV_PCM_INFO_RESUME. The - PAUSE bit means that the pcm supports the - pause operation, while the - RESUME bit means that the pcm supports - the full suspend/resume operation. - If the PAUSE flag is set, - the trigger callback below - must handle the corresponding (pause push/release) commands. - The suspend/resume trigger commands can be defined even without - the RESUME flag. See - Power Management section for details. - - - - When the PCM substreams can be synchronized (typically, - synchronized start/stop of a playback and a capture streams), - you can give SNDRV_PCM_INFO_SYNC_START, - too. In this case, you'll need to check the linked-list of - PCM substreams in the trigger callback. This will be - described in the later section. - - - - - - formats field contains the bit-flags - of supported formats (SNDRV_PCM_FMTBIT_XXX). - If the hardware supports more than one format, give all or'ed - bits. In the example above, the signed 16bit little-endian - format is specified. - - - - - - rates field contains the bit-flags of - supported rates (SNDRV_PCM_RATE_XXX). - When the chip supports continuous rates, pass - CONTINUOUS bit additionally. - The pre-defined rate bits are provided only for typical - rates. If your chip supports unconventional rates, you need to add - the KNOT bit and set up the hardware - constraint manually (explained later). - - - - - - rate_min and - rate_max define the minimum and - maximum sample rate. This should correspond somehow to - rates bits. - - - - - - channel_min and - channel_max - define, as you might already expected, the minimum and maximum - number of channels. - - - - - - buffer_bytes_max defines the - maximum buffer size in bytes. There is no - buffer_bytes_min field, since - it can be calculated from the minimum period size and the - minimum number of periods. - Meanwhile, period_bytes_min and - define the minimum and maximum size of the period in bytes. - periods_max and - periods_min define the maximum and - minimum number of periods in the buffer. - - - - The period is a term that corresponds to - a fragment in the OSS world. The period defines the size at - which a PCM interrupt is generated. This size strongly - depends on the hardware. - Generally, the smaller period size will give you more - interrupts, that is, more controls. - In the case of capture, this size defines the input latency. - On the other hand, the whole buffer size defines the - output latency for the playback direction. - - - - - - There is also a field fifo_size. - This specifies the size of the hardware FIFO, but currently it - is neither used in the driver nor in the alsa-lib. So, you - can ignore this field. - - - - -
- -
- PCM Configurations - - Ok, let's go back again to the PCM runtime records. - The most frequently referred records in the runtime instance are - the PCM configurations. - The PCM configurations are stored in the runtime instance - after the application sends hw_params data via - alsa-lib. There are many fields copied from hw_params and - sw_params structs. For example, - format holds the format type - chosen by the application. This field contains the enum value - SNDRV_PCM_FORMAT_XXX. - - - - One thing to be noted is that the configured buffer and period - sizes are stored in frames in the runtime. - In the ALSA world, 1 frame = channels * samples-size. - For conversion between frames and bytes, you can use the - frames_to_bytes() and - bytes_to_frames() helper functions. - - -period_size); -]]> - - - - - - Also, many software parameters (sw_params) are - stored in frames, too. Please check the type of the field. - snd_pcm_uframes_t is for the frames as unsigned - integer while snd_pcm_sframes_t is for the frames - as signed integer. - -
- -
- DMA Buffer Information - - The DMA buffer is defined by the following four fields, - dma_area, - dma_addr, - dma_bytes and - dma_private. - The dma_area holds the buffer - pointer (the logical address). You can call - memcpy from/to - this pointer. Meanwhile, dma_addr - holds the physical address of the buffer. This field is - specified only when the buffer is a linear buffer. - dma_bytes holds the size of buffer - in bytes. dma_private is used for - the ALSA DMA allocator. - - - - If you use a standard ALSA function, - snd_pcm_lib_malloc_pages(), for - allocating the buffer, these fields are set by the ALSA middle - layer, and you should not change them by - yourself. You can read them but not write them. - On the other hand, if you want to allocate the buffer by - yourself, you'll need to manage it in hw_params callback. - At least, dma_bytes is mandatory. - dma_area is necessary when the - buffer is mmapped. If your driver doesn't support mmap, this - field is not necessary. dma_addr - is also optional. You can use - dma_private as you like, too. - -
- -
- Running Status - - The running status can be referred via runtime->status. - This is the pointer to the struct snd_pcm_mmap_status - record. For example, you can get the current DMA hardware - pointer via runtime->status->hw_ptr. - - - - The DMA application pointer can be referred via - runtime->control, which points to the - struct snd_pcm_mmap_control record. - However, accessing directly to this value is not recommended. - -
- -
- Private Data - - You can allocate a record for the substream and store it in - runtime->private_data. Usually, this - is done in - - the open callback. - Don't mix this with pcm->private_data. - The pcm->private_data usually points to the - chip instance assigned statically at the creation of PCM, while the - runtime->private_data points to a dynamic - data structure created at the PCM open callback. - - - -runtime->private_data = data; - .... - } -]]> - - - - - - The allocated object must be released in - - the close callback. - -
- -
- -
- Operators - - OK, now let me give details about each pcm callback - (ops). In general, every callback must - return 0 if successful, or a negative error number - such as -EINVAL. To choose an appropriate - error number, it is advised to check what value other parts of - the kernel return when the same kind of request fails. - - - - The callback function takes at least the argument with - snd_pcm_substream pointer. To retrieve - the chip record from the given substream instance, you can use the - following macro. - - - - - - - - The macro reads substream->private_data, - which is a copy of pcm->private_data. - You can override the former if you need to assign different data - records per PCM substream. For example, the cmi8330 driver assigns - different private_data for playback and capture directions, - because it uses two different codecs (SB- and AD-compatible) for - different directions. - - -
- open callback - - - - - - - - This is called when a pcm substream is opened. - - - - At least, here you have to initialize the runtime->hw - record. Typically, this is done by like this: - - - -runtime; - - runtime->hw = snd_mychip_playback_hw; - return 0; - } -]]> - - - - where snd_mychip_playback_hw is the - pre-defined hardware description. - - - - You can allocate a private data in this callback, as described - in - Private Data section. - - - - If the hardware configuration needs more constraints, set the - hardware constraints here, too. - See - Constraints for more details. - -
- -
- close callback - - - - - - - - Obviously, this is called when a pcm substream is closed. - - - - Any private instance for a pcm substream allocated in the - open callback will be released here. - - - -runtime->private_data); - .... - } -]]> - - - -
- -
- ioctl callback - - This is used for any special call to pcm ioctls. But - usually you can pass a generic ioctl callback, - snd_pcm_lib_ioctl. - -
- -
- hw_params callback - - - - - - - - - - This is called when the hardware parameter - (hw_params) is set - up by the application, - that is, once when the buffer size, the period size, the - format, etc. are defined for the pcm substream. - - - - Many hardware setups should be done in this callback, - including the allocation of buffers. - - - - Parameters to be initialized are retrieved by - params_xxx() macros. To allocate - buffer, you can call a helper function, - - - - - - - - snd_pcm_lib_malloc_pages() is available - only when the DMA buffers have been pre-allocated. - See the section - Buffer Types for more details. - - - - Note that this and prepare callbacks - may be called multiple times per initialization. - For example, the OSS emulation may - call these callbacks at each change via its ioctl. - - - - Thus, you need to be careful not to allocate the same buffers - many times, which will lead to memory leaks! Calling the - helper function above many times is OK. It will release the - previous buffer automatically when it was already allocated. - - - - Another note is that this callback is non-atomic - (schedulable) as default, i.e. when no - nonatomic flag set. - This is important, because the - trigger callback - is atomic (non-schedulable). That is, mutexes or any - schedule-related functions are not available in - trigger callback. - Please see the subsection - - Atomicity for details. - -
- -
- hw_free callback - - - - - - - - - - This is called to release the resources allocated via - hw_params. For example, releasing the - buffer via - snd_pcm_lib_malloc_pages() is done by - calling the following: - - - - - - - - - - This function is always called before the close callback is called. - Also, the callback may be called multiple times, too. - Keep track whether the resource was already released. - -
- -
- prepare callback - - - - - - - - - - This callback is called when the pcm is - prepared. You can set the format type, sample - rate, etc. here. The difference from - hw_params is that the - prepare callback will be called each - time - snd_pcm_prepare() is called, i.e. when - recovering after underruns, etc. - - - - Note that this callback is now non-atomic. - You can use schedule-related functions safely in this callback. - - - - In this and the following callbacks, you can refer to the - values via the runtime record, - substream->runtime. - For example, to get the current - rate, format or channels, access to - runtime->rate, - runtime->format or - runtime->channels, respectively. - The physical address of the allocated buffer is set to - runtime->dma_area. The buffer and period sizes are - in runtime->buffer_size and runtime->period_size, - respectively. - - - - Be careful that this callback will be called many times at - each setup, too. - -
- -
- trigger callback - - - - - - - - This is called when the pcm is started, stopped or paused. - - - - Which action is specified in the second argument, - SNDRV_PCM_TRIGGER_XXX in - <sound/pcm.h>. At least, - the START and STOP - commands must be defined in this callback. - - - - - - - - - - When the pcm supports the pause operation (given in the info - field of the hardware table), the PAUSE_PUSH - and PAUSE_RELEASE commands must be - handled here, too. The former is the command to pause the pcm, - and the latter to restart the pcm again. - - - - When the pcm supports the suspend/resume operation, - regardless of full or partial suspend/resume support, - the SUSPEND and RESUME - commands must be handled, too. - These commands are issued when the power-management status is - changed. Obviously, the SUSPEND and - RESUME commands - suspend and resume the pcm substream, and usually, they - are identical to the STOP and - START commands, respectively. - See the - Power Management section for details. - - - - As mentioned, this callback is atomic as default unless - nonatomic flag set, and - you cannot call functions which may sleep. - The trigger callback should be as minimal as possible, - just really triggering the DMA. The other stuff should be - initialized hw_params and prepare callbacks properly - beforehand. - -
- -
- pointer callback - - - - - - - - This callback is called when the PCM middle layer inquires - the current hardware position on the buffer. The position must - be returned in frames, - ranging from 0 to buffer_size - 1. - - - - This is called usually from the buffer-update routine in the - pcm middle layer, which is invoked when - snd_pcm_period_elapsed() is called in the - interrupt routine. Then the pcm middle layer updates the - position and calculates the available space, and wakes up the - sleeping poll threads, etc. - - - - This callback is also atomic as default. - -
- -
- copy and silence callbacks - - These callbacks are not mandatory, and can be omitted in - most cases. These callbacks are used when the hardware buffer - cannot be in the normal memory space. Some chips have their - own buffer on the hardware which is not mappable. In such a - case, you have to transfer the data manually from the memory - buffer to the hardware buffer. Or, if the buffer is - non-contiguous on both physical and virtual memory spaces, - these callbacks must be defined, too. - - - - If these two callbacks are defined, copy and set-silence - operations are done by them. The detailed will be described in - the later section Buffer and Memory - Management. - -
- -
- ack callback - - This callback is also not mandatory. This callback is called - when the appl_ptr is updated in read or write operations. - Some drivers like emu10k1-fx and cs46xx need to track the - current appl_ptr for the internal buffer, and this callback - is useful only for such a purpose. - - - This callback is atomic as default. - -
- -
- page callback - - - This callback is optional too. This callback is used - mainly for non-contiguous buffers. The mmap calls this - callback to get the page address. Some examples will be - explained in the later section Buffer and Memory - Management, too. - -
-
- -
- Interrupt Handler - - The rest of pcm stuff is the PCM interrupt handler. The - role of PCM interrupt handler in the sound driver is to update - the buffer position and to tell the PCM middle layer when the - buffer position goes across the prescribed period size. To - inform this, call the snd_pcm_period_elapsed() - function. - - - - There are several types of sound chips to generate the interrupts. - - -
- Interrupts at the period (fragment) boundary - - This is the most frequently found type: the hardware - generates an interrupt at each period boundary. - In this case, you can call - snd_pcm_period_elapsed() at each - interrupt. - - - - snd_pcm_period_elapsed() takes the - substream pointer as its argument. Thus, you need to keep the - substream pointer accessible from the chip instance. For - example, define substream field in the chip record to hold the - current running substream pointer, and set the pointer value - at open callback (and reset at close callback). - - - - If you acquire a spinlock in the interrupt handler, and the - lock is used in other pcm callbacks, too, then you have to - release the lock before calling - snd_pcm_period_elapsed(), because - snd_pcm_period_elapsed() calls other pcm - callbacks inside. - - - - Typical code would be like: - - - Interrupt Handler Case #1 - -lock); - .... - if (pcm_irq_invoked(chip)) { - /* call updater, unlock before it */ - spin_unlock(&chip->lock); - snd_pcm_period_elapsed(chip->substream); - spin_lock(&chip->lock); - /* acknowledge the interrupt if necessary */ - } - .... - spin_unlock(&chip->lock); - return IRQ_HANDLED; - } -]]> - - - -
- -
- High frequency timer interrupts - - This happens when the hardware doesn't generate interrupts - at the period boundary but issues timer interrupts at a fixed - timer rate (e.g. es1968 or ymfpci drivers). - In this case, you need to check the current hardware - position and accumulate the processed sample length at each - interrupt. When the accumulated size exceeds the period - size, call - snd_pcm_period_elapsed() and reset the - accumulator. - - - - Typical code would be like the following. - - - Interrupt Handler Case #2 - -lock); - .... - if (pcm_irq_invoked(chip)) { - unsigned int last_ptr, size; - /* get the current hardware pointer (in frames) */ - last_ptr = get_hw_ptr(chip); - /* calculate the processed frames since the - * last update - */ - if (last_ptr < chip->last_ptr) - size = runtime->buffer_size + last_ptr - - chip->last_ptr; - else - size = last_ptr - chip->last_ptr; - /* remember the last updated point */ - chip->last_ptr = last_ptr; - /* accumulate the size */ - chip->size += size; - /* over the period boundary? */ - if (chip->size >= runtime->period_size) { - /* reset the accumulator */ - chip->size %= runtime->period_size; - /* call updater */ - spin_unlock(&chip->lock); - snd_pcm_period_elapsed(substream); - spin_lock(&chip->lock); - } - /* acknowledge the interrupt if necessary */ - } - .... - spin_unlock(&chip->lock); - return IRQ_HANDLED; - } -]]> - - - -
- -
- On calling <function>snd_pcm_period_elapsed()</function> - - In both cases, even if more than one period are elapsed, you - don't have to call - snd_pcm_period_elapsed() many times. Call - only once. And the pcm layer will check the current hardware - pointer and update to the latest status. - -
-
- -
- Atomicity - - One of the most important (and thus difficult to debug) problems - in kernel programming are race conditions. - In the Linux kernel, they are usually avoided via spin-locks, mutexes - or semaphores. In general, if a race condition can happen - in an interrupt handler, it has to be managed atomically, and you - have to use a spinlock to protect the critical session. If the - critical section is not in interrupt handler code and - if taking a relatively long time to execute is acceptable, you - should use mutexes or semaphores instead. - - - - As already seen, some pcm callbacks are atomic and some are - not. For example, the hw_params callback is - non-atomic, while trigger callback is - atomic. This means, the latter is called already in a spinlock - held by the PCM middle layer. Please take this atomicity into - account when you choose a locking scheme in the callbacks. - - - - In the atomic callbacks, you cannot use functions which may call - schedule or go to - sleep. Semaphores and mutexes can sleep, - and hence they cannot be used inside the atomic callbacks - (e.g. trigger callback). - To implement some delay in such a callback, please use - udelay() or mdelay(). - - - - All three atomic callbacks (trigger, pointer, and ack) are - called with local interrupts disabled. - - - - The recent changes in PCM core code, however, allow all PCM - operations to be non-atomic. This assumes that the all caller - sides are in non-atomic contexts. For example, the function - snd_pcm_period_elapsed() is called - typically from the interrupt handler. But, if you set up the - driver to use a threaded interrupt handler, this call can be in - non-atomic context, too. In such a case, you can set - nonatomic filed of - snd_pcm object after creating it. - When this flag is set, mutex and rwsem are used internally in - the PCM core instead of spin and rwlocks, so that you can call - all PCM functions safely in a non-atomic context. - - -
-
- Constraints - - If your chip supports unconventional sample rates, or only the - limited samples, you need to set a constraint for the - condition. - - - - For example, in order to restrict the sample rates in the some - supported values, use - snd_pcm_hw_constraint_list(). - You need to call this function in the open callback. - - - Example of Hardware Constraints - -runtime, 0, - SNDRV_PCM_HW_PARAM_RATE, - &constraints_rates); - if (err < 0) - return err; - .... - } -]]> - - - - - - There are many different constraints. - Look at sound/pcm.h for a complete list. - You can even define your own constraint rules. - For example, let's suppose my_chip can manage a substream of 1 channel - if and only if the format is S16_LE, otherwise it supports any format - specified in the snd_pcm_hardware structure (or in any - other constraint_list). You can build a rule like this: - - - Example of Hardware Constraints for Channels - -bits[0] == SNDRV_PCM_FMTBIT_S16_LE) { - ch.min = ch.max = 1; - ch.integer = 1; - return snd_interval_refine(c, &ch); - } - return 0; - } -]]> - - - - - - Then you need to call this function to add your rule: - - - -runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, - hw_rule_channels_by_format, NULL, - SNDRV_PCM_HW_PARAM_FORMAT, -1); -]]> - - - - - - The rule function is called when an application sets the PCM - format, and it refines the number of channels accordingly. - But an application may set the number of channels before - setting the format. Thus you also need to define the inverse rule: - - - Example of Hardware Constraints for Formats - -min < 2) { - fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE; - return snd_mask_refine(f, &fmt); - } - return 0; - } -]]> - - - - - - ...and in the open callback: - - -runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, - hw_rule_format_by_channels, NULL, - SNDRV_PCM_HW_PARAM_CHANNELS, -1); -]]> - - - - - - I won't give more details here, rather I - would like to say, Luke, use the source. - -
- -
- - - - - - - Control Interface - -
- General - - The control interface is used widely for many switches, - sliders, etc. which are accessed from user-space. Its most - important use is the mixer interface. In other words, since ALSA - 0.9.x, all the mixer stuff is implemented on the control kernel API. - - - - ALSA has a well-defined AC97 control module. If your chip - supports only the AC97 and nothing else, you can skip this - section. - - - - The control API is defined in - <sound/control.h>. - Include this file if you want to add your own controls. - -
- -
- Definition of Controls - - To create a new control, you need to define the - following three - callbacks: info, - get and - put. Then, define a - struct snd_kcontrol_new record, such as: - - - Definition of a Control - - - - - - - - The iface field specifies the control - type, SNDRV_CTL_ELEM_IFACE_XXX, which - is usually MIXER. - Use CARD for global controls that are not - logically part of the mixer. - If the control is closely associated with some specific device on - the sound card, use HWDEP, - PCM, RAWMIDI, - TIMER, or SEQUENCER, and - specify the device number with the - device and - subdevice fields. - - - - The name is the name identifier - string. Since ALSA 0.9.x, the control name is very important, - because its role is classified from its name. There are - pre-defined standard control names. The details are described in - the - Control Names subsection. - - - - The index field holds the index number - of this control. If there are several different controls with - the same name, they can be distinguished by the index - number. This is the case when - several codecs exist on the card. If the index is zero, you can - omit the definition above. - - - - The access field contains the access - type of this control. Give the combination of bit masks, - SNDRV_CTL_ELEM_ACCESS_XXX, there. - The details will be explained in - the - Access Flags subsection. - - - - The private_value field contains - an arbitrary long integer value for this record. When using - the generic info, - get and - put callbacks, you can pass a value - through this field. If several small numbers are necessary, you can - combine them in bitwise. Or, it's possible to give a pointer - (casted to unsigned long) of some record to this field, too. - - - - The tlv field can be used to provide - metadata about the control; see the - - Metadata subsection. - - - - The other three are - - callback functions. - -
- -
- Control Names - - There are some standards to define the control names. A - control is usually defined from the three parts as - SOURCE DIRECTION FUNCTION. - - - - The first, SOURCE, specifies the source - of the control, and is a string such as Master, - PCM, CD and - Line. There are many pre-defined sources. - - - - The second, DIRECTION, is one of the - following strings according to the direction of the control: - Playback, Capture, Bypass - Playback and Bypass Capture. Or, it can - be omitted, meaning both playback and capture directions. - - - - The third, FUNCTION, is one of the - following strings according to the function of the control: - Switch, Volume and - Route. - - - - The example of control names are, thus, Master Capture - Switch or PCM Playback Volume. - - - - There are some exceptions: - - -
- Global capture and playback - - Capture Source, Capture Switch - and Capture Volume are used for the global - capture (input) source, switch and volume. Similarly, - Playback Switch and Playback - Volume are used for the global output gain switch and - volume. - -
- -
- Tone-controls - - tone-control switch and volumes are specified like - Tone Control - XXX, e.g. Tone Control - - Switch, Tone Control - Bass, - Tone Control - Center. - -
- -
- 3D controls - - 3D-control switches and volumes are specified like 3D - Control - XXX, e.g. 3D Control - - Switch, 3D Control - Center, 3D - Control - Space. - -
- -
- Mic boost - - Mic-boost switch is set as Mic Boost or - Mic Boost (6dB). - - - - More precise information can be found in - Documentation/sound/alsa/ControlNames.txt. - -
-
- -
- Access Flags - - - The access flag is the bitmask which specifies the access type - of the given control. The default access type is - SNDRV_CTL_ELEM_ACCESS_READWRITE, - which means both read and write are allowed to this control. - When the access flag is omitted (i.e. = 0), it is - considered as READWRITE access as default. - - - - When the control is read-only, pass - SNDRV_CTL_ELEM_ACCESS_READ instead. - In this case, you don't have to define - the put callback. - Similarly, when the control is write-only (although it's a rare - case), you can use the WRITE flag instead, and - you don't need the get callback. - - - - If the control value changes frequently (e.g. the VU meter), - VOLATILE flag should be given. This means - that the control may be changed without - - notification. Applications should poll such - a control constantly. - - - - When the control is inactive, set - the INACTIVE flag, too. - There are LOCK and - OWNER flags to change the write - permissions. - - -
- -
- Callbacks - -
- info callback - - The info callback is used to get - detailed information on this control. This must store the - values of the given struct snd_ctl_elem_info - object. For example, for a boolean control with a single - element: - - - Example of info callback - -type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; - uinfo->count = 1; - uinfo->value.integer.min = 0; - uinfo->value.integer.max = 1; - return 0; - } -]]> - - - - - - The type field specifies the type - of the control. There are BOOLEAN, - INTEGER, ENUMERATED, - BYTES, IEC958 and - INTEGER64. The - count field specifies the - number of elements in this control. For example, a stereo - volume would have count = 2. The - value field is a union, and - the values stored are depending on the type. The boolean and - integer types are identical. - - - - The enumerated type is a bit different from others. You'll - need to set the string for the currently given item index. - - - -type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; - uinfo->count = 1; - uinfo->value.enumerated.items = 4; - if (uinfo->value.enumerated.item > 3) - uinfo->value.enumerated.item = 3; - strcpy(uinfo->value.enumerated.name, - texts[uinfo->value.enumerated.item]); - return 0; - } -]]> - - - - - - The above callback can be simplified with a helper function, - snd_ctl_enum_info. The final code - looks like below. - (You can pass ARRAY_SIZE(texts) instead of 4 in the third - argument; it's a matter of taste.) - - - - - - - - - - Some common info callbacks are available for your convenience: - snd_ctl_boolean_mono_info() and - snd_ctl_boolean_stereo_info(). - Obviously, the former is an info callback for a mono channel - boolean item, just like snd_myctl_mono_info - above, and the latter is for a stereo channel boolean item. - - -
- -
- get callback - - - This callback is used to read the current value of the - control and to return to user-space. - - - - For example, - - - Example of get callback - -value.integer.value[0] = get_some_value(chip); - return 0; - } -]]> - - - - - - The value field depends on - the type of control as well as on the info callback. For example, - the sb driver uses this field to store the register offset, - the bit-shift and the bit-mask. The - private_value field is set as follows: - - - - - - and is retrieved in callbacks like - - -private_value & 0xff; - int shift = (kcontrol->private_value >> 16) & 0xff; - int mask = (kcontrol->private_value >> 24) & 0xff; - .... - } -]]> - - - - - - In the get callback, - you have to fill all the elements if the - control has more than one elements, - i.e. count > 1. - In the example above, we filled only one element - (value.integer.value[0]) since it's - assumed as count = 1. - -
- -
- put callback - - - This callback is used to write a value from user-space. - - - - For example, - - - Example of put callback - -current_value != - ucontrol->value.integer.value[0]) { - change_current_value(chip, - ucontrol->value.integer.value[0]); - changed = 1; - } - return changed; - } -]]> - - - - As seen above, you have to return 1 if the value is - changed. If the value is not changed, return 0 instead. - If any fatal error happens, return a negative error code as - usual. - - - - As in the get callback, - when the control has more than one elements, - all elements must be evaluated in this callback, too. - -
- -
- Callbacks are not atomic - - All these three callbacks are basically not atomic. - -
-
- -
- Constructor - - When everything is ready, finally we can create a new - control. To create a control, there are two functions to be - called, snd_ctl_new1() and - snd_ctl_add(). - - - - In the simplest way, you can do like this: - - - - - - - - where my_control is the - struct snd_kcontrol_new object defined above, and chip - is the object pointer to be passed to - kcontrol->private_data - which can be referred to in callbacks. - - - - snd_ctl_new1() allocates a new - snd_kcontrol instance, - and snd_ctl_add assigns the given - control component to the card. - -
- -
- Change Notification - - If you need to change and update a control in the interrupt - routine, you can call snd_ctl_notify(). For - example, - - - - - - - - This function takes the card pointer, the event-mask, and the - control id pointer for the notification. The event-mask - specifies the types of notification, for example, in the above - example, the change of control values is notified. - The id pointer is the pointer of struct snd_ctl_elem_id - to be notified. - You can find some examples in es1938.c or - es1968.c for hardware volume interrupts. - -
- -
- Metadata - - To provide information about the dB values of a mixer control, use - on of the DECLARE_TLV_xxx macros from - <sound/tlv.h> to define a variable - containing this information, set thetlv.p - field to point to this variable, and include the - SNDRV_CTL_ELEM_ACCESS_TLV_READ flag in the - access field; like this: - - - - - - - - - The DECLARE_TLV_DB_SCALE macro defines - information about a mixer control where each step in the control's - value changes the dB value by a constant dB amount. - The first parameter is the name of the variable to be defined. - The second parameter is the minimum value, in units of 0.01 dB. - The third parameter is the step size, in units of 0.01 dB. - Set the fourth parameter to 1 if the minimum value actually mutes - the control. - - - - The DECLARE_TLV_DB_LINEAR macro defines - information about a mixer control where the control's value affects - the output linearly. - The first parameter is the name of the variable to be defined. - The second parameter is the minimum value, in units of 0.01 dB. - The third parameter is the maximum value, in units of 0.01 dB. - If the minimum value mutes the control, set the second parameter to - TLV_DB_GAIN_MUTE. - -
- -
- - - - - - - API for AC97 Codec - -
- General - - The ALSA AC97 codec layer is a well-defined one, and you don't - have to write much code to control it. Only low-level control - routines are necessary. The AC97 codec API is defined in - <sound/ac97_codec.h>. - -
- -
- Full Code Example - - - Example of AC97 Interface - -private_data; - .... - /* read a register value here from the codec */ - return the_register_value; - } - - static void snd_mychip_ac97_write(struct snd_ac97 *ac97, - unsigned short reg, unsigned short val) - { - struct mychip *chip = ac97->private_data; - .... - /* write the given register value to the codec */ - } - - static int snd_mychip_ac97(struct mychip *chip) - { - struct snd_ac97_bus *bus; - struct snd_ac97_template ac97; - int err; - static struct snd_ac97_bus_ops ops = { - .write = snd_mychip_ac97_write, - .read = snd_mychip_ac97_read, - }; - - err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus); - if (err < 0) - return err; - memset(&ac97, 0, sizeof(ac97)); - ac97.private_data = chip; - return snd_ac97_mixer(bus, &ac97, &chip->ac97); - } - -]]> - - - -
- -
- Constructor - - To create an ac97 instance, first call snd_ac97_bus - with an ac97_bus_ops_t record with callback functions. - - - - - - - - The bus record is shared among all belonging ac97 instances. - - - - And then call snd_ac97_mixer() with an - struct snd_ac97_template - record together with the bus pointer created above. - - - -ac97); -]]> - - - - where chip->ac97 is a pointer to a newly created - ac97_t instance. - In this case, the chip pointer is set as the private data, so that - the read/write callback functions can refer to this chip instance. - This instance is not necessarily stored in the chip - record. If you need to change the register values from the - driver, or need the suspend/resume of ac97 codecs, keep this - pointer to pass to the corresponding functions. - -
- -
- Callbacks - - The standard callbacks are read and - write. Obviously they - correspond to the functions for read and write accesses to the - hardware low-level codes. - - - - The read callback returns the - register value specified in the argument. - - - -private_data; - .... - return the_register_value; - } -]]> - - - - Here, the chip can be cast from ac97->private_data. - - - - Meanwhile, the write callback is - used to set the register value. - - - - - - - - - - These callbacks are non-atomic like the control API callbacks. - - - - There are also other callbacks: - reset, - wait and - init. - - - - The reset callback is used to reset - the codec. If the chip requires a special kind of reset, you can - define this callback. - - - - The wait callback is used to - add some waiting time in the standard initialization of the codec. If the - chip requires the extra waiting time, define this callback. - - - - The init callback is used for - additional initialization of the codec. - -
- -
- Updating Registers in The Driver - - If you need to access to the codec from the driver, you can - call the following functions: - snd_ac97_write(), - snd_ac97_read(), - snd_ac97_update() and - snd_ac97_update_bits(). - - - - Both snd_ac97_write() and - snd_ac97_update() functions are used to - set a value to the given register - (AC97_XXX). The difference between them is - that snd_ac97_update() doesn't write a - value if the given value has been already set, while - snd_ac97_write() always rewrites the - value. - - - - - - - - - - snd_ac97_read() is used to read the value - of the given register. For example, - - - - - - - - - - snd_ac97_update_bits() is used to update - some bits in the given register. - - - - - - - - - - Also, there is a function to change the sample rate (of a - given register such as - AC97_PCM_FRONT_DAC_RATE) when VRA or - DRA is supported by the codec: - snd_ac97_set_rate(). - - - - - - - - - - The following registers are available to set the rate: - AC97_PCM_MIC_ADC_RATE, - AC97_PCM_FRONT_DAC_RATE, - AC97_PCM_LR_ADC_RATE, - AC97_SPDIF. When - AC97_SPDIF is specified, the register is - not really changed but the corresponding IEC958 status bits will - be updated. - -
- -
- Clock Adjustment - - In some chips, the clock of the codec isn't 48000 but using a - PCI clock (to save a quartz!). In this case, change the field - bus->clock to the corresponding - value. For example, intel8x0 - and es1968 drivers have their own function to read from the clock. - -
- -
- Proc Files - - The ALSA AC97 interface will create a proc file such as - /proc/asound/card0/codec97#0/ac97#0-0 and - ac97#0-0+regs. You can refer to these files to - see the current status and registers of the codec. - -
- -
- Multiple Codecs - - When there are several codecs on the same card, you need to - call snd_ac97_mixer() multiple times with - ac97.num=1 or greater. The num field - specifies the codec number. - - - - If you set up multiple codecs, you either need to write - different callbacks for each codec or check - ac97->num in the callback routines. - -
- -
- - - - - - - MIDI (MPU401-UART) Interface - -
- General - - Many soundcards have built-in MIDI (MPU401-UART) - interfaces. When the soundcard supports the standard MPU401-UART - interface, most likely you can use the ALSA MPU401-UART API. The - MPU401-UART API is defined in - <sound/mpu401.h>. - - - - Some soundchips have a similar but slightly different - implementation of mpu401 stuff. For example, emu10k1 has its own - mpu401 routines. - -
- -
- Constructor - - To create a rawmidi object, call - snd_mpu401_uart_new(). - - - - - - - - - - The first argument is the card pointer, and the second is the - index of this component. You can create up to 8 rawmidi - devices. - - - - The third argument is the type of the hardware, - MPU401_HW_XXX. If it's not a special one, - you can use MPU401_HW_MPU401. - - - - The 4th argument is the I/O port address. Many - backward-compatible MPU401 have an I/O port such as 0x330. Or, it - might be a part of its own PCI I/O region. It depends on the - chip design. - - - - The 5th argument is a bitflag for additional information. - When the I/O port address above is part of the PCI I/O - region, the MPU401 I/O port might have been already allocated - (reserved) by the driver itself. In such a case, pass a bit flag - MPU401_INFO_INTEGRATED, - and the mpu401-uart layer will allocate the I/O ports by itself. - - - - When the controller supports only the input or output MIDI stream, - pass the MPU401_INFO_INPUT or - MPU401_INFO_OUTPUT bitflag, respectively. - Then the rawmidi instance is created as a single stream. - - - - MPU401_INFO_MMIO bitflag is used to change - the access method to MMIO (via readb and writeb) instead of - iob and outb. In this case, you have to pass the iomapped address - to snd_mpu401_uart_new(). - - - - When MPU401_INFO_TX_IRQ is set, the output - stream isn't checked in the default interrupt handler. The driver - needs to call snd_mpu401_uart_interrupt_tx() - by itself to start processing the output stream in the irq handler. - - - - If the MPU-401 interface shares its interrupt with the other logical - devices on the card, set MPU401_INFO_IRQ_HOOK - (see - below). - - - - Usually, the port address corresponds to the command port and - port + 1 corresponds to the data port. If not, you may change - the cport field of - struct snd_mpu401 manually - afterward. However, snd_mpu401 pointer is not - returned explicitly by - snd_mpu401_uart_new(). You need to cast - rmidi->private_data to - snd_mpu401 explicitly, - - - -private_data; -]]> - - - - and reset the cport as you like: - - - -cport = my_own_control_port; -]]> - - - - - - The 6th argument specifies the ISA irq number that will be - allocated. If no interrupt is to be allocated (because your - code is already allocating a shared interrupt, or because the - device does not use interrupts), pass -1 instead. - For a MPU-401 device without an interrupt, a polling timer - will be used instead. - -
- -
- Interrupt Handler - - When the interrupt is allocated in - snd_mpu401_uart_new(), an exclusive ISA - interrupt handler is automatically used, hence you don't have - anything else to do than creating the mpu401 stuff. Otherwise, you - have to set MPU401_INFO_IRQ_HOOK, and call - snd_mpu401_uart_interrupt() explicitly from your - own interrupt handler when it has determined that a UART interrupt - has occurred. - - - - In this case, you need to pass the private_data of the - returned rawmidi object from - snd_mpu401_uart_new() as the second - argument of snd_mpu401_uart_interrupt(). - - - -private_data, regs); -]]> - - - -
- -
- - - - - - - RawMIDI Interface - -
- Overview - - - The raw MIDI interface is used for hardware MIDI ports that can - be accessed as a byte stream. It is not used for synthesizer - chips that do not directly understand MIDI. - - - - ALSA handles file and buffer management. All you have to do is - to write some code to move data between the buffer and the - hardware. - - - - The rawmidi API is defined in - <sound/rawmidi.h>. - -
- -
- Constructor - - - To create a rawmidi device, call the - snd_rawmidi_new function: - - -card, "MyMIDI", 0, outs, ins, &rmidi); - if (err < 0) - return err; - rmidi->private_data = chip; - strcpy(rmidi->name, "My MIDI"); - rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | - SNDRV_RAWMIDI_INFO_INPUT | - SNDRV_RAWMIDI_INFO_DUPLEX; -]]> - - - - - - The first argument is the card pointer, the second argument is - the ID string. - - - - The third argument is the index of this component. You can - create up to 8 rawmidi devices. - - - - The fourth and fifth arguments are the number of output and - input substreams, respectively, of this device (a substream is - the equivalent of a MIDI port). - - - - Set the info_flags field to specify - the capabilities of the device. - Set SNDRV_RAWMIDI_INFO_OUTPUT if there is - at least one output port, - SNDRV_RAWMIDI_INFO_INPUT if there is at - least one input port, - and SNDRV_RAWMIDI_INFO_DUPLEX if the device - can handle output and input at the same time. - - - - After the rawmidi device is created, you need to set the - operators (callbacks) for each substream. There are helper - functions to set the operators for all the substreams of a device: - - - - - - - - - The operators are usually defined like this: - - - - - - These callbacks are explained in the Callbacks - section. - - - - If there are more than one substream, you should give a - unique name to each of them: - - -streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams, - list { - sprintf(substream->name, "My MIDI Port %d", substream->number + 1); - } - /* same for SNDRV_RAWMIDI_STREAM_INPUT */ -]]> - - - -
- -
- Callbacks - - - In all the callbacks, the private data that you've set for the - rawmidi device can be accessed as - substream->rmidi->private_data. - - - - - If there is more than one port, your callbacks can determine the - port index from the struct snd_rawmidi_substream data passed to each - callback: - - -number; -]]> - - - - -
- <function>open</function> callback - - - - - - - - - This is called when a substream is opened. - You can initialize the hardware here, but you shouldn't - start transmitting/receiving data yet. - -
- -
- <function>close</function> callback - - - - - - - - - Guess what. - - - - The open and close - callbacks of a rawmidi device are serialized with a mutex, - and can sleep. - -
- -
- <function>trigger</function> callback for output - substreams - - - - - - - - - This is called with a nonzero up - parameter when there is some data in the substream buffer that - must be transmitted. - - - - To read data from the buffer, call - snd_rawmidi_transmit_peek. It will - return the number of bytes that have been read; this will be - less than the number of bytes requested when there are no more - data in the buffer. - After the data have been transmitted successfully, call - snd_rawmidi_transmit_ack to remove the - data from the substream buffer: - - - - - - - - - If you know beforehand that the hardware will accept data, you - can use the snd_rawmidi_transmit function - which reads some data and removes them from the buffer at once: - - - - - - - - - If you know beforehand how many bytes you can accept, you can - use a buffer size greater than one with the - snd_rawmidi_transmit* functions. - - - - The trigger callback must not sleep. If - the hardware FIFO is full before the substream buffer has been - emptied, you have to continue transmitting data later, either - in an interrupt handler, or with a timer if the hardware - doesn't have a MIDI transmit interrupt. - - - - The trigger callback is called with a - zero up parameter when the transmission - of data should be aborted. - -
- -
- <function>trigger</function> callback for input - substreams - - - - - - - - - This is called with a nonzero up - parameter to enable receiving data, or with a zero - up parameter do disable receiving data. - - - - The trigger callback must not sleep; the - actual reading of data from the device is usually done in an - interrupt handler. - - - - When data reception is enabled, your interrupt handler should - call snd_rawmidi_receive for all received - data: - - - - - - -
- -
- <function>drain</function> callback - - - - - - - - - This is only used with output substreams. This function should wait - until all data read from the substream buffer have been transmitted. - This ensures that the device can be closed and the driver unloaded - without losing data. - - - - This callback is optional. If you do not set - drain in the struct snd_rawmidi_ops - structure, ALSA will simply wait for 50 milliseconds - instead. - -
-
- -
- - - - - - - Miscellaneous Devices - -
- FM OPL3 - - The FM OPL3 is still used in many chips (mainly for backward - compatibility). ALSA has a nice OPL3 FM control layer, too. The - OPL3 API is defined in - <sound/opl3.h>. - - - - FM registers can be directly accessed through the direct-FM API, - defined in <sound/asound_fm.h>. In - ALSA native mode, FM registers are accessed through - the Hardware-Dependent Device direct-FM extension API, whereas in - OSS compatible mode, FM registers can be accessed with the OSS - direct-FM compatible API in /dev/dmfmX device. - - - - To create the OPL3 component, you have two functions to - call. The first one is a constructor for the opl3_t - instance. - - - - - - - - - - The first argument is the card pointer, the second one is the - left port address, and the third is the right port address. In - most cases, the right port is placed at the left port + 2. - - - - The fourth argument is the hardware type. - - - - When the left and right ports have been already allocated by - the card driver, pass non-zero to the fifth argument - (integrated). Otherwise, the opl3 module will - allocate the specified ports by itself. - - - - When the accessing the hardware requires special method - instead of the standard I/O access, you can create opl3 instance - separately with snd_opl3_new(). - - - - - - - - - - Then set command, - private_data and - private_free for the private - access function, the private data and the destructor. - The l_port and r_port are not necessarily set. Only the - command must be set properly. You can retrieve the data - from the opl3->private_data field. - - - - After creating the opl3 instance via snd_opl3_new(), - call snd_opl3_init() to initialize the chip to the - proper state. Note that snd_opl3_create() always - calls it internally. - - - - If the opl3 instance is created successfully, then create a - hwdep device for this opl3. - - - - - - - - - - The first argument is the opl3_t instance you - created, and the second is the index number, usually 0. - - - - The third argument is the index-offset for the sequencer - client assigned to the OPL3 port. When there is an MPU401-UART, - give 1 for here (UART always takes 0). - -
- -
- Hardware-Dependent Devices - - Some chips need user-space access for special - controls or for loading the micro code. In such a case, you can - create a hwdep (hardware-dependent) device. The hwdep API is - defined in <sound/hwdep.h>. You can - find examples in opl3 driver or - isa/sb/sb16_csp.c. - - - - The creation of the hwdep instance is done via - snd_hwdep_new(). - - - - - - - - where the third argument is the index number. - - - - You can then pass any pointer value to the - private_data. - If you assign a private data, you should define the - destructor, too. The destructor function is set in - the private_free field. - - - -private_data = p; - hw->private_free = mydata_free; -]]> - - - - and the implementation of the destructor would be: - - - -private_data; - kfree(p); - } -]]> - - - - - - The arbitrary file operations can be defined for this - instance. The file operators are defined in - the ops table. For example, assume that - this chip needs an ioctl. - - - -ops.open = mydata_open; - hw->ops.ioctl = mydata_ioctl; - hw->ops.release = mydata_release; -]]> - - - - And implement the callback functions as you like. - -
- -
- IEC958 (S/PDIF) - - Usually the controls for IEC958 devices are implemented via - the control interface. There is a macro to compose a name string for - IEC958 controls, SNDRV_CTL_NAME_IEC958() - defined in <include/asound.h>. - - - - There are some standard controls for IEC958 status bits. These - controls use the type SNDRV_CTL_ELEM_TYPE_IEC958, - and the size of element is fixed as 4 bytes array - (value.iec958.status[x]). For the info - callback, you don't specify - the value field for this type (the count field must be set, - though). - - - - IEC958 Playback Con Mask is used to return the - bit-mask for the IEC958 status bits of consumer mode. Similarly, - IEC958 Playback Pro Mask returns the bitmask for - professional mode. They are read-only controls, and are defined - as MIXER controls (iface = - SNDRV_CTL_ELEM_IFACE_MIXER). - - - - Meanwhile, IEC958 Playback Default control is - defined for getting and setting the current default IEC958 - bits. Note that this one is usually defined as a PCM control - (iface = SNDRV_CTL_ELEM_IFACE_PCM), - although in some places it's defined as a MIXER control. - - - - In addition, you can define the control switches to - enable/disable or to set the raw bit mode. The implementation - will depend on the chip, but the control should be named as - IEC958 xxx, preferably using - the SNDRV_CTL_NAME_IEC958() macro. - - - - You can find several cases, for example, - pci/emu10k1, - pci/ice1712, or - pci/cmipci.c. - -
- -
- - - - - - - Buffer and Memory Management - -
- Buffer Types - - ALSA provides several different buffer allocation functions - depending on the bus and the architecture. All these have a - consistent API. The allocation of physically-contiguous pages is - done via - snd_malloc_xxx_pages() function, where xxx - is the bus type. - - - - The allocation of pages with fallback is - snd_malloc_xxx_pages_fallback(). This - function tries to allocate the specified pages but if the pages - are not available, it tries to reduce the page sizes until - enough space is found. - - - - The release the pages, call - snd_free_xxx_pages() function. - - - - Usually, ALSA drivers try to allocate and reserve - a large contiguous physical space - at the time the module is loaded for the later use. - This is called pre-allocation. - As already written, you can call the following function at - pcm instance construction time (in the case of PCI bus). - - - - - - - - where size is the byte size to be - pre-allocated and the max is the maximum - size to be changed via the prealloc proc file. - The allocator will try to get an area as large as possible - within the given size. - - - - The second argument (type) and the third argument (device pointer) - are dependent on the bus. - In the case of the ISA bus, pass snd_dma_isa_data() - as the third argument with SNDRV_DMA_TYPE_DEV type. - For the continuous buffer unrelated to the bus can be pre-allocated - with SNDRV_DMA_TYPE_CONTINUOUS type and the - snd_dma_continuous_data(GFP_KERNEL) device pointer, - where GFP_KERNEL is the kernel allocation flag to - use. - For the PCI scatter-gather buffers, use - SNDRV_DMA_TYPE_DEV_SG with - snd_dma_pci_data(pci) - (see the - Non-Contiguous Buffers - section). - - - - Once the buffer is pre-allocated, you can use the - allocator in the hw_params callback: - - - - - - - - Note that you have to pre-allocate to use this function. - -
- -
- External Hardware Buffers - - Some chips have their own hardware buffers and the DMA - transfer from the host memory is not available. In such a case, - you need to either 1) copy/set the audio data directly to the - external hardware buffer, or 2) make an intermediate buffer and - copy/set the data from it to the external hardware buffer in - interrupts (or in tasklets, preferably). - - - - The first case works fine if the external hardware buffer is large - enough. This method doesn't need any extra buffers and thus is - more effective. You need to define the - copy and - silence callbacks for - the data transfer. However, there is a drawback: it cannot - be mmapped. The examples are GUS's GF1 PCM or emu8000's - wavetable PCM. - - - - The second case allows for mmap on the buffer, although you have - to handle an interrupt or a tasklet to transfer the data - from the intermediate buffer to the hardware buffer. You can find an - example in the vxpocket driver. - - - - Another case is when the chip uses a PCI memory-map - region for the buffer instead of the host memory. In this case, - mmap is available only on certain architectures like the Intel one. - In non-mmap mode, the data cannot be transferred as in the normal - way. Thus you need to define the copy and - silence callbacks as well, - as in the cases above. The examples are found in - rme32.c and rme96.c. - - - - The implementation of the copy and - silence callbacks depends upon - whether the hardware supports interleaved or non-interleaved - samples. The copy callback is - defined like below, a bit - differently depending whether the direction is playback or - capture: - - - - - - - - - - In the case of interleaved samples, the second argument - (channel) is not used. The third argument - (pos) points the - current position offset in frames. - - - - The meaning of the fourth argument is different between - playback and capture. For playback, it holds the source data - pointer, and for capture, it's the destination data pointer. - - - - The last argument is the number of frames to be copied. - - - - What you have to do in this callback is again different - between playback and capture directions. In the - playback case, you copy the given amount of data - (count) at the specified pointer - (src) to the specified offset - (pos) on the hardware buffer. When - coded like memcpy-like way, the copy would be like: - - - - - - - - - - For the capture direction, you copy the given amount of - data (count) at the specified offset - (pos) on the hardware buffer to the - specified pointer (dst). - - - - - - - - Note that both the position and the amount of data are given - in frames. - - - - In the case of non-interleaved samples, the implementation - will be a bit more complicated. - - - - You need to check the channel argument, and if it's -1, copy - the whole channels. Otherwise, you have to copy only the - specified channel. Please check - isa/gus/gus_pcm.c as an example. - - - - The silence callback is also - implemented in a similar way. - - - - - - - - - - The meanings of arguments are the same as in the - copy - callback, although there is no src/dst - argument. In the case of interleaved samples, the channel - argument has no meaning, as well as on - copy callback. - - - - The role of silence callback is to - set the given amount - (count) of silence data at the - specified offset (pos) on the hardware - buffer. Suppose that the data format is signed (that is, the - silent-data is 0), and the implementation using a memset-like - function would be like: - - - - - - - - - - In the case of non-interleaved samples, again, the - implementation becomes a bit more complicated. See, for example, - isa/gus/gus_pcm.c. - -
- -
- Non-Contiguous Buffers - - If your hardware supports the page table as in emu10k1 or the - buffer descriptors as in via82xx, you can use the scatter-gather - (SG) DMA. ALSA provides an interface for handling SG-buffers. - The API is provided in <sound/pcm.h>. - - - - For creating the SG-buffer handler, call - snd_pcm_lib_preallocate_pages() or - snd_pcm_lib_preallocate_pages_for_all() - with SNDRV_DMA_TYPE_DEV_SG - in the PCM constructor like other PCI pre-allocator. - You need to pass snd_dma_pci_data(pci), - where pci is the struct pci_dev pointer - of the chip as well. - The struct snd_sg_buf instance is created as - substream->dma_private. You can cast - the pointer like: - - - -dma_private; -]]> - - - - - - Then call snd_pcm_lib_malloc_pages() - in the hw_params callback - as well as in the case of normal PCI buffer. - The SG-buffer handler will allocate the non-contiguous kernel - pages of the given size and map them onto the virtually contiguous - memory. The virtual pointer is addressed in runtime->dma_area. - The physical address (runtime->dma_addr) is set to zero, - because the buffer is physically non-contiguous. - The physical address table is set up in sgbuf->table. - You can get the physical address at a certain offset via - snd_pcm_sgbuf_get_addr(). - - - - When a SG-handler is used, you need to set - snd_pcm_sgbuf_ops_page as - the page callback. - (See - page callback section.) - - - - To release the data, call - snd_pcm_lib_free_pages() in the - hw_free callback as usual. - -
- -
- Vmalloc'ed Buffers - - It's possible to use a buffer allocated via - vmalloc, for example, for an intermediate - buffer. Since the allocated pages are not contiguous, you need - to set the page callback to obtain - the physical address at every offset. - - - - The implementation of page callback - would be like this: - - - - - - /* get the physical page pointer on the given offset */ - static struct page *mychip_page(struct snd_pcm_substream *substream, - unsigned long offset) - { - void *pageptr = substream->runtime->dma_area + offset; - return vmalloc_to_page(pageptr); - } -]]> - - - -
- -
- - - - - - - Proc Interface - - ALSA provides an easy interface for procfs. The proc files are - very useful for debugging. I recommend you set up proc files if - you write a driver and want to get a running status or register - dumps. The API is found in - <sound/info.h>. - - - - To create a proc file, call - snd_card_proc_new(). - - - - - - - - where the second argument specifies the name of the proc file to be - created. The above example will create a file - my-file under the card directory, - e.g. /proc/asound/card0/my-file. - - - - Like other components, the proc entry created via - snd_card_proc_new() will be registered and - released automatically in the card registration and release - functions. - - - - When the creation is successful, the function stores a new - instance in the pointer given in the third argument. - It is initialized as a text proc file for read only. To use - this proc file as a read-only text file as it is, set the read - callback with a private data via - snd_info_set_text_ops(). - - - - - - - - where the second argument (chip) is the - private data to be used in the callbacks. The third parameter - specifies the read buffer size and the fourth - (my_proc_read) is the callback function, which - is defined like - - - - - - - - - - - In the read callback, use snd_iprintf() for - output strings, which works just like normal - printf(). For example, - - - -private_data; - - snd_iprintf(buffer, "This is my chip!\n"); - snd_iprintf(buffer, "Port = %ld\n", chip->port); - } -]]> - - - - - - The file permissions can be changed afterwards. As default, it's - set as read only for all users. If you want to add write - permission for the user (root as default), do as follows: - - - -mode = S_IFREG | S_IRUGO | S_IWUSR; -]]> - - - - and set the write buffer size and the callback - - - -c.text.write = my_proc_write; -]]> - - - - - - For the write callback, you can use - snd_info_get_line() to get a text line, and - snd_info_get_str() to retrieve a string from - the line. Some examples are found in - core/oss/mixer_oss.c, core/oss/and - pcm_oss.c. - - - - For a raw-data proc-file, set the attributes as follows: - - - -content = SNDRV_INFO_CONTENT_DATA; - entry->private_data = chip; - entry->c.ops = &my_file_io_ops; - entry->size = 4096; - entry->mode = S_IFREG | S_IRUGO; -]]> - - - - For the raw data, size field must be - set properly. This specifies the maximum size of the proc file access. - - - - The read/write callbacks of raw mode are more direct than the text mode. - You need to use a low-level I/O functions such as - copy_from/to_user() to transfer the - data. - - - - - - - - If the size of the info entry has been set up properly, - count and pos are - guaranteed to fit within 0 and the given size. - You don't have to check the range in the callbacks unless any - other condition is required. - - - - - - - - - - - Power Management - - If the chip is supposed to work with suspend/resume - functions, you need to add power-management code to the - driver. The additional code for power-management should be - ifdef'ed with - CONFIG_PM. - - - - If the driver fully supports suspend/resume - that is, the device can be - properly resumed to its state when suspend was called, - you can set the SNDRV_PCM_INFO_RESUME flag - in the pcm info field. Usually, this is possible when the - registers of the chip can be safely saved and restored to - RAM. If this is set, the trigger callback is called with - SNDRV_PCM_TRIGGER_RESUME after the resume - callback completes. - - - - Even if the driver doesn't support PM fully but - partial suspend/resume is still possible, it's still worthy to - implement suspend/resume callbacks. In such a case, applications - would reset the status by calling - snd_pcm_prepare() and restart the stream - appropriately. Hence, you can define suspend/resume callbacks - below but don't set SNDRV_PCM_INFO_RESUME - info flag to the PCM. - - - - Note that the trigger with SUSPEND can always be called when - snd_pcm_suspend_all is called, - regardless of the SNDRV_PCM_INFO_RESUME flag. - The RESUME flag affects only the behavior - of snd_pcm_resume(). - (Thus, in theory, - SNDRV_PCM_TRIGGER_RESUME isn't needed - to be handled in the trigger callback when no - SNDRV_PCM_INFO_RESUME flag is set. But, - it's better to keep it for compatibility reasons.) - - - In the earlier version of ALSA drivers, a common - power-management layer was provided, but it has been removed. - The driver needs to define the suspend/resume hooks according to - the bus the device is connected to. In the case of PCI drivers, the - callbacks look like below: - - - - - - - - - - The scheme of the real suspend job is as follows. - - - Retrieve the card and the chip data. - Call snd_power_change_state() with - SNDRV_CTL_POWER_D3hot to change the - power status. - Call snd_pcm_suspend_all() to suspend the running PCM streams. - If AC97 codecs are used, call - snd_ac97_suspend() for each codec. - Save the register values if necessary. - Stop the hardware if necessary. - Disable the PCI device by calling - pci_disable_device(). Then, call - pci_save_state() at last. - - - - - A typical code would be like: - - - -private_data; - /* (2) */ - snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); - /* (3) */ - snd_pcm_suspend_all(chip->pcm); - /* (4) */ - snd_ac97_suspend(chip->ac97); - /* (5) */ - snd_mychip_save_registers(chip); - /* (6) */ - snd_mychip_stop_hardware(chip); - /* (7) */ - pci_disable_device(pci); - pci_save_state(pci); - return 0; - } -]]> - - - - - - The scheme of the real resume job is as follows. - - - Retrieve the card and the chip data. - Set up PCI. First, call pci_restore_state(). - Then enable the pci device again by calling pci_enable_device(). - Call pci_set_master() if necessary, too. - Re-initialize the chip. - Restore the saved registers if necessary. - Resume the mixer, e.g. calling - snd_ac97_resume(). - Restart the hardware (if any). - Call snd_power_change_state() with - SNDRV_CTL_POWER_D0 to notify the processes. - - - - - A typical code would be like: - - - -private_data; - /* (2) */ - pci_restore_state(pci); - pci_enable_device(pci); - pci_set_master(pci); - /* (3) */ - snd_mychip_reinit_chip(chip); - /* (4) */ - snd_mychip_restore_registers(chip); - /* (5) */ - snd_ac97_resume(chip->ac97); - /* (6) */ - snd_mychip_restart_chip(chip); - /* (7) */ - snd_power_change_state(card, SNDRV_CTL_POWER_D0); - return 0; - } -]]> - - - - - - As shown in the above, it's better to save registers after - suspending the PCM operations via - snd_pcm_suspend_all() or - snd_pcm_suspend(). It means that the PCM - streams are already stopped when the register snapshot is - taken. But, remember that you don't have to restart the PCM - stream in the resume callback. It'll be restarted via - trigger call with SNDRV_PCM_TRIGGER_RESUME - when necessary. - - - - OK, we have all callbacks now. Let's set them up. In the - initialization of the card, make sure that you can get the chip - data from the card instance, typically via - private_data field, in case you - created the chip data individually. - - - -dev, index[dev], id[dev], THIS_MODULE, - 0, &card); - .... - chip = kzalloc(sizeof(*chip), GFP_KERNEL); - .... - card->private_data = chip; - .... - } -]]> - - - - When you created the chip data with - snd_card_new(), it's anyway accessible - via private_data field. - - - -dev, index[dev], id[dev], THIS_MODULE, - sizeof(struct mychip), &card); - .... - chip = card->private_data; - .... - } -]]> - - - - - - - If you need a space to save the registers, allocate the - buffer for it here, too, since it would be fatal - if you cannot allocate a memory in the suspend phase. - The allocated buffer should be released in the corresponding - destructor. - - - - And next, set suspend/resume callbacks to the pci_driver. - - - - - - - - - - - - - - - - Module Parameters - - There are standard module options for ALSA. At least, each - module should have the index, - id and enable - options. - - - - If the module supports multiple cards (usually up to - 8 = SNDRV_CARDS cards), they should be - arrays. The default initial values are defined already as - constants for easier programming: - - - - - - - - - - If the module supports only a single card, they could be single - variables, instead. enable option is not - always necessary in this case, but it would be better to have a - dummy option for compatibility. - - - - The module parameters must be declared with the standard - module_param()(), - module_param_array()() and - MODULE_PARM_DESC() macros. - - - - The typical coding would be like below: - - - - - - - - - - Also, don't forget to define the module description, classes, - license and devices. Especially, the recent modprobe requires to - define the module license as GPL, etc., otherwise the system is - shown as tainted. - - - - - - - - - - - - - - - - How To Put Your Driver Into ALSA Tree -
- General - - So far, you've learned how to write the driver codes. - And you might have a question now: how to put my own - driver into the ALSA driver tree? - Here (finally :) the standard procedure is described briefly. - - - - Suppose that you create a new PCI driver for the card - xyz. The card module name would be - snd-xyz. The new driver is usually put into the alsa-driver - tree, alsa-driver/pci directory in - the case of PCI cards. - Then the driver is evaluated, audited and tested - by developers and users. After a certain time, the driver - will go to the alsa-kernel tree (to the corresponding directory, - such as alsa-kernel/pci) and eventually - will be integrated into the Linux 2.6 tree (the directory would be - linux/sound/pci). - - - - In the following sections, the driver code is supposed - to be put into alsa-driver tree. The two cases are covered: - a driver consisting of a single source file and one consisting - of several source files. - -
- -
- Driver with A Single Source File - - - - - Modify alsa-driver/pci/Makefile - - - - Suppose you have a file xyz.c. Add the following - two lines - - - - - - - - - - - Create the Kconfig entry - - - - Add the new entry of Kconfig for your xyz driver. - - - - - - - the line, select SND_PCM, specifies that the driver xyz supports - PCM. In addition to SND_PCM, the following components are - supported for select command: - SND_RAWMIDI, SND_TIMER, SND_HWDEP, SND_MPU401_UART, - SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, SND_AC97_CODEC. - Add the select command for each supported component. - - - - Note that some selections imply the lowlevel selections. - For example, PCM includes TIMER, MPU401_UART includes RAWMIDI, - AC97_CODEC includes PCM, and OPL3_LIB includes HWDEP. - You don't need to give the lowlevel selections again. - - - - For the details of Kconfig script, refer to the kbuild - documentation. - - - - - - - Run cvscompile script to re-generate the configure script and - build the whole stuff again. - - - - -
- -
- Drivers with Several Source Files - - Suppose that the driver snd-xyz have several source files. - They are located in the new subdirectory, - pci/xyz. - - - - - Add a new directory (xyz) in - alsa-driver/pci/Makefile as below - - - - - - - - - - - - Under the directory xyz, create a Makefile - - - Sample Makefile for a driver xyz - - - - - - - - - - Create the Kconfig entry - - - - This procedure is as same as in the last section. - - - - - - Run cvscompile script to re-generate the configure script and - build the whole stuff again. - - - - -
- -
- - - - - - Useful Functions - -
- <function>snd_printk()</function> and friends - - ALSA provides a verbose version of the - printk() function. If a kernel config - CONFIG_SND_VERBOSE_PRINTK is set, this - function prints the given message together with the file name - and the line of the caller. The KERN_XXX - prefix is processed as - well as the original printk() does, so it's - recommended to add this prefix, e.g. - - - - - - - - - - There are also printk()'s for - debugging. snd_printd() can be used for - general debugging purposes. If - CONFIG_SND_DEBUG is set, this function is - compiled, and works just like - snd_printk(). If the ALSA is compiled - without the debugging flag, it's ignored. - - - - snd_printdd() is compiled in only when - CONFIG_SND_DEBUG_VERBOSE is set. Please note - that CONFIG_SND_DEBUG_VERBOSE is not set as default - even if you configure the alsa-driver with - option. You need to give - explicitly option instead. - -
- -
- <function>snd_BUG()</function> - - It shows the BUG? message and - stack trace as well as snd_BUG_ON at the point. - It's useful to show that a fatal error happens there. - - - When no debug flag is set, this macro is ignored. - -
- -
- <function>snd_BUG_ON()</function> - - snd_BUG_ON() macro is similar with - WARN_ON() macro. For example, - - - - - - - - or it can be used as the condition, - - - - - - - - - - The macro takes an conditional expression to evaluate. - When CONFIG_SND_DEBUG, is set, if the - expression is non-zero, it shows the warning message such as - BUG? (xxx) - normally followed by stack trace. - - In both cases it returns the evaluated value. - - -
- -
- - - - - - - Acknowledgments - - I would like to thank Phil Kerr for his help for improvement and - corrections of this document. - - - Kevin Conder reformatted the original plain-text to the - DocBook format. - - - Giuliano Pochini corrected typos and contributed the example codes - in the hardware constraints section. - - -
diff --git a/Documentation/sound/kernel-api/index.rst b/Documentation/sound/kernel-api/index.rst index 73c13497dec7..d0e6df35b4b4 100644 --- a/Documentation/sound/kernel-api/index.rst +++ b/Documentation/sound/kernel-api/index.rst @@ -5,3 +5,4 @@ ALSA Kernel API Documentation :maxdepth: 2 alsa-driver-api + writing-an-alsa-driver diff --git a/Documentation/sound/kernel-api/writing-an-alsa-driver.rst b/Documentation/sound/kernel-api/writing-an-alsa-driver.rst new file mode 100644 index 000000000000..95c5443eff38 --- /dev/null +++ b/Documentation/sound/kernel-api/writing-an-alsa-driver.rst @@ -0,0 +1,4219 @@ +====================== +Writing an ALSA Driver +====================== + +:Author: Takashi Iwai +:Date: Oct 15, 2007 +:Edition: 0.3.7 + +Preface +======= + +This document describes how to write an `ALSA (Advanced Linux Sound +Architecture) `__ driver. The document +focuses mainly on PCI soundcards. In the case of other device types, the +API might be different, too. However, at least the ALSA kernel API is +consistent, and therefore it would be still a bit help for writing them. + +This document targets people who already have enough C language skills +and have basic linux kernel programming knowledge. This document doesn't +explain the general topic of linux kernel coding and doesn't cover +low-level driver implementation details. It only describes the standard +way to write a PCI sound driver on ALSA. + +If you are already familiar with the older ALSA ver.0.5.x API, you can +check the drivers such as ``sound/pci/es1938.c`` or +``sound/pci/maestro3.c`` which have also almost the same code-base in +the ALSA 0.5.x tree, so you can compare the differences. + +This document is still a draft version. Any feedback and corrections, +please!! + +File Tree Structure +=================== + +General +------- + +The ALSA drivers are provided in two ways. + +One is the trees provided as a tarball or via cvs from the ALSA's ftp +site, and another is the 2.6 (or later) Linux kernel tree. To +synchronize both, the ALSA driver tree is split into two different +trees: alsa-kernel and alsa-driver. The former contains purely the +source code for the Linux 2.6 (or later) tree. This tree is designed +only for compilation on 2.6 or later environment. The latter, +alsa-driver, contains many subtle files for compiling ALSA drivers +outside of the Linux kernel tree, wrapper functions for older 2.2 and +2.4 kernels, to adapt the latest kernel API, and additional drivers +which are still in development or in tests. The drivers in alsa-driver +tree will be moved to alsa-kernel (and eventually to the 2.6 kernel +tree) when they are finished and confirmed to work fine. + +The file tree structure of ALSA driver is depicted below. Both +alsa-kernel and alsa-driver have almost the same file structure, except +for “core” directory. It's named as “acore” in alsa-driver tree. + +:: + + sound + /core + /oss + /seq + /oss + /instr + /ioctl32 + /include + /drivers + /mpu401 + /opl3 + /i2c + /l3 + /synth + /emux + /pci + /(cards) + /isa + /(cards) + /arm + /ppc + /sparc + /usb + /pcmcia /(cards) + /oss + + +core directory +-------------- + +This directory contains the middle layer which is the heart of ALSA +drivers. In this directory, the native ALSA modules are stored. The +sub-directories contain different modules and are dependent upon the +kernel config. + +core/oss +~~~~~~~~ + +The codes for PCM and mixer OSS emulation modules are stored in this +directory. The rawmidi OSS emulation is included in the ALSA rawmidi +code since it's quite small. The sequencer code is stored in +``core/seq/oss`` directory (see `below <#core-seq-oss>`__). + +core/ioctl32 +~~~~~~~~~~~~ + +This directory contains the 32bit-ioctl wrappers for 64bit architectures +such like x86-64, ppc64 and sparc64. For 32bit and alpha architectures, +these are not compiled. + +core/seq +~~~~~~~~ + +This directory and its sub-directories are for the ALSA sequencer. This +directory contains the sequencer core and primary sequencer modules such +like snd-seq-midi, snd-seq-virmidi, etc. They are compiled only when +``CONFIG_SND_SEQUENCER`` is set in the kernel config. + +core/seq/oss +~~~~~~~~~~~~ + +This contains the OSS sequencer emulation codes. + +core/seq/instr +~~~~~~~~~~~~~~ + +This directory contains the modules for the sequencer instrument layer. + +include directory +----------------- + +This is the place for the public header files of ALSA drivers, which are +to be exported to user-space, or included by several files at different +directories. Basically, the private header files should not be placed in +this directory, but you may still find files there, due to historical +reasons :) + +drivers directory +----------------- + +This directory contains code shared among different drivers on different +architectures. They are hence supposed not to be architecture-specific. +For example, the dummy pcm driver and the serial MIDI driver are found +in this directory. In the sub-directories, there is code for components +which are independent from bus and cpu architectures. + +drivers/mpu401 +~~~~~~~~~~~~~~ + +The MPU401 and MPU401-UART modules are stored here. + +drivers/opl3 and opl4 +~~~~~~~~~~~~~~~~~~~~~ + +The OPL3 and OPL4 FM-synth stuff is found here. + +i2c directory +------------- + +This contains the ALSA i2c components. + +Although there is a standard i2c layer on Linux, ALSA has its own i2c +code for some cards, because the soundcard needs only a simple operation +and the standard i2c API is too complicated for such a purpose. + +i2c/l3 +~~~~~~ + +This is a sub-directory for ARM L3 i2c. + +synth directory +--------------- + +This contains the synth middle-level modules. + +So far, there is only Emu8000/Emu10k1 synth driver under the +``synth/emux`` sub-directory. + +pci directory +------------- + +This directory and its sub-directories hold the top-level card modules +for PCI soundcards and the code specific to the PCI BUS. + +The drivers compiled from a single file are stored directly in the pci +directory, while the drivers with several source files are stored on +their own sub-directory (e.g. emu10k1, ice1712). + +isa directory +------------- + +This directory and its sub-directories hold the top-level card modules +for ISA soundcards. + +arm, ppc, and sparc directories +------------------------------- + +They are used for top-level card modules which are specific to one of +these architectures. + +usb directory +------------- + +This directory contains the USB-audio driver. In the latest version, the +USB MIDI driver is integrated in the usb-audio driver. + +pcmcia directory +---------------- + +The PCMCIA, especially PCCard drivers will go here. CardBus drivers will +be in the pci directory, because their API is identical to that of +standard PCI cards. + +oss directory +------------- + +The OSS/Lite source files are stored here in Linux 2.6 (or later) tree. +In the ALSA driver tarball, this directory is empty, of course :) + +Basic Flow for PCI Drivers +========================== + +Outline +------- + +The minimum flow for PCI soundcards is as follows: + +- define the PCI ID table (see the section `PCI Entries`_). + +- create ``probe`` callback. + +- create ``remove`` callback. + +- create a :c:type:`struct pci_driver ` structure + containing the three pointers above. + +- create an ``init`` function just calling the + :c:func:`pci_register_driver()` to register the pci_driver + table defined above. + +- create an ``exit`` function to call the + :c:func:`pci_unregister_driver()` function. + +Full Code Example +----------------- + +The code example is shown below. Some parts are kept unimplemented at +this moment but will be filled in the next sections. The numbers in the +comment lines of the :c:func:`snd_mychip_probe()` function refer +to details explained in the following section. + +:: + + #include + #include + #include + #include + #include + + /* module parameters (see "Module Parameters") */ + /* SNDRV_CARDS: maximum number of cards supported by this module */ + static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; + static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; + static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; + + /* definition of the chip-specific record */ + struct mychip { + struct snd_card *card; + /* the rest of the implementation will be in section + * "PCI Resource Management" + */ + }; + + /* chip-specific destructor + * (see "PCI Resource Management") + */ + static int snd_mychip_free(struct mychip *chip) + { + .... /* will be implemented later... */ + } + + /* component-destructor + * (see "Management of Cards and Components") + */ + static int snd_mychip_dev_free(struct snd_device *device) + { + return snd_mychip_free(device->device_data); + } + + /* chip-specific constructor + * (see "Management of Cards and Components") + */ + static int snd_mychip_create(struct snd_card *card, + struct pci_dev *pci, + struct mychip **rchip) + { + struct mychip *chip; + int err; + static struct snd_device_ops ops = { + .dev_free = snd_mychip_dev_free, + }; + + *rchip = NULL; + + /* check PCI availability here + * (see "PCI Resource Management") + */ + .... + + /* allocate a chip-specific data with zero filled */ + chip = kzalloc(sizeof(*chip), GFP_KERNEL); + if (chip == NULL) + return -ENOMEM; + + chip->card = card; + + /* rest of initialization here; will be implemented + * later, see "PCI Resource Management" + */ + .... + + err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); + if (err < 0) { + snd_mychip_free(chip); + return err; + } + + *rchip = chip; + return 0; + } + + /* constructor -- see "Driver Constructor" sub-section */ + static int snd_mychip_probe(struct pci_dev *pci, + const struct pci_device_id *pci_id) + { + static int dev; + struct snd_card *card; + struct mychip *chip; + int err; + + /* (1) */ + if (dev >= SNDRV_CARDS) + return -ENODEV; + if (!enable[dev]) { + dev++; + return -ENOENT; + } + + /* (2) */ + err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, + 0, &card); + if (err < 0) + return err; + + /* (3) */ + err = snd_mychip_create(card, pci, &chip); + if (err < 0) { + snd_card_free(card); + return err; + } + + /* (4) */ + strcpy(card->driver, "My Chip"); + strcpy(card->shortname, "My Own Chip 123"); + sprintf(card->longname, "%s at 0x%lx irq %i", + card->shortname, chip->ioport, chip->irq); + + /* (5) */ + .... /* implemented later */ + + /* (6) */ + err = snd_card_register(card); + if (err < 0) { + snd_card_free(card); + return err; + } + + /* (7) */ + pci_set_drvdata(pci, card); + dev++; + return 0; + } + + /* destructor -- see the "Destructor" sub-section */ + static void snd_mychip_remove(struct pci_dev *pci) + { + snd_card_free(pci_get_drvdata(pci)); + pci_set_drvdata(pci, NULL); + } + + + +Driver Constructor +------------------ + +The real constructor of PCI drivers is the ``probe`` callback. The +``probe`` callback and other component-constructors which are called +from the ``probe`` callback cannot be used with the ``__init`` prefix +because any PCI device could be a hotplug device. + +In the ``probe`` callback, the following scheme is often used. + +1) Check and increment the device index. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + static int dev; + .... + if (dev >= SNDRV_CARDS) + return -ENODEV; + if (!enable[dev]) { + dev++; + return -ENOENT; + } + + +where ``enable[dev]`` is the module option. + +Each time the ``probe`` callback is called, check the availability of +the device. If not available, simply increment the device index and +returns. dev will be incremented also later (`step 7 +<#set-the-pci-driver-data-and-return-zero>`__). + +2) Create a card instance +~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + struct snd_card *card; + int err; + .... + err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, + 0, &card); + + +The details will be explained in the section `Management of Cards and +Components`_. + +3) Create a main component +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In this part, the PCI resources are allocated. + +:: + + struct mychip *chip; + .... + err = snd_mychip_create(card, pci, &chip); + if (err < 0) { + snd_card_free(card); + return err; + } + +The details will be explained in the section `PCI Resource +Management`_. + +4) Set the driver ID and name strings. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + strcpy(card->driver, "My Chip"); + strcpy(card->shortname, "My Own Chip 123"); + sprintf(card->longname, "%s at 0x%lx irq %i", + card->shortname, chip->ioport, chip->irq); + +The driver field holds the minimal ID string of the chip. This is used +by alsa-lib's configurator, so keep it simple but unique. Even the +same driver can have different driver IDs to distinguish the +functionality of each chip type. + +The shortname field is a string shown as more verbose name. The longname +field contains the information shown in ``/proc/asound/cards``. + +5) Create other components, such as mixer, MIDI, etc. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Here you define the basic components such as `PCM <#PCM-Interface>`__, +mixer (e.g. `AC97 <#API-for-AC97-Codec>`__), MIDI (e.g. +`MPU-401 <#MIDI-MPU401-UART-Interface>`__), and other interfaces. +Also, if you want a `proc file <#Proc-Interface>`__, define it here, +too. + +6) Register the card instance. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + err = snd_card_register(card); + if (err < 0) { + snd_card_free(card); + return err; + } + +Will be explained in the section `Management of Cards and +Components`_, too. + +7) Set the PCI driver data and return zero. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + pci_set_drvdata(pci, card); + dev++; + return 0; + +In the above, the card record is stored. This pointer is used in the +remove callback and power-management callbacks, too. + +Destructor +---------- + +The destructor, remove callback, simply releases the card instance. Then +the ALSA middle layer will release all the attached components +automatically. + +It would be typically like the following: + +:: + + static void snd_mychip_remove(struct pci_dev *pci) + { + snd_card_free(pci_get_drvdata(pci)); + pci_set_drvdata(pci, NULL); + } + + +The above code assumes that the card pointer is set to the PCI driver +data. + +Header Files +------------ + +For the above example, at least the following include files are +necessary. + +:: + + #include + #include + #include + #include + #include + +where the last one is necessary only when module options are defined +in the source file. If the code is split into several files, the files +without module options don't need them. + +In addition to these headers, you'll need ```` for +interrupt handling, and ```` for I/O access. If you use the +:c:func:`mdelay()` or :c:func:`udelay()` functions, you'll need +to include ```` too. + +The ALSA interfaces like the PCM and control APIs are defined in other +```` header files. They have to be included after +````. + +Management of Cards and Components +================================== + +Card Instance +------------- + +For each soundcard, a “card” record must be allocated. + +A card record is the headquarters of the soundcard. It manages the whole +list of devices (components) on the soundcard, such as PCM, mixers, +MIDI, synthesizer, and so on. Also, the card record holds the ID and the +name strings of the card, manages the root of proc files, and controls +the power-management states and hotplug disconnections. The component +list on the card record is used to manage the correct release of +resources at destruction. + +As mentioned above, to create a card instance, call +:c:func:`snd_card_new()`. + +:: + + struct snd_card *card; + int err; + err = snd_card_new(&pci->dev, index, id, module, extra_size, &card); + + +The function takes six arguments: the parent device pointer, the +card-index number, the id string, the module pointer (usually +``THIS_MODULE``), the size of extra-data space, and the pointer to +return the card instance. The extra_size argument is used to allocate +card->private_data for the chip-specific data. Note that these data are +allocated by :c:func:`snd_card_new()`. + +The first argument, the pointer of struct :c:type:`struct device +`, specifies the parent device. For PCI devices, typically +``&pci->`` is passed there. + +Components +---------- + +After the card is created, you can attach the components (devices) to +the card instance. In an ALSA driver, a component is represented as a +:c:type:`struct snd_device ` object. A component +can be a PCM instance, a control interface, a raw MIDI interface, etc. +Each such instance has one component entry. + +A component can be created via :c:func:`snd_device_new()` +function. + +:: + + snd_device_new(card, SNDRV_DEV_XXX, chip, &ops); + +This takes the card pointer, the device-level (``SNDRV_DEV_XXX``), the +data pointer, and the callback pointers (``&ops``). The device-level +defines the type of components and the order of registration and +de-registration. For most components, the device-level is already +defined. For a user-defined component, you can use +``SNDRV_DEV_LOWLEVEL``. + +This function itself doesn't allocate the data space. The data must be +allocated manually beforehand, and its pointer is passed as the +argument. This pointer (``chip`` in the above example) is used as the +identifier for the instance. + +Each pre-defined ALSA component such as ac97 and pcm calls +:c:func:`snd_device_new()` inside its constructor. The destructor +for each component is defined in the callback pointers. Hence, you don't +need to take care of calling a destructor for such a component. + +If you wish to create your own component, you need to set the destructor +function to the dev_free callback in the ``ops``, so that it can be +released automatically via :c:func:`snd_card_free()`. The next +example will show an implementation of chip-specific data. + +Chip-Specific Data +------------------ + +Chip-specific information, e.g. the I/O port address, its resource +pointer, or the irq number, is stored in the chip-specific record. + +:: + + struct mychip { + .... + }; + + +In general, there are two ways of allocating the chip record. + +1. Allocating via :c:func:`snd_card_new()`. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +As mentioned above, you can pass the extra-data-length to the 5th +argument of :c:func:`snd_card_new()`, i.e. + +:: + + err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, + sizeof(struct mychip), &card); + +:c:type:`struct mychip ` is the type of the chip record. + +In return, the allocated record can be accessed as + +:: + + struct mychip *chip = card->private_data; + +With this method, you don't have to allocate twice. The record is +released together with the card instance. + +2. Allocating an extra device. +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +After allocating a card instance via :c:func:`snd_card_new()` +(with ``0`` on the 4th arg), call :c:func:`kzalloc()`. + +:: + + struct snd_card *card; + struct mychip *chip; + err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, + 0, &card); + ..... + chip = kzalloc(sizeof(*chip), GFP_KERNEL); + +The chip record should have the field to hold the card pointer at least, + +:: + + struct mychip { + struct snd_card *card; + .... + }; + + +Then, set the card pointer in the returned chip instance. + +:: + + chip->card = card; + +Next, initialize the fields, and register this chip record as a +low-level device with a specified ``ops``, + +:: + + static struct snd_device_ops ops = { + .dev_free = snd_mychip_dev_free, + }; + .... + snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); + +:c:func:`snd_mychip_dev_free()` is the device-destructor +function, which will call the real destructor. + +:: + + static int snd_mychip_dev_free(struct snd_device *device) + { + return snd_mychip_free(device->device_data); + } + +where :c:func:`snd_mychip_free()` is the real destructor. + +Registration and Release +------------------------ + +After all components are assigned, register the card instance by calling +:c:func:`snd_card_register()`. Access to the device files is +enabled at this point. That is, before +:c:func:`snd_card_register()` is called, the components are safely +inaccessible from external side. If this call fails, exit the probe +function after releasing the card via :c:func:`snd_card_free()`. + +For releasing the card instance, you can call simply +:c:func:`snd_card_free()`. As mentioned earlier, all components +are released automatically by this call. + +For a device which allows hotplugging, you can use +:c:func:`snd_card_free_when_closed()`. This one will postpone +the destruction until all devices are closed. + +PCI Resource Management +======================= + +Full Code Example +----------------- + +In this section, we'll complete the chip-specific constructor, +destructor and PCI entries. Example code is shown first, below. + +:: + + struct mychip { + struct snd_card *card; + struct pci_dev *pci; + + unsigned long port; + int irq; + }; + + static int snd_mychip_free(struct mychip *chip) + { + /* disable hardware here if any */ + .... /* (not implemented in this document) */ + + /* release the irq */ + if (chip->irq >= 0) + free_irq(chip->irq, chip); + /* release the I/O ports & memory */ + pci_release_regions(chip->pci); + /* disable the PCI entry */ + pci_disable_device(chip->pci); + /* release the data */ + kfree(chip); + return 0; + } + + /* chip-specific constructor */ + static int snd_mychip_create(struct snd_card *card, + struct pci_dev *pci, + struct mychip **rchip) + { + struct mychip *chip; + int err; + static struct snd_device_ops ops = { + .dev_free = snd_mychip_dev_free, + }; + + *rchip = NULL; + + /* initialize the PCI entry */ + err = pci_enable_device(pci); + if (err < 0) + return err; + /* check PCI availability (28bit DMA) */ + if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 || + pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) { + printk(KERN_ERR "error to set 28bit mask DMA\n"); + pci_disable_device(pci); + return -ENXIO; + } + + chip = kzalloc(sizeof(*chip), GFP_KERNEL); + if (chip == NULL) { + pci_disable_device(pci); + return -ENOMEM; + } + + /* initialize the stuff */ + chip->card = card; + chip->pci = pci; + chip->irq = -1; + + /* (1) PCI resource allocation */ + err = pci_request_regions(pci, "My Chip"); + if (err < 0) { + kfree(chip); + pci_disable_device(pci); + return err; + } + chip->port = pci_resource_start(pci, 0); + if (request_irq(pci->irq, snd_mychip_interrupt, + IRQF_SHARED, KBUILD_MODNAME, chip)) { + printk(KERN_ERR "cannot grab irq %d\n", pci->irq); + snd_mychip_free(chip); + return -EBUSY; + } + chip->irq = pci->irq; + + /* (2) initialization of the chip hardware */ + .... /* (not implemented in this document) */ + + err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, chip, &ops); + if (err < 0) { + snd_mychip_free(chip); + return err; + } + + *rchip = chip; + return 0; + } + + /* PCI IDs */ + static struct pci_device_id snd_mychip_ids[] = { + { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, + .... + { 0, } + }; + MODULE_DEVICE_TABLE(pci, snd_mychip_ids); + + /* pci_driver definition */ + static struct pci_driver driver = { + .name = KBUILD_MODNAME, + .id_table = snd_mychip_ids, + .probe = snd_mychip_probe, + .remove = snd_mychip_remove, + }; + + /* module initialization */ + static int __init alsa_card_mychip_init(void) + { + return pci_register_driver(&driver); + } + + /* module clean up */ + static void __exit alsa_card_mychip_exit(void) + { + pci_unregister_driver(&driver); + } + + module_init(alsa_card_mychip_init) + module_exit(alsa_card_mychip_exit) + + EXPORT_NO_SYMBOLS; /* for old kernels only */ + +Some Hafta's +------------ + +The allocation of PCI resources is done in the ``probe`` function, and +usually an extra :c:func:`xxx_create()` function is written for this +purpose. + +In the case of PCI devices, you first have to call the +:c:func:`pci_enable_device()` function before allocating +resources. Also, you need to set the proper PCI DMA mask to limit the +accessed I/O range. In some cases, you might need to call +:c:func:`pci_set_master()` function, too. + +Suppose the 28bit mask, and the code to be added would be like: + +:: + + err = pci_enable_device(pci); + if (err < 0) + return err; + if (pci_set_dma_mask(pci, DMA_BIT_MASK(28)) < 0 || + pci_set_consistent_dma_mask(pci, DMA_BIT_MASK(28)) < 0) { + printk(KERN_ERR "error to set 28bit mask DMA\n"); + pci_disable_device(pci); + return -ENXIO; + } + + +Resource Allocation +------------------- + +The allocation of I/O ports and irqs is done via standard kernel +functions. Unlike ALSA ver.0.5.x., there are no helpers for that. And +these resources must be released in the destructor function (see below). +Also, on ALSA 0.9.x, you don't need to allocate (pseudo-)DMA for PCI +like in ALSA 0.5.x. + +Now assume that the PCI device has an I/O port with 8 bytes and an +interrupt. Then :c:type:`struct mychip ` will have the +following fields: + +:: + + struct mychip { + struct snd_card *card; + + unsigned long port; + int irq; + }; + + +For an I/O port (and also a memory region), you need to have the +resource pointer for the standard resource management. For an irq, you +have to keep only the irq number (integer). But you need to initialize +this number as -1 before actual allocation, since irq 0 is valid. The +port address and its resource pointer can be initialized as null by +:c:func:`kzalloc()` automatically, so you don't have to take care of +resetting them. + +The allocation of an I/O port is done like this: + +:: + + err = pci_request_regions(pci, "My Chip"); + if (err < 0) { + kfree(chip); + pci_disable_device(pci); + return err; + } + chip->port = pci_resource_start(pci, 0); + +It will reserve the I/O port region of 8 bytes of the given PCI device. +The returned value, ``chip->res_port``, is allocated via +:c:func:`kmalloc()` by :c:func:`request_region()`. The pointer +must be released via :c:func:`kfree()`, but there is a problem with +this. This issue will be explained later. + +The allocation of an interrupt source is done like this: + +:: + + if (request_irq(pci->irq, snd_mychip_interrupt, + IRQF_SHARED, KBUILD_MODNAME, chip)) { + printk(KERN_ERR "cannot grab irq %d\n", pci->irq); + snd_mychip_free(chip); + return -EBUSY; + } + chip->irq = pci->irq; + +where :c:func:`snd_mychip_interrupt()` is the interrupt handler +defined `later <#pcm-interface-interrupt-handler>`__. Note that +``chip->irq`` should be defined only when :c:func:`request_irq()` +succeeded. + +On the PCI bus, interrupts can be shared. Thus, ``IRQF_SHARED`` is used +as the interrupt flag of :c:func:`request_irq()`. + +The last argument of :c:func:`request_irq()` is the data pointer +passed to the interrupt handler. Usually, the chip-specific record is +used for that, but you can use what you like, too. + +I won't give details about the interrupt handler at this point, but at +least its appearance can be explained now. The interrupt handler looks +usually like the following: + +:: + + static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) + { + struct mychip *chip = dev_id; + .... + return IRQ_HANDLED; + } + + +Now let's write the corresponding destructor for the resources above. +The role of destructor is simple: disable the hardware (if already +activated) and release the resources. So far, we have no hardware part, +so the disabling code is not written here. + +To release the resources, the “check-and-release” method is a safer way. +For the interrupt, do like this: + +:: + + if (chip->irq >= 0) + free_irq(chip->irq, chip); + +Since the irq number can start from 0, you should initialize +``chip->irq`` with a negative value (e.g. -1), so that you can check +the validity of the irq number as above. + +When you requested I/O ports or memory regions via +:c:func:`pci_request_region()` or +:c:func:`pci_request_regions()` like in this example, release the +resource(s) using the corresponding function, +:c:func:`pci_release_region()` or +:c:func:`pci_release_regions()`. + +:: + + pci_release_regions(chip->pci); + +When you requested manually via :c:func:`request_region()` or +:c:func:`request_mem_region()`, you can release it via +:c:func:`release_resource()`. Suppose that you keep the resource +pointer returned from :c:func:`request_region()` in +chip->res_port, the release procedure looks like: + +:: + + release_and_free_resource(chip->res_port); + +Don't forget to call :c:func:`pci_disable_device()` before the +end. + +And finally, release the chip-specific record. + +:: + + kfree(chip); + +We didn't implement the hardware disabling part in the above. If you +need to do this, please note that the destructor may be called even +before the initialization of the chip is completed. It would be better +to have a flag to skip hardware disabling if the hardware was not +initialized yet. + +When the chip-data is assigned to the card using +:c:func:`snd_device_new()` with ``SNDRV_DEV_LOWLELVEL`` , its +destructor is called at the last. That is, it is assured that all other +components like PCMs and controls have already been released. You don't +have to stop PCMs, etc. explicitly, but just call low-level hardware +stopping. + +The management of a memory-mapped region is almost as same as the +management of an I/O port. You'll need three fields like the +following: + +:: + + struct mychip { + .... + unsigned long iobase_phys; + void __iomem *iobase_virt; + }; + +and the allocation would be like below: + +:: + + if ((err = pci_request_regions(pci, "My Chip")) < 0) { + kfree(chip); + return err; + } + chip->iobase_phys = pci_resource_start(pci, 0); + chip->iobase_virt = ioremap_nocache(chip->iobase_phys, + pci_resource_len(pci, 0)); + +and the corresponding destructor would be: + +:: + + static int snd_mychip_free(struct mychip *chip) + { + .... + if (chip->iobase_virt) + iounmap(chip->iobase_virt); + .... + pci_release_regions(chip->pci); + .... + } + +PCI Entries +----------- + +So far, so good. Let's finish the missing PCI stuff. At first, we need a +:c:type:`struct pci_device_id ` table for +this chipset. It's a table of PCI vendor/device ID number, and some +masks. + +For example, + +:: + + static struct pci_device_id snd_mychip_ids[] = { + { PCI_VENDOR_ID_FOO, PCI_DEVICE_ID_BAR, + PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0, }, + .... + { 0, } + }; + MODULE_DEVICE_TABLE(pci, snd_mychip_ids); + +The first and second fields of the :c:type:`struct pci_device_id +` structure are the vendor and device IDs. If you +have no reason to filter the matching devices, you can leave the +remaining fields as above. The last field of the :c:type:`struct +pci_device_id ` struct contains private data +for this entry. You can specify any value here, for example, to define +specific operations for supported device IDs. Such an example is found +in the intel8x0 driver. + +The last entry of this list is the terminator. You must specify this +all-zero entry. + +Then, prepare the :c:type:`struct pci_driver ` +record: + +:: + + static struct pci_driver driver = { + .name = KBUILD_MODNAME, + .id_table = snd_mychip_ids, + .probe = snd_mychip_probe, + .remove = snd_mychip_remove, + }; + +The ``probe`` and ``remove`` functions have already been defined in +the previous sections. The ``name`` field is the name string of this +device. Note that you must not use a slash “/” in this string. + +And at last, the module entries: + +:: + + static int __init alsa_card_mychip_init(void) + { + return pci_register_driver(&driver); + } + + static void __exit alsa_card_mychip_exit(void) + { + pci_unregister_driver(&driver); + } + + module_init(alsa_card_mychip_init) + module_exit(alsa_card_mychip_exit) + +Note that these module entries are tagged with ``__init`` and ``__exit`` +prefixes. + +Oh, one thing was forgotten. If you have no exported symbols, you need +to declare it in 2.2 or 2.4 kernels (it's not necessary in 2.6 kernels). + +:: + + EXPORT_NO_SYMBOLS; + +That's all! + +PCM Interface +============= + +General +------- + +The PCM middle layer of ALSA is quite powerful and it is only necessary +for each driver to implement the low-level functions to access its +hardware. + +For accessing to the PCM layer, you need to include ```` +first. In addition, ```` might be needed if you +access to some functions related with hw_param. + +Each card device can have up to four pcm instances. A pcm instance +corresponds to a pcm device file. The limitation of number of instances +comes only from the available bit size of the Linux's device numbers. +Once when 64bit device number is used, we'll have more pcm instances +available. + +A pcm instance consists of pcm playback and capture streams, and each +pcm stream consists of one or more pcm substreams. Some soundcards +support multiple playback functions. For example, emu10k1 has a PCM +playback of 32 stereo substreams. In this case, at each open, a free +substream is (usually) automatically chosen and opened. Meanwhile, when +only one substream exists and it was already opened, the successful open +will either block or error with ``EAGAIN`` according to the file open +mode. But you don't have to care about such details in your driver. The +PCM middle layer will take care of such work. + +Full Code Example +----------------- + +The example code below does not include any hardware access routines but +shows only the skeleton, how to build up the PCM interfaces. + +:: + + #include + .... + + /* hardware definition */ + static struct snd_pcm_hardware snd_mychip_playback_hw = { + .info = (SNDRV_PCM_INFO_MMAP | + SNDRV_PCM_INFO_INTERLEAVED | + SNDRV_PCM_INFO_BLOCK_TRANSFER | + SNDRV_PCM_INFO_MMAP_VALID), + .formats = SNDRV_PCM_FMTBIT_S16_LE, + .rates = SNDRV_PCM_RATE_8000_48000, + .rate_min = 8000, + .rate_max = 48000, + .channels_min = 2, + .channels_max = 2, + .buffer_bytes_max = 32768, + .period_bytes_min = 4096, + .period_bytes_max = 32768, + .periods_min = 1, + .periods_max = 1024, + }; + + /* hardware definition */ + static struct snd_pcm_hardware snd_mychip_capture_hw = { + .info = (SNDRV_PCM_INFO_MMAP | + SNDRV_PCM_INFO_INTERLEAVED | + SNDRV_PCM_INFO_BLOCK_TRANSFER | + SNDRV_PCM_INFO_MMAP_VALID), + .formats = SNDRV_PCM_FMTBIT_S16_LE, + .rates = SNDRV_PCM_RATE_8000_48000, + .rate_min = 8000, + .rate_max = 48000, + .channels_min = 2, + .channels_max = 2, + .buffer_bytes_max = 32768, + .period_bytes_min = 4096, + .period_bytes_max = 32768, + .periods_min = 1, + .periods_max = 1024, + }; + + /* open callback */ + static int snd_mychip_playback_open(struct snd_pcm_substream *substream) + { + struct mychip *chip = snd_pcm_substream_chip(substream); + struct snd_pcm_runtime *runtime = substream->runtime; + + runtime->hw = snd_mychip_playback_hw; + /* more hardware-initialization will be done here */ + .... + return 0; + } + + /* close callback */ + static int snd_mychip_playback_close(struct snd_pcm_substream *substream) + { + struct mychip *chip = snd_pcm_substream_chip(substream); + /* the hardware-specific codes will be here */ + .... + return 0; + + } + + /* open callback */ + static int snd_mychip_capture_open(struct snd_pcm_substream *substream) + { + struct mychip *chip = snd_pcm_substream_chip(substream); + struct snd_pcm_runtime *runtime = substream->runtime; + + runtime->hw = snd_mychip_capture_hw; + /* more hardware-initialization will be done here */ + .... + return 0; + } + + /* close callback */ + static int snd_mychip_capture_close(struct snd_pcm_substream *substream) + { + struct mychip *chip = snd_pcm_substream_chip(substream); + /* the hardware-specific codes will be here */ + .... + return 0; + + } + + /* hw_params callback */ + static int snd_mychip_pcm_hw_params(struct snd_pcm_substream *substream, + struct snd_pcm_hw_params *hw_params) + { + return snd_pcm_lib_malloc_pages(substream, + params_buffer_bytes(hw_params)); + } + + /* hw_free callback */ + static int snd_mychip_pcm_hw_free(struct snd_pcm_substream *substream) + { + return snd_pcm_lib_free_pages(substream); + } + + /* prepare callback */ + static int snd_mychip_pcm_prepare(struct snd_pcm_substream *substream) + { + struct mychip *chip = snd_pcm_substream_chip(substream); + struct snd_pcm_runtime *runtime = substream->runtime; + + /* set up the hardware with the current configuration + * for example... + */ + mychip_set_sample_format(chip, runtime->format); + mychip_set_sample_rate(chip, runtime->rate); + mychip_set_channels(chip, runtime->channels); + mychip_set_dma_setup(chip, runtime->dma_addr, + chip->buffer_size, + chip->period_size); + return 0; + } + + /* trigger callback */ + static int snd_mychip_pcm_trigger(struct snd_pcm_substream *substream, + int cmd) + { + switch (cmd) { + case SNDRV_PCM_TRIGGER_START: + /* do something to start the PCM engine */ + .... + break; + case SNDRV_PCM_TRIGGER_STOP: + /* do something to stop the PCM engine */ + .... + break; + default: + return -EINVAL; + } + } + + /* pointer callback */ + static snd_pcm_uframes_t + snd_mychip_pcm_pointer(struct snd_pcm_substream *substream) + { + struct mychip *chip = snd_pcm_substream_chip(substream); + unsigned int current_ptr; + + /* get the current hardware pointer */ + current_ptr = mychip_get_hw_pointer(chip); + return current_ptr; + } + + /* operators */ + static struct snd_pcm_ops snd_mychip_playback_ops = { + .open = snd_mychip_playback_open, + .close = snd_mychip_playback_close, + .ioctl = snd_pcm_lib_ioctl, + .hw_params = snd_mychip_pcm_hw_params, + .hw_free = snd_mychip_pcm_hw_free, + .prepare = snd_mychip_pcm_prepare, + .trigger = snd_mychip_pcm_trigger, + .pointer = snd_mychip_pcm_pointer, + }; + + /* operators */ + static struct snd_pcm_ops snd_mychip_capture_ops = { + .open = snd_mychip_capture_open, + .close = snd_mychip_capture_close, + .ioctl = snd_pcm_lib_ioctl, + .hw_params = snd_mychip_pcm_hw_params, + .hw_free = snd_mychip_pcm_hw_free, + .prepare = snd_mychip_pcm_prepare, + .trigger = snd_mychip_pcm_trigger, + .pointer = snd_mychip_pcm_pointer, + }; + + /* + * definitions of capture are omitted here... + */ + + /* create a pcm device */ + static int snd_mychip_new_pcm(struct mychip *chip) + { + struct snd_pcm *pcm; + int err; + + err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); + if (err < 0) + return err; + pcm->private_data = chip; + strcpy(pcm->name, "My Chip"); + chip->pcm = pcm; + /* set operators */ + snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, + &snd_mychip_playback_ops); + snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, + &snd_mychip_capture_ops); + /* pre-allocation of buffers */ + /* NOTE: this may fail */ + snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, + snd_dma_pci_data(chip->pci), + 64*1024, 64*1024); + return 0; + } + + +PCM Constructor +--------------- + +A pcm instance is allocated by the :c:func:`snd_pcm_new()` +function. It would be better to create a constructor for pcm, namely, + +:: + + static int snd_mychip_new_pcm(struct mychip *chip) + { + struct snd_pcm *pcm; + int err; + + err = snd_pcm_new(chip->card, "My Chip", 0, 1, 1, &pcm); + if (err < 0) + return err; + pcm->private_data = chip; + strcpy(pcm->name, "My Chip"); + chip->pcm = pcm; + .... + return 0; + } + +The :c:func:`snd_pcm_new()` function takes four arguments. The +first argument is the card pointer to which this pcm is assigned, and +the second is the ID string. + +The third argument (``index``, 0 in the above) is the index of this new +pcm. It begins from zero. If you create more than one pcm instances, +specify the different numbers in this argument. For example, ``index = +1`` for the second PCM device. + +The fourth and fifth arguments are the number of substreams for playback +and capture, respectively. Here 1 is used for both arguments. When no +playback or capture substreams are available, pass 0 to the +corresponding argument. + +If a chip supports multiple playbacks or captures, you can specify more +numbers, but they must be handled properly in open/close, etc. +callbacks. When you need to know which substream you are referring to, +then it can be obtained from :c:type:`struct snd_pcm_substream +` data passed to each callback as follows: + +:: + + struct snd_pcm_substream *substream; + int index = substream->number; + + +After the pcm is created, you need to set operators for each pcm stream. + +:: + + snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, + &snd_mychip_playback_ops); + snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, + &snd_mychip_capture_ops); + +The operators are defined typically like this: + +:: + + static struct snd_pcm_ops snd_mychip_playback_ops = { + .open = snd_mychip_pcm_open, + .close = snd_mychip_pcm_close, + .ioctl = snd_pcm_lib_ioctl, + .hw_params = snd_mychip_pcm_hw_params, + .hw_free = snd_mychip_pcm_hw_free, + .prepare = snd_mychip_pcm_prepare, + .trigger = snd_mychip_pcm_trigger, + .pointer = snd_mychip_pcm_pointer, + }; + +All the callbacks are described in the Operators_ subsection. + +After setting the operators, you probably will want to pre-allocate the +buffer. For the pre-allocation, simply call the following: + +:: + + snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, + snd_dma_pci_data(chip->pci), + 64*1024, 64*1024); + +It will allocate a buffer up to 64kB as default. Buffer management +details will be described in the later section `Buffer and Memory +Management`_. + +Additionally, you can set some extra information for this pcm in +``pcm->info_flags``. The available values are defined as +``SNDRV_PCM_INFO_XXX`` in ````, which is used for the +hardware definition (described later). When your soundchip supports only +half-duplex, specify like this: + +:: + + pcm->info_flags = SNDRV_PCM_INFO_HALF_DUPLEX; + + +... And the Destructor? +----------------------- + +The destructor for a pcm instance is not always necessary. Since the pcm +device will be released by the middle layer code automatically, you +don't have to call the destructor explicitly. + +The destructor would be necessary if you created special records +internally and needed to release them. In such a case, set the +destructor function to ``pcm->private_free``: + +:: + + static void mychip_pcm_free(struct snd_pcm *pcm) + { + struct mychip *chip = snd_pcm_chip(pcm); + /* free your own data */ + kfree(chip->my_private_pcm_data); + /* do what you like else */ + .... + } + + static int snd_mychip_new_pcm(struct mychip *chip) + { + struct snd_pcm *pcm; + .... + /* allocate your own data */ + chip->my_private_pcm_data = kmalloc(...); + /* set the destructor */ + pcm->private_data = chip; + pcm->private_free = mychip_pcm_free; + .... + } + + + +Runtime Pointer - The Chest of PCM Information +---------------------------------------------- + +When the PCM substream is opened, a PCM runtime instance is allocated +and assigned to the substream. This pointer is accessible via +``substream->runtime``. This runtime pointer holds most information you +need to control the PCM: the copy of hw_params and sw_params +configurations, the buffer pointers, mmap records, spinlocks, etc. + +The definition of runtime instance is found in ````. Here +are the contents of this file: + +:: + + struct _snd_pcm_runtime { + /* -- Status -- */ + struct snd_pcm_substream *trigger_master; + snd_timestamp_t trigger_tstamp; /* trigger timestamp */ + int overrange; + snd_pcm_uframes_t avail_max; + snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */ + snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time*/ + + /* -- HW params -- */ + snd_pcm_access_t access; /* access mode */ + snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */ + snd_pcm_subformat_t subformat; /* subformat */ + unsigned int rate; /* rate in Hz */ + unsigned int channels; /* channels */ + snd_pcm_uframes_t period_size; /* period size */ + unsigned int periods; /* periods */ + snd_pcm_uframes_t buffer_size; /* buffer size */ + unsigned int tick_time; /* tick time */ + snd_pcm_uframes_t min_align; /* Min alignment for the format */ + size_t byte_align; + unsigned int frame_bits; + unsigned int sample_bits; + unsigned int info; + unsigned int rate_num; + unsigned int rate_den; + + /* -- SW params -- */ + struct timespec tstamp_mode; /* mmap timestamp is updated */ + unsigned int period_step; + unsigned int sleep_min; /* min ticks to sleep */ + snd_pcm_uframes_t start_threshold; + snd_pcm_uframes_t stop_threshold; + snd_pcm_uframes_t silence_threshold; /* Silence filling happens when + noise is nearest than this */ + snd_pcm_uframes_t silence_size; /* Silence filling size */ + snd_pcm_uframes_t boundary; /* pointers wrap point */ + + snd_pcm_uframes_t silenced_start; + snd_pcm_uframes_t silenced_size; + + snd_pcm_sync_id_t sync; /* hardware synchronization ID */ + + /* -- mmap -- */ + volatile struct snd_pcm_mmap_status *status; + volatile struct snd_pcm_mmap_control *control; + atomic_t mmap_count; + + /* -- locking / scheduling -- */ + spinlock_t lock; + wait_queue_head_t sleep; + struct timer_list tick_timer; + struct fasync_struct *fasync; + + /* -- private section -- */ + void *private_data; + void (*private_free)(struct snd_pcm_runtime *runtime); + + /* -- hardware description -- */ + struct snd_pcm_hardware hw; + struct snd_pcm_hw_constraints hw_constraints; + + /* -- timer -- */ + unsigned int timer_resolution; /* timer resolution */ + + /* -- DMA -- */ + unsigned char *dma_area; /* DMA area */ + dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */ + size_t dma_bytes; /* size of DMA area */ + + struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */ + + #if defined(CONFIG_SND_PCM_OSS) || defined(CONFIG_SND_PCM_OSS_MODULE) + /* -- OSS things -- */ + struct snd_pcm_oss_runtime oss; + #endif + }; + + +For the operators (callbacks) of each sound driver, most of these +records are supposed to be read-only. Only the PCM middle-layer changes +/ updates them. The exceptions are the hardware description (hw) DMA +buffer information and the private data. Besides, if you use the +standard buffer allocation method via +:c:func:`snd_pcm_lib_malloc_pages()`, you don't need to set the +DMA buffer information by yourself. + +In the sections below, important records are explained. + +Hardware Description +~~~~~~~~~~~~~~~~~~~~ + +The hardware descriptor (:c:type:`struct snd_pcm_hardware +`) contains the definitions of the fundamental +hardware configuration. Above all, you'll need to define this in the +`PCM open callback`_. Note that the runtime instance holds the copy of +the descriptor, not the pointer to the existing descriptor. That is, +in the open callback, you can modify the copied descriptor +(``runtime->hw``) as you need. For example, if the maximum number of +channels is 1 only on some chip models, you can still use the same +hardware descriptor and change the channels_max later: + +:: + + struct snd_pcm_runtime *runtime = substream->runtime; + ... + runtime->hw = snd_mychip_playback_hw; /* common definition */ + if (chip->model == VERY_OLD_ONE) + runtime->hw.channels_max = 1; + +Typically, you'll have a hardware descriptor as below: + +:: + + static struct snd_pcm_hardware snd_mychip_playback_hw = { + .info = (SNDRV_PCM_INFO_MMAP | + SNDRV_PCM_INFO_INTERLEAVED | + SNDRV_PCM_INFO_BLOCK_TRANSFER | + SNDRV_PCM_INFO_MMAP_VALID), + .formats = SNDRV_PCM_FMTBIT_S16_LE, + .rates = SNDRV_PCM_RATE_8000_48000, + .rate_min = 8000, + .rate_max = 48000, + .channels_min = 2, + .channels_max = 2, + .buffer_bytes_max = 32768, + .period_bytes_min = 4096, + .period_bytes_max = 32768, + .periods_min = 1, + .periods_max = 1024, + }; + +- The ``info`` field contains the type and capabilities of this + pcm. The bit flags are defined in ```` as + ``SNDRV_PCM_INFO_XXX``. Here, at least, you have to specify whether + the mmap is supported and which interleaved format is + supported. When the hardware supports mmap, add the + ``SNDRV_PCM_INFO_MMAP`` flag here. When the hardware supports the + interleaved or the non-interleaved formats, + ``SNDRV_PCM_INFO_INTERLEAVED`` or ``SNDRV_PCM_INFO_NONINTERLEAVED`` + flag must be set, respectively. If both are supported, you can set + both, too. + + In the above example, ``MMAP_VALID`` and ``BLOCK_TRANSFER`` are + specified for the OSS mmap mode. Usually both are set. Of course, + ``MMAP_VALID`` is set only if the mmap is really supported. + + The other possible flags are ``SNDRV_PCM_INFO_PAUSE`` and + ``SNDRV_PCM_INFO_RESUME``. The ``PAUSE`` bit means that the pcm + supports the “pause” operation, while the ``RESUME`` bit means that + the pcm supports the full “suspend/resume” operation. If the + ``PAUSE`` flag is set, the ``trigger`` callback below must handle + the corresponding (pause push/release) commands. The suspend/resume + trigger commands can be defined even without the ``RESUME`` + flag. See `Power Management`_ section for details. + + When the PCM substreams can be synchronized (typically, + synchronized start/stop of a playback and a capture streams), you + can give ``SNDRV_PCM_INFO_SYNC_START``, too. In this case, you'll + need to check the linked-list of PCM substreams in the trigger + callback. This will be described in the later section. + +- ``formats`` field contains the bit-flags of supported formats + (``SNDRV_PCM_FMTBIT_XXX``). If the hardware supports more than one + format, give all or'ed bits. In the example above, the signed 16bit + little-endian format is specified. + +- ``rates`` field contains the bit-flags of supported rates + (``SNDRV_PCM_RATE_XXX``). When the chip supports continuous rates, + pass ``CONTINUOUS`` bit additionally. The pre-defined rate bits are + provided only for typical rates. If your chip supports + unconventional rates, you need to add the ``KNOT`` bit and set up + the hardware constraint manually (explained later). + +- ``rate_min`` and ``rate_max`` define the minimum and maximum sample + rate. This should correspond somehow to ``rates`` bits. + +- ``channel_min`` and ``channel_max`` define, as you might already + expected, the minimum and maximum number of channels. + +- ``buffer_bytes_max`` defines the maximum buffer size in + bytes. There is no ``buffer_bytes_min`` field, since it can be + calculated from the minimum period size and the minimum number of + periods. Meanwhile, ``period_bytes_min`` and define the minimum and + maximum size of the period in bytes. ``periods_max`` and + ``periods_min`` define the maximum and minimum number of periods in + the buffer. + + The “period” is a term that corresponds to a fragment in the OSS + world. The period defines the size at which a PCM interrupt is + generated. This size strongly depends on the hardware. Generally, + the smaller period size will give you more interrupts, that is, + more controls. In the case of capture, this size defines the input + latency. On the other hand, the whole buffer size defines the + output latency for the playback direction. + +- There is also a field ``fifo_size``. This specifies the size of the + hardware FIFO, but currently it is neither used in the driver nor + in the alsa-lib. So, you can ignore this field. + +PCM Configurations +~~~~~~~~~~~~~~~~~~ + +Ok, let's go back again to the PCM runtime records. The most +frequently referred records in the runtime instance are the PCM +configurations. The PCM configurations are stored in the runtime +instance after the application sends ``hw_params`` data via +alsa-lib. There are many fields copied from hw_params and sw_params +structs. For example, ``format`` holds the format type chosen by the +application. This field contains the enum value +``SNDRV_PCM_FORMAT_XXX``. + +One thing to be noted is that the configured buffer and period sizes +are stored in “frames” in the runtime. In the ALSA world, ``1 frame = +channels \* samples-size``. For conversion between frames and bytes, +you can use the :c:func:`frames_to_bytes()` and +:c:func:`bytes_to_frames()` helper functions. + +:: + + period_bytes = frames_to_bytes(runtime, runtime->period_size); + +Also, many software parameters (sw_params) are stored in frames, too. +Please check the type of the field. ``snd_pcm_uframes_t`` is for the +frames as unsigned integer while ``snd_pcm_sframes_t`` is for the +frames as signed integer. + +DMA Buffer Information +~~~~~~~~~~~~~~~~~~~~~~ + +The DMA buffer is defined by the following four fields, ``dma_area``, +``dma_addr``, ``dma_bytes`` and ``dma_private``. The ``dma_area`` +holds the buffer pointer (the logical address). You can call +:c:func:`memcpy()` from/to this pointer. Meanwhile, ``dma_addr`` holds +the physical address of the buffer. This field is specified only when +the buffer is a linear buffer. ``dma_bytes`` holds the size of buffer +in bytes. ``dma_private`` is used for the ALSA DMA allocator. + +If you use a standard ALSA function, +:c:func:`snd_pcm_lib_malloc_pages()`, for allocating the buffer, +these fields are set by the ALSA middle layer, and you should *not* +change them by yourself. You can read them but not write them. On the +other hand, if you want to allocate the buffer by yourself, you'll +need to manage it in hw_params callback. At least, ``dma_bytes`` is +mandatory. ``dma_area`` is necessary when the buffer is mmapped. If +your driver doesn't support mmap, this field is not +necessary. ``dma_addr`` is also optional. You can use dma_private as +you like, too. + +Running Status +~~~~~~~~~~~~~~ + +The running status can be referred via ``runtime->status``. This is +the pointer to the :c:type:`struct snd_pcm_mmap_status +` record. For example, you can get the current +DMA hardware pointer via ``runtime->status->hw_ptr``. + +The DMA application pointer can be referred via ``runtime->control``, +which points to the :c:type:`struct snd_pcm_mmap_control +` record. However, accessing directly to +this value is not recommended. + +Private Data +~~~~~~~~~~~~ + +You can allocate a record for the substream and store it in +``runtime->private_data``. Usually, this is done in the `PCM open +callback`_. Don't mix this with ``pcm->private_data``. The +``pcm->private_data`` usually points to the chip instance assigned +statically at the creation of PCM, while the ``runtime->private_data`` +points to a dynamic data structure created at the PCM open +callback. + +:: + + static int snd_xxx_open(struct snd_pcm_substream *substream) + { + struct my_pcm_data *data; + .... + data = kmalloc(sizeof(*data), GFP_KERNEL); + substream->runtime->private_data = data; + .... + } + + +The allocated object must be released in the `close callback`_. + +Operators +--------- + +OK, now let me give details about each pcm callback (``ops``). In +general, every callback must return 0 if successful, or a negative +error number such as ``-EINVAL``. To choose an appropriate error +number, it is advised to check what value other parts of the kernel +return when the same kind of request fails. + +The callback function takes at least the argument with :c:type:`struct +snd_pcm_substream ` pointer. To retrieve the chip +record from the given substream instance, you can use the following +macro. + +:: + + int xxx() { + struct mychip *chip = snd_pcm_substream_chip(substream); + .... + } + +The macro reads ``substream->private_data``, which is a copy of +``pcm->private_data``. You can override the former if you need to +assign different data records per PCM substream. For example, the +cmi8330 driver assigns different ``private_data`` for playback and +capture directions, because it uses two different codecs (SB- and +AD-compatible) for different directions. + +PCM open callback +~~~~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_open(struct snd_pcm_substream *substream); + +This is called when a pcm substream is opened. + +At least, here you have to initialize the ``runtime->hw`` +record. Typically, this is done by like this: + +:: + + static int snd_xxx_open(struct snd_pcm_substream *substream) + { + struct mychip *chip = snd_pcm_substream_chip(substream); + struct snd_pcm_runtime *runtime = substream->runtime; + + runtime->hw = snd_mychip_playback_hw; + return 0; + } + +where ``snd_mychip_playback_hw`` is the pre-defined hardware +description. + +You can allocate a private data in this callback, as described in +`Private Data`_ section. + +If the hardware configuration needs more constraints, set the hardware +constraints here, too. See Constraints_ for more details. + +close callback +~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_close(struct snd_pcm_substream *substream); + + +Obviously, this is called when a pcm substream is closed. + +Any private instance for a pcm substream allocated in the ``open`` +callback will be released here. + +:: + + static int snd_xxx_close(struct snd_pcm_substream *substream) + { + .... + kfree(substream->runtime->private_data); + .... + } + +ioctl callback +~~~~~~~~~~~~~~ + +This is used for any special call to pcm ioctls. But usually you can +pass a generic ioctl callback, :c:func:`snd_pcm_lib_ioctl()`. + +hw_params callback +~~~~~~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_hw_params(struct snd_pcm_substream *substream, + struct snd_pcm_hw_params *hw_params); + +This is called when the hardware parameter (``hw_params``) is set up +by the application, that is, once when the buffer size, the period +size, the format, etc. are defined for the pcm substream. + +Many hardware setups should be done in this callback, including the +allocation of buffers. + +Parameters to be initialized are retrieved by +:c:func:`params_xxx()` macros. To allocate buffer, you can call a +helper function, + +:: + + snd_pcm_lib_malloc_pages(substream, params_buffer_bytes(hw_params)); + +:c:func:`snd_pcm_lib_malloc_pages()` is available only when the +DMA buffers have been pre-allocated. See the section `Buffer Types`_ +for more details. + +Note that this and ``prepare`` callbacks may be called multiple times +per initialization. For example, the OSS emulation may call these +callbacks at each change via its ioctl. + +Thus, you need to be careful not to allocate the same buffers many +times, which will lead to memory leaks! Calling the helper function +above many times is OK. It will release the previous buffer +automatically when it was already allocated. + +Another note is that this callback is non-atomic (schedulable) as +default, i.e. when no ``nonatomic`` flag set. This is important, +because the ``trigger`` callback is atomic (non-schedulable). That is, +mutexes or any schedule-related functions are not available in +``trigger`` callback. Please see the subsection Atomicity_ for +details. + +hw_free callback +~~~~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_hw_free(struct snd_pcm_substream *substream); + +This is called to release the resources allocated via +``hw_params``. For example, releasing the buffer via +:c:func:`snd_pcm_lib_malloc_pages()` is done by calling the +following: + +:: + + snd_pcm_lib_free_pages(substream); + +This function is always called before the close callback is called. +Also, the callback may be called multiple times, too. Keep track +whether the resource was already released. + +prepare callback +~~~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_prepare(struct snd_pcm_substream *substream); + +This callback is called when the pcm is “prepared”. You can set the +format type, sample rate, etc. here. The difference from ``hw_params`` +is that the ``prepare`` callback will be called each time +:c:func:`snd_pcm_prepare()` is called, i.e. when recovering after +underruns, etc. + +Note that this callback is now non-atomic. You can use +schedule-related functions safely in this callback. + +In this and the following callbacks, you can refer to the values via +the runtime record, ``substream->runtime``. For example, to get the +current rate, format or channels, access to ``runtime->rate``, +``runtime->format`` or ``runtime->channels``, respectively. The +physical address of the allocated buffer is set to +``runtime->dma_area``. The buffer and period sizes are in +``runtime->buffer_size`` and ``runtime->period_size``, respectively. + +Be careful that this callback will be called many times at each setup, +too. + +trigger callback +~~~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_trigger(struct snd_pcm_substream *substream, int cmd); + +This is called when the pcm is started, stopped or paused. + +Which action is specified in the second argument, +``SNDRV_PCM_TRIGGER_XXX`` in ````. At least, the ``START`` +and ``STOP`` commands must be defined in this callback. + +:: + + switch (cmd) { + case SNDRV_PCM_TRIGGER_START: + /* do something to start the PCM engine */ + break; + case SNDRV_PCM_TRIGGER_STOP: + /* do something to stop the PCM engine */ + break; + default: + return -EINVAL; + } + +When the pcm supports the pause operation (given in the info field of +the hardware table), the ``PAUSE_PUSH`` and ``PAUSE_RELEASE`` commands +must be handled here, too. The former is the command to pause the pcm, +and the latter to restart the pcm again. + +When the pcm supports the suspend/resume operation, regardless of full +or partial suspend/resume support, the ``SUSPEND`` and ``RESUME`` +commands must be handled, too. These commands are issued when the +power-management status is changed. Obviously, the ``SUSPEND`` and +``RESUME`` commands suspend and resume the pcm substream, and usually, +they are identical to the ``STOP`` and ``START`` commands, respectively. +See the `Power Management`_ section for details. + +As mentioned, this callback is atomic as default unless ``nonatomic`` +flag set, and you cannot call functions which may sleep. The +``trigger`` callback should be as minimal as possible, just really +triggering the DMA. The other stuff should be initialized +``hw_params`` and ``prepare`` callbacks properly beforehand. + +pointer callback +~~~~~~~~~~~~~~~~ + +:: + + static snd_pcm_uframes_t snd_xxx_pointer(struct snd_pcm_substream *substream) + +This callback is called when the PCM middle layer inquires the current +hardware position on the buffer. The position must be returned in +frames, ranging from 0 to ``buffer_size - 1``. + +This is called usually from the buffer-update routine in the pcm +middle layer, which is invoked when :c:func:`snd_pcm_period_elapsed()` +is called in the interrupt routine. Then the pcm middle layer updates +the position and calculates the available space, and wakes up the +sleeping poll threads, etc. + +This callback is also atomic as default. + +copy and silence callbacks +~~~~~~~~~~~~~~~~~~~~~~~~~~ + +These callbacks are not mandatory, and can be omitted in most cases. +These callbacks are used when the hardware buffer cannot be in the +normal memory space. Some chips have their own buffer on the hardware +which is not mappable. In such a case, you have to transfer the data +manually from the memory buffer to the hardware buffer. Or, if the +buffer is non-contiguous on both physical and virtual memory spaces, +these callbacks must be defined, too. + +If these two callbacks are defined, copy and set-silence operations +are done by them. The detailed will be described in the later section +`Buffer and Memory Management`_. + +ack callback +~~~~~~~~~~~~ + +This callback is also not mandatory. This callback is called when the +``appl_ptr`` is updated in read or write operations. Some drivers like +emu10k1-fx and cs46xx need to track the current ``appl_ptr`` for the +internal buffer, and this callback is useful only for such a purpose. + +This callback is atomic as default. + +page callback +~~~~~~~~~~~~~ + +This callback is optional too. This callback is used mainly for +non-contiguous buffers. The mmap calls this callback to get the page +address. Some examples will be explained in the later section `Buffer +and Memory Management`_, too. + +PCM Interrupt Handler +--------------------- + +The rest of pcm stuff is the PCM interrupt handler. The role of PCM +interrupt handler in the sound driver is to update the buffer position +and to tell the PCM middle layer when the buffer position goes across +the prescribed period size. To inform this, call the +:c:func:`snd_pcm_period_elapsed()` function. + +There are several types of sound chips to generate the interrupts. + +Interrupts at the period (fragment) boundary +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This is the most frequently found type: the hardware generates an +interrupt at each period boundary. In this case, you can call +:c:func:`snd_pcm_period_elapsed()` at each interrupt. + +:c:func:`snd_pcm_period_elapsed()` takes the substream pointer as +its argument. Thus, you need to keep the substream pointer accessible +from the chip instance. For example, define ``substream`` field in the +chip record to hold the current running substream pointer, and set the +pointer value at ``open`` callback (and reset at ``close`` callback). + +If you acquire a spinlock in the interrupt handler, and the lock is used +in other pcm callbacks, too, then you have to release the lock before +calling :c:func:`snd_pcm_period_elapsed()`, because +:c:func:`snd_pcm_period_elapsed()` calls other pcm callbacks +inside. + +Typical code would be like: + +:: + + + static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) + { + struct mychip *chip = dev_id; + spin_lock(&chip->lock); + .... + if (pcm_irq_invoked(chip)) { + /* call updater, unlock before it */ + spin_unlock(&chip->lock); + snd_pcm_period_elapsed(chip->substream); + spin_lock(&chip->lock); + /* acknowledge the interrupt if necessary */ + } + .... + spin_unlock(&chip->lock); + return IRQ_HANDLED; + } + + + +High frequency timer interrupts +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +This happens when the hardware doesn't generate interrupts at the period +boundary but issues timer interrupts at a fixed timer rate (e.g. es1968 +or ymfpci drivers). In this case, you need to check the current hardware +position and accumulate the processed sample length at each interrupt. +When the accumulated size exceeds the period size, call +:c:func:`snd_pcm_period_elapsed()` and reset the accumulator. + +Typical code would be like the following. + +:: + + + static irqreturn_t snd_mychip_interrupt(int irq, void *dev_id) + { + struct mychip *chip = dev_id; + spin_lock(&chip->lock); + .... + if (pcm_irq_invoked(chip)) { + unsigned int last_ptr, size; + /* get the current hardware pointer (in frames) */ + last_ptr = get_hw_ptr(chip); + /* calculate the processed frames since the + * last update + */ + if (last_ptr < chip->last_ptr) + size = runtime->buffer_size + last_ptr + - chip->last_ptr; + else + size = last_ptr - chip->last_ptr; + /* remember the last updated point */ + chip->last_ptr = last_ptr; + /* accumulate the size */ + chip->size += size; + /* over the period boundary? */ + if (chip->size >= runtime->period_size) { + /* reset the accumulator */ + chip->size %= runtime->period_size; + /* call updater */ + spin_unlock(&chip->lock); + snd_pcm_period_elapsed(substream); + spin_lock(&chip->lock); + } + /* acknowledge the interrupt if necessary */ + } + .... + spin_unlock(&chip->lock); + return IRQ_HANDLED; + } + + + +On calling :c:func:`snd_pcm_period_elapsed()` +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +In both cases, even if more than one period are elapsed, you don't have +to call :c:func:`snd_pcm_period_elapsed()` many times. Call only +once. And the pcm layer will check the current hardware pointer and +update to the latest status. + +Atomicity +--------- + +One of the most important (and thus difficult to debug) problems in +kernel programming are race conditions. In the Linux kernel, they are +usually avoided via spin-locks, mutexes or semaphores. In general, if a +race condition can happen in an interrupt handler, it has to be managed +atomically, and you have to use a spinlock to protect the critical +session. If the critical section is not in interrupt handler code and if +taking a relatively long time to execute is acceptable, you should use +mutexes or semaphores instead. + +As already seen, some pcm callbacks are atomic and some are not. For +example, the ``hw_params`` callback is non-atomic, while ``trigger`` +callback is atomic. This means, the latter is called already in a +spinlock held by the PCM middle layer. Please take this atomicity into +account when you choose a locking scheme in the callbacks. + +In the atomic callbacks, you cannot use functions which may call +:c:func:`schedule()` or go to :c:func:`sleep()`. Semaphores and +mutexes can sleep, and hence they cannot be used inside the atomic +callbacks (e.g. ``trigger`` callback). To implement some delay in such a +callback, please use :c:func:`udelay()` or :c:func:`mdelay()`. + +All three atomic callbacks (trigger, pointer, and ack) are called with +local interrupts disabled. + +The recent changes in PCM core code, however, allow all PCM operations +to be non-atomic. This assumes that the all caller sides are in +non-atomic contexts. For example, the function +:c:func:`snd_pcm_period_elapsed()` is called typically from the +interrupt handler. But, if you set up the driver to use a threaded +interrupt handler, this call can be in non-atomic context, too. In such +a case, you can set ``nonatomic`` filed of :c:type:`struct snd_pcm +` object after creating it. When this flag is set, mutex +and rwsem are used internally in the PCM core instead of spin and +rwlocks, so that you can call all PCM functions safely in a non-atomic +context. + +Constraints +----------- + +If your chip supports unconventional sample rates, or only the limited +samples, you need to set a constraint for the condition. + +For example, in order to restrict the sample rates in the some supported +values, use :c:func:`snd_pcm_hw_constraint_list()`. You need to +call this function in the open callback. + +:: + + static unsigned int rates[] = + {4000, 10000, 22050, 44100}; + static struct snd_pcm_hw_constraint_list constraints_rates = { + .count = ARRAY_SIZE(rates), + .list = rates, + .mask = 0, + }; + + static int snd_mychip_pcm_open(struct snd_pcm_substream *substream) + { + int err; + .... + err = snd_pcm_hw_constraint_list(substream->runtime, 0, + SNDRV_PCM_HW_PARAM_RATE, + &constraints_rates); + if (err < 0) + return err; + .... + } + + + +There are many different constraints. Look at ``sound/pcm.h`` for a +complete list. You can even define your own constraint rules. For +example, let's suppose my_chip can manage a substream of 1 channel if +and only if the format is ``S16_LE``, otherwise it supports any format +specified in the :c:type:`struct snd_pcm_hardware +` structure (or in any other +constraint_list). You can build a rule like this: + +:: + + static int hw_rule_channels_by_format(struct snd_pcm_hw_params *params, + struct snd_pcm_hw_rule *rule) + { + struct snd_interval *c = hw_param_interval(params, + SNDRV_PCM_HW_PARAM_CHANNELS); + struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); + struct snd_interval ch; + + snd_interval_any(&ch); + if (f->bits[0] == SNDRV_PCM_FMTBIT_S16_LE) { + ch.min = ch.max = 1; + ch.integer = 1; + return snd_interval_refine(c, &ch); + } + return 0; + } + + +Then you need to call this function to add your rule: + +:: + + snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, + hw_rule_channels_by_format, NULL, + SNDRV_PCM_HW_PARAM_FORMAT, -1); + +The rule function is called when an application sets the PCM format, and +it refines the number of channels accordingly. But an application may +set the number of channels before setting the format. Thus you also need +to define the inverse rule: + +:: + + static int hw_rule_format_by_channels(struct snd_pcm_hw_params *params, + struct snd_pcm_hw_rule *rule) + { + struct snd_interval *c = hw_param_interval(params, + SNDRV_PCM_HW_PARAM_CHANNELS); + struct snd_mask *f = hw_param_mask(params, SNDRV_PCM_HW_PARAM_FORMAT); + struct snd_mask fmt; + + snd_mask_any(&fmt); /* Init the struct */ + if (c->min < 2) { + fmt.bits[0] &= SNDRV_PCM_FMTBIT_S16_LE; + return snd_mask_refine(f, &fmt); + } + return 0; + } + + +... and in the open callback: + +:: + + snd_pcm_hw_rule_add(substream->runtime, 0, SNDRV_PCM_HW_PARAM_FORMAT, + hw_rule_format_by_channels, NULL, + SNDRV_PCM_HW_PARAM_CHANNELS, -1); + +I won't give more details here, rather I would like to say, “Luke, use +the source.” + +Control Interface +================= + +General +------- + +The control interface is used widely for many switches, sliders, etc. +which are accessed from user-space. Its most important use is the mixer +interface. In other words, since ALSA 0.9.x, all the mixer stuff is +implemented on the control kernel API. + +ALSA has a well-defined AC97 control module. If your chip supports only +the AC97 and nothing else, you can skip this section. + +The control API is defined in ````. Include this file +if you want to add your own controls. + +Definition of Controls +---------------------- + +To create a new control, you need to define the following three +callbacks: ``info``, ``get`` and ``put``. Then, define a +:c:type:`struct snd_kcontrol_new ` record, such as: + +:: + + + static struct snd_kcontrol_new my_control = { + .iface = SNDRV_CTL_ELEM_IFACE_MIXER, + .name = "PCM Playback Switch", + .index = 0, + .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, + .private_value = 0xffff, + .info = my_control_info, + .get = my_control_get, + .put = my_control_put + }; + + +The ``iface`` field specifies the control type, +``SNDRV_CTL_ELEM_IFACE_XXX``, which is usually ``MIXER``. Use ``CARD`` +for global controls that are not logically part of the mixer. If the +control is closely associated with some specific device on the sound +card, use ``HWDEP``, ``PCM``, ``RAWMIDI``, ``TIMER``, or ``SEQUENCER``, +and specify the device number with the ``device`` and ``subdevice`` +fields. + +The ``name`` is the name identifier string. Since ALSA 0.9.x, the +control name is very important, because its role is classified from +its name. There are pre-defined standard control names. The details +are described in the `Control Names`_ subsection. + +The ``index`` field holds the index number of this control. If there +are several different controls with the same name, they can be +distinguished by the index number. This is the case when several +codecs exist on the card. If the index is zero, you can omit the +definition above. + +The ``access`` field contains the access type of this control. Give +the combination of bit masks, ``SNDRV_CTL_ELEM_ACCESS_XXX``, +there. The details will be explained in the `Access Flags`_ +subsection. + +The ``private_value`` field contains an arbitrary long integer value +for this record. When using the generic ``info``, ``get`` and ``put`` +callbacks, you can pass a value through this field. If several small +numbers are necessary, you can combine them in bitwise. Or, it's +possible to give a pointer (casted to unsigned long) of some record to +this field, too. + +The ``tlv`` field can be used to provide metadata about the control; +see the `Metadata`_ subsection. + +The other three are `Control Callbacks`_. + +Control Names +------------- + +There are some standards to define the control names. A control is +usually defined from the three parts as “SOURCE DIRECTION FUNCTION”. + +The first, ``SOURCE``, specifies the source of the control, and is a +string such as “Master”, “PCM”, “CD” and “Line”. There are many +pre-defined sources. + +The second, ``DIRECTION``, is one of the following strings according to +the direction of the control: “Playback”, “Capture”, “Bypass Playback” +and “Bypass Capture”. Or, it can be omitted, meaning both playback and +capture directions. + +The third, ``FUNCTION``, is one of the following strings according to +the function of the control: “Switch”, “Volume” and “Route”. + +The example of control names are, thus, “Master Capture Switch” or “PCM +Playback Volume”. + +There are some exceptions: + +Global capture and playback +~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +“Capture Source”, “Capture Switch” and “Capture Volume” are used for the +global capture (input) source, switch and volume. Similarly, “Playback +Switch” and “Playback Volume” are used for the global output gain switch +and volume. + +Tone-controls +~~~~~~~~~~~~~ + +tone-control switch and volumes are specified like “Tone Control - XXX”, +e.g. “Tone Control - Switch”, “Tone Control - Bass”, “Tone Control - +Center”. + +3D controls +~~~~~~~~~~~ + +3D-control switches and volumes are specified like “3D Control - XXX”, +e.g. “3D Control - Switch”, “3D Control - Center”, “3D Control - Space”. + +Mic boost +~~~~~~~~~ + +Mic-boost switch is set as “Mic Boost” or “Mic Boost (6dB)”. + +More precise information can be found in +``Documentation/sound/alsa/ControlNames.txt``. + +Access Flags +------------ + +The access flag is the bitmask which specifies the access type of the +given control. The default access type is +``SNDRV_CTL_ELEM_ACCESS_READWRITE``, which means both read and write are +allowed to this control. When the access flag is omitted (i.e. = 0), it +is considered as ``READWRITE`` access as default. + +When the control is read-only, pass ``SNDRV_CTL_ELEM_ACCESS_READ`` +instead. In this case, you don't have to define the ``put`` callback. +Similarly, when the control is write-only (although it's a rare case), +you can use the ``WRITE`` flag instead, and you don't need the ``get`` +callback. + +If the control value changes frequently (e.g. the VU meter), +``VOLATILE`` flag should be given. This means that the control may be +changed without `Change notification`_. Applications should poll such +a control constantly. + +When the control is inactive, set the ``INACTIVE`` flag, too. There are +``LOCK`` and ``OWNER`` flags to change the write permissions. + +Control Callbacks +----------------- + +info callback +~~~~~~~~~~~~~ + +The ``info`` callback is used to get detailed information on this +control. This must store the values of the given :c:type:`struct +snd_ctl_elem_info ` object. For example, +for a boolean control with a single element: + +:: + + + static int snd_myctl_mono_info(struct snd_kcontrol *kcontrol, + struct snd_ctl_elem_info *uinfo) + { + uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN; + uinfo->count = 1; + uinfo->value.integer.min = 0; + uinfo->value.integer.max = 1; + return 0; + } + + + +The ``type`` field specifies the type of the control. There are +``BOOLEAN``, ``INTEGER``, ``ENUMERATED``, ``BYTES``, ``IEC958`` and +``INTEGER64``. The ``count`` field specifies the number of elements in +this control. For example, a stereo volume would have count = 2. The +``value`` field is a union, and the values stored are depending on the +type. The boolean and integer types are identical. + +The enumerated type is a bit different from others. You'll need to set +the string for the currently given item index. + +:: + + static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, + struct snd_ctl_elem_info *uinfo) + { + static char *texts[4] = { + "First", "Second", "Third", "Fourth" + }; + uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED; + uinfo->count = 1; + uinfo->value.enumerated.items = 4; + if (uinfo->value.enumerated.item > 3) + uinfo->value.enumerated.item = 3; + strcpy(uinfo->value.enumerated.name, + texts[uinfo->value.enumerated.item]); + return 0; + } + +The above callback can be simplified with a helper function, +:c:func:`snd_ctl_enum_info()`. The final code looks like below. +(You can pass ``ARRAY_SIZE(texts)`` instead of 4 in the third argument; +it's a matter of taste.) + +:: + + static int snd_myctl_enum_info(struct snd_kcontrol *kcontrol, + struct snd_ctl_elem_info *uinfo) + { + static char *texts[4] = { + "First", "Second", "Third", "Fourth" + }; + return snd_ctl_enum_info(uinfo, 1, 4, texts); + } + + +Some common info callbacks are available for your convenience: +:c:func:`snd_ctl_boolean_mono_info()` and +:c:func:`snd_ctl_boolean_stereo_info()`. Obviously, the former +is an info callback for a mono channel boolean item, just like +:c:func:`snd_myctl_mono_info()` above, and the latter is for a +stereo channel boolean item. + +get callback +~~~~~~~~~~~~ + +This callback is used to read the current value of the control and to +return to user-space. + +For example, + +:: + + + static int snd_myctl_get(struct snd_kcontrol *kcontrol, + struct snd_ctl_elem_value *ucontrol) + { + struct mychip *chip = snd_kcontrol_chip(kcontrol); + ucontrol->value.integer.value[0] = get_some_value(chip); + return 0; + } + + + +The ``value`` field depends on the type of control as well as on the +info callback. For example, the sb driver uses this field to store the +register offset, the bit-shift and the bit-mask. The ``private_value`` +field is set as follows: + +:: + + .private_value = reg | (shift << 16) | (mask << 24) + +and is retrieved in callbacks like + +:: + + static int snd_sbmixer_get_single(struct snd_kcontrol *kcontrol, + struct snd_ctl_elem_value *ucontrol) + { + int reg = kcontrol->private_value & 0xff; + int shift = (kcontrol->private_value >> 16) & 0xff; + int mask = (kcontrol->private_value >> 24) & 0xff; + .... + } + +In the ``get`` callback, you have to fill all the elements if the +control has more than one elements, i.e. ``count > 1``. In the example +above, we filled only one element (``value.integer.value[0]``) since +it's assumed as ``count = 1``. + +put callback +~~~~~~~~~~~~ + +This callback is used to write a value from user-space. + +For example, + +:: + + + static int snd_myctl_put(struct snd_kcontrol *kcontrol, + struct snd_ctl_elem_value *ucontrol) + { + struct mychip *chip = snd_kcontrol_chip(kcontrol); + int changed = 0; + if (chip->current_value != + ucontrol->value.integer.value[0]) { + change_current_value(chip, + ucontrol->value.integer.value[0]); + changed = 1; + } + return changed; + } + + + +As seen above, you have to return 1 if the value is changed. If the +value is not changed, return 0 instead. If any fatal error happens, +return a negative error code as usual. + +As in the ``get`` callback, when the control has more than one +elements, all elements must be evaluated in this callback, too. + +Callbacks are not atomic +~~~~~~~~~~~~~~~~~~~~~~~~ + +All these three callbacks are basically not atomic. + +Control Constructor +------------------- + +When everything is ready, finally we can create a new control. To create +a control, there are two functions to be called, +:c:func:`snd_ctl_new1()` and :c:func:`snd_ctl_add()`. + +In the simplest way, you can do like this: + +:: + + err = snd_ctl_add(card, snd_ctl_new1(&my_control, chip)); + if (err < 0) + return err; + +where ``my_control`` is the :c:type:`struct snd_kcontrol_new +` object defined above, and chip is the object +pointer to be passed to kcontrol->private_data which can be referred +to in callbacks. + +:c:func:`snd_ctl_new1()` allocates a new :c:type:`struct +snd_kcontrol ` instance, and +:c:func:`snd_ctl_add()` assigns the given control component to the +card. + +Change Notification +------------------- + +If you need to change and update a control in the interrupt routine, you +can call :c:func:`snd_ctl_notify()`. For example, + +:: + + snd_ctl_notify(card, SNDRV_CTL_EVENT_MASK_VALUE, id_pointer); + +This function takes the card pointer, the event-mask, and the control id +pointer for the notification. The event-mask specifies the types of +notification, for example, in the above example, the change of control +values is notified. The id pointer is the pointer of :c:type:`struct +snd_ctl_elem_id ` to be notified. You can +find some examples in ``es1938.c`` or ``es1968.c`` for hardware volume +interrupts. + +Metadata +-------- + +To provide information about the dB values of a mixer control, use on of +the ``DECLARE_TLV_xxx`` macros from ```` to define a +variable containing this information, set the ``tlv.p`` field to point to +this variable, and include the ``SNDRV_CTL_ELEM_ACCESS_TLV_READ`` flag +in the ``access`` field; like this: + +:: + + static DECLARE_TLV_DB_SCALE(db_scale_my_control, -4050, 150, 0); + + static struct snd_kcontrol_new my_control = { + ... + .access = SNDRV_CTL_ELEM_ACCESS_READWRITE | + SNDRV_CTL_ELEM_ACCESS_TLV_READ, + ... + .tlv.p = db_scale_my_control, + }; + + +The :c:func:`DECLARE_TLV_DB_SCALE()` macro defines information +about a mixer control where each step in the control's value changes the +dB value by a constant dB amount. The first parameter is the name of the +variable to be defined. The second parameter is the minimum value, in +units of 0.01 dB. The third parameter is the step size, in units of 0.01 +dB. Set the fourth parameter to 1 if the minimum value actually mutes +the control. + +The :c:func:`DECLARE_TLV_DB_LINEAR()` macro defines information +about a mixer control where the control's value affects the output +linearly. The first parameter is the name of the variable to be defined. +The second parameter is the minimum value, in units of 0.01 dB. The +third parameter is the maximum value, in units of 0.01 dB. If the +minimum value mutes the control, set the second parameter to +``TLV_DB_GAIN_MUTE``. + +API for AC97 Codec +================== + +General +------- + +The ALSA AC97 codec layer is a well-defined one, and you don't have to +write much code to control it. Only low-level control routines are +necessary. The AC97 codec API is defined in ````. + +Full Code Example +----------------- + +:: + + struct mychip { + .... + struct snd_ac97 *ac97; + .... + }; + + static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, + unsigned short reg) + { + struct mychip *chip = ac97->private_data; + .... + /* read a register value here from the codec */ + return the_register_value; + } + + static void snd_mychip_ac97_write(struct snd_ac97 *ac97, + unsigned short reg, unsigned short val) + { + struct mychip *chip = ac97->private_data; + .... + /* write the given register value to the codec */ + } + + static int snd_mychip_ac97(struct mychip *chip) + { + struct snd_ac97_bus *bus; + struct snd_ac97_template ac97; + int err; + static struct snd_ac97_bus_ops ops = { + .write = snd_mychip_ac97_write, + .read = snd_mychip_ac97_read, + }; + + err = snd_ac97_bus(chip->card, 0, &ops, NULL, &bus); + if (err < 0) + return err; + memset(&ac97, 0, sizeof(ac97)); + ac97.private_data = chip; + return snd_ac97_mixer(bus, &ac97, &chip->ac97); + } + + +AC97 Constructor +---------------- + +To create an ac97 instance, first call :c:func:`snd_ac97_bus()` +with an ``ac97_bus_ops_t`` record with callback functions. + +:: + + struct snd_ac97_bus *bus; + static struct snd_ac97_bus_ops ops = { + .write = snd_mychip_ac97_write, + .read = snd_mychip_ac97_read, + }; + + snd_ac97_bus(card, 0, &ops, NULL, &pbus); + +The bus record is shared among all belonging ac97 instances. + +And then call :c:func:`snd_ac97_mixer()` with an :c:type:`struct +snd_ac97_template ` record together with +the bus pointer created above. + +:: + + struct snd_ac97_template ac97; + int err; + + memset(&ac97, 0, sizeof(ac97)); + ac97.private_data = chip; + snd_ac97_mixer(bus, &ac97, &chip->ac97); + +where chip->ac97 is a pointer to a newly created ``ac97_t`` +instance. In this case, the chip pointer is set as the private data, +so that the read/write callback functions can refer to this chip +instance. This instance is not necessarily stored in the chip +record. If you need to change the register values from the driver, or +need the suspend/resume of ac97 codecs, keep this pointer to pass to +the corresponding functions. + +AC97 Callbacks +-------------- + +The standard callbacks are ``read`` and ``write``. Obviously they +correspond to the functions for read and write accesses to the +hardware low-level codes. + +The ``read`` callback returns the register value specified in the +argument. + +:: + + static unsigned short snd_mychip_ac97_read(struct snd_ac97 *ac97, + unsigned short reg) + { + struct mychip *chip = ac97->private_data; + .... + return the_register_value; + } + +Here, the chip can be cast from ``ac97->private_data``. + +Meanwhile, the ``write`` callback is used to set the register +value + +:: + + static void snd_mychip_ac97_write(struct snd_ac97 *ac97, + unsigned short reg, unsigned short val) + + +These callbacks are non-atomic like the control API callbacks. + +There are also other callbacks: ``reset``, ``wait`` and ``init``. + +The ``reset`` callback is used to reset the codec. If the chip +requires a special kind of reset, you can define this callback. + +The ``wait`` callback is used to add some waiting time in the standard +initialization of the codec. If the chip requires the extra waiting +time, define this callback. + +The ``init`` callback is used for additional initialization of the +codec. + +Updating Registers in The Driver +-------------------------------- + +If you need to access to the codec from the driver, you can call the +following functions: :c:func:`snd_ac97_write()`, +:c:func:`snd_ac97_read()`, :c:func:`snd_ac97_update()` and +:c:func:`snd_ac97_update_bits()`. + +Both :c:func:`snd_ac97_write()` and +:c:func:`snd_ac97_update()` functions are used to set a value to +the given register (``AC97_XXX``). The difference between them is that +:c:func:`snd_ac97_update()` doesn't write a value if the given +value has been already set, while :c:func:`snd_ac97_write()` +always rewrites the value. + +:: + + snd_ac97_write(ac97, AC97_MASTER, 0x8080); + snd_ac97_update(ac97, AC97_MASTER, 0x8080); + +:c:func:`snd_ac97_read()` is used to read the value of the given +register. For example, + +:: + + value = snd_ac97_read(ac97, AC97_MASTER); + +:c:func:`snd_ac97_update_bits()` is used to update some bits in +the given register. + +:: + + snd_ac97_update_bits(ac97, reg, mask, value); + +Also, there is a function to change the sample rate (of a given register +such as ``AC97_PCM_FRONT_DAC_RATE``) when VRA or DRA is supported by the +codec: :c:func:`snd_ac97_set_rate()`. + +:: + + snd_ac97_set_rate(ac97, AC97_PCM_FRONT_DAC_RATE, 44100); + + +The following registers are available to set the rate: +``AC97_PCM_MIC_ADC_RATE``, ``AC97_PCM_FRONT_DAC_RATE``, +``AC97_PCM_LR_ADC_RATE``, ``AC97_SPDIF``. When ``AC97_SPDIF`` is +specified, the register is not really changed but the corresponding +IEC958 status bits will be updated. + +Clock Adjustment +---------------- + +In some chips, the clock of the codec isn't 48000 but using a PCI clock +(to save a quartz!). In this case, change the field ``bus->clock`` to +the corresponding value. For example, intel8x0 and es1968 drivers have +their own function to read from the clock. + +Proc Files +---------- + +The ALSA AC97 interface will create a proc file such as +``/proc/asound/card0/codec97#0/ac97#0-0`` and ``ac97#0-0+regs``. You +can refer to these files to see the current status and registers of +the codec. + +Multiple Codecs +--------------- + +When there are several codecs on the same card, you need to call +:c:func:`snd_ac97_mixer()` multiple times with ``ac97.num=1`` or +greater. The ``num`` field specifies the codec number. + +If you set up multiple codecs, you either need to write different +callbacks for each codec or check ``ac97->num`` in the callback +routines. + +MIDI (MPU401-UART) Interface +============================ + +General +------- + +Many soundcards have built-in MIDI (MPU401-UART) interfaces. When the +soundcard supports the standard MPU401-UART interface, most likely you +can use the ALSA MPU401-UART API. The MPU401-UART API is defined in +````. + +Some soundchips have a similar but slightly different implementation of +mpu401 stuff. For example, emu10k1 has its own mpu401 routines. + +MIDI Constructor +---------------- + +To create a rawmidi object, call :c:func:`snd_mpu401_uart_new()`. + +:: + + struct snd_rawmidi *rmidi; + snd_mpu401_uart_new(card, 0, MPU401_HW_MPU401, port, info_flags, + irq, &rmidi); + + +The first argument is the card pointer, and the second is the index of +this component. You can create up to 8 rawmidi devices. + +The third argument is the type of the hardware, ``MPU401_HW_XXX``. If +it's not a special one, you can use ``MPU401_HW_MPU401``. + +The 4th argument is the I/O port address. Many backward-compatible +MPU401 have an I/O port such as 0x330. Or, it might be a part of its own +PCI I/O region. It depends on the chip design. + +The 5th argument is a bitflag for additional information. When the I/O +port address above is part of the PCI I/O region, the MPU401 I/O port +might have been already allocated (reserved) by the driver itself. In +such a case, pass a bit flag ``MPU401_INFO_INTEGRATED``, and the +mpu401-uart layer will allocate the I/O ports by itself. + +When the controller supports only the input or output MIDI stream, pass +the ``MPU401_INFO_INPUT`` or ``MPU401_INFO_OUTPUT`` bitflag, +respectively. Then the rawmidi instance is created as a single stream. + +``MPU401_INFO_MMIO`` bitflag is used to change the access method to MMIO +(via readb and writeb) instead of iob and outb. In this case, you have +to pass the iomapped address to :c:func:`snd_mpu401_uart_new()`. + +When ``MPU401_INFO_TX_IRQ`` is set, the output stream isn't checked in +the default interrupt handler. The driver needs to call +:c:func:`snd_mpu401_uart_interrupt_tx()` by itself to start +processing the output stream in the irq handler. + +If the MPU-401 interface shares its interrupt with the other logical +devices on the card, set ``MPU401_INFO_IRQ_HOOK`` (see +`below <#MIDI-Interrupt-Handler>`__). + +Usually, the port address corresponds to the command port and port + 1 +corresponds to the data port. If not, you may change the ``cport`` +field of :c:type:`struct snd_mpu401 ` manually afterward. +However, :c:type:`struct snd_mpu401 ` pointer is +not returned explicitly by :c:func:`snd_mpu401_uart_new()`. You +need to cast ``rmidi->private_data`` to :c:type:`struct snd_mpu401 +` explicitly, + +:: + + struct snd_mpu401 *mpu; + mpu = rmidi->private_data; + +and reset the ``cport`` as you like: + +:: + + mpu->cport = my_own_control_port; + +The 6th argument specifies the ISA irq number that will be allocated. If +no interrupt is to be allocated (because your code is already allocating +a shared interrupt, or because the device does not use interrupts), pass +-1 instead. For a MPU-401 device without an interrupt, a polling timer +will be used instead. + +MIDI Interrupt Handler +---------------------- + +When the interrupt is allocated in +:c:func:`snd_mpu401_uart_new()`, an exclusive ISA interrupt +handler is automatically used, hence you don't have anything else to do +than creating the mpu401 stuff. Otherwise, you have to set +``MPU401_INFO_IRQ_HOOK``, and call +:c:func:`snd_mpu401_uart_interrupt()` explicitly from your own +interrupt handler when it has determined that a UART interrupt has +occurred. + +In this case, you need to pass the private_data of the returned rawmidi +object from :c:func:`snd_mpu401_uart_new()` as the second +argument of :c:func:`snd_mpu401_uart_interrupt()`. + +:: + + snd_mpu401_uart_interrupt(irq, rmidi->private_data, regs); + + +RawMIDI Interface +================= + +Overview +-------- + +The raw MIDI interface is used for hardware MIDI ports that can be +accessed as a byte stream. It is not used for synthesizer chips that do +not directly understand MIDI. + +ALSA handles file and buffer management. All you have to do is to write +some code to move data between the buffer and the hardware. + +The rawmidi API is defined in ````. + +RawMIDI Constructor +------------------- + +To create a rawmidi device, call the :c:func:`snd_rawmidi_new()` +function: + +:: + + struct snd_rawmidi *rmidi; + err = snd_rawmidi_new(chip->card, "MyMIDI", 0, outs, ins, &rmidi); + if (err < 0) + return err; + rmidi->private_data = chip; + strcpy(rmidi->name, "My MIDI"); + rmidi->info_flags = SNDRV_RAWMIDI_INFO_OUTPUT | + SNDRV_RAWMIDI_INFO_INPUT | + SNDRV_RAWMIDI_INFO_DUPLEX; + +The first argument is the card pointer, the second argument is the ID +string. + +The third argument is the index of this component. You can create up to +8 rawmidi devices. + +The fourth and fifth arguments are the number of output and input +substreams, respectively, of this device (a substream is the equivalent +of a MIDI port). + +Set the ``info_flags`` field to specify the capabilities of the +device. Set ``SNDRV_RAWMIDI_INFO_OUTPUT`` if there is at least one +output port, ``SNDRV_RAWMIDI_INFO_INPUT`` if there is at least one +input port, and ``SNDRV_RAWMIDI_INFO_DUPLEX`` if the device can handle +output and input at the same time. + +After the rawmidi device is created, you need to set the operators +(callbacks) for each substream. There are helper functions to set the +operators for all the substreams of a device: + +:: + + snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_OUTPUT, &snd_mymidi_output_ops); + snd_rawmidi_set_ops(rmidi, SNDRV_RAWMIDI_STREAM_INPUT, &snd_mymidi_input_ops); + +The operators are usually defined like this: + +:: + + static struct snd_rawmidi_ops snd_mymidi_output_ops = { + .open = snd_mymidi_output_open, + .close = snd_mymidi_output_close, + .trigger = snd_mymidi_output_trigger, + }; + +These callbacks are explained in the `RawMIDI Callbacks`_ section. + +If there are more than one substream, you should give a unique name to +each of them: + +:: + + struct snd_rawmidi_substream *substream; + list_for_each_entry(substream, + &rmidi->streams[SNDRV_RAWMIDI_STREAM_OUTPUT].substreams, + list { + sprintf(substream->name, "My MIDI Port %d", substream->number + 1); + } + /* same for SNDRV_RAWMIDI_STREAM_INPUT */ + +RawMIDI Callbacks +----------------- + +In all the callbacks, the private data that you've set for the rawmidi +device can be accessed as ``substream->rmidi->private_data``. + +If there is more than one port, your callbacks can determine the port +index from the struct snd_rawmidi_substream data passed to each +callback: + +:: + + struct snd_rawmidi_substream *substream; + int index = substream->number; + +RawMIDI open callback +~~~~~~~~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_open(struct snd_rawmidi_substream *substream); + + +This is called when a substream is opened. You can initialize the +hardware here, but you shouldn't start transmitting/receiving data yet. + +RawMIDI close callback +~~~~~~~~~~~~~~~~~~~~~~ + +:: + + static int snd_xxx_close(struct snd_rawmidi_substream *substream); + +Guess what. + +The ``open`` and ``close`` callbacks of a rawmidi device are +serialized with a mutex, and can sleep. + +Rawmidi trigger callback for output substreams +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + static void snd_xxx_output_trigger(struct snd_rawmidi_substream *substream, int up); + + +This is called with a nonzero ``up`` parameter when there is some data +in the substream buffer that must be transmitted. + +To read data from the buffer, call +:c:func:`snd_rawmidi_transmit_peek()`. It will return the number +of bytes that have been read; this will be less than the number of bytes +requested when there are no more data in the buffer. After the data have +been transmitted successfully, call +:c:func:`snd_rawmidi_transmit_ack()` to remove the data from the +substream buffer: + +:: + + unsigned char data; + while (snd_rawmidi_transmit_peek(substream, &data, 1) == 1) { + if (snd_mychip_try_to_transmit(data)) + snd_rawmidi_transmit_ack(substream, 1); + else + break; /* hardware FIFO full */ + } + +If you know beforehand that the hardware will accept data, you can use +the :c:func:`snd_rawmidi_transmit()` function which reads some +data and removes them from the buffer at once: + +:: + + while (snd_mychip_transmit_possible()) { + unsigned char data; + if (snd_rawmidi_transmit(substream, &data, 1) != 1) + break; /* no more data */ + snd_mychip_transmit(data); + } + +If you know beforehand how many bytes you can accept, you can use a +buffer size greater than one with the +:c:func:`snd_rawmidi_transmit\*()` functions. + +The ``trigger`` callback must not sleep. If the hardware FIFO is full +before the substream buffer has been emptied, you have to continue +transmitting data later, either in an interrupt handler, or with a +timer if the hardware doesn't have a MIDI transmit interrupt. + +The ``trigger`` callback is called with a zero ``up`` parameter when +the transmission of data should be aborted. + +RawMIDI trigger callback for input substreams +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +:: + + static void snd_xxx_input_trigger(struct snd_rawmidi_substream *substream, int up); + + +This is called with a nonzero ``up`` parameter to enable receiving data, +or with a zero ``up`` parameter do disable receiving data. + +The ``trigger`` callback must not sleep; the actual reading of data +from the device is usually done in an interrupt handler. + +When data reception is enabled, your interrupt handler should call +:c:func:`snd_rawmidi_receive()` for all received data: + +:: + + void snd_mychip_midi_interrupt(...) + { + while (mychip_midi_available()) { + unsigned char data; + data = mychip_midi_read(); + snd_rawmidi_receive(substream, &data, 1); + } + } + + +drain callback +~~~~~~~~~~~~~~ + +:: + + static void snd_xxx_drain(struct snd_rawmidi_substream *substream); + + +This is only used with output substreams. This function should wait +until all data read from the substream buffer have been transmitted. +This ensures that the device can be closed and the driver unloaded +without losing data. + +This callback is optional. If you do not set ``drain`` in the struct +snd_rawmidi_ops structure, ALSA will simply wait for 50 milliseconds +instead. + +Miscellaneous Devices +===================== + +FM OPL3 +------- + +The FM OPL3 is still used in many chips (mainly for backward +compatibility). ALSA has a nice OPL3 FM control layer, too. The OPL3 API +is defined in ````. + +FM registers can be directly accessed through the direct-FM API, defined +in ````. In ALSA native mode, FM registers are +accessed through the Hardware-Dependent Device direct-FM extension API, +whereas in OSS compatible mode, FM registers can be accessed with the +OSS direct-FM compatible API in ``/dev/dmfmX`` device. + +To create the OPL3 component, you have two functions to call. The first +one is a constructor for the ``opl3_t`` instance. + +:: + + struct snd_opl3 *opl3; + snd_opl3_create(card, lport, rport, OPL3_HW_OPL3_XXX, + integrated, &opl3); + +The first argument is the card pointer, the second one is the left port +address, and the third is the right port address. In most cases, the +right port is placed at the left port + 2. + +The fourth argument is the hardware type. + +When the left and right ports have been already allocated by the card +driver, pass non-zero to the fifth argument (``integrated``). Otherwise, +the opl3 module will allocate the specified ports by itself. + +When the accessing the hardware requires special method instead of the +standard I/O access, you can create opl3 instance separately with +:c:func:`snd_opl3_new()`. + +:: + + struct snd_opl3 *opl3; + snd_opl3_new(card, OPL3_HW_OPL3_XXX, &opl3); + +Then set ``command``, ``private_data`` and ``private_free`` for the +private access function, the private data and the destructor. The +``l_port`` and ``r_port`` are not necessarily set. Only the command +must be set properly. You can retrieve the data from the +``opl3->private_data`` field. + +After creating the opl3 instance via :c:func:`snd_opl3_new()`, +call :c:func:`snd_opl3_init()` to initialize the chip to the +proper state. Note that :c:func:`snd_opl3_create()` always calls +it internally. + +If the opl3 instance is created successfully, then create a hwdep device +for this opl3. + +:: + + struct snd_hwdep *opl3hwdep; + snd_opl3_hwdep_new(opl3, 0, 1, &opl3hwdep); + +The first argument is the ``opl3_t`` instance you created, and the +second is the index number, usually 0. + +The third argument is the index-offset for the sequencer client assigned +to the OPL3 port. When there is an MPU401-UART, give 1 for here (UART +always takes 0). + +Hardware-Dependent Devices +-------------------------- + +Some chips need user-space access for special controls or for loading +the micro code. In such a case, you can create a hwdep +(hardware-dependent) device. The hwdep API is defined in +````. You can find examples in opl3 driver or +``isa/sb/sb16_csp.c``. + +The creation of the ``hwdep`` instance is done via +:c:func:`snd_hwdep_new()`. + +:: + + struct snd_hwdep *hw; + snd_hwdep_new(card, "My HWDEP", 0, &hw); + +where the third argument is the index number. + +You can then pass any pointer value to the ``private_data``. If you +assign a private data, you should define the destructor, too. The +destructor function is set in the ``private_free`` field. + +:: + + struct mydata *p = kmalloc(sizeof(*p), GFP_KERNEL); + hw->private_data = p; + hw->private_free = mydata_free; + +and the implementation of the destructor would be: + +:: + + static void mydata_free(struct snd_hwdep *hw) + { + struct mydata *p = hw->private_data; + kfree(p); + } + +The arbitrary file operations can be defined for this instance. The file +operators are defined in the ``ops`` table. For example, assume that +this chip needs an ioctl. + +:: + + hw->ops.open = mydata_open; + hw->ops.ioctl = mydata_ioctl; + hw->ops.release = mydata_release; + +And implement the callback functions as you like. + +IEC958 (S/PDIF) +--------------- + +Usually the controls for IEC958 devices are implemented via the control +interface. There is a macro to compose a name string for IEC958 +controls, :c:func:`SNDRV_CTL_NAME_IEC958()` defined in +````. + +There are some standard controls for IEC958 status bits. These controls +use the type ``SNDRV_CTL_ELEM_TYPE_IEC958``, and the size of element is +fixed as 4 bytes array (value.iec958.status[x]). For the ``info`` +callback, you don't specify the value field for this type (the count +field must be set, though). + +“IEC958 Playback Con Mask” is used to return the bit-mask for the IEC958 +status bits of consumer mode. Similarly, “IEC958 Playback Pro Mask” +returns the bitmask for professional mode. They are read-only controls, +and are defined as MIXER controls (iface = +``SNDRV_CTL_ELEM_IFACE_MIXER``). + +Meanwhile, “IEC958 Playback Default” control is defined for getting and +setting the current default IEC958 bits. Note that this one is usually +defined as a PCM control (iface = ``SNDRV_CTL_ELEM_IFACE_PCM``), +although in some places it's defined as a MIXER control. + +In addition, you can define the control switches to enable/disable or to +set the raw bit mode. The implementation will depend on the chip, but +the control should be named as “IEC958 xxx”, preferably using the +:c:func:`SNDRV_CTL_NAME_IEC958()` macro. + +You can find several cases, for example, ``pci/emu10k1``, +``pci/ice1712``, or ``pci/cmipci.c``. + +Buffer and Memory Management +============================ + +Buffer Types +------------ + +ALSA provides several different buffer allocation functions depending on +the bus and the architecture. All these have a consistent API. The +allocation of physically-contiguous pages is done via +:c:func:`snd_malloc_xxx_pages()` function, where xxx is the bus +type. + +The allocation of pages with fallback is +:c:func:`snd_malloc_xxx_pages_fallback()`. This function tries +to allocate the specified pages but if the pages are not available, it +tries to reduce the page sizes until enough space is found. + +The release the pages, call :c:func:`snd_free_xxx_pages()` +function. + +Usually, ALSA drivers try to allocate and reserve a large contiguous +physical space at the time the module is loaded for the later use. This +is called “pre-allocation”. As already written, you can call the +following function at pcm instance construction time (in the case of PCI +bus). + +:: + + snd_pcm_lib_preallocate_pages_for_all(pcm, SNDRV_DMA_TYPE_DEV, + snd_dma_pci_data(pci), size, max); + +where ``size`` is the byte size to be pre-allocated and the ``max`` is +the maximum size to be changed via the ``prealloc`` proc file. The +allocator will try to get an area as large as possible within the +given size. + +The second argument (type) and the third argument (device pointer) are +dependent on the bus. In the case of the ISA bus, pass +:c:func:`snd_dma_isa_data()` as the third argument with +``SNDRV_DMA_TYPE_DEV`` type. For the continuous buffer unrelated to the +bus can be pre-allocated with ``SNDRV_DMA_TYPE_CONTINUOUS`` type and the +``snd_dma_continuous_data(GFP_KERNEL)`` device pointer, where +``GFP_KERNEL`` is the kernel allocation flag to use. For the PCI +scatter-gather buffers, use ``SNDRV_DMA_TYPE_DEV_SG`` with +``snd_dma_pci_data(pci)`` (see the `Non-Contiguous Buffers`_ +section). + +Once the buffer is pre-allocated, you can use the allocator in the +``hw_params`` callback: + +:: + + snd_pcm_lib_malloc_pages(substream, size); + +Note that you have to pre-allocate to use this function. + +External Hardware Buffers +------------------------- + +Some chips have their own hardware buffers and the DMA transfer from the +host memory is not available. In such a case, you need to either 1) +copy/set the audio data directly to the external hardware buffer, or 2) +make an intermediate buffer and copy/set the data from it to the +external hardware buffer in interrupts (or in tasklets, preferably). + +The first case works fine if the external hardware buffer is large +enough. This method doesn't need any extra buffers and thus is more +effective. You need to define the ``copy`` and ``silence`` callbacks +for the data transfer. However, there is a drawback: it cannot be +mmapped. The examples are GUS's GF1 PCM or emu8000's wavetable PCM. + +The second case allows for mmap on the buffer, although you have to +handle an interrupt or a tasklet to transfer the data from the +intermediate buffer to the hardware buffer. You can find an example in +the vxpocket driver. + +Another case is when the chip uses a PCI memory-map region for the +buffer instead of the host memory. In this case, mmap is available only +on certain architectures like the Intel one. In non-mmap mode, the data +cannot be transferred as in the normal way. Thus you need to define the +``copy`` and ``silence`` callbacks as well, as in the cases above. The +examples are found in ``rme32.c`` and ``rme96.c``. + +The implementation of the ``copy`` and ``silence`` callbacks depends +upon whether the hardware supports interleaved or non-interleaved +samples. The ``copy`` callback is defined like below, a bit +differently depending whether the direction is playback or capture: + +:: + + static int playback_copy(struct snd_pcm_substream *substream, int channel, + snd_pcm_uframes_t pos, void *src, snd_pcm_uframes_t count); + static int capture_copy(struct snd_pcm_substream *substream, int channel, + snd_pcm_uframes_t pos, void *dst, snd_pcm_uframes_t count); + +In the case of interleaved samples, the second argument (``channel``) is +not used. The third argument (``pos``) points the current position +offset in frames. + +The meaning of the fourth argument is different between playback and +capture. For playback, it holds the source data pointer, and for +capture, it's the destination data pointer. + +The last argument is the number of frames to be copied. + +What you have to do in this callback is again different between playback +and capture directions. In the playback case, you copy the given amount +of data (``count``) at the specified pointer (``src``) to the specified +offset (``pos``) on the hardware buffer. When coded like memcpy-like +way, the copy would be like: + +:: + + my_memcpy(my_buffer + frames_to_bytes(runtime, pos), src, + frames_to_bytes(runtime, count)); + +For the capture direction, you copy the given amount of data (``count``) +at the specified offset (``pos``) on the hardware buffer to the +specified pointer (``dst``). + +:: + + my_memcpy(dst, my_buffer + frames_to_bytes(runtime, pos), + frames_to_bytes(runtime, count)); + +Note that both the position and the amount of data are given in frames. + +In the case of non-interleaved samples, the implementation will be a bit +more complicated. + +You need to check the channel argument, and if it's -1, copy the whole +channels. Otherwise, you have to copy only the specified channel. Please +check ``isa/gus/gus_pcm.c`` as an example. + +The ``silence`` callback is also implemented in a similar way + +:: + + static int silence(struct snd_pcm_substream *substream, int channel, + snd_pcm_uframes_t pos, snd_pcm_uframes_t count); + +The meanings of arguments are the same as in the ``copy`` callback, +although there is no ``src/dst`` argument. In the case of interleaved +samples, the channel argument has no meaning, as well as on ``copy`` +callback. + +The role of ``silence`` callback is to set the given amount +(``count``) of silence data at the specified offset (``pos``) on the +hardware buffer. Suppose that the data format is signed (that is, the +silent-data is 0), and the implementation using a memset-like function +would be like: + +:: + + my_memcpy(my_buffer + frames_to_bytes(runtime, pos), 0, + frames_to_bytes(runtime, count)); + +In the case of non-interleaved samples, again, the implementation +becomes a bit more complicated. See, for example, ``isa/gus/gus_pcm.c``. + +Non-Contiguous Buffers +---------------------- + +If your hardware supports the page table as in emu10k1 or the buffer +descriptors as in via82xx, you can use the scatter-gather (SG) DMA. ALSA +provides an interface for handling SG-buffers. The API is provided in +````. + +For creating the SG-buffer handler, call +:c:func:`snd_pcm_lib_preallocate_pages()` or +:c:func:`snd_pcm_lib_preallocate_pages_for_all()` with +``SNDRV_DMA_TYPE_DEV_SG`` in the PCM constructor like other PCI +pre-allocator. You need to pass ``snd_dma_pci_data(pci)``, where pci is +the :c:type:`struct pci_dev ` pointer of the chip as +well. The ``struct snd_sg_buf`` instance is created as +``substream->dma_private``. You can cast the pointer like: + +:: + + struct snd_sg_buf *sgbuf = (struct snd_sg_buf *)substream->dma_private; + +Then call :c:func:`snd_pcm_lib_malloc_pages()` in the ``hw_params`` +callback as well as in the case of normal PCI buffer. The SG-buffer +handler will allocate the non-contiguous kernel pages of the given size +and map them onto the virtually contiguous memory. The virtual pointer +is addressed in runtime->dma_area. The physical address +(``runtime->dma_addr``) is set to zero, because the buffer is +physically non-contiguous. The physical address table is set up in +``sgbuf->table``. You can get the physical address at a certain offset +via :c:func:`snd_pcm_sgbuf_get_addr()`. + +When a SG-handler is used, you need to set +:c:func:`snd_pcm_sgbuf_ops_page()` as the ``page`` callback. (See +`page callback`_ section.) + +To release the data, call :c:func:`snd_pcm_lib_free_pages()` in +the ``hw_free`` callback as usual. + +Vmalloc'ed Buffers +------------------ + +It's possible to use a buffer allocated via :c:func:`vmalloc()`, for +example, for an intermediate buffer. Since the allocated pages are not +contiguous, you need to set the ``page`` callback to obtain the physical +address at every offset. + +The implementation of ``page`` callback would be like this: + +:: + + #include + + /* get the physical page pointer on the given offset */ + static struct page *mychip_page(struct snd_pcm_substream *substream, + unsigned long offset) + { + void *pageptr = substream->runtime->dma_area + offset; + return vmalloc_to_page(pageptr); + } + +Proc Interface +============== + +ALSA provides an easy interface for procfs. The proc files are very +useful for debugging. I recommend you set up proc files if you write a +driver and want to get a running status or register dumps. The API is +found in ````. + +To create a proc file, call :c:func:`snd_card_proc_new()`. + +:: + + struct snd_info_entry *entry; + int err = snd_card_proc_new(card, "my-file", &entry); + +where the second argument specifies the name of the proc file to be +created. The above example will create a file ``my-file`` under the +card directory, e.g. ``/proc/asound/card0/my-file``. + +Like other components, the proc entry created via +:c:func:`snd_card_proc_new()` will be registered and released +automatically in the card registration and release functions. + +When the creation is successful, the function stores a new instance in +the pointer given in the third argument. It is initialized as a text +proc file for read only. To use this proc file as a read-only text file +as it is, set the read callback with a private data via +:c:func:`snd_info_set_text_ops()`. + +:: + + snd_info_set_text_ops(entry, chip, my_proc_read); + +where the second argument (``chip``) is the private data to be used in +the callbacks. The third parameter specifies the read buffer size and +the fourth (``my_proc_read``) is the callback function, which is +defined like + +:: + + static void my_proc_read(struct snd_info_entry *entry, + struct snd_info_buffer *buffer); + +In the read callback, use :c:func:`snd_iprintf()` for output +strings, which works just like normal :c:func:`printf()`. For +example, + +:: + + static void my_proc_read(struct snd_info_entry *entry, + struct snd_info_buffer *buffer) + { + struct my_chip *chip = entry->private_data; + + snd_iprintf(buffer, "This is my chip!\n"); + snd_iprintf(buffer, "Port = %ld\n", chip->port); + } + +The file permissions can be changed afterwards. As default, it's set as +read only for all users. If you want to add write permission for the +user (root as default), do as follows: + +:: + + entry->mode = S_IFREG | S_IRUGO | S_IWUSR; + +and set the write buffer size and the callback + +:: + + entry->c.text.write = my_proc_write; + +For the write callback, you can use :c:func:`snd_info_get_line()` +to get a text line, and :c:func:`snd_info_get_str()` to retrieve +a string from the line. Some examples are found in +``core/oss/mixer_oss.c``, core/oss/and ``pcm_oss.c``. + +For a raw-data proc-file, set the attributes as follows: + +:: + + static struct snd_info_entry_ops my_file_io_ops = { + .read = my_file_io_read, + }; + + entry->content = SNDRV_INFO_CONTENT_DATA; + entry->private_data = chip; + entry->c.ops = &my_file_io_ops; + entry->size = 4096; + entry->mode = S_IFREG | S_IRUGO; + +For the raw data, ``size`` field must be set properly. This specifies +the maximum size of the proc file access. + +The read/write callbacks of raw mode are more direct than the text mode. +You need to use a low-level I/O functions such as +:c:func:`copy_from/to_user()` to transfer the data. + +:: + + static ssize_t my_file_io_read(struct snd_info_entry *entry, + void *file_private_data, + struct file *file, + char *buf, + size_t count, + loff_t pos) + { + if (copy_to_user(buf, local_data + pos, count)) + return -EFAULT; + return count; + } + +If the size of the info entry has been set up properly, ``count`` and +``pos`` are guaranteed to fit within 0 and the given size. You don't +have to check the range in the callbacks unless any other condition is +required. + +Power Management +================ + +If the chip is supposed to work with suspend/resume functions, you need +to add power-management code to the driver. The additional code for +power-management should be ifdef-ed with ``CONFIG_PM``. + +If the driver *fully* supports suspend/resume that is, the device can be +properly resumed to its state when suspend was called, you can set the +``SNDRV_PCM_INFO_RESUME`` flag in the pcm info field. Usually, this is +possible when the registers of the chip can be safely saved and restored +to RAM. If this is set, the trigger callback is called with +``SNDRV_PCM_TRIGGER_RESUME`` after the resume callback completes. + +Even if the driver doesn't support PM fully but partial suspend/resume +is still possible, it's still worthy to implement suspend/resume +callbacks. In such a case, applications would reset the status by +calling :c:func:`snd_pcm_prepare()` and restart the stream +appropriately. Hence, you can define suspend/resume callbacks below but +don't set ``SNDRV_PCM_INFO_RESUME`` info flag to the PCM. + +Note that the trigger with SUSPEND can always be called when +:c:func:`snd_pcm_suspend_all()` is called, regardless of the +``SNDRV_PCM_INFO_RESUME`` flag. The ``RESUME`` flag affects only the +behavior of :c:func:`snd_pcm_resume()`. (Thus, in theory, +``SNDRV_PCM_TRIGGER_RESUME`` isn't needed to be handled in the trigger +callback when no ``SNDRV_PCM_INFO_RESUME`` flag is set. But, it's better +to keep it for compatibility reasons.) + +In the earlier version of ALSA drivers, a common power-management layer +was provided, but it has been removed. The driver needs to define the +suspend/resume hooks according to the bus the device is connected to. In +the case of PCI drivers, the callbacks look like below: + +:: + + #ifdef CONFIG_PM + static int snd_my_suspend(struct pci_dev *pci, pm_message_t state) + { + .... /* do things for suspend */ + return 0; + } + static int snd_my_resume(struct pci_dev *pci) + { + .... /* do things for suspend */ + return 0; + } + #endif + +The scheme of the real suspend job is as follows. + +1. Retrieve the card and the chip data. + +2. Call :c:func:`snd_power_change_state()` with + ``SNDRV_CTL_POWER_D3hot`` to change the power status. + +3. Call :c:func:`snd_pcm_suspend_all()` to suspend the running + PCM streams. + +4. If AC97 codecs are used, call :c:func:`snd_ac97_suspend()` for + each codec. + +5. Save the register values if necessary. + +6. Stop the hardware if necessary. + +7. Disable the PCI device by calling + :c:func:`pci_disable_device()`. Then, call + :c:func:`pci_save_state()` at last. + +A typical code would be like: + +:: + + static int mychip_suspend(struct pci_dev *pci, pm_message_t state) + { + /* (1) */ + struct snd_card *card = pci_get_drvdata(pci); + struct mychip *chip = card->private_data; + /* (2) */ + snd_power_change_state(card, SNDRV_CTL_POWER_D3hot); + /* (3) */ + snd_pcm_suspend_all(chip->pcm); + /* (4) */ + snd_ac97_suspend(chip->ac97); + /* (5) */ + snd_mychip_save_registers(chip); + /* (6) */ + snd_mychip_stop_hardware(chip); + /* (7) */ + pci_disable_device(pci); + pci_save_state(pci); + return 0; + } + + +The scheme of the real resume job is as follows. + +1. Retrieve the card and the chip data. + +2. Set up PCI. First, call :c:func:`pci_restore_state()`. Then + enable the pci device again by calling + :c:func:`pci_enable_device()`. Call + :c:func:`pci_set_master()` if necessary, too. + +3. Re-initialize the chip. + +4. Restore the saved registers if necessary. + +5. Resume the mixer, e.g. calling :c:func:`snd_ac97_resume()`. + +6. Restart the hardware (if any). + +7. Call :c:func:`snd_power_change_state()` with + ``SNDRV_CTL_POWER_D0`` to notify the processes. + +A typical code would be like: + +:: + + static int mychip_resume(struct pci_dev *pci) + { + /* (1) */ + struct snd_card *card = pci_get_drvdata(pci); + struct mychip *chip = card->private_data; + /* (2) */ + pci_restore_state(pci); + pci_enable_device(pci); + pci_set_master(pci); + /* (3) */ + snd_mychip_reinit_chip(chip); + /* (4) */ + snd_mychip_restore_registers(chip); + /* (5) */ + snd_ac97_resume(chip->ac97); + /* (6) */ + snd_mychip_restart_chip(chip); + /* (7) */ + snd_power_change_state(card, SNDRV_CTL_POWER_D0); + return 0; + } + +As shown in the above, it's better to save registers after suspending +the PCM operations via :c:func:`snd_pcm_suspend_all()` or +:c:func:`snd_pcm_suspend()`. It means that the PCM streams are +already stopped when the register snapshot is taken. But, remember that +you don't have to restart the PCM stream in the resume callback. It'll +be restarted via trigger call with ``SNDRV_PCM_TRIGGER_RESUME`` when +necessary. + +OK, we have all callbacks now. Let's set them up. In the initialization +of the card, make sure that you can get the chip data from the card +instance, typically via ``private_data`` field, in case you created the +chip data individually. + +:: + + static int snd_mychip_probe(struct pci_dev *pci, + const struct pci_device_id *pci_id) + { + .... + struct snd_card *card; + struct mychip *chip; + int err; + .... + err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, + 0, &card); + .... + chip = kzalloc(sizeof(*chip), GFP_KERNEL); + .... + card->private_data = chip; + .... + } + +When you created the chip data with :c:func:`snd_card_new()`, it's +anyway accessible via ``private_data`` field. + +:: + + static int snd_mychip_probe(struct pci_dev *pci, + const struct pci_device_id *pci_id) + { + .... + struct snd_card *card; + struct mychip *chip; + int err; + .... + err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE, + sizeof(struct mychip), &card); + .... + chip = card->private_data; + .... + } + +If you need a space to save the registers, allocate the buffer for it +here, too, since it would be fatal if you cannot allocate a memory in +the suspend phase. The allocated buffer should be released in the +corresponding destructor. + +And next, set suspend/resume callbacks to the pci_driver. + +:: + + static struct pci_driver driver = { + .name = KBUILD_MODNAME, + .id_table = snd_my_ids, + .probe = snd_my_probe, + .remove = snd_my_remove, + #ifdef CONFIG_PM + .suspend = snd_my_suspend, + .resume = snd_my_resume, + #endif + }; + +Module Parameters +================= + +There are standard module options for ALSA. At least, each module should +have the ``index``, ``id`` and ``enable`` options. + +If the module supports multiple cards (usually up to 8 = ``SNDRV_CARDS`` +cards), they should be arrays. The default initial values are defined +already as constants for easier programming: + +:: + + static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX; + static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR; + static int enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP; + +If the module supports only a single card, they could be single +variables, instead. ``enable`` option is not always necessary in this +case, but it would be better to have a dummy option for compatibility. + +The module parameters must be declared with the standard +``module_param()()``, ``module_param_array()()`` and +:c:func:`MODULE_PARM_DESC()` macros. + +The typical coding would be like below: + +:: + + #define CARD_NAME "My Chip" + + module_param_array(index, int, NULL, 0444); + MODULE_PARM_DESC(index, "Index value for " CARD_NAME " soundcard."); + module_param_array(id, charp, NULL, 0444); + MODULE_PARM_DESC(id, "ID string for " CARD_NAME " soundcard."); + module_param_array(enable, bool, NULL, 0444); + MODULE_PARM_DESC(enable, "Enable " CARD_NAME " soundcard."); + +Also, don't forget to define the module description, classes, license +and devices. Especially, the recent modprobe requires to define the +module license as GPL, etc., otherwise the system is shown as “tainted”. + +:: + + MODULE_DESCRIPTION("My Chip"); + MODULE_LICENSE("GPL"); + MODULE_SUPPORTED_DEVICE("{{Vendor,My Chip Name}}"); + + +How To Put Your Driver Into ALSA Tree +===================================== + +General +------- + +So far, you've learned how to write the driver codes. And you might have +a question now: how to put my own driver into the ALSA driver tree? Here +(finally :) the standard procedure is described briefly. + +Suppose that you create a new PCI driver for the card “xyz”. The card +module name would be snd-xyz. The new driver is usually put into the +alsa-driver tree, ``alsa-driver/pci`` directory in the case of PCI +cards. Then the driver is evaluated, audited and tested by developers +and users. After a certain time, the driver will go to the alsa-kernel +tree (to the corresponding directory, such as ``alsa-kernel/pci``) and +eventually will be integrated into the Linux 2.6 tree (the directory +would be ``linux/sound/pci``). + +In the following sections, the driver code is supposed to be put into +alsa-driver tree. The two cases are covered: a driver consisting of a +single source file and one consisting of several source files. + +Driver with A Single Source File +-------------------------------- + +1. Modify alsa-driver/pci/Makefile + + Suppose you have a file xyz.c. Add the following two lines + +:: + + snd-xyz-objs := xyz.o + obj-$(CONFIG_SND_XYZ) += snd-xyz.o + +2. Create the Kconfig entry + + Add the new entry of Kconfig for your xyz driver. config SND_XYZ + tristate "Foobar XYZ" depends on SND select SND_PCM help Say Y here + to include support for Foobar XYZ soundcard. To compile this driver + as a module, choose M here: the module will be called snd-xyz. the + line, select SND_PCM, specifies that the driver xyz supports PCM. In + addition to SND_PCM, the following components are supported for + select command: SND_RAWMIDI, SND_TIMER, SND_HWDEP, + SND_MPU401_UART, SND_OPL3_LIB, SND_OPL4_LIB, SND_VX_LIB, + SND_AC97_CODEC. Add the select command for each supported + component. + + Note that some selections imply the lowlevel selections. For example, + PCM includes TIMER, MPU401_UART includes RAWMIDI, AC97_CODEC + includes PCM, and OPL3_LIB includes HWDEP. You don't need to give + the lowlevel selections again. + + For the details of Kconfig script, refer to the kbuild documentation. + +3. Run cvscompile script to re-generate the configure script and build + the whole stuff again. + +Drivers with Several Source Files +--------------------------------- + +Suppose that the driver snd-xyz have several source files. They are +located in the new subdirectory, pci/xyz. + +1. Add a new directory (``xyz``) in ``alsa-driver/pci/Makefile`` as + below + +:: + + obj-$(CONFIG_SND) += xyz/ + + +2. Under the directory ``xyz``, create a Makefile + +:: + + ifndef SND_TOPDIR + SND_TOPDIR=../.. + endif + + include $(SND_TOPDIR)/toplevel.config + include $(SND_TOPDIR)/Makefile.conf + + snd-xyz-objs := xyz.o abc.o def.o + + obj-$(CONFIG_SND_XYZ) += snd-xyz.o + + include $(SND_TOPDIR)/Rules.make + +3. Create the Kconfig entry + + This procedure is as same as in the last section. + +4. Run cvscompile script to re-generate the configure script and build + the whole stuff again. + +Useful Functions +================ + +:c:func:`snd_printk()` and friends +--------------------------------------- + +ALSA provides a verbose version of the :c:func:`printk()` function. +If a kernel config ``CONFIG_SND_VERBOSE_PRINTK`` is set, this function +prints the given message together with the file name and the line of the +caller. The ``KERN_XXX`` prefix is processed as well as the original +:c:func:`printk()` does, so it's recommended to add this prefix, +e.g. snd_printk(KERN_ERR "Oh my, sorry, it's extremely bad!\\n"); + +There are also :c:func:`printk()`'s for debugging. +:c:func:`snd_printd()` can be used for general debugging purposes. +If ``CONFIG_SND_DEBUG`` is set, this function is compiled, and works +just like :c:func:`snd_printk()`. If the ALSA is compiled without +the debugging flag, it's ignored. + +:c:func:`snd_printdd()` is compiled in only when +``CONFIG_SND_DEBUG_VERBOSE`` is set. Please note that +``CONFIG_SND_DEBUG_VERBOSE`` is not set as default even if you configure +the alsa-driver with ``--with-debug=full`` option. You need to give +explicitly ``--with-debug=detect`` option instead. + +:c:func:`snd_BUG()` +------------------------ + +It shows the ``BUG?`` message and stack trace as well as +:c:func:`snd_BUG_ON()` at the point. It's useful to show that a +fatal error happens there. + +When no debug flag is set, this macro is ignored. + +:c:func:`snd_BUG_ON()` +---------------------------- + +:c:func:`snd_BUG_ON()` macro is similar with +:c:func:`WARN_ON()` macro. For example, snd_BUG_ON(!pointer); or +it can be used as the condition, if (snd_BUG_ON(non_zero_is_bug)) +return -EINVAL; + +The macro takes an conditional expression to evaluate. When +``CONFIG_SND_DEBUG``, is set, if the expression is non-zero, it shows +the warning message such as ``BUG? (xxx)`` normally followed by stack +trace. In both cases it returns the evaluated value. + +Acknowledgments +=============== + +I would like to thank Phil Kerr for his help for improvement and +corrections of this document. + +Kevin Conder reformatted the original plain-text to the DocBook format. + +Giuliano Pochini corrected typos and contributed the example codes in +the hardware constraints section. -- 2.45.2